Software Testing methodologies
UNIT- I
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UNIT-1

Introduction: Puspose of testing, Dichotomies, model for testing, consequences
of bugs, taxonomy of Bugs.

Flow Graphs and Path testing: Basics concepts of path testing, predicates,
Path predicates and Achievable paths, path sensitizing, path instrumentation,
application of path testing.

INTRODUCTION

What is testing?
Testing is the process of exercising or evaluating a system or system components
by manual or automated means to verify that it satisfies specified requirements.
The Purpose of Testing
Testing consumes at leasfiralf of the time and work required to prodice a
functional program.
© MYTH: Good ptogrammers write code without bugs. (It"s wrong!!!)
O History says that even well written programs still have 1-3 bugs per hundred
. Statements. |
Productivity and Quality in Software: / |
O In production of consumer goods and other products, every manufacturing
stage is subjected to quality control and testing from component to final stage.
o If flaws are discovered at any stage, the product is either discarded or cycled
- back for rework and correction.
. o Pyoductivity is measured by the sum of the costs of the material, the rework,
and the discarded components, and the cost of quality assurance and testing.
o There is a tradeoff between quality assurance costs and manufacturing costs:
If sufficient time is not spent in quality assurance, the reject rate will be high and
~ so will be the net cost. If ihspection is good and all errors are caught as they
occur, inspection costs will dominate, and again the net cost will suffer.
o Testing and Quality assurance costs for 'manufactured' items can be as low &s
2% in consumer products or as high as 80% in products such as space-ships,
nuclear reactors, and aircrafts, where failures threaten life. Whereas the
manufacturifig cost of software is trivial. 4
o The biggest part of software cost is the cost of bugs: the cost of detecting
/them, the cost of correcting them, the cost of designing tests that discover them,
% and the cost of running those tests.
\
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o For software, qualit

Y and productivity are indistinguishable because the cost
of a software copy is t P ty are indisting

_ rivial,

gu; ;:;tlegni{nd Test Design arc parts of quality assurance should also focus on
Phases in al:m' A 'Pl‘evented lf)ug is better than a detected and corrected bug.
Phases | es“‘—'l‘ s mental life: o . .

‘ S1n a tester's mental life can be categorized into the following 5 phases:

I P_hase 0: (Until 1956: Debugging Oriented) There is no difference between
testing and debugging. Phase 0 thinking was the norm in early days of software
development till testing emerged as a discipline. ‘ _
2. Phase 1: (1957-1978: Demonstration Oriented) the purpose of testing here is
to show that software works. Highlighted during the fate 1970s. This fa:lcld
because the probability of showing that software works 'decreases' as testing
increases. I.e. the more you test, the more likely you will find a bug. ’

3. Phase 2: (1979-1982: Destruction Oriented) the purpose of testing is tO show
that software doesn’t work. This also failed because the software will never get
released as you will find one bug or the other. Also, a bug corrected may also
lead to another bug.

4. Phase 3: (1983-1987: Evaluation Oriented) the purpose of testing is not to
prove anything but to reduce the perceived risk of not working to an acceptable
value (Statistical Quality Control). Notion is that testing does improve the
product to the extent that testing catches bugs and to the extent that those bugs
are fixed. The product is released when the confidence on that product is high
enough. (Note: This is applied to large software products with millions of code
and years of use.)

5. Phase 4: (1988-2000: Prevention Oriented) Testability is the factor
considered here. One reason is to reduce the labor of testing. Other reason is to
check the testable and non-testable code. Testable code has fewer bugs than the
code that's hard to test. Identifying the testing techniques to test the code is the

main key here.

We know that the software code must be designed and tested, but many appear to

be unaware that tests themselves must be designed and tested. Tests should be
properly designed and te_sted before applying it to the actual code.

Testing isn’t everything: |

There are approaches other than testing to create better software. Methods other
than testing include:
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1. Inspection Methods: Methods like walkthroughs, desk checking, formal
inspections and code reading appear to be as effective as testing but the bugs
caught don’t completely overlap.

2. Design Style: While designing the software itself, adopting stylistic objectives
such as testability, openness and clarity can do much to prevent bugs.

3. Static Analysis Methods: Includes formal analysis of source code during
compilation. In earlier days, it is a routine job of the programmer to do that.
Now, the compilers have taken over that job.

4. Languages: The source language can help reduce certain kinds of bugs.
Programmers find new bugs while using new languages.

5. Development Methodologies and Development Environment: The
development process and the environment in which that methodology is
embedded can prevent many kinds of bugs.

Q. Dichotomies:

e Testing Versus Debugging:
Many people consider both as same. Purpose of testing is to show that a program
has bugs. The purpose of testing is to find the error or misconception that led to
the program's failure and to design and implement the program changes that
correct the error.

Debugging usually follows testing, but they differ as to goals, methods and most
important psychology. The below tab le shows few important differences
between testing and debugging.

-

D

Testing Debugging
Testing starts with known conditions, uses Debugging starts from pessibly unknown initial
predefined procedures and has predictable conditions and the end cannot be predicted except
outcomes. statistically.
Testing can and should be planned, designed and | Procedure and duration of debugging cannot be so
scheduled. constrained.
Testing is a demonstration of error or apparent Debugging is a deductive process.
correctness. .
Testing proves a programmer's failure. Debugging is the programmer's vindication
(Justification),
Testing, as executes, should strive to be Debugging demands intuitive leaps, experimentation
predictable, dull, constrained, rigid and inhuman. | and freedom.
Much testing can be done without design Debugging is impossible With_ol_lt_aetailed design
knowledge. knowledge.
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Testing —— —
! & can ofien be done by an outsider. Debugging must be done by an insider. |
| Much of test execution o R I
| stexecution and design can be 'd de v 16 still a dream.
| automated. & ¢ Automated debugging i ¢

* Function versus Structure:

0 Tests can be designed from a functional or a structural point of view. '

o In. Functional testing, the program or system is treated as a black box. It is
subj ected to inputs, and its outputs are verified for conformance to specified
behavior. Functional testing takes the user point of view- bother about
functionality and features and not the program's implementation.

0 In Structural testing does look at the implementation details. Things such as
programming style, control method, source language, database design, and
coding details dominate structural testing.

o Both Structural and functional tests are useful, both have limitations, and both
target different kinds of bugs. Functional tests can detect all bugs but would take
infinite time to do so. Structural tests are inherently finite but cannot detect all
errors even if completely executed.

¢ Designer versus Tester:

o Test designer is the person who designs the tests where as the tester is the one
actually tests the code. During functional testing, the designer and tester are
probably different persons. During unit testing, the tester and the programmer
merge into one person.

o Tests designed and executed by the software designers are by nature biased
towards structural consideration and therefore suffer the limitations of structural
testing.

e Modularity versus Efficiency:

A module is a discrete, well-defined, small component of a system. Smaller the
modules, difficult to integrate; larger the modules, difficult to understand. Both
tests and systems can be modular. Testing can and should likewise be organized
into modular components. Small, independent test cases can be designed to test
independent modules.

e Small versus Large:

Programming in large means constructing programs that consists of many
components written by many different programmers. Programming in the small
is what we do for ourselves in the privacy of our own offices. Qualitative and
Quantitative changes occur with size and so must testing methods and quality
criteria.

" o Builder versus Buyer:
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Most software is written and used by the same organization. Unfortunately, this
situation is dishonest because it clouds accountability. If there is no separation
between builder and buyer, there can be no accountability.

® The different roles / users in a system include:

1. Builder: Who designs the system and is accountable to the buyer.

2. Buyer: Who pays for the system in the hope of profits from providing
services?

3. User: Ultimate beneficiary or victim of the system. The user's interests are
also guarded by.

4. Tester: Who is dedicated to the builder's destruction?

5. Operator: Who has to live with the builders' mistakes, the buyers' murky
(unclear) specifications, testers' oversights and the users' complaints?

Go e o ok
Q. MODEL FOR TESTING: > )omwg’m . e

S oandelnelr iy
THE WORLD THE MODEL WORLD
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THE ENVIRONMENT
ENVIRONMENT MOODEL

- ———— UNEXPECTED

EXPECTED
THE PROGRAM

PROGRAM MODEL TESTS OUTCOME

[

NAATNUDRE 8UG
A Model for Testing

Above figure is a model of testing process. It includes three models: A model of
the environment, a model of the program and a model of the expected bugs.

e Environment:
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© A Program's environment is the hardware and software required to make it
run. For online systems, the environment may include communication lines,
other systems, terminals and operators.

© The environment also includes all programs that interact with and are used to
create the program under test - such as OS, linkage editor, loader, compiler,
utility routines.

o Because the hardware and firmware are stable, it is not smart to blame the
cnvironment for bugs.

® Program:

© Most programs are too complicated to understand in detail.

© The concept of the program is to be simplified in order to test it.

o If simple model of the program doesn’t explain the unexpected behavior, we
may have to modify that model to include more facts and details. And if that
fails, we may have to modify the program.

¢ Bugs: j

© Bugs are more insidious (deceiving but harmful) than ever we expect them to
be. |

O An unexpected test result may lead us to change our notion of what a bug is
and our model of bugs.

o Some optimistic notions that many programmers or testers have about bugs
are usually unable to test effectively and unable to justify the dirty tests most
programs need.

o Optimistic notions about bugs:

1. Benign Bug Hypothesis: The belief that bugs are nice, tame and logical.
(Benign: Not Dangerous)

2. Bug Locality Hypothesis: The belief that a bug discovered with in a
component affects only that component's behavior.

3. Control Bug Dominance: The belief those errors in the control structures (if,
switch etc) of programs dominate the bugs.

4. Code / Data Separation: The belief that bugs respect the separation of code
and data.

5. Lingua Salvatore Est.: The belief that the language syntax and semantics
(e.g. Structured Coding, Strong typing, etc) eliminates most bugs,
6. Corrections Abide: The mistaken belief that a corrected bug remains
corrected.
7. Silver Bullets: The mistaken belief that X (Language, Design method,
representation, environment) grants immunity from bugs.

Scanned with CamScanner

L]

Pag'e6 .



. 8. Sadism Suffices: The common belief (especially by independent tester) that a

- sadistic streak, low cunning, and intuition are sufficient to eliminate most bugs.

Tough bugs need methodology and techniques.

9. Angelic Testers: The belief that testers are better at test design than

programmers is at code design.

® Tests:

© Tests are formal procedures, Inputs must be prepared, Outcomes should

predict, tests should be documented, commands need to be executed, and results

are to be observed. All these errors are subjected to error

© We do three distinct kinds of testing on a typical software system. They

are:

1. Unit / Component Testing: A Unit is the smallest testable piece of software

that can be compiled, assembled, linked, loaded etc. A unit is usually the work of

one programmer and consists of several hundred or fewer lines of code. Unit

Testing is the testing we do to show that the unit does not satisfy its functional

specification or that its implementation structure does not match the intended

design structure. A Component is an integrated aggregate of one or more units.

Component Testing is the testing we do to show that the component does not

satisfy its functional specification or that its implementation structure does not

match the intended design structure.

- 2. Integration Testing: Integration is the process by which components are

aggregated to create larger components. Integration Testing is testing done to

show that even though the components were individually satisfactory (after

passing component testing), checks the combination of components are incorrect

or inconsistent.

- 3. System Testing: A System is a big component. System Testing is aimed at

_ revealing bugs that cannot be attributed to components. It includes testing for
performance, security, accountability, configuration sensitivity, startup and

recovery.

e Role of Models: The art of testing consists of creating, selecting, exploring,

and revising models. Our ability to go through this process depends on the

number of different models we have at hand and their ability to express a

program's behavior.
Q. CONSEQUENCES OF BUGS:

@f;nportance of bugs: The importance of bugs depends on frequency, correction cost,
.- installation cost, and consequences.
1. Frequency: How often does that kind of bug occur? Pay more attention to the more

- frequent bug types.
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2. Correction Cost: What does it cost to correet the bug afler it is found? The cost i the
Sum of 2 factors: (1) the cost of discovery (2) the cost of correction. These costs go up
dl‘amuticull_\' later in the development eyele when the bug is discovered. Correction cost also
depends on system size.

3: Lnstallation Cost: Installation cost depends on the number of installations: small for a
single user program but more for distributed systems. Fixing one bug and distributing the fix
cou_ld exceed the entire system's development cost. i

4. Consequences: What ace the consequences of the bug? Bug consequences can range from
muld to catastrophic,

A reasonable metric for bug importance is

lmportance= ($) = Frequency * (Correction cost + Installation cost + Consequential
cost)

* Consequences of bugs: The consequences of a bug can be measure in terms of human
rather than machine. Some consequences of a bug on a scale of one to ten are:

I Mild: The symptoms of the bug offend us aesthetically (gently); a misspelled output or a
misaligned printout. - 8 : e R S

2 Moderate: Outputs are misleading or redundant. The bug impacts the system's
performance. ~—  — —T——————
3 Annoying: The system's behavior because of the bug is dehumanizing. E.g. Names are
truncated or arbitrarily modified. i '
4 Disturbing: It refuses to handle legitimate (authorized / legal) transactions. The ATM
won’t give you money. My credit card is declared invalid.—— —
5-Serious: It loses track of its transactions. Not just the transaction itself but the fact that the
transaction occurred. Accountability is lost.

6 Very Serious: The bug causes the system to do the wrong transactions. Instead of losing
your paycheck, the system credits it to another account or converts deposits to withdrawals.
7 Extreme: The problems aren't limited to a few users or to few transaction types. They are
frequent and arbitrary instead of sporadic infrequent) or for unusual cases.

8 Intolerable: Long term unrecoverable corruption of the database occurs and the corruption
is not easily discovered. Serious consideration is given to shutting the system down.

9 Catastrophic: The decision to shut down is taken out of 8ygthands because the system
fails. ' D
[0 Infectious: What can be worse than a failed system? One that corrupt other systems even
though it does not fall in itself ; that erodes the $ocial physical environment; that melts
nuclear reactors and starts war.

e Flexible severity rather than absolutes:

o Quality can be measured as a combination of factors, of which number of bugs and their
severity is only one component.

o Many organizations have designed and used satisfactory, quantitative, quality metrics.

o Because bugs and their symptoms play a significant role in such metrics, as testing
progresses, you see the quality rise to a reasonable value which is deemed to be safe to ship
the product.

o The factors involved in bug severity are:
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1. Correction Cost: Not so important because catastrophic bugs may be corrected easier and
small bugs may take major time to debug.

2. Context and Application Dependency: Severity depends on the context and the
application in which it is used.

3. Creating Culture Dependency: What’s important depends on the creators of software
and their cultural aspirations. Test tool vendors are more sensitive about bugs in their
software then games software vendors.

4. User Culture Dependency: Severity also depends on user culture. Naive users of PC
software go crazy over bugs where as pros (experts) may just ignore.

5. The software development phase: Severity depends on development phase. Any bugs
gets more severe as it gets closer to field use and more severe the longer it has been around.

Q. TAXONOMY OF BUGS: /¢ (om/%@}‘w% oy

® There is no universally correct way categorize bugs. The taxonomy is not rigid.

® A given bug can be put into one or another category depending on its history and the

programmer's state of mind.

e The major categories are: (1) Requirements, Features and Functionality Bugs (2) Structural

Bugs (3) Data Bugs (4) Coding Bugs (5) Interface, Integration and System Bugs (6) Test and

Test Design Bugs.

v Requirements, Features and Functionality Bugs: Various categories in Requirements,
Fcaturcs and Functionality bugs includc:

1. Requirements and Specifications Bugs:

e Requirements and specifications developed from them can be incomplete ambiguous, or

- self-contradictory. They can be misunderstood or impossible to understand.

e The specifications that don't have flaws in them may change while the design is in

progress. The features are added, modified and deleted.

e Requirements, especially, as expressed in specifications are a major source of expensive

bugs.
- The range is from a few percentages to more than 50%, depending on the application and

environment.

" e What hurts most about the bugs is that they are the earliest to invade the system and the last
to leave.

2. Feature Bugs:

B Specif{cation problems usually create corresponding feature problems.

e A feature can be wrong, missing, or superfluous (serving no useful purpose). A missing
feature or case is easier to detect and correct. A wrong feature could have deep design
implications.

e Removing the features might complicate the software, consume more resources, and foster
more bugs.

3. Feature Interaction Bugs:
e Providing correct, clear, implementable and testable feature specifications is not enough.

