

UNIT – I

Introduction Language Processing, Structure of a compiler, the Evaluation of Programming language,

The Science of building a Compiler application of Compiler Technology. Programming Language

Basics.

Lexical Analysis-:The role of lexical analysis buffering, specification of tokens. Recognitions of tokens

the lexical analyzer generator lexical

UNIT -1

TRANSLATOR

A translator is a program that takes as input a program written in one language and

produces as output a program in another language. Beside program translation, the
translator performs another very important role, the error-detection. Any violation of HLL
specification would be detected and reported to the programmers. Important role of
translator are:

1 Translating the HLL program input into an equivalent machine language program.

2 Providing diagnostic messages wherever the programmer violates specification of

the HLL.

A translator is a program that takes as input a program written in one language and

produces as output a program in another language. Beside program translation, the
translator performs another very important role, the error-detection. Any violation of HLL
specification would be detected and reported to the programmers. Important role of
translator are:

1 Translating the hll program input into an equivalent ml program.

2 Providing diagnostic messages wherever the programmer violates specification of

the hll.

TYPE OF TRANSLATORS:-

a. Compiler

b. Interpreter

c. Preprocessor

Compiler

Compiler is a translator program that translates a program written in (HLL) the

source program and translate it into an equivalent program in (MLL) the target program. As
an important part of a compiler is error showing to the programmer.

Source pgm Compiler target pgm

Error msg

Executing a program written n HLL programming language is basically of two parts. The
source program must first be compiled and translated into a object program. Then the
resulting object program is loaded into a memory executed.

Interpreter: An interpreter is a program that appears to execute a source program as if it
were machine language.

Languages such as BASIC, SNOBOL, LISP can be translated using interpreters. JAVA also
uses interpreter. The process of interpretation can be carried out in following phases.

1. Lexical analysis

2. Synatx analysis
3. Semantic analysis

4. Direct Execution

Advantages:
Modification of user program can be easily made and implemented as execution
proceeds.

5. Type of object that denotes a various may change dynamically.
Debugging a program and finding errors is simplified task for a program used
for interpretation.

The interpreter for the language makes it machine independent.

Disadvantages:

The execution of the program is slower.

Memory consumption is more.

OVERVIEW OF LANGUAGE PROCESSING SYSTEM

Preprocessor

A preprocessor produce input to compilers. They may perform the following functions.

1. Macro processing: A preprocessor may allow a user to define macros that are
short hands for longer constructs.

2. File inclusion: A preprocessor may include header files into the program text.

3. Rational preprocessor: these preprocessors augment older languages with more
modern flow-of-control and data structuring facilities.

4. Language Extensions: These preprocessor attempts to add capabilities to the
language by certain amounts to build-in macro

Assembler: programmers found it difficult to write or read programs in machine language.
They begin to use a mnemonic (symbols) for each machine instruction, which they would
subsequently translate into machine language. Such a mnemonic machine language is
now called an assembly language. Programs known as assembler were written to
automate the translation of assembly language in to machine language. The input to an
assembler program is called source program, the output is a machine language translation
(object program).

Loader and Link-editor:

Once the assembler procedures an object program, that program must be placed into
memory and executed. The assembler could place the object program directly in
memory and transfer control to it, thereby causing the machine language program to be
execute. This would waste core by leaving the assembler in memory while the user‟s
program was being executed. Also the programmer would have to retranslate his
program with each execution, thus wasting translation time. To overcome this problems
of wasted translation time and memory. System programmers developed another
component called loader

“A loader is a program that places programs into memory and prepares them for

execution.” It would be more efficient if subroutines could be translated into object form
the loader could”relocate” directly behind the user‟s program. The task of adjusting
programs othey may be placed in arbitrary core locations is called relocation.

STRUCTURE OF A COMPILER

Phases of a compiler: A compiler operates in phases. A phase is a logically interrelated
operation that takes source program in one representation and produces output in another
representation. The phases of a compiler are shown in below
There are two phases of compilation.

a. Analysis (Machine Independent/Language Dependent)

b. Synthesis(Machine Dependent/Language independent)

Compilation process is partitioned into no-of-sub processes called phases’.

Lexical Analysis:-

LA or Scanners reads the source program one character at a time, carving the
source program into a sequence of automic units called tokens.

Syntax Analysis:-

The second stage of translation is called Syntax analysis or parsing. In this
phase expressions, statements, declarations etc… are identified by using the results of lexical
analysis. Syntax analysis is aided by using techniques based on formal grammar of the
programming language.

Intermediate Code Generations:-

An intermediate representation of the final machine language code is produced.
This phase bridges the analysis and synthesis phases of translation.

Code Optimization :-

This is optional phase described to improve the intermediate code so that the
output runs faster and takes less space.

Code Generation:-

The last phase of translation is code generation. A number of optimizations to
reduce the length of machine language program are carried out during this phase. The
output of the code generator is the machine language program of the specified computer.