-» Features usually come in groups or related features. The features of each group and the
interaction of features within the group are usually well tested.
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* The problem is unpredictable interactions between feuture groups or even between
Individual features, For example, your telephone is provided with call holding and call
lorwnrding. The interactions between these two features may have bugs,
* Every application has its peculiar set of features and o much bigger set of unspecificd
leature interaction potentials and therefore result in feature interac i:/:): bugs.
Specification and Feature Bug Remedies: L i {f\m»”’ ’
* Most feature bugs are rooted in human to human communication problems, One solution 1s
10 use high-level, formal specilication languages or systems, :
* Such languages and systems provide short term support but in the long run, does not solve
the problem,
* Short term Support: Specification languages facilitate formalization of requirements and
inconsistency and ambiguity analysis.
* Long term Support: Assume that we have a great specification language and that can be
used to create unambiguous, complete specifications with unambiguous complete tests and
consistent test criteria,
* The specification problem has been shifted to a higher level but not eliminated.
Testing Techniques for functional bugs: Most functional test techniques- that is those
techniques which are based on a behavioral description of software, such as transaction flow
testing, syntax testing, domain testing, logic testing and state testing are useful in testing
functional bugs.
v Structural bugs: Various categories in Structural bugs include:
I. Control and Sequence Bugs:
* Control and sequence bugs include paths left out, unreachable code, improper nesting of
loops, loop-back or loop termination criteria incorrect, missing process steps, duplicated
processing, unnecessary processing, rampaging, GOTO's, ill-conceived (not properly
planncd) switches, spaghetti code, and worst of all, pachinko code.
¢ One reason for control flow bugs is that this area is amenable (supportive) to theoretical
treatment.
* Most of the control flow bugs are casily tested and caught in unit testing,
* Another reason for control flow bugs is that usc of old code especially ALP & COBOL
code are dominated by control flow bugs.
* Control and sequence bugs at all levels are caught by testing, especially structural testing,
more specifically path testing combined with a bottom line functional test based on a
specification.
2. Logic Bugs:
e Bugs in logic, especially those related to misunderstanding how case statements and logic
operators behave singly and combinations
® Also includes evaluation of boolean expressions in deeply nested 1F-THEN-ELSE
constructs,
o If the bugs are parts of logical (i.e. boolean) processing not related to control flow, they are
characterized as processing bugs. )
o If the bugs are parts of a logical expression (i.e. control-flow statement) which is used to
dircct the control flow, then they are categorized as control-flow bugs.
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3. Processing Bugs:

* Processing bugs include arithmetic bugs, algebraic, mathematical function evaluation,
algorithm selection and general processing.

- @ Examples of Processing bugs include: Incorrect conversion from one data representation (o
other, ignoring overflow, improper use of greater-than-or-cqual ete

e Although these bugs are frequent (12%), they tend to be caught in good unit testing,

4. Initialization Bugs:

® Initialization bugs are common. Initialization bugs can be improper and superfluous.

* Superfluous bugs are generally less harmful but can affect performance.

* Typical initialization bugs include: Forgetting to initialize the variables before first usc,
assuming that they are initialized elsewhere, initializing to the wrong format, representation
or type etc

e Explicit declaration of all variables, as in Pascal, can reduce some initialization problems.
5. Data-Flow Bugs and Anomalies:

e Most initialization bugs are special case of data flow anomalies. ( (CJAM""\

e A data flow anomaly occurs where there is a path along which we expect to do something
unreasonable with data, such as using an uninitialized variable, attempting to use a variable
before it exists, modifying and then not storing or using the result, or initializing twice
without an intermediate use.

v Data bugs:

e Data bugs include all bugs that arise from the specification of data objects, their formats,
the number of such objects, and their initial values.

e Data Bugs are at least as common as bugs in code, but they are often treated as if they did
not exist at all.

e Code migrates data: Software is evolving towards programs in which more and more of the
control and processing functions are stored in tables.

e Because of this, there is an increasing awareness that bugs in code are only half the battle
and the data problems should be given equal attention.

Dynamic Data Vs Static data: '

e Dynamic data are transitory. Whatever their purpose their lifetime is relatively short,
typically the processing time of one transaction. A storage object may be used to hold
dynamic data of different types, with different formats, attributes and residues.

e Dynamic data bugs are due to leftover garbage in a shared resource. This can be handled in
one of the three ways: (1) Clean up after the use by the user (2) Common Cleanup by the
resource manager (3) No Clean up

o Static Data are fixed in form and content. They appear in the source code or database
directly or indirectly, for example a number, a string of characters, or a bit pattern.

e Compile time processing will solve the bugs caused by static data.

Information, parameter, and control:

Static or dynamic data can serve in one of three roles, or in combination of roles: as a
parameter, for control, or for information.

o Content, Structureand Attributes:
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"Comen.l' can be an actual bit pattern, character string, or number put into a data structure.
Content is a pure bit pattern and has no meaning unless it is interpreted by a hardware or
Sol“lwarc processor. All data bugs result in the corruption or misinterpretation of content.

* Structure relates to the size, shape and numbers that describe the data object, which is
mcmoEy location used to store the content. (E.g. A two dimensional array).

* Attributes relates to the specification meaning that is the semantics associated with the
contents of a data object. (E.g, an integer, an alphanumeric string, a subroutine). The severity
and subtiety of bugs increases as we go from content to attributes because the things get less
formal in that direction.

Y _Coding bugs:

* Coding errors of all kinds can create any of the other kind of bugs.

* Syntax errors are generally not important in the scheme of things if the source language
translator has adequate syntax checking.

* If a program has many syntax errors, then we should expect many logic and coding bugs.

. The documentation bugs are also considered as coding bugs which may mislead the
maintenance programmers.

[3_:/ Interface, integration, and system bugs:

Various categories of bugs in Interface, Integration, and System Bugs are:

— 1. External Interfaces:
e The external interfaces are the means used to communicate with the world.

= These include devices, actuators, sensors, input terminals, printers, and communication
lines.
e The primary design criterion for an interface with outside world should be robustness.
e All external interfaces, human or machine should employ a protocol. The protocol may be
wrong or incorrectly implemented.
e Other external interface bugs are: invalid timing or sequence assumptions related to
external signals iy 4
e Misunderstanding external input or output formats.

nsufficient tolerance to bad input data.

—2. Internal Interfaces:
e Internal interfaces are in principle not different from external interfaces but they are more

e —
controlled.
“e A best example for internal interfaces is co icating routines.

_e The external environment is fixed and the system must adapt to it but the internal

environment, which consists of interfaces with other components, can be negotiated.
__eInternal interfaces have the same problem as external interfaces. T

3. Hardware Architecture:

e Bugs related to hardware architecture originate mostly from misunderstanding how the

hardware works.

e Examples of hardware architecture bugs: address generation error, i/0 device operation /

instruction error, waiting too long for a response, incorrect interrupt handling etc.

Page]. 2
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® The remedy for hardware architecture and interface problems is twofold: (1) Good

- Programming and Testing (2) Centralization of hardware interface software in programs
written by hardware interface specialists.

- 4. Operating System Bugs:

® Program bugs related to the operating system are a combination of hardware architecture
and interface bugs mostly caused by a misunderstanding of what it is the operating system
does.

* Use operating system interface specialists, and use explicit interface modules or macros for
all operating system calls.

* This approach may not eliminate the bugs but at least will localize them and make testing
easier.

S. Software Architecture:

* Software architecture bugs are the kind that called - interactive.

* Routines can pass unit and integration testing without revealing such bugs.

» Many of them depend on load, and their symptoms emerge only when the system 15
stressed.

e Sample for such bugs: Assumption that there will be no interrupts, Failure to block or un
block interrupts, Assumption that memory and registers were initialized or not initialized etc
e Careful integration of modules and subjecting the final system to a stress test are effective
methods for these bugs.

6. Control and Sequence Bugs (Systems Level):

These bugs include: Ignored timing, Assuming that events occur in a specified sequence,
Working on data before all the data have arrived from disc, Waiting for an impossible
combination of prerequisites, Missing, wrong, redundant or superfluous process steps.

The remedy for these bugs is highly structured sequence control.

Specialize, internal, sequence control mechanisms are helpful.

7. Resource Management Problems:

e Memory is subdivided into dynamically allocated resources such as buffer blocks, queue
blocks, task control blocks, and overlay buffers.

o External mass storage units such as discs, are subdivided into memory resource pools.

e Some resource management and usage bugs: Required resource not obtained, Wrong
resource used, Resource is already in use, Resource dead lock etc

e Resource Management Remedies: A design remedy that prevents bugs is always
preferable to a test method that discovers them.

e The design remedy in resource management is to keep the resource structure simple: the
fewest different kinds of resources, the fewest pools, and no private resource management.
8. Integration Bugs:

o Integration bugs are bugs having to do with the integration of; and with the interfaces
between, working and tested components.

e These bugs results from inconsistencies or incompatibilities between components.

¢ The communication methods include data structures, call sequences, registers, semaphores,
“ and communication links and protocols results in integration bugs. '
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® The integration bugs do not constitute a big bug category (9%) they are expensive category .

because they are usually caught late in the game and because they force changes in several
Components and/or data structures.
9. System Bugs:

* System bugs covering all kinds of bugs that cannot be ascribed to a component or to their
simple interactions, but result from the totality of interactions between many components
such as programs, data, hardware, and the operating systems.

. There can be no meaningful system testing until there has been thorough component and
Integration testing.

* System bugs are infrequent (1.7%) but very important because they are often found only
after the system has been fielded.

¥" TEST AND TEST DESIGN BUGS:

* Testing: testers have no immunity to bugs. Tests require complicated scenarios and
databases. :

* They require code or the equivalent to execute and consequently they can have bugs.

® Test criteria: if the specification is correct. it is correctly interpreted and implemented. and
a proper test has been designed; but the criterion by which the software's behavior is
Judged may be incorrect or impossible. So, a proper test criteria has to be designed. The
more complicated the criteria, the likelier they are to have bugs.

Remedies: The remedies of test bugs are:

1. Test Debugging: The first remedy for test bugs is testing and debugging the tests. Test
debugging, when compared to program debugging, is easier because tests, when properly
designed are simpler than programs and do not have to make concessions to efficiency.

2. Test Quality Assurance: Programmers have the right to ask how quality in independent
testing is monitored.

3. Test Execution Automation: The history of software bug removal and prevention is
indistinguishable from the history of programming automation aids. Assemblers, loaders,
compilers are developed to reduce the incidence of programming and operation errors. Test
execution bugs are virtually eliminated by various test execution automation tools.

4. Test Design Automation: Just as much of software development has been automated,
much test design can be and has been automated. For a given productivity rate, automation
reduces the bug count - be it for software or be it for tests.

FLOW GRAPHS AND PATH TESTING

BASICS OF PATH TESTING: R,

e Path Testing:

o Path Testing is the name given to a family of test techniques based on judiciously
selecting a set of test paths through the program.

o If the set of paths are properly chosen then we have achieved some measure of test
thoroughness. For example, pick enough paths to assure that every source statement has been
executed at least once.

o Path testing techniques are the oldest of all structural test techniques.
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Path testing is most applicable to new software for unit testing. It is a structural technique.
It requires complete knowledge of the program's structure.
O Itis most often used by programmers to unit test their own code.
O The effectiveness of path testing rapidly deteriorates as the size of the software aggregate
under test increases.
* The Bug Assumption:
© The bug assumption for the path testing strategies is that something has gone wrong with
the software that makes it take a different path than intended.
© As an example "GOTO X" where "GOTO Y" had been intended.
© Structured programming languages prevent many of the bugs targeted by path testing: as
a consequence the effectiveness for path testing for these languages is reduced and for old
code in COBOL., ALP, FORTRAN and Basic, the path testing is indispensable.
zontrol Flow Graphs:
o The control flow graph is a graphical representation of a program's control structure. It
uses the elements named process blocks, decisions, and junctions.
o The flow graph is similar to the earlier flowchart, with which it is not to be confused.
’%Plow Graph Elements: A flow graph contains four different types of elements. (1)
rocess Block (2) Decisions (3) Junctions (4) Case Statements
1. Process Block:
" A process block is a sequence of program statements uninterrupted by either decisions or
junctions.
* Itis asequence of statements such that if any one of statement of the block is executed.
- then all statement thereof are executed.
* Formally, a process block is a piece of straight line code of one statement or hundreds of
statements.
" A process has one entry and one exit. It can consists of a single statement or instruction, a
sequence of statements or instructions, a
single entry/exit subroutine, a macro or function call, or a sequence of these.
2. Decisions:
" A decision is a program point at which the control flow can diverge.
* Machine language conditional branch and conditional skip instructions are examples of
decisions.
* Most of the decisions are two-way but some are three way branches in control flow.
3. Case Statements:
= A case statement is a multi-way branch or decisions.
= Examples of case statement are a jump table in asse:nbly language, and the PASCAL
case statement.
* From the point of view of test design, there are no differences between Decisions and
Case Statements
4. Junctions:
* A junction is a point in the program where the control flow can merge.
- = Examples of junctions are: the target of a jump or skip instruction in ALP, a label that is
a target of GOTO.

O O~
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Figure 2.1: Flow graph Elements _
Control Flow Graphs Vs Flowcharts: 7
o A program's flow chart resembles a control flow graph.
o In flow graphs, we don't show the details of what is in a process block.
o In flow charts every part of the process block is drawn.
o The flowchart focuses on process steps, where as the flow graph focuses on control flow of the program.
o The act of drawing a control flow graph is a useful tool that can help us clarify the control flow and data
flow 1ssues.
Notational Evolution:
The control flow graph is simplified representation of the program's structure. The notation
changes made in creation of control flow graphs:
o The process boxes weren't really needed. There is an implied process on every line joining
junctions and decisions.
o We don't need to know the specifics of the decisions, just the fact that there is a branch.
o The specific target label names aren't important-just the fact that they exist. So we can
replace them by simple numbers.
o To understand this, we will go through an example (Figure 2.2) written in a FORTRAN
like programming language called Programming Design Language (PDL). The program's
corresponding flowchart (Figure 2.3) and flowgraph (Figure 2.4) were also provided below
for better understanding.
o The first step in translating the program to a flowchart is shown in Figure 2.3, where we
have the typical one-for-one classical flowchart. Note that complexity has increased, clarity
has decreased, and that we had to add auxiliary labels (LOOP, XX, and YY), which have no
actual program counterpart. In Figure 2.4 we merged the process steps and replaced them
with the single process box.
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¥
0 We now have a control flow graph. But this representation is still too busy. We simplify

~ the notation further to achieve Figure 2.5, where for the first time we can really see what the
control flow looks like.

CODE* (PDL)
INPUT X, Y ViU=1):=V(U+1) + UIV-1)
Z:=X~+Y ELL:V(U+U(V)) := U + V
Vi=X-=-Y¥ IFU =V GOTO JOE
IFZ >=p GOTO SAM IFU>VTHENU := 2
JOE: 2:=2 -1 2:=U
SAM: Z2:=2Z + V END

FORU=8TOZ
V{U),UV) := (2 = V)=U
IF V(U)= @ GOTO JOE
Z2:=2 -1

IFZ - g GOTO ELL
U:=U+1

NEXT U

* A contnived horror

Figure 2.2: Program Example (PDL)

i YES
— INPUT X, Y. Z=X+VY Vex-Y] :

z-2-1 SAM z=2zv

vmn-tz-v:-u UVl =12+ W)s U

N
Z=Z-% Z=-@7 oo (U=U=+1 > U=u-+1 LOOP

YES ) YES

VIU = 1) = ViU + 1} # UIV -1) —-GLD-—‘ VIUs U (Vi = U sV xDl
NO JES
xx U=-v? u>wr u=-2z Z=uJ

YES ~NO
1I0ne

Figure 2.3: One-to-one flowchart for example program in Figure 2.2
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Figure 2.4: Control Flow graph for example in Figure 2.2
joe
begin 20 J Sam loop V(u)=0
O——0—0—6—0
U=2
0§ o —
end U>v U=v ¢

=0

Figure 2.5: Simplified Flow graph Notation

Figure 2.6: Even Simplified Flow graph Notation
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The final transformation is shown in Figure 2.6, where we've dropped the node numbers to
achicve an cven simpler representation. The way to work with control flow graphs is to usc
the simplest possible representation - that is, no more information than you need to correlate
back to the source program or PDL,

LINKED LIST REPRESENTATION:
Although graphical representations of flow graphs are revealing, the details of the control
flow inside a program they are often inconvenient.
In linked list representation, each node has a name and there is an entry on the list for each
link in the flow graph. Only the information pertinent to the control flow is shown.
Linked List representation of Flow Graph:

1 (BEGIN) : 3

2 (END) : Exit, no outlink
3 (Z>@7) : 4 (FALSE)
: 5 (TRUE)
4 (JOE) : 5
5 (SAM) : 6
6 (LOOP) v 7
7 (V(U)=@7?) : 4 (TRUE)
: 8 (FALSE)
8 (Z=@?) : 9 (FALSE)
:10 (TRUE)

9 (U=Z?) : 6 (FALSE) = LOOP
:10 (TRUE) = ELL

10 (ELL) N

11 (U=V?) : 4 (TRUE) = JOE
:12 (FALSE)

12 (U>V?) :13 (TRUE)
:13 (FALSE)

13 : 2 (END)

Figure 2.7: Linked List Control Flow graph Notation

FLOWGRAPH - PROGRAM CORRESPONDENCE:

A flow graph is a pictorial representation of a program and not the program itself, just as a

~ topographic map.