Table Management (or) Book-keeping:-

This is the portion to keep the names used by the program and records
essential information about each. The data structure used to record this information called a
„Symbol Table‟.

Error Handlers:-

It is invoked when a flaw error in the source program is detected.

The output of LA is a stream of tokens, which is passed to the next phase, the
syntax analyzer or parser. The SA groups the tokens together into syntactic structure called
as expression. Expression may further be combined to form statements. The syntactic
structure can be regarded as a tree whose leaves are the token called as parse trees.

The parser has two functions. It checks if the tokens from lexical analyzer,

occur in pattern that are permitted by the specification for the source language. It also
imposes on tokens a tree-like structure that is used by the sub-sequent phases of the compiler.

Example, if a program contains the expression A+/B after lexical analysis this

expression might appear to the syntax analyzer as the token sequence id+/id. On seeing the /,
the syntax analyzer should detect an error situation, because the presence of these two
adjacent binary operators violates the formulations rule of an expression.

Syntax analysis is to make explicit the hierarchical structure of the incoming

token stream by identifying which parts of the token stream should be grouped.

Example, (A/B*C has two possible interpretations.)

1, divide A by B and then multiply by C or

2, multiply B by C and then use the result to divide A.

each of these two interpretations can be represented in terms of a parse tree.

Intermediate Code Generation:-

The intermediate code generation uses the structure produced by the syntax
analyzer to create a stream of simple instructions. Many styles of intermediate code are
possible. One common style uses instruction with one operator and a small number of
operands.

The output of the syntax analyzer is some representation of a parse tree. the
intermediate code generation phase transforms this parse tree into an intermediate language
representation of the source program.

Code Optimization

This is optional phase described to improve the intermediate code so that the
output runs faster and takes less space. Its output is another intermediate code program that
does the some job as the original, but in a way that saves time and / or spaces.

1, Local Optimization:-

There are local transformations that can be applied to a program
to make an improvement. For example,

If A > B goto L2

Goto L3

L2 :

This can be replaced by a single statement
If A < B goto L3

Another important local optimization is the elimination of common
sub-expressions

A := B + C + D

E := B + C + F

Might be evaluated as

T1 := B + C

A := T1 + D

E := T1 + F
Take this advantage of the common sub-expressions B + C.

2, Loop Optimization:-

Another important source of optimization concerns about increasing
the speed of loops. A typical loop improvement is to move a
computation that produces the same result each time around the loop
to a point, in the program just before the loop is entered.

Code Generator :-

Code Generator produces the object code by deciding on the memory locations
for data, selecting code to access each datum and selecting the registers in which each
computation is to be done. Many computers have only a few high speed registers in which
computations can be performed quickly. A good code generator would attempt to utilize
registers as efficiently as possible.

Table Management OR Book-keeping :-

A compiler needs to collect information about all the data objects that appear
in the source program. The information about data objects is collected by the early phases of
the compiler-lexical and syntactic analyzers. The data structure used to record this
information is called as Symbol Table.

Error Handing :-

One of the most important functions of a compiler is the detection and
reporting of errors in the source program. The error message should allow the programmer to
determine exactly where the errors have occurred. Errors may occur in all or the phases of a
compiler.

Whenever a phase of the compiler discovers an error, it must report the error to
the error handler, which issues an appropriate diagnostic msg. Both of the table-management
and error-Handling routines interact with all phases of the compiler.

*

id3

Example:

Position:= initial + rate *60

Tokens id1 = id2 + id3 * id4

id1 +

id2

id4

id1 +

id2 *

id3 60

int to real

Intermediate Code Generator

temp1:= int to real (60)
temp2:= id3 * temp1
temp3:= id2 + temp2

id1:= temp3.

Temp1:= id3 * 60.0

Code Optimizer

Lexical Analyzer

Syntsx Analyzer

=

Semantic Analyzer

=

Id1:= id2 +temp1

MOVF id3, r2

MULF *60.0, r2

MOVF id2, r2

ADDF r2, r1

MOVF r1, id1

Evolution of Programming languages

The history of programming languages spans from documentation of early mechanical computers to

modern tools for software development. Early programming languages were highly specialized, relying

on mathematical notation

The move to Higher Level Languages

The first step towards more people friendly programming languages was the development of mnemonic

assembly languages in the early 1950’s.The instructions in assembly languages were just mnemonic

representations of machine instructions.

A major step towards higher level languages was made in the later half of the 1950’s with the

development of FORTRAN for scientific computation, Cobol for business data Processing and Lisp for

symbolic computation.

In the following decades many more languages were created with innovative features to help

make programming easier, more natural, and more robust.

Languages can also be classified in variety of ways.

Classification by Generation: Ist generation are the machine languages, 2nd generation are the

assembly languages, 3rd generation are the higher level languages like Fortran,cobol, Lisp,C

etc.4th generation are the languages designed for specific application like NOMAD,SQL,POST

The term fifth generation language has been applied to logic and the constraint based language

like prolog and OPS5.

Classification by the use: imperative languages in which your program specifies How

computation is to be done the declarative for languages in which your program specifies what

computation is to be done.

Examples:

Imperative languages: C,C++,C#,Java.

Declarative languages: ML, Haskell, Prolog

Code Generator

Object oriented language is one that supports Object oriented programming, a

Programming style in which a program consists of a collection of objects that interact with

one another.

Examples: Simula 67, small talk, C ++, Java,Ruby

Scripting languages are interpreted languages with high level operators designed for

“gluing together” computations These computations originally called Scripts

Example: JavaScript, Perl, PHP, python, Ruby, TCL

The Science of building a Compiler

A compiler must accept all source programs that conform to the specification of the language;

the set of source programs is infinite and any program can be very large, consisting of possibly millions

of lines of code. Any transformation performed by the compiler while translating a source program must

preserve the meaning of the program being compiled. Compiler writers thus have influence over not just

the compilers they create, but all the programs that their compilers compile. This leverage makes

writing compilers particularly rewarding; however, it also makes compiler development challenging.

Modelling in compiler design and implementation: The study of compilers is mainly a study of how

we design the right mathematical models and choose the right algorithms.Some of most fundamental

models are finite-state machines and regular expressions.These models are useful for de-scribing the

lexical units of programs (keywords, identifiers, and such) and for describing the algorithms used by the

compiler to recognize those units. Also among the most fundamental models are context-free grammars,

used to describe the syntactic structure of programming languages such as the nesting of parentheses or

control constructs. Similarly, trees are an important model for representing the structure of programs

and their translation into object code.

The science of code optimization: The term "optimization" in compiler design refers to the attempts

that a com-piler makes to produce code that is more efficient than the obvious code. In modern times,

the optimization of code that a compiler performs has become both more important and more complex.

It is more complex because processor architectures have become more complex, yielding more

opportunities to improve the way code executes. It is more important because massively par-allel

computers require substantial optimization, or their performance suffers by orders of magnitude.

Compiler optimizations must meet the following design objectives:

1. The optimization must be correct, that is, preserve the meaning of the compiled program,

2. The optimization must improve the performance of many programs,

3. The compilation time must be kept reasonable, and

4. The engineering effort required must be manageable.

Thus, in studying compilers, we learn not only how to build a compiler, but also the general

methodology of solving complex and open-ended problems.

Applications of Compiler Technology

Compiler design impacts several other areas of computer science.

Implementation of high-level programming language: A high-level programming language defines a

programming abstraction: the programmer expresses an algorithm using the language, and the compiler

must translate that program to the target language. higher-level programming languages are easier to

program in, but are less efficient, that is, the target programs run more slowly. Programmers using a

low-level language have more control over a computation and can, in principle, produce more efficient

code.

Language features that have stimulated significant advances in compiler technology.

Practically all common programming languages, including C, Fortran and Cobol, support user-defined

aggregate data types, such as arrays and structures, and high-level control flow, such as loops and

procedure invocations. If we just take each high-level construct or data-access operation and translate it

directly to machine code, the result would be very inefficient. A body of compiler optimizations, known

as data-flow optimizations, has been developed to analyze the flow of data through the program and

removes redundancies across these constructs. They are effective in generating code that resembles code

written by a skilled programmer at a lower level.

Object orientation was first introduced in Simula in 1967, and has been incorporated in languages such

as Smalltalk, C + + , C # , and Java. The key ideas behind object orientation are

1. Data abstraction and

2. Inheritance of properties,

Java has many features that make programming easier, many of which have been introduced previously

in other languages. Compiler optimizations have been developed to reduce the overhead, for example,

by eliminating unnecessary range checks and by allocating objects that are not accessible beyond a

procedure on the stack instead of the heap. Effective algorithms also have been developed to minimize

the overhead of garbage collection.

In dynamic optimization, it is important to minimize the compilation time as it is part of the execution

overhead. A common technique used is to only compile and optimize those parts of the program that

will be frequently executed.

Optimizations for Computer Architecture: high-performance systems take advantage of the same

two basic techniques: parallelism and memory hierarchies. Parallelism can be found at several levels: at

the instruction level, where multiple operations are executed simultaneously and at

the processor level, where different threads of the same application are run on different processors.

Memory hierarchies are a response to the basic limitation that we can build very fast storage or very

large storage, but not storage that is both fast and large.

Design of New Computer Architectures: in modern computer architecture development, compilers are

developed in the processor-design stage, and compiled code, running on simulators, is used to evaluate

the proposed architectural features. One of the best known examples of how compilers influenced the

design of computer architecture was the invention of the RISC (Reduced Instruction-Set Computer)

architecture.

Compiler optimizations often can reduce these instructions to a small number of simpler operations by

eliminating the redundancies across complex instructions. Thus, it is desirable to build simple

instruction sets; compilers can use them effectively and the hardware is much easier to optimize. Most

general-purpose processor architectures, including PowerPC, SPARC, MIPS, Alpha, and PA-RISC, are

based on the RISC concept.