You can’t always associate the parts of a program in a unique way with flow graph parts
because many program structures, such as if-then-else constructs, consists of a combination

of decisions, junctions, and processes.
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The translation from a flow graph element to a statement and vice versa is not always

IF s vES -—‘/l’
—nd A=DAD= 4 h=1
- ' ~

e TES

NGO

unique. (See Figure 2.8) O
Figure 2.8: Alternative Flow graphs for same logic
(Statement "1F (A=0) AND (B=1) THEN...").

An improper translation from flow graph to code during coding can lead to bugs, and
improper translation during the test design lead to missing test cases and causes
undiscovered bugs.
FLOWGRAPH AND FLOWCHART GENERATION:
Flowcharts can be
1. Handwritten by the programmer.
2. Automatically produced by a flowcharting program based on a mechanical analysis of the
source code.
3. Semi automatically produced by a flow charting program based in part on structural
analysis of the source code and in part on directions given by the programmer.
There are relatively few control flow graph generators.
Cj PATH TESTING - PATHS, NODES AND LINKS:

Path: A path through a program is a sequence of instructions or statements that starts at an
try, junction, or decision and ends at another, or possibly the same junction, decision, or
exit.
ath may go through several junctions, processes, or decisions, one or more times.
/e"Paths consist of segments.
o The segment is a link - a single process that lies between two nodes.
0 A path segment is succession of consecutive links that belongs to some path.
0 The length of path measured by the number of links in it and not by the number of the
instructions or statements executed along that path.
,}The name of a path is the name of the nodes along the path. %0

FUNDAMENTAL PATH SELECTION CRITERIA:
There are many paths between the entry and exit of a typical routine.
Every decision doubles the number of potential paths. And every loop multiplies the number

of potential paths by the number of different iteration values possible for the loop.
Defining complete testing:

1. Exercise every path from entry to exit.
2. Exercise every statement or instruction at least once.
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3. Exercise every branch and case statement, in each direction at least once.
" If prescription 1 is followed then 2 and 3 are automatically followed. But it is impractical for
most routines. It can be done for the routines that have no loops, in which it is equivalent to 2
- and 3 prescriptions.
EXAMPLE: Here is the correct version.

YES

IFIXLT) GOTO 200
XaXoA
WOX«XeA

I CONTINUE NO
X<0 X=X+A 200 l-xu Me3)
)

For X negative, the output is X + A, while for X greater than or equal to zero, the output is X
+ 2A. Following prescription 2 and executing every statement, but not every branch, would
not reveal the bug in the following incorrect version:

Vs

WILTHECOTO W
Mrenia
0 CONTINGE

A negative value produces the correct answer. Every statement can be executed, but if the
- test cases do not force each branch to be taken, the bug can remain hidden. The next example
uses a test based on executing each branch but does not force the execution of all statements:

<0
1X=-xsa

”wmm.m.m

GOTO o
10X =Nt A KrErh @ I-N'A?—r@
WOX=-XKr A

300 CONTINUL
M =4
@ AmX + A

The hidden loop around label 100 is not revealed by tests based on prescription 3 alone
because no test forces the execution of statement 100 and the following GOTO statement.
Furthermore, label 100 is not flagged by the compiler as an unreferenced label and the
subsequent GOTO does not refer to an undefined label.

A Static Analysis (that is, an analysis based on examining the source code or structure)
cannot determine whether a piece of code is or is not reachable. There could be subroutine
calls with parameters that are subroutine labels, or in the above example there could be a
GOTO that targeted label 100 but could never achieve a value that would send the program
to that label.

' On.ly a Dynamic Anglysis (that is, an analysis based on the code's behavior while running -
- which is to say, to all intents and purposes, testing) can determine whether code is reachable
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or not and therefore distinguish between the ideal structure we think we have and the actual,

s buggy structure.

: PATH TESTING CRITERIA:

Any testing strategy based on paths must at least both exercise every instruction and take
branches in all directions.

A set of tests that does this is not complete in an absolute sense, but it is complete in the
sense that anything less must leave something untested.

So we have explored three different testing criteria or strategies out of a potentially infinite
family of strategics.

i. Path Testing (Pinf):

1. Execute all possible control flow paths through the program: typically, this is restricted to
all possible entry/exit paths through the program.

2. 1f we achieve this prescription, we are said to have achieved 100% path coverage. This is
the strongest criterion in the path testing strategy family: it is generally impossible to
achieve.

ii. Statement Testing (P1):

1. Execute all statements in the program at least once under some test. If we do enough tests
to achieve this, we are said to have achieved 100% statement coverage.

_ 2. An alternate equivalent characterization is to say that we have achieved 100% node

coverage. We denote this by C1.
3. This is the weakest criterion in the family: testing less than this for new software is
unconscionable (unprincipled or cannot be accepted) and should be criminalized.

" 1. Branch Testing (P2):

& "

1. Execute enough tests to assure that every branch alternative has been exercised at least
once under some test.

2. If we do enough tests to achieve this prescription, then we have achieved 100% branch
coverage.

3. An alternative characterization is to say that we have achieved 100% link coverage.

4. For structured software, branch testing and therefore branch coverage strictly includes
statement coverage.

5. We denote branch coverage by C2.

Commonsense and Strategies:

= Branch and statement coverage are accepted today as the minimum mandatory testing
requirement.

= The question "why not use a judicious sampling of paths?, what is wrong with leaving
some code, untested?" is ineffectual in the view of common sense and experience since: (1.)
Not testing a piece of a code leaves a residue of bugs in the program in proportion to the size
of the untested code and the probability of bugs. (2.) The high probability paths are always
thoroughly tested if only to demonstrate that the system works properly.

=  Which paths to be tested? You must pick enough paths to achieve C1+C2. The question
of what is the fewest number of such paths is interesting to the designer of test tools that help
automate the path testing, but it is not crucial to the pragmatic (practical) design of tests. It is
better to make many simple paths than a few complicated paths.

. = Path Selection Example:
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Figure 2.9: An example flow graph to explain path selection

Practical Suggestions in Path Testing:

1. Draw the control flow graph on a single sheet of paper.

2. Make several copies - as many as you will need for coverage (C1+C2) and several more.
3. Use a yellow highlighting marker to trace paths. Copy the paths onto master sheets.

4. Continue tracing paths until all lines on the master sheet are covered, indicating that you
appear to have achieved C1+C2.

5. As you trace the paths, create a table that shows the paths, the coverage status of each
process, and each decision.

6. The above paths lead to the following table considering Figure 2.9:

PATHS DECISIONS PROCESS—LINK

[ 4 6 7 9 a b ¢ d e f g h I j k I m
abcde 'YES 'YES T 7777 Y] | |

abhkgde NO |[YES f NO |v v v v v v v
abhlibede NO,YES |YES | eS|V |v |7y | || v
abedfjgde 'YES NO,YES | YES| AR A A AR AR AR v '
abedfmibede  (YES LO.YES NO | v S v v

7. After you have traced a covering path set on the master sheet and filled in the table for
every path, check the following:
1. Does every decision have a YES and a NO in its column? (C2)
2. Has every case of all case statements been marked? (C2)
3. Is every three - way branch (less, equal, greater) covered? (C2)
4. Is every link (process) covered at least once? (C1)
8. Revised Path Selection Rules:
= Pick the simplest, functionally sensible entry/exit path.
» Pick additional paths as small variation from previous paths. Pick paths that do not have
loops rather than paths that do. Favor short paths that make sense over paths that don't.
* Pick additional paths that have no obvious functional meaning only if it's necessary to
provide coverage.
* Be comfortable with your chosen paths. Play your hunches (guesses) and give your
intuition free reign as long as you achieve C1+C2.
= Don't follow rules slavishly (blindly) - except for coverage.
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. S.LPREDICATES, PATH PREDICATES AND ACHIEVABLE PATHS:

+ PREDICATE:

< The logical function evaluated at a decision is called Predicate. Jlhe direction taken at a
decision depends on the value of decision variable. Some examples are;: A>0), x+y>=90.......
PATH PREDICATEX(A predicate associated with a path is called a Path Predicaté) For
example, "x is greater than zero", "x+y>=90", "w is cither negative or equal to 10 is true" is a
sequence of predicates whose truth values will cause the routirte to take a specific path.
MULTIWAY BRANCHES:

* The path taken through a multiway branch such as a computed GOTO's, case statement,
or jump tables cannot be directly expressed in TRUE/FALSE terms. a

* Although; it is possible to describe such alternatives by using multi valued logic, an
expedient (practical approach) is to express multiway branches as an equivalent set of

if. .then. else statements.

* For example a three way case statement can be written as: If case=1 DO A1 ELSE (IF
Case=2 DO A2 ELSE DO A3 ENDIF)ENDIF.

INPUTS:

 ® Intesting, the word input is not restricted to direct inputs, such as variables in a
subroutine call, but includes all data objects referenced by the routine whose values are fixed
prior to entering it.

"= For example, inputs in a calling sequence, objects in a data structure, values left in
registers, or any combination of object types.

* The input for a particular test is mapped as a one dimensional array called as an Input

"~ Vector.

PREDICATE INTERPRETATION:

* The simplest predicate depends only on input variables.

* For example if x1,x2 are inputs, the predicate might be x1+x2>=7, given the values of x1
and x2 the direction taken through the decision is based on the predicate is determined at
input time and does not depend on processing.

* Another example, assume a predicate x1+y>=0 that along a path prior to reaching this

- predicate we had the assignment statement y=x2+7. although our predicate depends on
processing, we can substitute the symbolic expression for Y to obtain an equivalent predicate
x 1+x2+7>=0.

* The act of symbolic substitution of operations along the path in order to express the
predicate solely in terms of the input vector is called predicate inferpretation.

* Sometimes the interpretation may depend on the path; for example,

INPUT X

ON X GOTO A, B, C, ...

A:Z =7 @ GOTO HEM

B:Z :=-7 @ GOTO HEM

C:Z :=0@ GOTO HEM

---------
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HEN:IF Y + Z > 0 GOTO ELL ELSE GOTO MM

The predicate interpretation at HEN depends on the path we took through the first multiway
branch. It yields for the three cases respectively, if Y+7>0, Y-7>0, Y=0.

* The path predicates are the specific form of the predicates of the decisions along the
selected path after interpretation.

INDEPENDENCE OF VARIABLES AND PREDICATES:

®* The path predicates take on truth values based on the values of input variables, ¢ither
directly or indirectly.

®* Ifavariable's value does not change as a result of processing, that variable is independent
of the processing.

* Ifthe variable's value can change as a result of the processing, the variable is process
dependent.

* A predicate whose truth value can change as a result of the processing is said to be
process dependent and one whose truth value does not change as a result of the processing
IS process independent.

* Process dependence of a predicate does not always follow from dependence of the input
variables on which that predicate is based.

CORRELATION OF VARIABLES AND PREDICATES:

Two variables are correlated if every combination of their values cannot be independently
specified.

Variables whose values can be specified independently without restriction are called
uncorrelated.

A pair of predicates whose outcomes depend on one or more variables in common are said to
be correlated predicates. For example, the predicate X=Y is followed by another predicate
X+Y = 8. If we select X and Y values to satisfy the first predicate, we might have forced
the 2nd predicate's truth value to change.

* Every path through a routine is achievable only if all the predicates in that routine are
uncorrelated.

PATH PREDICATE EXPRESSIONS:

= A path predicate expression is a set of boolean expressions, all of which must be satisfied
to achieve the selected path.

= Example:

X1+3X2+17>=0

X3=17

X4-X1>=14X2

= Any set of input values that satisfy all of the conditions of the path predicate expression
will force the routine to the path.

= Sometimes a predicate can have an OR in it.

= Example:

A:X5>0

B: X1+3X2+17>=0

C:X3=17

D: X4 - X1 >=14X2
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E: X6 <0

B X14+3X2+17>=0

P C:X3=17

oD X4 - X1 == 14X2
* Boolean algebra notation to denote the boolean expression:

ABCD+EBCD=(A+E)BCD

PREDICATE COVERAGE:
* Compound Predicate: Predicates of the form A OR B, A AND B and more complicated
Boolcan expressions are called as compound predicates.
" Sometimes even a simple predicate becomes compound after interpretation. Example: the
predicate if (x=17) whose opposite branch is if x. NE.17 which is equivalent to x>17. Or.
X<17
* Predicate coverage is being the achieving of all possible combinations of truth values
corresponding to the selected path have been explored under some test.
* Asachieving the desired direction at a given decision could still hide bugs in the
associated predicates
TESTING BLINDNESS:

- ® Testing Blindness is a pathological (harmful) situation in which the desired path is

- achieved for the wrong reason.
* There are three types of Testing Blindness:

" e Assignment Blindness:
o Assignment blindness occurs when the buggy predicate appears to work correctly because
the specific value chosen for an assignment statement works with both the correct and

" incorrect predicate.

o For Example:

L Correct Buggy ;
=Tl if Y >0 then ... > s LA if X+Y > O then ...

o Ifthe test case sets Y=I the desired path is taken in either case, but there is still a bug.
" e Equality Blindness:
o Equality blindness occurs when the path selected by a prior predicate results in a value
that works both for the correct and buggy predicate.
o For Example:

Correct B
[if Y=2then ... if X+Y >3 then ...

|

Buggy
if Y=2then ........ if X > | then ...

\O
o The first predicate if y=2 forces the rest of the path, so that for any positive value of x. the N
+ “path taken at the second predicate will be the same for the correct and buggy version.

Page
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¢ Self Blindness:

o Self blindness occurs when the buggy predicate is a multiple of the correct predicate and
as a result is indistinguishable along that path.

o For Example:

Correct

R S S B R B
|
i X=A.... if X-1 >0 then ... 1

=R s if X+A-2 >0 then ... | ‘

1. The assignment (x=a) makes the predicates multiples of each other, so the direction taken
is the same for the correct and buggy version.

e PATH SENSITIZING:

o Review: achievable and unachievable paths:

1. We want to select and test enough paths to achieve a satisfactory notion of test
completeness such as C1+C2.

2. Extract the programs control flow graph and select a set of tentative covering paths.

3. For any path in that set, interpret the predicates along the path as needed to express them
in terms of the input vector. In general individual predicates are compound or may become
compound as a result of interpretation.

4. Trace the path through, multiplying the individual compound predicates to achieve a
boolean expression such as

(A+BC) (D+E) (FGH) (1J) (K) (1) (L).

5. Multiply out the expression to achieve a sum of products form:
ADFGHIJKL+AEFGHIJKL+BCDFGHIJKL+BCEFGHIJKL

6. Each product term denotes a set of inequalities that if solved will yield an input vector that
will drive the routine along the designated path.

7. Solve any one of the inequality sets for the chosen path and you have found a set of input
values for the path.

8. If you can find a solution, then the path is achievable.

9. If you can’t find a solution to any of the sets of inequalities, the path is un achievable.
10. The act of finding a set of solutions to the path predicate expression is called PATH
SENSITIZATION.

o HEURISTIC PROCEDURES FOR SENSITIZING PATHS:

1. This is a workable approach, instead of selecting the paths without considering how to
sensitize, attempt to choose a covering path set that is easy to sensitize and pick hard to
sensitize paths only as you must to achieve coverage.

2. Identify all variables that affect the decision.

Scanned with CamScanner

Pa,rfez 7



3. Classify the predicates as dependent or independent.

* 4. Start the path selection with un correlated, independent predicates.