Specialized Architectures Over the last three decades, many architectural concepts have been

proposed. They include data flow machines, vector machines, VLIW (Very Long Instruction Word)

machines, SIMD (Single Instruction, Multiple Data) arrays of processors, systolic arrays,

multiprocessors with shared memory, and multiprocessors with distributed memory. The development

of each of these architectural concepts was accompanied by the research and development of

corresponding compiler technology.

Program Translations: The following are some of the important applications of program-translation

techniques.

Binary Translation: Compiler technology can be used to translate the binary code for one machine to

that of another, allowing a machine to run programs originally compiled for another instruction set.

Binary translation technology has been used by various computer companies to increase the availability

of software for their machines.

Hardware Synthesis: Not only is most software written in high-level languages; even hardware de-

signs are mostly described in high-level hardware description languages like Verilog and VHDL.

Hardware designs are typically described at the register trans-fer level (RTL), where variables represent

registers and expressions represent combinational logic.

Database Query Interpreters: Besides specifying software and hardware, languages are useful in

many other applications. For example, query languages, especially SQL (Structured Query Language),

are used to search databases. Database queries consist of predicates containing relational and boolean

operators. They can be interpreted or com-piled into commands to search a database for records

satisfying that predicate.

Programming Language Basics:

1 The Static/Dynamic Distinction

2 Environments and States

3 Static Scope and Block Structure

4 Explicit Access Control

5 Dynamic Scope

6 Parameter Passing Mechanisms

The Static/Dynamic Distinction: Among the most important issues that we face when designing a

compiler for a language is what decisions can the compiler make about a program. If a language uses a

policy that allows the compiler to decide an issue, then we say that the language uses a static policy or

that the issue can be decided at compile time. On the other hand, a policy that only allows a decision to

be made when we execute the program is said to be a dynamic policy. One issue is the scope of

declarations. The scope of a declaration of x is the region of the program in which uses of x refer to this

declaration. A language uses static scope or lexical scope if it is possible to determine the scope of a

declaration by looking only at the program. Otherwise, the language uses dynamic scope. With dynamic

scope, as the program runs, the same use of x could refer to any of several different declarations of x.

Environments and States:

The environment is a mapping from names to locations in the store. Since variables refer to

locations, we could alternatively define an environment as a mapping from names to variables.

The state is a mapping from locations in store to their values. That is, the state maps 1-values to

their corresponding r-values, in the terminology of C. Environments change according to the scope rules

of a language.

Static Scope and Block Structure

Most languages, including C and its family, use static scope. we consider static-scope rules for a

language with blocks, where a block is a grouping of declarations and statements. C uses braces { and }

to delimit a block; the alternative use of begin and end for the same purpose dates back to Algol.

A C program consists of a sequence of top-level declarations of variables and

functions.Functions may have variable declarations within them, where variables include local variables

and parameters. The scope of each such declaration is restricted to the function in which it appears.

The scope of a top-level declaration of a name x consists of the entire program that follows, with the

exception of those statements that lie within a function that also has a declaration of x.

A block is a sequence of declarations followed by a sequence of statements, all surrounded by

braces. a declaration D "belongs" to a block B if B is the most closely nested block containing D; that

is, D is located within B, but not within any block that is nested within B. The static-scope rule for

variable declarations in a block-structured lan-guages is as follows. If declaration D of name x belongs

to block B, then the scope of D is all of B, except for any blocks B' nested to any depth within J5, in

which x is redeclared. Here, x is redeclared in B' if some other declaration D' of the same name x

belongs to B'.

An equivalent way to express this rule is to focus on a use of a name x. Let Bi, i?2, • • • , Bk be

all the blocks that surround this use of x, with Bk the smallest, nested within Bk-i, which is nested

within Bk-2, and so on. Search for the largest i such that there is a declaration of x belonging to B^.

This use of x refers to the declaration in B{. Alternatively, this use of x is within the scope of the

declaration in Bi.

Explicit Access Control

Through the use of keywords like public, private, and protected, object-oriented languages such as C

+ + or Java provide explicit control over access to member names in a superclass. These keywords

support encapsulation by restricting access. Thus, private names are purposely given a scope that

includes only the method declarations and definitions associated with that class and any "friend" classes

(the C + + term). Protected names are accessible to subclasses. Public names are accessible from outside

the class.

Dynamic Scope

Any scoping policy is dynamic if it is based on factor(s) that can be known only when the program

executes. The term dynamic scope, however, usually refers to the following policy: a use of a

name x refers to the declaration of x in the most recently called procedure with such a declaration.

Dynamic scoping of this type appears only in special situations. We shall consider two ex-amples of

dynamic policies: macro expansion in the C preprocessor and method resolution in object-oriented

programming.

Declarations and Definitions

Declarations tell us about the types of things, while definitions tell us about their values. Thus, i n t i is a

declaration of i, while i = 1 is a definition of i.