" 3. 1f coverage has not been achieved using independent uncorrelated predicates, extend the
, path set using correlated predicates.

6. If coverage has not been achieved extend the cases to those that involve dependent
predicates.

7. Last, use correlated, dependent predicates.

(53-¢

e PATH INSTRUMENTATION: '

. Path instrumentation is what we have to do to confirm that the outcome was achicved by

the intended path, -

2. Co-incidental Correctness: The coincidental correctness stands for achievin g the desired

outcome for wrong reason.

Figure 2.11: Coincidental Correctness

The above figure is an example of a routine that, for the (unfortunately) chosen input value

(X = 16), yields the same outcome (Y = 2) no matter which case we select. Therefore, the

tests chosen this way will not tell us whether we have achieved coverage. For example, the

- five cases could be totally jumbled and still the outcome would be the same. Path

. instrumentation is what we have to do to confirm that the outcome was achieved by the

intended path.

"~ = The types of instrumentation methods include:

1. Interpretive Trace Program:

o~"An interpretive trace program is one that executes every statement in order and records

the intermediate values of all calculations, the statement labels traversed etc. ~—

o If we run the tested routine under a trace, then we have all the information we need to

confirm the outcome and, furthermore, to confirm that it was achieved by the intended path.

o The trouble with traces is that they give us far more information than we need. In fact, the

typical trace program provides so much information that confirming the path from its

~ massive output dump _is more work than simulating the-.computer by hand to confirm the
path.

- 2. Traversal Marker or Link Marker:

o~ A simple and effective form of instrumentation is called a traversal marker or link marker,

2 Name every link by a lower case letter. R

o Instrument the links so that the link's name is recorded when the link is executed.
o The succession of letters produced in going from the routine's entry to its exit should, if

there are no bugs, exactly correspond to the path name.
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YES NO
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NO YES
(1|
(8] ==

Figure 2.12: Single Link Marker Instrumentation
> Why Single Link Markers aren't enough: Unfortunately, a single link marker may not do the trick
because links can be chewed by open bugs

O—m ? Heel))=—s| PROCESS A I_ PROCESS B

{k}—={ PROCESS C -—6"“-- PROCESS D

Figure 2.13: Why Single Link Markers aren't enough.

We intended to traverse the ikm path, but because of a rampaging GOTO in the middle of the m link, we go
to process B. If coincidental correctness is against us, the outcomes will be the same and we won't know
about the bug.

¢ Two Link Marker Method:
The solution to the problem of single link marker method is to implement two markers per link: one at the

beginning of each link and on at the end.
The two link markers now specify the path name and confirm both the beginning and end of the link.

o- o '@-N | process A n ——v

l [m]-J--——-——-lnl-——t

[o]

Figure 2.14: Double Link Marker Instrumentation
e Link Counter: A less disruptive (and less informative) instrumentation method is based on counters.
Instead of a unique link name to be pushed into a string when the link is traversed, we simply increment a
link counter. We now confirm that the path length is as expected. The same problem that led us to double
link markers also leads us to double link counters.
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Q.Applications of Path Testing

Applications of Path ”-"‘*"“9

Integration, Coverage and Paths in called Components

Path testing methods are mainly used in unit testing, especially for new software
The new component is first tested as an independent unit with all called components
and co-requisite components replaced by stubs. A simulator of low-level
components that is more reliable than the actual component

Path testing clarifies the integration issues

C, coverage at the system level ranges from 50% to 85%

We gave no statistics for C, coverage in system testing because it is impossible to
monitor C2 coverage without disrupting the system's operation

Note:

- Co-requisite: A formal course of study required to be taken simultaneously with

«

another

New Code:

New code should always be subjected to enough path testing to achieve C,

Stubs are used where it is clear that the bug potential for the stub is significantly
lower than that of the called components

Old, trusted components will not be replaced by stubs

Some consideration is given to paths within called components

Typically, we will try to use the shortest entry/exit path that will do the task

Maintenance:

" There is a great difference between maintenance testing and new code testing
. Maintenance testing is a completely different situation

)

It involves modifications which are accommodated in the system, as required
Path testing is used firstly on the modified component

Rehosting:
Path testing with Ci+C; coverage is a powerful tool for rehosting old software
We get a very powerful, effective, rehosting process when C,+C; coverage is used in conjunction

with automatic or semiautomatic structural test generators

Software is rehosted because it is no longer cost effective to support the environment in which it
runs

The objective of rehosting is to change the operating environment and not the rehosted software
Rehosting from one COBOL environment to another is easy by comparison

Rehosted software can be modified to improve efficiency and/or to implement new functionality,
which had been difficult in the old environments

The test suites(collection) and all outcomes of the old environment become the specification for
the rehosted software

1o

LY
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SOFTWARE TESTING METHODOLOGIES
Unit 2

UNIT-H

Transaction Flow Testing: Transaction flow, transaction flow testing techniques.
Dataflow testing: Basics of dataflow testing, strategies in dataflow testing,
application of dataflow testing,

Q.TRANSACTION FLOW_TESTING AND DATA FLOW TESTING

INTRODUCTION:

© A transaction is a unit of work seen from a system user's point of view.
7 A transaction consists of a sequence of operations, some of which are performed by

. a system, persons or devices that are outside of the system.

g

Oy

b

"

3

o Transaction begins with Birth-that is they are created as a result of some external
act.
o At the conclusion of the transaction's processing, the transaction is no longer in the

¢ system.

o Example of a transaction: A transaction for an online information retrieval system
might consist of the following steps or tasks:

= Accept input (tentative birth)

= Validate input (birth)

® Transmit acknowledgement to requester

* Deinput processing

= Search file
* Request directions from user
= Accept input

* Validate input

= Process request

= Update file

* Transmit output

= Record transaction in log and clean up (death)

"] TRANSACTION FLOW GRAPHS:

~ o Transaction flows are introduced as a representation of a system's processing.

o The methods that were applied to control flow graphs are then used for functional
testing.
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o Transaction flows and transaction flow testing are to the independent system tester
what control flows are path testing are to the programmer.

o The transaction flow graph is to create a behavioral model of the program that leads
to functional testing,

o Tht? transaction flowgraph is a model of the structure of the system's behavior
(functionality).

© An example of a Transaction Flow is as follows:

21 ” (o] Pra
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(:}—.- c2u ou Vid = ot > e ats ceview Sl £
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agnosuc —°© b " >— -==
10 teemunal enew

Figure 3.1: An Example of a Transaction Flow
] USAGE:
o Transaction flows are indispensable for specifying requirements of complicated
systems, especially online systems.
o A big system such as an air traffic control or airline reservation system, has not
hundreds, but thousands of different transaction flows.
o The flows are represented by relatively simple flowgraphs, many of which have a
single straight-through path.
o Loops are infrequent compared to control flowgraphs.
o The most common loop is used to request a retry after user input errors. An ATM
system, for example, allows the user to try, say three times, and will take the carg away
the fourth time.

70 COMPLICATIONS:
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o Insimple cases, the transactions have a unique identity from the time they're created
to the time they're completed.

o In'many systems the transactions can give birth to others, and transactions can also
merge.

o Births: There are three different possible interpretations of the decision symbol, or
nodes with two or more out links. It can be a Decision, Biosis or a Mitosis.

I. Decision: Here the transaction will take one alternative or the other alternative but
not both. (See Figure 3.2 (a))

2. Biosis: Here the incoming transaction gives birth to a new transaction, and both
transaction continue on their separate paths, and the parent retains it identity. (See
Figure 3.2 (b))

3. Mitosis: Here the parent transaction is destroyed and two new transactions are
created.(See Figure 3.2 (¢))

ALTERNATE | PARENT DAUGHTER
PARENT PARENT
ALTERNATE 2 DAUGHTER" DAUGHTER
{s) Decision {b) Blosis {c) Mitosn

Figure 3.2: Nodes with multiple outlinks
Mergers: Transaction flow junction points are potentially as troublesome as
transaction flow splits. There are three types of junctions: (1) Ordinary Junction (2)
Absorption (3) Conjugation
1 Ordinary Junction: An ordinary junction which is similar to the junction in a
control flow graph. A transaction can arrive either on one link or the other. (See Figure
3.3 (a)y
2 Absorption: In absorption case, the predator transaction absorbs prey transaction.
The prey gone but the predator retains its identity. (See Figure 3.3 (b))
3 Conjugation: In conjugation case, the two parent transactions merge to form a new
daughter. In keeping with the biological flavor this case is called as conjugation.(See

Figure 3.3 (¢))

PATH 1 PREDATOR PARENT
CONTINUE PREDATOR DAUGHTER
PATH 2 PREY PARENT
(») Junction (b) Absorption {¢c) Conjugation

Figure 3.3: Transaction Flow Junctions and Mergers
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We have no problem with ordinary decisions and junctions, Births, .:l("’f"’l"‘w ¢ “”(l
conjugations are as problematic for the software designer as they o v g
software modeler and the test designer; as a consequence, such points have maore
than their share of bugs. The common problems are: lost daughters, wrongful deaths
and lllegitimate births.

Q.TRANSACTION FLOW TESTING TECHNIQUES:

{1l A

GET THE TRANSACTIONS FLOWS: /, 4 ¥
o Complicated systems that process a lot of different, complicated transactions should
have explicit representations of the transactions flows, or the equivalent.
o Transaction flows are like control low graphs, and consequently we should expect
to have them in increasing levels of detail.
© The system's design documentation should contain an overview section that details
the main transaction flows.

¢ Detailed transaction flows are a mandatory pre requisite to the rational design of a
system's functional test.

— INSPECTIONS, REVIEWS AND WALKTHROUGHS:
o Transaction flows are natural agenda for system reviews or inspections.

o In conducting the walkthroughs, you should:

= Discuss enough transaction types to account for 98%-99% of the transaction the
system is expected to process.
= Discuss paths through flows in functional rather than technical terms.
= Ask the designers to relate every flow to the specification and to show how that
transaction, directly or indirectly, follows from the requirements.
o Make transaction flow testing the corner stone of system functional testing just as
path testing is the corner stone of unit testing.
o Select additional flow paths for loops, extreme values, and domain boundaries.
o Design more test cases to validate all births and deaths. .
o Publish and distribute the selected test paths through the transaction flows as early
as possible so that they will exert the maximum beneficial effect on the project.

PATH SELECTION:
o Select a set of covering paths (cl+c¢2) using the analogous criteria you used for
structural path testing,
o Select a covering set of paths based on functionally sensible transactions as you
would for control flow graphs.
o Ty to find the most tortuous, longest, strangest path from the entry to the exit of the
transaction flow.

' Page'.
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PATH SENSITIZATION:
© Most of the normal paths are very casy to sensitize-80% - 95% transaction flow
coverage (cl+¢2) is usually casy to achieve.,
o The remaining small percentage is often very difficult.
O Sensitization is the act of defining the transaction. [f there are sensitization
problems on the easy paths, then bet on either a bug in transaction flows or a design
bug.

PATH INSTRUMENTATION:
o Instrumentation plays a bigger role in transaction flow testing than in unit path
testing.
o The information of the path taken for a given transaction must be kept with that
transaction and can be recorded by a central transaction dispatcher or by the individual
processing modules.

o In some systems, such traces are provided by the operating systems or a running
log.

DATA FLOW TESTING

Q.BASICS OF DATA FLOW TESTING:

— DATA FLOW TESTING:

flow testing is the name given to a family of test strategies based on selecting
paths through the program's control flow in order to explore sequences of events
related to the status of data objects. ’
o For example, pick enough paths to assure that every data object has been initialized
prior to use or that all defined objects have been used for something.
o Motivation: It is our belief that, just as one would not feel confident about a
program without executing every statement in it as part of some test, one should
not feel confident about a program without having seen the effect of using the value
produced by each and every computation.

~ DATA FLOW MACHINES:

o There are two types of data flow machines with different architectures. (1) Von
Neumann machines (2) Multi-instruction, multi-data machines (MIMD).

o Yon Neumann Machine Architecture:

* Most computers today are von-neumann machines.

* This architecture features interchangeable storage of instructions and data in the
same memory units.

* The Von Neumann machine Architecture executes one instruction at a time in the
following, micro instruction sequence:

= Fetch instruction from memory
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* Interpret instruction

* Fetch operands

* Process or Execute

=  Store result

* Increment program counter

= GOTO 1

© Multi-instruction, Multi-data machines (MIMD) Architecture:

* These machines can fetch several instructions and objects in parallel.
* They can also do arithmetic and logical operations simultaneously on different data
objects.

* The decision of how to sequence them depends on the compiler.

~ BUG ASSUMPTION:

The bug assumption for data-flow testing strategies is that control flow is generally
correct and that something has gone wrong with the software so that data objects are
not available when they should be, or silly things are being done to data objects.

o Also, if there is a control-flow problem, we expect it to have symptoms that can be
detected by data-flow analysis. :

o Although we'll be doing data-flow testing, we won't be using data flow graphs as
such. Rather, we'll use an ordinary control flow graph annotated to show what happens
to the data objects of interest at the moment.

"1 DATA FLOW GRAPHS:

o The data flow graph is a graph consisting of nodes and directed links.

o We will use a control graph to show what happens to data objects of interest at that

moment.
o Our objective is to expose deviations between the data flows we have and the data

flows we want.
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Figure 3.4: Example of a data flow graph
o Data Object State and Usage:

® Data Objects can be created, killed and used.
" They can be used in two distinct ways: (1) In a Calculation (2) As a part of a
Control Flow Predicate.
* The following symbols denote these possibilities:
1. Defined: d - defined, created. initialized etc
2. Killed or undefined: k - killed, undefined, released etc
- Usage: u - used for something (c - used in Calculations, p - used in a predicate)
1. Defined (d):
An object is defined explicitly when it appears in a data declaration.
Or implicitly when it appears on the left hand side of the assignment.
It is also to be used to mean that a file has been opened.
A dynamically allocated object has been allocated.
Something is pushed on to the stack.
A record written.
- Killed or Undefined (k):

An object is killed on undefined when it is released or otherwise made unavailable.
When its contents are no longer known with certitude (with absolute certainty /
perfectness).

* Release of dynamically allocated objects back to the availability pool.

= Retumn of records.

* The old top of the stack after it is popped.

* An assignment statement can kill and redefine immediately. For example, if A had
been previously defined and we do a new assignment such as A : = 17, we have killed
A's previous value and redefined A

3. Usage (u):

= A variable is used for computation (c) when it appears on the right hand side of an
assignment statement.

» A file record is read or written.

It is used in a Predicate (p) when it appears directly in a predicate.

T =t Delined (d): N

= = = |

" Vs =

o ob
= Or ;lici rthe left hand side of the assignment.
4w Jtis also to be at a file has been opened.
| = A dynamically g ed’Object has been allocated.
| = Something is pfishg¥on to the stack.
-/ = Arecord wii
2. Killed o
( = An objgttis killed on undefined when it is released or otherwise made unavailable.

% Whedi conleﬁtq‘are no longer known with certitude (with absolute certainty /
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Release of dynamically allocated objects back to the availability pool
Retum of records

I'he old top of the stack after Jt is popped.

\n assignment statement catf kill apd redefine immediately. For example, if A had
been previously dained and Wy do anew assignment such as A = 17, we have killed
A's previous value ahd redefindd A

3. Usage (u): i

* A vanable 1s used fo Romputation (¢) when it appears on the right hand side of an
assignment statement.

* A file record )l:gt(d oF wri(en, :
* Itisused in 4 Predicate (p) when it appears directly in a predicate

Q. STRATEGIES OF DATA FLOW TESTING.

* INTRODUCTION:

< Data Flow Testing Strategies are structural strategies.
< In contrast to the path-testing strategies, data-flow strategies take into account what
happens to data objects on the links in addition to the raw connectivity of the graph.
=1 other words, data flow strategies require data-flow link weights (d,k,u.c,p).
—=—Data Flow Testing Strategies are based on selecting test path segments (also called
sub paths) that satisfy some characteristic of data TTows for all data objects.
= For example, all sub paths that contain a d (or u, k, du, dk).
© A strategy X is stronger than another strategy Y if all test cases produced under Y
are included in those produced under X - conversely for weaker.

¢ TERMINOLOGY:

I Definition-Clear Path Segment,

with respect to variable X, is a connected sequence of links such that X is (possibly)
defined on the first link and not redefined or killed on any subsequent link of that path
segment.

Il paths in Figure 3.9 are definition clear because variables X and Y are defined only
on the first link (1,3) and not thereafter.

In Figure 3.10, we have a more complicated situation. The following path segments
are defimmon-clear: (1,3,4), (1,3,5), (5,6,7,4), (7,8,9,6,7), (7,8,9,10), (7.8.10).
(78.10,11).

Subpath (1,3,4.5) is not definition-clear because the variable is defined on (1.3) and
again on (4.5). For practice, try finding all the definition-clear subpaths for this routine
(1.c, for all vanables).

2. Loop-kree Path Segment 1s a path scgment tor which every node in it s visited
atmost once.

Pageg
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For EW“-‘PI‘-‘- path (4,5,6,7.8.10) in Figure 3.10 is loop free, but path
(10.11,4.5,6.7.8,10,11,12) is not because nodes 10 and 11 are each visited twice.

3. Simple pal!t segment is a path segment in which at most one node is visited twice.
For c-xzun.plc: n Figure 3.10, (7.4.5,6,7) is a simple path segment. A simple path
segment 1s either loop-free or if there is a loop, only one node is involved.

4. Adu p_ath from node i to k is a path segment such that if the last link has a
computational use of X, then the path is simple and definition-clear: if the penultimate
(last _hut one) node is j - that is, the path is (1,p.q.....r.s,tj.k) and link (j.k) has a
predicate use - then the path from i to j is both loop-free and definition-clear.

STRATEGIES:

The structural test strategies discussed below are based on the program's control flow
graph. They differ in the extent to which predicate uses and/or computational uses of
variables are included in the test set. Various types of data flow testing strategies in
degreasing order of their effectiveness are:

All - du Paths (ADUP))The all-du-paths (ADUP) strategy is the strongest data-flow
testing strategy discussed here. It requires that every du path from every definition of
every variable to every some test.

For variable X and Y:In Figure 3.9, because variables X and Y are used only on link
(1,3), any test that starts at the entry satisfies this criterion (for variables X and Y. but
not for all variables as required by the strategy).

For variable Z: The situation for variable Z (Figure 3.10) is more complicated because
the variable is redefined in many places. For the definition on link (1,3) we must
exercise paths that include subpaths (1,3,4) and (1,3,5). The definition on link (4,5) is
covered by any path that includes (5,6), such as subpath (1,3,4,5,6, ...). The (5.,6)
definition requires paths that include subpaths (5,6,7,4) and (5,6,7,8).

For variable V: Variable V (Figure 3.11) is defined only once on link (1.3). Because V
has a predicate use at node 12 and the subsequent path to the end must be forced for
both directions at node 12, the all-du-paths strategy for this variable requires that we
exercise all loop-free entry/exit paths and at least one path that includes the loop

caused by (11,4).

Note that we must test paths that include both subpaths (3,4,5) and (3,5) even though
neither of these has V definitions. They must be included because they provide
alternate du paths to the V use on link (5,6). Although (7,4) is not used in the test set
for variable V, it will be included in the test set that covers the predicate uses of array
variable V() and U. The all-du-paths strategy is a strong criterion, but it does not take
as many tests as it might seem at first because any one test simultaneously satisfies the
criterion for several definitions and uses of several different variables.
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(Al Uses Starteg.y.(A UﬁThe all uses strategy is that at least one definition clear path
m every definition of every variable to every use of that definition be exercised
under some test.
Just as we reduced our ambitions by stepping down from all paths (P) to branch
coverage (C2), say, we can reduce the number of test cases by asking that the test set

should include at least one path segment from every definition to every use that can be
reached by that definition.

For vflriable V:In Figure 3.11, ADUP requires that we include subpaths (3,4,5) and
(3,5). 1n some test. because subsequent uses of V, such as on link (5,6), can be reached
by either alternative. In AU either (3.4,5) or (3,5) can be used to start paths, but we

don't have to use both. Similarly, we can skip the (8,10) link if we've included the
(8,9,10) subpath.

Note the hole. We must include (8,9,10) in some test cases because that's the only way
to reach the c use at link (9,10) - but suppose our bug for variable V is on link (8,10)
after all? Find a covering set of paths under AU for Figure 3.11.

Q;p-uses/some c-uses strategy (APU+C) : For every variable and every definition of

it variable, include at least one definition free path from the definition to every
predicate use; if there are definitions of the variables that are not covered by the above
prescription, then add computational use test cases as required to cover every
definition.

For variable Z:1n Figure 3.10, for APU+C we can select paths that all take the upper
link (12,13) and therefore we do not cover the c-use of Z: but that's okay according to
the strategy's definition because every definition is covered.

Links (1,3), (4,5), (5,6), and (7,8) must be included because they contain definitions
for variable Z. Links (3,4), (3,5), (8.9), (8,10), (9,6), and (9,10) must be included
because they contain predicate uses of Z. Find a covering set of test cases under
APU+C for all variables in this example - it only takes two tests.

For variable V:In Figure 3.11, APU+C is achieved for V by
(1,3,5,6,7,8,10,11,4,5,6,7,8,10,11,12[upper], 13,2) and (1,3,5,6,7,8,10,11,12[lower],
13,2). Note that the c-use at (9,10) need not be included under the APU+C criterion.

{ All c-uses/some p-uses strategy (ACU+P)) The all c-uses/some p-uses strategy
U+P) is to first ensure coverage by computational use cases and if any definition is
not covered by the previously selected paths, add such predicate use cases as are
needed to assure that every definition is included in some test.

Page 1 1
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Forvarlable Z: In Vigure 310, ACL v coverage vs achicved for 7. by pah
(LLAS6.78,10, 1 L2 03 lower |, 2y, but the predicate uses of weverd definitions are
ot covered. Specifically, the (1,3) definition is not covered for the (3,5) puse, the
(7.8) delnition is not covered for the (8,9),096) and (9, 10) p-uses,

The above examples impl y that APUSC is stronger than branch coverage bt ACU+P
may be weanker than, or Incomparable 1, branch coverage.

Al Definltions Strategy (A w The all definitions strategy asks only every definmuon
ol every variable be covered by atleast one use of that vanizble, be tha use 2
computational use or 4 predicate use,

For varlable Z: path (1,34,56,7,8, . . ) satisties this criterion for varizole Z,
whereas any entry/exit path satisfies it for variable V.

From the definition of this strategy we would enpeat it 1o be weaker than both ACLU-P
and APU+C,

L. All Predicate Uses (APU), All Computational Uses (ACU) Strategies : The 21!
predicate uses strategy is derived from APU+C strategy by dropping the reguirement
that we include a c-use for the variable if there are no p-uses for the varizble. The 211
compultational uses stralegy is derived from ACU+P stralegy by dropping the
requirement that we include a p-use for the variable if there are no c-uses for the
variable,

Itis intuitively obvious that ACU should be weaker than ACU+P znd tha: APU should
be weaker than APU+C,
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ORDERING THE STRATEGIES:
Figure 3.12compares path-flow and data-flow testing strategies. The arrows denote
that the strategy at the arrow's tail is stronger than the strategy at the  arrow's head

ALL PATHS
ALL du PATHS
ALL USES
ALL“:TOME-D\‘ ALL—p/SOME—c
ALL—c USES ALL DEFS AlLL-p USES
4
BRANCH
|
STATEMENT

Figure 3.12: Relative Strength of Structural Test Strategies.
o The right-hand side of this graph, along the path from "all paths" to "all statements"
is the more interesting hierarchy for practical applications.
o Note that although ACU+P is stronger than ACU, both are incomparable to the

predicate-biased strategies. Note also that "all definitions" is not comparable to ACU
or APU.

Q. What is Data Flow Testing? Application.

Data Flow Testing is a specific strategy of software testing that focuses on data
variables and their values. It makes use of the control flow graph. When it comes to
categorization Data flow testing will can be considered as a type of white box testing
and structural types of testing. It keeps a check at the data receiving points by the

N
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variables and its usage points, It is done to cover the path testing and branch testing
gap.

125 because of the incorrect usage of data

variables or data values. For ¢.g. Initialization of data variables in programming code,
etc.

Input Data-flow Def-use Pairs
Program P ' Analysis > Set S
4 select a pair du
Test Data
Generation
input ¢

Test Suite T | (=

[true]

is du

__covered?

Data Flow Testing Applications

[false]

As per studies defects identified by executing 90% “data coverage” is twice as
compared to bugs detected by 90% branch coverage.

The process flow testing is found effective, even when it is not supported by

automation.

It requires extra record keeping; tracking the variables status. The computers help easy
tracking of these variables and hence reducing the testing efforts considerably. Data
flow testing tools can also be integrated into compilers.

Types of Data Flow Testing

Static Data Flow Testing

No actual execution of the code is carried out in Static Data Flow testing. Generally,
the definition, usage and kill pattern of the data variables is scrutinized through a
control flow graph.

Dynamic Data Flow Testing
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The code is executed to observe the transitional results. Dynamic data flow testing
includes:

« Ildentification of definition and usage of data variables.
» Identifying viable paths between definition and usage pairs of data variables.
» Designing & crafting test cases for these paths.
Advantages of Data Flow Testin g
« Variables used but never defined,
« Variables defined but never used,

« Variables defined multiple times before actually used,
» DE allocating variables before using.

Data Flow Testing Limitations
« Testers require good knowledge of programming,.
 Time-consuming

+ Costly process.

Conclusion

Data is a very important part of software engineering. The testing performed on data
and variables play an important role in software engineering. Hence this is a very
important part and should be properly carried out to ensure the best working of your
product.
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SOFTWARE TESTING METHODS
UNIT-IN

Domain Testing: domains and paths, Nice & ugly domains, domain testing
 domains and interfaces Testing, domain and interface testing. domains and
- testability

DOMAIN _TESTING

Q. DOMAINS AND PATHS:

INTRODUCTION:
_®~Domain: In mathematics, domain is a set of possible values of an mdependent

variable or the variables of a function.

¢ Programs as input data classifiers: domain testing attempts to determine whether the
classification is or is not correct.

e Domain testing can be based on specifications or equivalent mmplementation
information.

e If domain testing is based on specifications, it is a functional test technique.

e If domain testing is based implementation details, it is a structural test techmgue.

e For example, you're doing domain testing when you check extreme values of an mput
vanable.

All inputs to a program can be considered as if they are numbers. For example. a
. character string can be treated as a number by concatenating bits and looking at them as if
they were a binary integer. This is the view in domain testing, which is why this strategy has
a mathematical flavor.

THE MODEL: The following figure is a schematic representation of domain testing.

INPUT CLASSIFY —-(?—1 DO CASE 1 ouTPUT

DO CASE 2

DO CASE 3

re IR
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Figure 4.1: Sehematic Representation of Domain Testing,

o Before domng whatever it does, a routine must classify the put and set it moving on
the nght path

e Anmvahd mput (¢ g . value too big) is just a special processing case called 'reject’.

o The nput then passes 1o a hypothetical subroutine rather than on calculations.

o In domain testing, we focus on the classification aspect of the routine rather than on
the calculanons.,

e Stuctural knowledge is not needed for this model - only a consistent, complete
specification of mput values for cach case.

e We can infer that for each case there must be at least one path to process that case

A DOMAIN IS A SET:
* Anmput domain Is a set.
e If the source language supports set definitions (E.g. PASCAL set types and C
enumerated types) less testing is needed because the compiler does much of it forus.
* Domain testing does not work well with arbitrary discrete sets of data objects.
* Domain for a loop-free program corresponds to a set of numbers defined over the
Input vector.

DOMAINS, PATHS AND PREDICATES:

* In domain testing, predicates are assumed to be interpreted in terms of input vector
variables.

e [f domain testing is applied to structure, then predicate interpretation must be based on
actual paths through the routine - that is, based on the implementation control flow
graph.

e Conversely, if domain testing is applied to specifications, interpretation is based on a
specified data flow graph for the routine; but usually, as is the nature of specifications,
no interpretation is needed because the domains are specified directly.

e For every domain, there is at least one path through the routine.

e There may be more than one path if the domain consists of disconnected parts or if the
domain 1s defined by the union of two or more domains.

* Domains are defined their boundarics. Domain boundaries are also where most
domain bugs occur.

¢ For every boundary there is at least one predicate that specifies what numbers belong  ~
to the domain and what numbers don't. For example, in the statement IF x>0 THEN - -
ALPHA ELSE BETA we know that numbers greater than zero belong to ALPHA
processing domain(s) while zero and smaller numbers belong to BETA domain(s).

* A domain may have one or more boundaries - no matter how many variables define it
For example, if the predicate 1s x2 + y2 < [6, the domain is the inside of a circle of

AN
g
©

o
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radius 4 about the origin. Similarly, we could define a spherical domain with one
boundary but in three variables.

* Domains are usually defined by many boundary segments and therefore by many
predicates. i.c. the set of interpreted predicates traversed on that path (i.e., the path's
predicate expression) defines the domain's boundaries.

A DOMAIN CLOSURE:

* A domain boundary is closed with respect to a domain if the points on the boundary
belong to the domain.

* If the boundary points belong to some other domain, the boundary is said to be open.

e Iigure 4.2 shows three situations for a one-dimensional domain - 1.e., a domain
defined over one input variable; call it x

The importance of domain closure is that incorrect closure bugs are frequent domain bugs.
For example, x >= 0 when x > 0 was intended

01 MIN D2 MAX 03

(a) Both Sides Closed

i MIN - MAX
¢ %

{b) One Side Open

MIN MAX

D1 _¢_ D2 ¢ D3

Figure 4.2: Open and Closed Domains.

DOMAIN DIMENSIONALITY:
e Every input variable adds one dimension to the domain.
e One variable defines domains on a number line.
e Two variables define planar domains.
e ‘Three variables define solid domains.
e Every new predicate slices through previously defined domains and cuts them in half

e Every boundary slices through the input vector space with a dimensionality which is
less than the dimensionality of the space.

e Thus, planes are cut by lines and points, volumes by planes, lines and points and n-
spaces by hyperplanes.
. BUG ASSUMPTION: ) 1o~

e The bug assumption for the domain testing is that processing is okay but the domain
definition is wrong,

Page3
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An mcorrectly implemented domain means that boundaries are wrong, which may in
turn mean that control flow predicates are wrong.

Many different bugs can result in domain errors. Some of them are:

Domain Errors: G—_\ A I{/ ,{l’\,-{)_—ar'o/"' J J"'\f)
Double Zero Representation: In computers or Languages that have a distinct

positive and negative zero, boundary errors for negative zero are common.

Floating point zero check: A floating point number can equal zero only if the
previous definition of that number set it to zero or if it is subtracted from itself or

multiplied by zero. So the floating point zero check to be done against an epsilon
value.

Contradictory domains: An implemented domain can never be ambiguous or

contradictory. but a specified domain can. A contradictory domain specification means

that at least two supposedly distinct domains overlap.

Ambiguous domains: Ambiguous domains means that union of the domains is incomplete.
That is there are missing domains or holes in the specified domains. Not specifying what
happens 1o points on the domain boundary is a2 common ambiguity.

Over specified Domains: his domain can be overloaded with so many conditions that
the result is a null domain. Another way to put it is to say that the domain's path is -

unachievable.

Boundary Errors: Errors caused in and around the boundary of a domain. Example,
boundary closure bug, shifted, tilted, missing, extra boundary.

Closure Reversal: A common bug. The predicate is defined in terms of >=. The
programmer chooses to implement the logical complement and incorrectly uses <= for
the new predicate; ie., x >= 0 is incorrectly negated as x <= (0, thereby shifting
boundary values to adjacent domains.

Faulty Logic: Compound predicates (especially) are subject to faulty logic
transformations and improper simplification. If the predicates define domain
boundaries, all kinds of domain bugs can result from faulty logic manipulations.

RESTRICTIONS TO DOMAIN TESTING: Domain testing has restrictions, as do other ~
testing techniques. Some of them include:
e Co-incidental Correctness: Domain testing isn't good at finding bugs for which the _

outcome 1s correct for the wrong reasons. If we're plagued by coincidental correctness
we may misjudge an incorrect boundary. Note that this implies weakness for domain
testing when dealing with routines that have binary outcomes (i.e., TRUE/FALSE)
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* Representative Outcome: Domain festing is an example of partition testing.
Partition-testing strategies divide the program's input space into domains such that all

inputs within a domain are equivalent (not equal, but equivalent) in the sense that any
input represents all inputs in that domain.

e If the selected input is shown to be correct by a test, then processing is presumed
correct, and therefore all inputs within that domain are expected (perhaps
unjustifiably) to be correct. Most test techniques, functional or structural, fall under
partition testing and therefore make this representative outcome assumption. For
example, x2 and 2x are equal for x = 2, but the functions are different. The functional
differences between adjacent domains are usually simple, such as x + 7 versus x + 9,
rather than x2 versus 2x.