The difference is more significant when we deal with methods or other procedures. In C + + , a method

is declared in a class definition, by giving the types of the arguments and result of the method (often

called the signature for the method. The method is then defined, i.e., the code for executing the method

is given, in another place. Similarly, it is common to define a C function in one file and declare it in

other files where the function is used.

Parameter Passing Mechanisms

In this section, we shall consider how the actual parameters (the parameters used in the call of a

procedure) are associated with the formal parameters (those used in the procedure definition). Which

mechanism is used determines how the calling-sequence code treats parameters. The great majority of

languages use either "call-by-value," or "call-by-reference," or both.

Call - by - Value

In call-by-value, the actual parameter is evaluated (if it is an expression) or copied (if it is a variable).

The value is placed in the location belonging to the corresponding formal parameter of the called

procedure. This method is used in C and Java, and is a common option in C + + , as well as in most

other languages. Call-by-value has the effect that all computation involving the formal parameters done

by the called procedure is local to that procedure, and the actual parameters themselves cannot be

changed.

Note, however, that in C we can pass a pointer to a variable to allow that variable to be changed by the

callee. Likewise, array names passed as param eters in C, C + + , or Java give the called procedure what

is in effect a pointer or reference to the array itself. Thus, if a is the name of an array of the calling

procedure, and it is passed by value to corresponding formal parameter x, then an assignment such as

x [i] = 2 really changes the array element a[2]. The reason is that, although x gets a copy of the value

of a, that value is really a pointer to the beginning of the area of the store where the array named a is

located.

Similarly, in Java, many variables are really references, or pointers, to the things they stand for. This

observation applies to arrays, strings, and objects of all classes. Even though Java uses call-by-value

exclusively, whenever we pass the name of an object to a called procedure, the value received by that

procedure is in effect a pointer to the object. Thus, the called procedure is able to affect the value of the

object itself.

Call - by - Reference

In call-by-reference, the address of the actual parameter is passed to the callee as the value of the

corresponding formal parameter. Uses of the formal parameter in the code of the callee are implemented

by following this pointer to the location indicated by the caller. Changes to the formal parameter thus

appear as changes to the actual parameter.

If the actual parameter is an expression, however, then the expression is evaluated before the call, and

its value stored in a location of its own. Changes to the formal parameter change this location, but can

have no effect on the data of the caller.

Call-by-reference is used for "ref" parameters in C + + and is an option in many other languages. It is

almost essential when the formal parameter is a large object, array, or structure. The reason is that strict

call-by-value requires that the caller copy the entire actual parameter into the space belonging to the

corresponding formal parameter. This copying gets expensive when the parameter is large. As we noted

when discussing call-by-value, languages such as Java solve the problem of passing arrays, strings, or

other objects by copying only a reference to those objects. The effect is that Java behaves as if it used

call-by-reference for anything other than a basic type such as an integer or real.

Call - by - Name

A third mechanism — call-by-name — was used in the early programming language Algol 60. It

requires that the callee execute as if the actual parameter were substituted literally for the formal

parameter in the code of the callee, as if the formal parameter were a macro standing for the actual

parameter (with renaming of local names in the called procedure, to keep them distinct). When the

actual parameter is an expression rather than a variable, some unintuitive behaviors occur, which is one

reason this mechanism is not favored today.

LEXICAL ANALYSIS

 OVER VIEW OF LEXICAL ANALYSIS

o To identify the tokens we need some method of describing the possible tokens that can
appear in the input stream. For this purpose we introduce regular expression, a
notation that can be used to describe essentially all the tokens of programming
language.

o Secondly , having decided what the tokens are, we need some mechanism to recognize
these in the input stream. This is done by the token recognizers, which are designed
using transition diagrams and finite automata.

 ROLE OF LEXICAL ANALYZER

the LA is the first phase of a compiler. It main task is to read the input character
and produce as output a sequence of tokens that the parser uses for syntax analysis.

Upon receiving a get next token command form the parser, the lexical analyzer

reads the input character until it can identify the next token. The LA return to the parser
representation for the token it has found. The representation will be an integer code, if the
token is a simple construct such as parenthesis, comma or colon.

LA may also perform certain secondary tasks as the user interface. One such task is

striping out from the source program the commands and white spaces in the form of blank,
tab and new line characters. Another is correlating error message from the compiler with the
source program.

- 11 -

LEXICAL ANALYSIS VS PARSING:

Lexical analysis Parsing

A Scanner simply turns an input String (say a
file) into a list of tokens. These tokens

represent things like identifiers, parentheses,

operators etc.

The lexical analyzer (the "lexer") parses

individual symbols from the source code file

into tokens. From there, the "parser" proper

turns those whole tokens into sentences of

your grammar

A parser converts this list of tokens into a
Tree-like object to represent how the tokens

fit together to form a cohesive whole

(sometimes referred to as a sentence).

A parser does not give the nodes any

meaning beyond structural cohesion. The

next thing to do is extract meaning from this

structure (sometimes called contextual

analysis).