Simple Domain Boundaries and Compound Predicates: Compound predicates in which
_ each part of the predicate specifies a different boundary are not a problem: for example, x >=
0 AND x < 17, just specifies two domain boundaries by one compound predicate. As an
~ example of a compound predicate that specifies one boundary, consider: x =0 AND y >=7
AND y <= 14. This predicate specifies one boundary equation (x = 0) but alternates closure.
putting it in one or the other domain depending on whether y < 7 or y > 14. Treat compound
predicates with respect because they’re more complicated than they seem.

e Functional Homogeneity of Bugs: Whatever the bug is, it will not change the
functional form of the boundary predicate. For example, if the predicate is ax >=b, the
bug will be in the value of a or b but it will not change the predicate to ax >= b, say.

e Linear Vector Space: Most papers on domain testing, assume linear boundaries - not
a bad assumption because in practice most boundary predicates are linear.

e Loop Free Software: Loops are problematic for domain testing. The trouble with
loops is that each iteration can result in a different predicate expression (after
interpretation), which means a possible domain boundary change.

Q. NICE AND UGLY DOMAINS: &4 - 6"

NICE DOMAINS:

e Where do these domains come from? Domains are and will be defined by an
imperfect iterative process aimed at achieving (user, buyer, voter) satisfaction.

e Implemented domains can't be incomplete or inconsistent. Every input will be
processed (rejection is a process), possibly forever. Inconsistent domains will be made

consistent.
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Conversely, specified domains can be incomplete and/or inconsistent. Incomplete in
this context means that there are input vectors for which no path is specified, and
inconsistent means that there are at least two contradictory specifications over the
same segment of the input space.

Some important properties of nice domains are: Linear, Complete, Systematic, And
Orthogonal, Consistently closed, Convex and simply connected.

To the extent that domains have these properties domain testing is easy as testing gets.
The bug frequency is lesser for nice domain than for ugly domains.
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Figure 4.3: Nice Two-Dimensional Domains.

LINEAR AND NON LINEAR BOUNDARIES:
e Nice domain boundaries are defined by linear inequalities or equations.

The impact on testing stems from the fact that it takes only two points to determine a

straight line and three points to determine a plane and in general n+ 1 point to
determine an n-dimensional hyper plane.

e In practice more than 99.99% of all boundary predicates are either linear or can be

linearized by simple variable transformations.

COMPLETE BOUNDARIES:

Nice domain boundaries are complete in that they span the number space from plus to
minus infinity in all dimensions.

Figure 4.4 shows some incomplete boundaries. Boundaries A and E have gaps.

Such boundaries can come about because the path that hypothetically corresponds to
them is unachievable, because inputs are constrained in such a way that such values
can't exist, because of compound predicates that define a single boundary, or because
redundant predicates convert such boundary values into a null set.

The advantage of complete boundaries is that one set of tests is needed to confirm the
boundary no matter how many domains it bounds.

E= e ——— = ——
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* If the boundary is chopped up and has holes in it, then every segment of that boundary

must be tested for every domain it bounds.

Figure 4.4: Incomplete Domain Boundaries.
SYSTEMATIC BOUNDARIES:

* Systematic boundary means that boundary inequalities related by a simple function
such as a constant.

* In Figure 4.3 for example, the domain boundaries for u and v differ only by a constant.

HX)>= k& orfi(X)>= p(1 1)
NX)o=k HX)>=y(2c)

fX0>=k 500 >=giio)

where fi is an arbitrary linear function, X is the input vector, ki and ¢ are constants, and g(i,c)
is a decent function over i/ and ¢ that yields a constant, such as & + ic.

o The first example is a set of parallel lines, and the second example is a set of
systematically (e.g., equally) spaced parallel lines (such as the spokes of a wheel, if
equally spaced in angles, systematic).

e If the boundaries are systematic and if you have one tied down and generate tests for
it, the tests for the rest of the boundaries in that set can be automatically generated.

ORTHOGONAL BOUNDARIES:

e Two boundary sets U and V (See Figure 4.3) are said to be orthogonal if every
inequality in V is perpendicular to every inequality in U.

e If two boundary sets are orthogonal, then they can be tested independently

e In Figure 4.3 we have six boundaries in U and four in V. We can confirm the
boundary properties in a number of tests proportional to 6 + 4 = 10 (O(n)). If we tilt
the boundaries to get Figure 4.5,

e we must now test the intersections. We've gone from a linear number of cases to a
quadratic: from O(n) to O(n2).
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Figure 4.5: Tilted Boundaries

Y *kytbx

v =k, +bx

y "k; +bx

- 'l ’
x=A, x=A, x= A, x=A, x* Ag

Figure 4.6: Linear, Non-orthogonal Domain Boundaries.
e Actually, there- are two different but related orthogonality conditions. Sets of
boundaries can be orthogonal to one another but not orthogonal to the coordinate axes |
(condition 1), or boundaries can be orthogonal to the coordinate axes (condition 2).

CLOSURE CONSISTENCY:
e Figure 4.6 shows another desirable domain property: boundary closures are consistent

and systematic.
e The shaded areas on the boundary denote that the boundary belongs to the domain in
which the shading lies - e.g., the boundary lines belong to the domains on the right.

e Consistent closure means that there is a simple pattern to the closures - for example,
using the same relational operator for all boundaries of a set of parallel boundaries. L

CONVEX:
e A geometric figure (in any number ol dimensions) is convex il you can take two

arbitrary points on any two different boundaries, join them by a line and all points on

that line lie within the figure.
e Nice domains are convex; dirty domains aren't.

e You can smell a suspected concavity when you see phrases such as: ". . . except if . .
" "However . . " " .. but not, .. ." In programming, it's often the buts in the
specification that kill you. C%
&
§
:
P
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SIMPLY CONNECTED:
* Nice domains are simply connected; that is, they are in one piece rather than pieces all

over the place interspersed with other domains.

Simple connectivity is a weaker requirement than convexity; if a domain is convex it

1s simply connected, but not vice versa.

Consider domain boundaries defined by a compound predicate of the (Boolean) form

ABC. Say that the input space is divided into two domains, one defined by ABC and,

therefore, the other defined by its negation.

For example, suppose we define valid numbers as those lying between 10 and 17

inclusive. The invalid numbers are the disconnected domain consisting of numbers
less than 10 and greater than 17.

e Simple connectivity, especially for default cases, may be impossible.

UGLY DOMAINS:
* Some domains are bomn ugly and some are uglified by bad specifications.
e Every simplification of ugly domains by programmers can be either good or bad.
e Programmers in search of nice solutions will "simplify" essential complexity out of

existence. Testers in search of brilliant insights will be blind to essential complexity
and therefore miss important cases.

o [f the ugliness results from bad specifications and the programmer's simplification 1s

harmless, then the programmer has made ugly good. But if the domain's complexity is
essential (e.g., the income tax code), such "simplifications" constitute bugs.

e Nonlinear boundaries are so rare in ordinary programming that there's no information
on how programmers might "correct" such boundaries if they're essential.

AMBIGUITIES AND CONTRADICTIONS:
e Domain ambiguities are holes in the input space.
e The holes may lie within the domains or in cracks between domains.

e Two kinds of contradictions are possible: overlapped domain specifications and
overlapped closure specifications

e Figure 4.7c shows overlapped domains and Figure 4.7d shows dual closure
assignment.
(s) Ambiguities {¢] Overispped Domaine

/\
N %/ FEN \
\ B \\\\\\\\\

N
(d) Contradiction: (b) Ambiguity:

Dusl Closure Mining Boundery
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Figure 4.7: Domain Ambiguities and Contradictions.

SIMPLIFYING THE TOPOLOGY:
¢ The programmer's and tester's reaction to complex domains is the same - simplify
e There are three generic cases: concavities, holes and disconnected pieces.

e Programmers introduce bugs and testers misdesign test cases by: smoothing out
concavities (Figure 4.8a), filling in holes (Figure 4.8b), and joining disconnected
pieces (Figure 4.8c).

Figure 4.8: Simplifying the topology.

RECTIFYING BOUNDARY CLOSURES:
e If domain boundaries are parallel but have closures that go every which way (left,
right, left . . .) the natural reaction is to make closures go the same way (see Figure

L fTE-FLS

(a) Consistent Direction

-

Figure 4.9: Forcing Closure Consistency.

Q. DOMAIN TESTING: @

DOMAIN TESTING STRATEGY: The domain-testing strategy is simple, although - -
possibly tedious (slow). h
e Domains are defined by their boundaries; therefore, domain testing concentrates test ©
points on or near boundaries. 1-1&
m
=¥
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Classify what can go wrong with boundaries, then define  test strategy for each case.
Pick enough points to test for all recognized kinds of boundary errors,

Because every boundary serves at least two different domains, test points used to
check one domain can also be used 1o check adjacent domains. Remaove redundant test
points.

Run the tests and by posttest analysis (the tedious part) determine if any boundarics
are faulty and if so, how.

Run enough tests to verify every boundary of every domain,

DOMAIN BUGS AND HOW TO TEST FOR THEM:

An interior point (Figure 4.10) is a point in the domain such that all points within an
arbitrarily small distance (called an epsilon neighborhood) are also in the domain.

A boundary point is one such that within an epsilon neighborhood there are points
both in the domain and not in the domain.

An extreme point is a point that does not lie between any two other arbitrary but
distinct points of a (convex) domain.

EXTREME POINT

BOUNDARY POINT

INTERIOR POINT

EPSILON NEIGHBORHOOD

Figure 4.10: Interior, Boundary and Extreme points.
An on point is a point on the boundary.
If the domain boundary is closed, an off point is a point near the boundary but in the
adjacent domain.
If the boundary is open, an off point is a point near the boundary but in the domamn
being tested; see Figure 4.11. You can remember this by the acronym COOOO]
Closed Off Outside, Open Off Inside.

ON POINTS
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Figure 4.11: On points and Off points.
Iigure 4.12 shows generic domain bugs: closure bug, shifted boundaries, tilted
boundaries, cxtra boundary, missing boundary.

SHIFTEDBOUNDARIES & - W

——

f"’

TILTED BOUNDARIES +-;=—&——0—
Y o

N
OPEN/CLOSED ERROR MMM

EXTRA BOUNDARY %“"T._
“
-~
MISSING BOUNDARY .

CORRECT
INCORRECT === ===

Q. DOMAIN AND INTERFACE TESTING @C o v)

INTRODUCTION:

Recall that we defined integration testing as testing the correctness of the interface
between two otherwise correct components.

Components A and B have been demonstrated to satisfy their component tests, and as
part of the act of integrating them we want to investigate possible inconsistencies
across their interface.

Interface between any two components is considered as a subroutine call.

We're looking for bugs in that "call" when we do interface testing,

Let's assume that the call sequence is correct and that there are no type
incompatibilities.

For a single variable, the domain span is the set of numbers between (and including)
the smallest value and the largest value. For every input variable we want (at least):
compatible domain spans and compatible closures (Compatible but need not be
Equal).

DOMAINS AND RANGE:

The set of output values produced by a function is called the range of the function, in
contrast with the domain, which is the set of input values over which the function is
defined.
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* For most testing, our aim has been to specify input values and to predict and/or
confirm output values that result from those inputs.

* Interface testing requires that we select the output values of the calling routine r.e.
caller's range must be compatible with the called routine's domain.

* Aninterfuce test consists of exploring the correctness of the following mappings

caller domain -=> caller range (caller unit test)
caller range --> called domain (integration test)
called domain --> called range (called unit test)

CLOSURE COMPATIBILITY:

* Assume that the caller's range and the called domain spans the same numbers - for
example, 0 to 17.

* Figure 4.16 shows the four ways in which the caller's range closure and the called's
domain closure can agree.

® The thick line means closed and the thin line means open. Figure 4.16 shows the four
cases consisting of domains that are closed both on top (17) and bottom (0), open top
and closed bottom, closed top and open bottom, and open top and bottom.

caller called open tops open bottoms both apen
=17 " r - r - - -
= 0 - e - L 4 - -

Figure 4.16: Range / Domain Closure Compatibility.

Figure 4.17 shows the twelve different ways the caller and the called can disagree about
closure. Not all of them are necessarily bugs. The four cases in which a caller boundary 1s
open and the called is closed (marked with a "?") are probably not buggy. 1t means that the
caller will not supply such values but the called can accept them,

U

Figure 4.17: Equal-Span Range / Domain Compatibility Bugs.
SPAN COMPATIBILITY:
* Figure 4.18 shows three possibly harmless span incompatibilitics
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1+ 14 Ly

Figure 4.18: Harmless Range / Domain Span incompatibility bug (Caller Span is smaller than Called).

In all cases, the caller's range is a subset of the called's domain. That's not necessarily
a bug.

The routine is used by many callers; some require values inside a range and some
don't. This kind of span incompatibility is a bug only if the caller expects the called
routine to validate the called number for the caller.

Figure 4.19a shows the opposite situation, in which the called routine's domain has a
smaller span than the caller expects. All of these examples are buggy.
9 ] ]
7 ] 7
3] 3 ]
1 1 |
{n) Catled Srmalier Than Calier

SN ENE
RSN

{b) Domain Range Mismaich fe) Holes in the Called Domain

Figure 4.19: Buggy Range / Domain Mismatches
In Figure 4.19b the ranges and domains don't line up; hence good values are rejected,
bad values are accepted, and if the called routine isn't robust enough, we have crashes.
Figure 4.19c combines these notions to show various ways we can have holes in the
domain: these are all probably buggy.

INTERFACE RANGE / DOMAIN COMPATIBILITY TESTING:

For interface testing, bugs are more likely to concern single variables rather than
peculiar combinations of two or more variables.

Test every input variable independently of other input variables to confirm

compatibility of the caller's range and the called routine's domain span and closure of -

every domain defined for that variable.
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* There arc two boundaries to test and it's a onc-dimensional domain; therefore, it
rec!uires one on and one off point per boundary or a total of two on points and two off
points for the domain - pick the off points appropriate to the closure (COOOOI).

Start with the called routine's domains and gencrate test points in accordance to the
domain-testing strategy used for that routine in component testing.

* Unless you're a mathematical whiz you won't be able to do this without tools for more
than one variable at a time.

Q. Domains and Testability 6 AV

.The best approach to do domain is testing is to stay away from it by making things
simple such that the testing is not required Orthogonal domain boundaries, consistent

closer, independent boundaries, linear boundaries, etc... To make the domain testing
easier '

e Non-linear boundaries can be converted into equivalent linear boundaries ,his
can be done by applying Linearizing transformation

e Nice boundaries come in parallel sets. Non- parallel inequalities can be converted
into a set of orthogonal boundaries inequalities by suitable co-ordinate
transformations

- e Testing can be divided into several steps that can be merged and made small that
can be converted into a canonical program form

Page 1 5
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Software Tesiiug methodologies
Paths, Path QN_II—_E
d products and Regular Expressions: Path products & path expression,
reduction procedure. Applications, regular expressions & flow anomaly detceton.
Logic Based Testing: Overview. decision tables. path expressions kv charts, specifications.

Q. PATH PRODUCTS AND PATH EXPRESSION: (3 <

s | a e > . - .
Path expressions is an algebraic representations of sets of paths in a graph.

P ) T TN . ) . . " .
Path Expressions are converted into Regular Expressions that can be used to examine

structural propertics of flow graphs such as the number of paths, processing time or whether
data flow anomaly can occur

MOTIVATION:
* Flow graphs are being an abstract representation of programs.

* Any question about a program can be cast into an equivalent question about an appropriate
Howgraph.

* Most software development, testing and debugging tools use flow graphs analysis
techniques.

PATH PRODUCTS:

*.* Normally flow graphs used to denote only control flow connectivity.

* The simplest weight we can give to a link is a name.

* Using link names as weights, we then convert the graphical flow graph into an equivalent
algebraic like expressions which denotes the set of all possible pathsfrom entry to exit for the
flow graph.

* Every link of a graph can be given a name.

* The link name will be denoted by lower case italic letters.

* In tracing a path or path segment through a flow graph, you traverse a succession of link
names.

* The name of the path or path segment that corresponds to those links is expressed naturally
by concatenating those link names.

* For example, if you traverse links a.b.c and d along some path, the name for that path
segment 1s abed. This path name 1s also called apath product.
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#bd, mbcDA, abebebd, abebebebd
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Examples of paths.

PATH EXPRESSION:
* Consider a pair of nodes in a graph and the set of paths between those node.

* Denote that set of paths by Upper case letter such as X,Y. From Figure ¢, the members of
the path set can be listed as follows: ac, abc, abbc, abbbc, abbbbe.............

« Alternatively, the same set of paths can be denoted by
:act+abc+abbct+abbbe+abbbbet...........

* The + sign is understood to mean "or" between the two nodes of interest, paths ac, or abc,
or abbc, and so on can be taken.

* Any expression that consists of path names and "OR"s and which denotes a set of paths
between two nodes is called a ""Path Expression."



PATH PRODUCTS:* The name of a path that consists of two successive path segments 1s

conveniently expressed by the concatenation nrl’alhl’r_odyclof the segment nflmes e
* For cxump_le. if X and Y are defined as X=abcde. Y={ghij.then the path corresponding to

followed by Y 1s denoted by XY ~abcdefghij

* Similarly.

* Y X=fghijabcde

* aX=aabcde

* Xa=abcdea

* XaX=abcdeaabcde

* It X'and Y represent sets of paths or path expressions. their product represents the set ol
paths that can be obtained by following every element of X by any element of Y in all
possible ways

* For example.

* X ~abc + def + gh1 Y = uvw + 7 Then.

* XY = abcuvw+ defuvw + ghiuvw + abez + defz + ghiz

* It alink or segment name is repeated. that fact is denoted by an exponent
* The exponent's value denotes the number of repetitions:

*al=a a2- aa. a3 aaa: an= aaaa . n times. Similarly af

- * X~ abcde then X 1= abede

* X2= abcdeabede = (abede)?

* X3+ abcedeabedeabede = (abede)2abede -~ abede abede)2 - (abede)’
* The path product 1s not commutative (that is XY! YX)

* The path product 1s Associative RULE | ABC) (ABYC ABC

"+ where A B.C are path names. set of path names or path CXpressions
PATH SUMS:

* PATH SUMS: The "+" SIgn was used 1o denote the fact that path names

1 were part of the
same set of paths.

* The "PATH SUM" denotes paths 1n parallel between nodes

* If X and Y are sets of paths that lie between the same parr of nodes, then X +Y denotes the
UNION of those set of paths. For example,



* The first set of parallel paths is denoted by X + Y + d and the second set by U +V + W +h,
+ 1+ j. The set of all paths in this flowgraph is
f(X+Y+d)g(U+V+W+h+i+j)k

* The path is a set union operation, it is clearly Commutative and Associative.

DISTRIBUTIVE LAWS:

* The product and sum operations are distributive, and the ordinary rules of multiplication
apply: that is

‘RULE 4: A(B+C)=AB+AC and (B+C)D=BD+CD
* Applying these rules to the below Figure (a) yields

e(atb )(ct+d)f=e(actad+be+bd)f= eacf+eadf+ebeftebdf
ABSORPTION RULE:

* If X'and Y denote the same set of paths, then the union of these sets is unchanged;
consequently,

RULE 5: X+X=X (Absorption Rule)
* For example, ifX=a+aa+abc+abed+defthenX+a = X+aa = X+abc = X+abed = X+def=X

LOOPS:

* Loops can be understood as an infinite set of parallel paths. Say that the loop consists of a
single link b. then the set of all paths through that loop point is
b0+b1+b2+b3+b4+b5+..............

Example:

This potentially infinite sum is denoted by b* for an individual link and by X* when X is a
path

This potentially infinite sum is denoted by b* for an individual link and by X* when X is a path expression.

Pa ‘_2,84"



* The path expression for the above figure is denoted by the notation:
ab*c¢ -ac+abc+abbe tabbbe+ -
* Evidently. aa*=a*a=a+ and XX*=X*X=X+

2. REDUCTION PROCEDURE ALGORITHM: C\

* This section presents a reduction procedure for converting a flowgraph whose links are
labeled with names into a path expression that denotes the set of all entry/exit paths in that
flowgraph. The procedure is a node-by-node removal algorithm.

The steps in Reduction Algorithm are as follows:

I Combine all serial hnks by muluplying their path expressions.

19

- Combine all parallel links by adding their path expressions.

3. Remove all selt-loops (from anynode to itself) by replacing them with a link of the form
X*. where X s the path expression of the link in that loop.

STEPS 4 -8 ARE IN THE ALGORIHTM'S LOOP:

4. Sclect any node for removal other than the intial or final node. Replace it with a set of
cquivalent links whose path expressions correspond to all the ways vou can form a product
of the set of inlinkswith the set of outlinksof that node.

S. Combine any remaining senal hinks by muluplyimg their path expressions.
6. Combine all parallel links by adding their path expressions.
7. Remove all self-loops as m step 3.

8. Does the graph consist of a single link between the entry node and the exit node” If yes.
then the path expression tor that hnk s a path expression for the onginal flowgraph:
otherwise, return to step 4.

A flowgraph can have many equivalent path expressions between a given pair of nodes: that
is, there are many different ways to generate the set of all paths between two nodes without
affecting the content of that set.

The appearance of the path expression depends. in general. on the order in which nodes are
removed.
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From the above diagram, one can infer: (a + b)(c + d + e) = ac + ad + + ae + bc + bd + be

LOOP REMOVAL OPERATIONS:
There are two ways of looking at the loop-removal operation:

2 O F
A & Soegt 0 o

A REDUCTION PROCEDURE —EXAMPLE:
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* Remove node 9 by applying step4 and 5 to yield,

im

Parallel Term: combine them to create a path expression for an equivalent link whose path
expression is c+gkh; that is,

Loop Term: Removing node 4 leads to a loop term.
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Continue the process by applying the loop-removal step as follows:

(baaf)*b(c+akh
O
Q

.

imf

Removing node 5 produces:

OO “’*‘““"‘b‘w’
\

imf

Remove the loop at node 6 to yield:

(baif)*b(c+akh)d (ithd)*e
@?Q

(ithd)* imf

Remove node 3 to yield:



@ a(bgjf)*b(c+gkh)d .(ilhd)'e.

(ithd)* imf (b&if)*b(c+akh)d

* Removing the loop and then node 6 result in the following expression:
a(bgjf)*b(c+gkh)d((ilhd)*imf(bjgf)*b(c+gkh)d)*(ilhd)*e

Q.APPLICATIONS: & .
"1 The purpose of the node removal algorithm is to present one very generalized concept- the
path expression and way of getting it.
- [ Every application follows this common pattern:
/Converl the program or graph into a path expression.

2. Identify a property of interest and derive an appropriate set of "arithmetic" rules that
characterizes the property.

3. Replace the link names by the link weights for the property of interest. The path
expression has now been converted to an expression in some algebra,

- such as ordinary algebra, regular expressions, or boolean algebra. This algebraic expression
summarizes the property of interest over the set of all paths.

- 4. Simplify or evaluate the resulting "algebraic" expression to answer the question you
asked.

Q.REGULAR EXPRESSIONS AND FLOW ANOMALY DETECTION:

THE PROBLEM:
| The generic flow-anomaly detection problem (note: not just data-flow anomalies, but any

" flow anomaly) is that of looking for a specific sequence of options considering all possible
paths through a routine.

| Let the operations be SET and RESET, denoted by s and r respectively, and we want to
know if there is a SET followed immediately a SET or a RESET followed immediately by a

RESET (anssoranrrsequence).

1 Some more application examples:
1. A file can be opened (0), closed (c), read (r), or written (w). If the file is read or written to
after it's been closed, the sequence is nonsensical. Therefore,crandcware anomalous.

" Similarly, if the file is read before it's been written, just after openmg, we

may have a bug. Therefore,oris also anomalous. Furthermore,ooandce, though not actual
bugs, are a waste of time and therefore should also be examined.
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2. A tape transport can do a rewind (d), fast-forward (f), read (), write (W), stop (p), and skip
(K). There are rules concerning the use of the transport; for example, you cannot go from
rewind to fast-forward without an intervening stop or from rewind or fast-forward to read or
write without an intervening stop. The following sequences are anomalous:df.dr.dw fd, andfr.
Does the tlowgraph lead toanomalous sequences on any path? If so, what sequences and
under what circumstances?

3. The data-flow anomalies discussed in Unit 4 requires us to detect thedd dk Ak,
andAkusequences. Are there paths with anomalous data flows?

THE METHOD:
Annotate each link in the graph with the appropriate operator or the null operator 1.

Simplity things to the extent possible, using the fact thata+a=aand 12 = 1.

You now have a regular expression that denotes all the possible sequences of operators in
that graph. You can now examine that regular expression for the sequences of interest.

EXAMPLE: Let A, B, C, be nonempty sets of character sequences whose smallest string
is at least one character long. Let T be a two-character string of characters. Then if T is a
substring of (i.e.. if T appears within) ABnC, then T will appear in AB2C. (HUANG's
Theorem)

As an example, let

A=pp
B =smr
C=1p
T=ss

The theorem states that ss will appear in pp(srr)nrp if it appears in pp(srr)2rp.
However, let

A=p+pp+ps

B = psr + ps(r + ps)
C=mp

T=P4
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s it obvious that there is a p4 sequence in ABnC'? The theorem states that we have only to
look ot
(p Fpp tops)pse topsetops)|2ep
Multiplying out the expression and simplifying shows that there is no p4 sequence.
lncidentally, the above observation is an informal proof of the wisdom of looping twice
discussed in Unit 2. Because data-flow anomalies arc represented by two-character
sequences, it follows the above theorem that looping twice is what you need to do to find
such anomalies.
LIMITATIONS:
IHuang's theorem can be casily generalized to cover sequences of greater length than two
characters. Beyond three characters, though, things get complex and this method has
probably reached its utilitarian limit for manual application.

There are some nice theorems for finding sequences that occur at thebeginnings and ends
of strings but no nice algorithms for finding strings buried in an expression.

Static flow analysis methods can't determine whether a path is or is not achievable. Unless
the flow analysis includes symbolic execution or similar techniques, the impact of
unachievable paths will not be included in the analysis.

The flow-anomaly application, for example, doesn't tell us that there will be a flow
anomaly -it tells us that if the path is achievable, then there will be a flow anomaly. Such
analytical problems go away, of course, if you take the trouble to design routines for which
all paths arc achicvable,

LOGIC BASED TESTING: OVERVIEW OF LOGIC BASED TESTING :

e "Logic"is one of the most often used words in programmers' vocabularies but one
of their least used techniques.

e Logic has been, for several decades, the primary tool of hardware logic designers.

e Many test methods developed for hardware logic can be adapted to software
logic testing. Because hardware testing automation is 10 to 15 years ahead of
software testing automation, hardware testing methods and its associated theory
is a fertile ground for software testing methods.

e As programming and test techniques have improved, the bugs have shifted closer
to the process front end, to requirements and their specifications. These bugs
range from 8% to 30% of the total and because they're first-in and last-out,
they're the costliest of all.

e Higher-order logic systems are needed and used for formal specifications.
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* Much of logical analysis can be and is embedded in tools. But these tools
incorporate methods to simplify, transform, and check specifications, and the
methods are to a large extent based on boolean algebra.
/ * KNOWLEDGE BASED SYSTEM: o The knowledge-based system (also expert
' Gﬁ\” system, or "“artificial intelligence" system) has become the programming construct
*4&\, " of choice for many applications that were once considered very difficult. o
Knowledge-based systems incorporate knowledge from a knowledge domain such
as medicine, law, or civil engineering into a database. The data can then be
queried and interacted with to provide solutions to problems in that domain. o
One implementation of knowledge-based systems is to incorporate the expert's
knowledge into a set of rules. The user can then provide data and ask questions
based on that data. o The user's data is processed through the rule base to yield
conclusions (tentative or definite) and requests for more data. The processing is
done by a program called the inference engine. o Understanding knowledge-
based systems and their validation problems requires an understanding of formal
logic. e Decision tables are extensively used in business data processing; Decision-
table preprocessors as extensions to COBOL are in common use; boolean algebra
is embedded in the implementation of these processors

Q.What is Decision Table in Software Testing? (. s

A decision table is a good way to deal with different combination inputs with their associated
outputs. It is a black box test design technique to determine the test scenarios for complex
business logic. In this article, know more about how the decision table in software tesiing helps in
test design technique in the following sequence:

ant?

L ]
L] | i
. f Decision Table in Software Testing
.

Way to Use Decision Table: Example

What is Decision Table in Software Testing?

The decision table is a software testing technique which is used for testing the system behavior for
different input combinations. This is a systematic approach where the different input combinations
and their corresponding system behavior are captured in a tabular form.

This table helps you deal with different combination inputs with their associated outputs. Also, it is
known as the cause-effect table because of an associated logical diagramming technique called
cause-effect graphing that is basically used to derive the decision table.

Why is Decision Table Important?A decision table is an outstanding technique

used for testing and requirements management. Some of the reasons why the decision table is
important include:
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Decision tables are very much helpful in test design technique.

It helps testers to search the effects of combinations of different inputs and other software

states that implement business rules.

it provides a regular way of stating complex business rules which benefits the developers
as well as the testers.

It assists in the development process with the developer to do a better job. Testing with all
combination might be impractical.

It the most preferable choice for testing and requirements management.

It is a structured exercise to prepare requirements when dealing with complex business
rules.

Itis also used in model complicated logic.

Advantages of Decision Table in Software Testing

There are different advantages of using the decision table in software testing such as:

Any complex business flow can be easily converted into the test scenarios & test cases
using this technique.

Decision tables work iteratively. Therefore, the table created at the first iteration is used as
the input table for the next tables. The iteration is done only if the initial table is not
satisfactory.

Simple to understand and everyone can use this method to design the test scenarios & =

It provides complete coverage of test cases which help to reduce the rework on writing test
scenarios & test cases.

These tables guarantee that we consider every possible combination of condition values.
This is known as its completeness property.

Way to use Decision Table: Example 7@

A Decision Table is a tabular representation of inputs versus rules, cases or test conditions.
Let's take an example and see how to create a decision table for a login screen:

The condition states that
redirected to the homepa

[

—} Let's Get Startecd

if the user provides the correct username and password the user will be
ge. If any of the input is wrong, an error message will be displayed.
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_ Conditions

Username F T F T
Password F F T I
Output E E S H

In the above example,

« T~ Correct username/password
» F - Wrong userna me/password
* E - Error message is displayed

 H-Home screenis displayed

Now let's understand the interpretation of the above cases:

+ Case 1 - Username and password both were wrong. The user is shown an error message

« Case 2 - Username was correct, but the password was wrong. The user is shown an error
message.

« Case 3 - Username was wrong, but the password was correct. The user is shown an error
message.

+ Case 4 - Username and password both were correct, and the user is navigated to the
homepage.

So, this was an example of buildin
the end of this article.

g a decision table in software testing. with this we have come to
Now that you have understood Decision Table in Software Testing, check out the Softw
festing Fundamentals Course by Edureka. This course is designed to introduce you to the
complete software testing life-cycle. You will be learning different levels of testing, test

environment setup, test case design technique, test data creation, test execution, bug reporting,
CI/CD pipeline in DevOps, and other essential concepts of software testing.

Q.PATH EXPRESSIONS: .. (\o+\ / && .

Vel

GENERAL:

* Logic-based testing is structural testing when it's applied to
structure (e.g., control flowgraph of an implementation); it's
functional testing when it's applied to a specification.

* Inlogic-based testing we focus on the truth values of control flow
predicates.

e A predicate is implemented as a process whose outcome is a
truth-functional value.

* For our purpose, logic-based testing is restricted to binary
predicates.

* We start by generating path expressions by path tracing as in
Unit V, but this time, our purpose is to convert the path
expressions into boolean algebra, using the predicates' truth
values (e.g., A and ) as weights.
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. KVCHARTS:INTRODUCTION:

If you had to deal with expressions in four, five, or six variables, you could
get bogged down in the algebra and make as many errors in designing
test cases as there are bugs in the routine you're testing.
Karnaugh-Veitch chart reduces boolean algebraic manipulations to
graphical trivia.

Beyond six variables these diagrams get cumbersome and may not be
effective.

SINGLE VARIABLE:

Figure 6.6 shows all the boolean functions of a single variable and
their equivalent representation as a KV chart.