 INPUT BUFFERING

The LA scans the characters of the source pgm one at a time to discover tokens.
Because of large amount of time can be consumed scanning characters, specialized buffering
techniques have been developed to reduce the amount of overhead required to process an input
character.
Buffering techniques:

1. Buffer pairs

2. Sentinels

The lexical analyzer scans the characters of the source program one a t a time to discover
tokens. Often, however, many characters beyond the next token many have to be examined
before the next token itself can be determined. For this and other reasons, it is desirable for
thelexical analyzer to read its input from an input buffer. Figure shows a buffer divided into
two haves of, say 100 characters each. One pointer marks the beginning of the token being
discovered. A look ahead pointer scans ahead of the beginning point, until the token is
discovered .we view the position of each pointer as being between the character last read and
thecharacter next to be read. In practice each buffering scheme adopts one convention either
apointer is at the symbol last read or the symbol it is ready to read.

Token beginnings look ahead pointerThe distance which the lookahead pointer may
have to travel past the actual token may belarge. For example, in a PL/I program we may see:
DECALRE (ARG1, ARG2… ARG n) Without knowing whether DECLARE is a keyword or

an array name until we see the character that follows the right parenthesis. In either case, the
token itself ends at the second E. If the look ahead pointer travels beyond the buffer half in
which it began, the other half must be loaded with the next characters from the source file.
Since the buffer shown in above figure is of limited size there is an implied constraint on how

much look ahead can be used before the next token is discovered. In the above example, ifthe
look ahead traveled to the left half and all the way through the left half to the middle, we could
not reload the right half, because we would lose characters that had not yet been groupedinto

tokens. While we can make the buffer larger if we chose or use another buffering scheme,we
cannot ignore the fact that overhead is limited.

 TOKEN, LEXEME, PATTERN:

Token: Token is a sequence of characters that can be treated as a single logical entity.
Typical tokens are,

1) Identifiers 2) keywords 3) operators 4) special symbols 5)constants

Pattern: A set of strings in the input for which the same token is produced as output. This set
of strings is described by a rule called a pattern associated with the token.

Lexeme: A lexeme is a sequence of characters in the source program that is matched by
the pattern for a token.

Example:

Description of token

Token lexeme pattern

const const const

if if If

relation <,<=,= ,< >,>=,> < or <= or = or < > or >= or letter
followed by letters & digit

i pi any numeric constant

nun 3.14 any character b/w “and “except"

literal "core" pattern

- 12 -

A pattern is a rule describing the set of lexemes that can represent a particular token
in source program.

 LEXICAL ERRORS:

Lexical errors are the errors thrown by your lexer when unable to continue. Which
means that there's no way to recognise a lexeme as a valid token for you lexer. Syntax
errors, on the other side, will be thrown by your scanner when a given set of already
recognised valid tokens don't match any of the right sides of your grammar rules.
simple panic-mode error handling system requires that we return to a high-level
parsing function when a parsing or lexical error is detected.

Error-recovery actions are:

i. Delete one character from the remaining input.

ii. Insert a missing character in to the remaining input.

iii. Replace a character by another character.

iv. Transpose two adjacent characters.

 DIFFERENCE BETWEEN COMPILER AND INTERPRETER

A compiler converts the high level instruction into machine language while an
interpreter converts the high level instruction into an intermediate form.

Before execution, entire program is executed by the compiler whereas after
translating the first line, an interpreter then executes it and so on.

List of errors is created by the compiler after the compilation process while an
interpreter stops translating after the first error.

An independent executable file is created by the compiler whereas
interpreter is required by an interpreted program each time.

The compiler produce object code whereas interpreter does not produce object
code. In the process of compilation the program is analyzed only once and then the
code is generated whereas source program is interpreted every time it is to be
executed and every time the source program is analyzed. hence interpreter is less
efficient than compiler.

Examples of interpreter: A UPS Debugger is basically a graphical source level
debugger but it contains built in C interpreter which can handle multiple source
files.
Example of compiler: Borland c compiler or Turbo C compiler compiles the
programs written in C or C++.

 REGULAR EXPRESSIONS

Regular expression is a formula that describes a possible set of string.

Component of regular expression..

X the character x

. any character, usually accept a new line

[x y z] any of the characters x, y, z, …..

R? a R or nothing (=optionally as R)

R* zero or more occurrences…..

R+ one or more occurrences ……

R1R2 an R1 followed by an R2

R2R1 either an R1 or an R2.

A token is either a single string or one of a collection of strings of a certain type. If we view
the set of strings in each token class as an language, we can use the regular-expression
notation to describe tokens.

Consider an identifier, which is defined to be a letter followed by zero or more letters

or digits. In regular expression notation we would write.