A
0 1
BEi G
0 0 i 0 The function is never true
A
0 1
A o ! The function is true when A i3 true
A
0 1
A | [ 0 The function is true when A s lalse
i
A
0 1

1 1 [ 1 The function is aiways true

Figure 6.6 : KV Charts for Functions of a Single Variable.

The charts show all possible truth values that the variable A can
have.

o A"1" means the variable's value is "1" or TRUE. A "0" means that
the variable's value is 0 or FALSE.
The entry in the box (0 or 1) specifies whether the function that the
chart represents is true or false for that value of the variable.
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. We usually do not explicitly put in 0 entries but specify only the
conditions under which the function is true.

TWO VARIABLES:
Figure 6.7 shows eight of the sixteen possible functions of two
variables.
A A
0 1 0 1
] -_ 1
I 1 0 1
a Jp— — | B » .
r r | : ! l
T i
{ ! | I
AB - NAND AB - A ancnor B
A A
] 1 2} 1
S 1 |
o ! 0 |
8 *“'.‘ — B i .i
1 1' 1 1' 1 1
S S -
AB - Bangnot A AR - AawB
A A
o 1 0 1
S N (1 ]
o | f 1 0 i |
A ' e
: I\—‘/ : I \1——-0 -L I
e = .A - - ‘
(¢] A 1 4] 4 1
—~1 ——
o] 1.:\| ‘! 0 /\1 1
8 oo P B el
1 . .
1 I ' ’ . ' [
ol | i J
X ]

Figure 6.7 : KV Charts for Functions of Two Variables

Each box corresponds to the combination of values of the variables
for the row and column of that box.

> A pair may be adjacent either horizontally or vertically but not
diagonally.
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» Any variable that changes in either the horizontal or vertical
direction does not appear in the expression.
In the fifth chart, the B variable changes from 0 to 1 going down the
column, and because the A variable's value for the column is 1, the
chart is equivalent to a simple A.
Figure 6.8 shows the remaining eight functions of two variables.

A
¢
f T ) "—--—r—---\
o O - { @\
1N.O) o, R
AB " AB | ua AB

AN ARNDONLY F B

EXCLUSIVE QR

A
C )
s -] F'“
0 :1
Q) N
iemin [r 3 i)
:L\....._tljt._{_! -4’—-‘-——-/_]
AYB A+B
UR AIMPLIES B
A
0 1
"'__:-_-'—' — ]
[¢] L S |
) “"AT}" ’1'
1 | L\I /1
N Uil
B+A
B/ WPLIES A
a A
0 | 2 |
Y ==
':.‘.i 0_/I ' ]l
e I
v J ' l\ 1 ) ﬂ
1 Mo, ol

4]
UNIVERSAL =ALSE

Figure 6.8 ; More Functions of Two Variables.

o The first chart has two 1's in it, but because they are not adjacent,

JNIVERSAL TRUE

each must be taken separately.

. They are written using a plus sign.
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It is @l@gf AW wh there are sixteen functions of two variables
Each Be¥ |H Eﬁ&iamrtﬁrw;gjhdfs to a combination of the
varlablag yaluE<" chart corres ons 110N of two varig,
That combinatioh might or migh[) no{j Bé‘?r@tﬁ@mmmoer(i@.t egse box
corresponding to that combinatien might have a 1 or 0 entry'ﬁ.

- Since n variables lead to 2" combinations of 0 and 1 forthe ..
variables, and each such combination (box) can be filled or not
filled, leading to 2*" ways of doing this.

o Consequently for one variable there are 2°' = 4 functions, 16
functions of 2 variables, 256 functions of 3 variables, 16,384
functions of 4 variables, and so on.

o Given two charts over the same variables, arranged the same way,
their product is the term by term product, their sum is the term by
term sum, and the negation of a chart is gotten by reversing all the
0 and 1 entries in the chart.

0 3 ! 0 * ) 0 A 1
BOAB- . .o 'o q
, onillac
OR
O . L1 LT )
.I .|1 | ] ' T@ ’ ll KJ
is a8 as . hea

« THREE VARIABLES:

o KV charts for three variables are shown below.

- As before, each box represents an elementary term of three
variables with a bar appearing or not appearing according to
whether the row-column heading for that box is 0 or 1.

- A three-variable chart can have groupings of 1, 2, 4, and 8 boxes.

> A few examples will illustrate the principles:
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AB Al
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Aepc-ot Avpec

Figure 6.8 : KV Charts for Functions of Three Variables.

o You'll notice that there are several ways to circle the boxes into
maximum-sized covering groups.
. FOUR VARIABLES AND MORE:

o The same principles hold for four and more variables.

Q.What is Specification Based Testing?

Spec:f“ ication Based Testing Technique is also known as Behavior Based Testing and !

: esting techniques because in this testers view the software as a black-box. As they have no
knowledge of how the system or component is structured inside the box. In essence, the tester is
only concentrating on what the software does, not how it does it.

Both Functional Testing and Non-Functional Testing is a type of Specification Based Testing.
Specification Based Test Design Technique uses the specification of the program as the point
of reference for test data selection and adequacy. A specification can be anything like a written
document, collection of use cases, a set of models or a prototype.
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Tyrpes of Specification Based Testing Techniques
1 Equivalence Partitioning: Software Testing technique that divides the input data of a

software unit into partitions of equivalent data from which test cases can be denved Learn
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include representatives of boundary values in a range

Decision Tables: Software Testing techmque in which tests are more focused on
business logic or business rules. A decision table is a good way to deal with combinations
of inputs

State Transitioning: Software Testing technique which is used when the system is
defined in terms of a finite number of states and the transitions between the states is
govemed by the rules of the system
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UNITV
STATES, STATE GRAPHS, AND TRANSITION TESTING

UNIT-V

State, State Graphs and Transition testing: State graphs, good & bad state graphs state testing. Testability tips.
Graph Matrices and Application:  Motivational overview, matrix of graph, relations, power of a matrix, Node
reduction algonithm, building tools. (Student should be given an exposure to a tool like J Meter or Win runner.)

Introduction

* The finite state machine is as fundamental to software engineering as boolean algebra to logic.

* State testing strategies are based on the use of finite state machine models for software structure,
software behavior, or specifications of software behavior.

* [Fimite state machines can also be implemented as table-driven software, in which case they are a
powerful design option.

U™

t-ﬁ . LY

State Graphs i

* Astate is defined as: A combination of circumstances or attributes belonging for the time being to a
person or thing.™

* Forexample, a moving automobile whose engine is running can have the following states with respect to
Its transmisston.

. Reverse gear
. Neutral gear
. First gear

. Second gear
e _ Third gear

Fourth gear

State graph - Example
« * Forexample, a program that detects the character sequence “ZCZC™ can be in the following states.
Neither ZCZC nor any part of it has been detected.
° Z has been detected.
° ZC has been detected.
. ZCZ has been detected.
o ZCZC has been detected.

- o ZCA

R .. 0

Z
‘States are represented by Nodes. State are numbered or may identified by words or whatever else is

convenient.

_“ }»‘
Inputs and Transitions (_,

o Whatever is being modeled is subjected to inputs. As a result of those inputs, the state changes, or is
said to have made a Transition. '

¢ Transitions are denoted by links that join the states.
o The input that causes the transition are marked on the link; that is, the inputs are link weights.
There is one out link from every state for every input.



If several inputs in a state cause a transition to the same subscquent state, instead of drawing a bunch
of parallel links we can abbreviate the notation by listing the several inputs as in: “inputl, input2,
NS oo™

Finite State Machine

* A finite state machine is an abstract device that can be represented by a state graph having a finite
number of states and a finite number of transitions between states.

*  Outputs

* Anoutput can be associated with any link.

* Out puts are denoted by letters or words and are separated from inputs by a slash as follows:
“input/output”.

® Asalways, output denotes anything of interest that’s observable and is not restricted to explicit
outputs by devices.

* Outputs are also link weights.

* [Ifevery input associated with a transition causes the same output, then denoted it as:

* “inputl, input2, input3............./output”

State Tables

Big state graphs are cluttered and hard to follow.

It’s more convenient to represent the state graph as a table (the state table or state transition table)
that specifies the states, the inputs, the transitions and the outputs.

The following conventions are used:

* Each row of the table corresponds to a state.
* Each column corresponds to an input condition.
® The box at the intersection of a row and a column specifies the next state (the transition) and the
output, if any.
State Table-Example
inputs
STATE p4 & A
NONE z NONE NONE
Z Z ZC NONE
ZC 2CZ NONE NONE
zCz 'z | zczc | NONE
zczc | zezc | zeze | zaz@

Time Versus Sequence

State graphs don’t represent time-they represent sequence.
A transition might take microseconds or centuries;

A system could be in one state for milliseconds and ano

_ ther for years- the state graph would be the
same because it has no notion of time.

Although the finite state machines model can be elaborated 1o include notions
sequence, such as time Petri Nets.

Software implementation

of time in addition to



There is rarely a direct correspondence between programs and the behavior of a process described as
a state graph.

The state graph represents, the total behavior consisting of the transport, the software, the executive,
the status returns, interrupts, and so on.

There is no simple correspondence between lines of code and states. The state table forms the basis.

Good State Graphs and Bad

What constitutes a good or a bad state graph is to some extent biased by the kinds of state graphs that
are likely to be used in a software test design context.

Here are some principles for judging.

The total number of states is equal to the product of the possibilities of factors that make up the state.
For every state and input there is exactly one transition specified to exactly one, possibly the same,
state.

For every transition there is one output action specified. The output could be trivial, but at least one
output does something sensible.

For every state there is a sequence of inputs that will drive the system back to the same state.

Important graphs
State Bugs-Number of States

1,

The number of states in a state graph is the number of states we choose to recognize or model.
- 1:2

a I
i \
State can never be left, the initial state can
@ - never be entered again.
2
=

.‘1]

2 -0. 2 “ State C cannot be entered.
1’2

2 1,2
O - States A and B are not reachable
2

D- 1.2 . Two transitions are specified for

a an input of 1 in state A

The state is directly or indirectly recorded as a combination of values of variables that appear in the
data base.

For example, the state could be composed of the value of a counter whose possible values ranged
from 0 to 9, combined with the setting of two bit flags, leading to a total of 2*2*10=40 states.
The number of states can be computed as follows:

Identify all the component factors of the state.

Identify all the allowable values for each factor.

The number of states is the product of the number of allowable values of all the factors.

Before you do anything else, before you consider one test case, discuss the number of states you
think there are with the number of states the programmer thinks there are.

There is no point in designing tests intended to check the system’s behavior in various states if
there’s no agreement on how many states there are.

Impossible States

Some times some combinations of factors may appear to be impossible.

T_hc discrepancy between the programmer’s state count and the tester’s state count is often due to a
difference of opinion concerning “impossible states™.

A robust picc; pf software will not ignore impossible states but will recognize them and invoke an
illogical condition handler when they appear to have occurred. (A
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Equivalent States
* Two states are Equivalent if every sequence of inputs starting from one state produces exactly the

same sequence of outputs when started from the other state. This notion can also be extended to set

of states.
&
® e

b.‘_

Merging of Equivalent States

B o echot

Recognizing Equivalent States

Equivalent states can be recognized by the following procedures:

The rows corresponding to the two states are identical with respect to input/ output next state but the
name of the next state could differ.

There are two sets of rows which, except for the state names, have identical state graphs with respect
to transitions and outputs, The two sets can be merged.

TransitionBugs- unspecified and contradictory Transitions

Every input-state combination must have a specified transition

If the transition 1s impossible, then there must be a mechanism that prevents the input from occurring
in that state.

I-xactly one transition must be specified for every combination of mput and state

A program can’t have contradictions or ambiguities

Ambiguities are impossible because the program will do something for every input. Even the state
doces not change, by definition this is a transition o the same state.

Unreachable States

¢ An unreachable state 1s like unreachable code
* A state that no input sequence can reach
* Anunreachable state is not impossible, just as unreachable code is not impossible
® There may be transitions from unreachable state to other states: there usuall y because the state
became unreachable as a result of incorrect transition.
e There are two possibilities for unreachable states:
e There is a bug: that is some transitions are missing.
e The transitions are there, but you don’t know about it.
Dead States _ ;
e A dead state 1s a state that once entered cannot be left. |
e This is not necessarily a bug but it is suspicious. e



Output Errors

o The states. transitions, and the nputs could be correct, there could be no dead or unreachable states,
but the output for the transition could be incorrect.
»  Output actions must be verified independently of states and transitions

State Testing Impact of Bugs

o Ifa routine is specified as a state graph that has been verified as correct in all details Program code
or table or a combination of both must still be implemented.

e A bug can manifest itself as one of the following symptoms:

¢ Wrong number of states.

e Wrong transitions for a given state-input combination

e Wrong output for a given transition

e Pairs of states or sets of states that are inadvertently made equivalent
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States or set of states that are split to create in equivalent duplicates.
States or sets of states that have become dead.

States or sets of states that have become unreachable.

Principles of State Testing

The strategy for state testing is analogous to that used for path testing flow graphs.

Just as it’s impractical to go through every possible path in a flow graph, it’s impractical to go
through every path in a state graph.

The notion of coverage is identical to that used for flow graphs.

Even though more state testing is done as a single case in a grand tour, it’s impractical to do it that
way for several reasons.

In the early phases of testing, you will never complete the grand tour because of bugs.

Later. in maintenance, testing objectives are understood, and only a few of the states and transitions
have to be tested. A grand tour is waste of time.

Theirs is no much history in a long test sequence and so much has happened that verification is
difficult.

Starting point of state testing

Define a set of covering input sequences that get back to the initial state when starting from the
1nitial state.

For each step in each input sequence, define the expected next state, the expected transition, and the
expected output code.

A set of tests, then, consists of three sets of sequences:

Input sequences

Corresponding transitions or next-state names

Output sequences

Limitations and Extensions

State transition coverage in a state graph model does not guarantee complete testing,

How defines a hierarchy of paths and methods for combining paths to produce covers of state graphs.

The simplest is called a “0 switch” which corresponds to testing each transition individually,

The next level consists of testing transitions sequences consisting of two transitions called ]
switches”.

The maximum length switch is “n-1 switch™ where there are n numbers of states.

Situations at which state testing is useful

Any processing where the output 1s based on the occurrence of One or more sequences of events,
such as detection of specified input sequences, sequential format validation, parsing, and other
situations in which the order of Inputs is important.

Most protocols between systems, between humans and machines, between components of a system.

Device drivers such as for tapes and discs that have complicated retry and recovery procedures if the
action depends on the state. Whenever a feature is directly and explicitly implemented as one or
Mmore state transition tables,

&



CHAPTER-1I
GRAPH MATRICES AND APPLICATIONS

Problem with Pictorial Graphs

Graphs were introduced as an abstraction of software structure

Whenever a graph 15 used as a model. sooner or later we trace paths through 1t- to find a sct of
covering paths, a set of values that will sensitize paths. the logic function that controls the flow, the

processing time of the routine. the equations that define the domain, or whether a state is reachable
or nol

Path 15 not casy. and 1t's subject 1o error You can miss a link here and there or cover some links
wice
One solution to this problem is to represent the graph as a matnix and to use matrix operations

cquivalent to path tracing. These methods are more methodical and mechanical and don't depend on
vour ability to see a path they are more rehiable

Tool Building

It you build test tools or want to know how they work. sooner or later you will be implementing or
mvestigating analysis routines based on these methods

It1s hard to build algorithms over visual graphs so the properties or graph matrices are fundamental
to tool building

The Basic Algorithms

.

The basic tool kit consists of’
Matnx multiphication, which is used to get the path expression from every node to every other node.

A partitioning algorithm for converting graphs with loops into loop free graphs or equivalence
classes

A collapsing process which gets the path expression from any node to any other node.

The Matrix of a Graph

A graph matrix is a square array with one row and one column for every node in the graph.

Each row-column combination corresponds to a relation between the node corresponding to the row
and the node corresponding to the column.

The relation for example, could be as simple as the link name, if there is a link between the nodes,
Some of the things to be observed:

The size of the matrnix equals the number of nodes.

There is a place to put every possible direct connection or link between any and any other node
The entry at a row and column intersection is the link weight of the link that connects the two nodes
in that direction.

A connection from node 1 to j does not imply a connection from node j to node 1.

If there are several links between two nodes, then the entry is a sum: the "+ sign denotes parallel
links as usual