Identifier = letter (letter | digit)*

Here are the rules that define the regular expression over alphabet .

o is a regular expression denoting { € }, that is, the language containing only the

empty string.

o For each „a‟ in ∑, is a regular expression denoting { a }, the language with only
one string consisting of the single symbol „a‟ .

o If R and S are regular expressions, then

(R) | (S) means LrULs
R.S means Lr.Ls
R* denotes Lr*

 REGULAR DEFINITIONS

For notational convenience, we may wish to give names to regular expressions

and to define regular expressions using these names as if they were symbols.

Identifiers are the set or string of letters and digits beginning with a letter. The
following regular definition provides a precise specification for this class of string.
Example-1,

Ab*|cd? Is equivalent to (a(b*)) | (c(d?))

Pascal identifier

Letter -
Digits -

A | B | ……| Z | a | b |……| z|
0 | 1 | 2 | …. | 9

letter (letter / digit)* I

Recognition of tokens:

We learn how to express pattern using regular expressions. Now, we must study how to take

the patterns for all the needed tokens and build a piece of code that examins the input string

and finds a prefix that is a lexeme matching one of the patterns.

Stmt -> if expr then stmt
| If expr then else stmt
| є

Expr --> term relop term
|term

Term -->id

For relop ,we use the comparison operations of languages like Pascal or SQL where = is

“equals” and < > is “not equals” because it presents an interesting structure of lexemes. The
terminal of grammar, which are if, then , else, relop ,id and numbers are the names of tokens
as far as the lexical analyzer is concerned, the patterns for the tokens are described using
regular definitions.

digit -->[0,9]

digits -->digit+

number -->digit(.digit)?(e.[+-]?digits)?

letter -->[A-Z,a-z]

id -->letter(letter/digit)*

if --> if

then -->then

else -->else

relop --></>/<=/>=/==/< >

In addition, we assign the lexical analyzer the job stripping out white space, by recognizing
the “token” we defined by:

ws --> (blank/tab/newline)
+

Here, blank, tab and newline are abstract symbols that we use to express the ASCII
characters of the same names. Token ws is different from the other tokens in that ,when we
recognize it, we do not return it to parser ,but rather restart the lexical analysis from the
character that follows the white space . It is the following token that gets returned to the
parser.

Lexeme Token Name Attribute Value

Any ws _ _

if if _

then then _

else else _

Any Id id pointer to table entry

Any number number
pointer to table entry

< relop LT

- 15 -

<= relop LE

= relop ET

< > relop NE

TRANSITION DIAGRAM:

Transition Diagram has a collection of nodes or circles, called states. Each state
represents a condition that could occur during the process of scanning the input looking for a
lexeme that matches one of several patterns .

Edges are directed from one state of the transition diagram to another. each edge is labeled

by a symbol or set of symbols.

If we are in one state s, and the next input symbol is a, we look for an edge out of state s

labeled by a. if we find such an edge ,we advance the forward pointer and enter the

state of the transition diagram to which that edge leads.

Some important conventions about transition diagrams are

1. Certain states are said to be accepting or final .These states indicates that a lexeme has
been found, although the actual lexeme may not consist of all positions b/w the lexeme Begin
and forward pointers we always indicate an accepting state by a double circle.

2. In addition, if it is necessary to return the forward pointer one position, then we shall
additionally place a * near that accepting state.

3. One state is designed the state ,or initial state ., it is indicated by an edge labeled “start”
entering from nowhere .the transition diagram always begins in the state before any input
symbols have been used.

As an intermediate step in the construction of a LA, we first produce a stylized

flowchart, called a transition diagram. Position in a transition diagram, are drawn as circles
and are called as states.

- 16 -

The above TD for an identifier, defined to be a letter followed by any no of letters
or digits.A sequence of transition diagram can be converted into program to look for the
tokens specified by the diagrams. Each state gets a segment of code.

If
Then

Else

=
=

=

if
then

else
Relop = < | <= | = | > | >=

Id = letter (letter | digit) *|

Num
2.10 AUTOMATA

= digit |

An automation is defined as a system where information is transmitted and used

for performing some functions without direct participation of man.

1, an automation in which the output depends only on the input is called an
automation without memory.

2, an automation in which the output depends on the input and state also is called
as automation with memory.

3, an automation in which the output depends only on the state of the machine is
called a Moore machine.

3, an automation in which the output depends on the state and input at any instant
of time is called a mealy machine.

 DESCRIPTION OF AUTOMATA

1, an automata has a mechanism to read input from input tape,

2, any language is recognized by some automation, Hence these automation are
basically language „acceptors‟ or „language recognizers‟.

Types of Finite Automata

Deterministic Automata

Non-Deterministic Automata.

 DETERMINISTIC AUTOMATA

A deterministic finite automata has at most one transition from each state on any
input. A DFA is a special case of a NFA in which:-

1, it has no transitions on input € ,

- 17 -

2, each input symbol has at most one transition from any state.

DFA formally defined by 5 tuple notation M = (Q, ∑, δ, qo, F), where

Q is a finite „set of states‟, which is non empty.

∑ is „input alphabets‟, indicates input set.

qo is an „initial state‟ and qo is in Q ie, qo, ∑, Q
F is a set of „Final states‟,

δ is a „transmission function‟ or mapping function, using this function
the next state can be determined.

The regular expression is converted into minimized DFA by the following procedure:

Regular expression → NFA → DFA → Minimized DFA

The Finite Automata is called DFA if there is only one path for a specific input from

current state to next state.

a

From state S0 for input „a‟ there is only one path going to S2. similarly from S0
there is only one path for input going to S1.

 NONDETERMINISTIC AUTOMATA

 A NFA is a mathematical model that consists of

A set of states S.

 A set of input symbols ∑.

A transition for move from one state to an other.

A state so that is distinguished as the start (or initial) state.

 A set of states F distinguished as accepting (or final) state.

A number of transition to a single symbol.

- 18 -

So
a

S2

b

S1

A NFA can be diagrammatically represented by a labeled directed graph, called a
transition graph, In which the nodes are the states and the labeled edges represent
the transition function.

This graph looks like a transition diagram, but the same character can label two or
more transitions out of one state and edges can be labeled by the special symbol €
as well as by input symbols.

 The transition graph for an NFA that recognizes the language (a | b) * abb is

shown

 DEFINITION OF CFG

It involves four quantities.

CFG contain terminals, N-T, start symbol and production.

 Terminal are basic symbols form which string are formed.

 N-terminals are synthetic variables that denote sets of strings

 In a Grammar, one N-T are distinguished as the start symbol, and the set
of string it denotes is the language defined by the grammar.

 The production of the grammar specify the manor in which the terminal
and N-T can be combined to form strings.

 Each production consists of a N-T, followed by an arrow, followed by a string
of one terminal and terminals.

 DEFINITION OF SYMBOL TABLE

 An extensible array of records.

 The identifier and the associated records contains collected information about
the identifier.

FUNCTION identify (Identifier name)

RETURNING a pointer to identifier information contains
 The actual string

 A macro definition A
 keyword definition

 A list of type, variable & function definition
 A list of structure and union name definition

 A list of structure and union field selected definitions.

 Creating a lexical analyzer with Lex

 Lex specifications:

A Lex program (the .l file) consists of three parts:

declarations

%%

translation rules

%%

auxiliary procedures

1. The declarations section includes declarations of variables,manifest constants(A manifest

constant is an identifier that is declared to represent a constant e.g. # define PIE 3.14),
and regular definitions.

2. The translation rules of a Lex program are statements of the form :

p1 {action 1}
p2 {action 2}

p3 {action 3}

… …

… …

where each p is a regular expression and each action is a program fragment describing
what action the lexical analyzer should take when a pattern p matches a lexeme. In Lex
the actions are written in C.

3. The third section holds whatever auxiliary procedures are needed by the

actions.Alternatively these procedures can be compiled separately and loaded with the
lexical analyzer.

Note: You can refer to a sample lex program given in page no. 109 of chapter 3 of the book:

Compilers: Principles, Techniques, and Tools by Aho, Sethi & Ullman for more clarity.

.

UNIT –II

Syntax Analysis-:The Role of a parser, Context free Grammars, Writing A grammar, top down parsing

bottom up parsing, Introduction to Lr Parser.

UNIT -2

SYNTAX ANALYSIS

 ROLE OF THE PARSER

Parser obtains a string of tokens from the lexical analyzer and verifies that it can be generated

by the language for the source program. The parser should report any syntax errors in an

intelligible fashion. The two types of parsers employed are:

1.Top down parser: which build parse trees from top(root) to bottom(leaves)

2.Bottom up parser: which build parse trees from leaves and work up the root.

Therefore there are two types of parsing methods– top-down parsing and bottom-up parsing

 Context free Grammars(CFG)

CFG is used to specify the syntax of a language. A grammar naturally describes the

hierarchical structure of most program-ming language constructs.

Formal Definition of Grammars

A context-free grammar has four components:

1. A set of terminal symbols, sometimes referred to as "tokens." The terminals are the elementary

symbols of the language defined by the grammar.

2. A set of nonterminals, sometimes called "syntactic variables." Each non-terminal represents a set of

strings of terminals, in a manner we shall describe.

3. A set of productions, where each production consists of a nonterminal, called the head or left side

of the production, an arrow, and a sequence of terminals and1or nonterminals, called

the body or right side of the production. The intuitive intent of a production is to specify one of the

written forms of a construct; if the head nonterminal represents a construct, then the body

.

represents a written form of the construct.

.

4. A designation of one of the nonterminals as the start symbol.

Production is for a nonterminal if the nonterminal is the head of the production. A string of

terminals is a sequence of zero or more terminals. The string of zero terminals, written as E , is called

the empty string.

Derivations

A grammar derives strings by beginning with the start symbol and repeatedly replacing a nonterminal

by the body of a production for that nonterminal. The terminal strings that can be derived from the start

symbol form the language defined by the grammar.

Leftmost and Rightmost Derivation of a String

 Leftmost derivation − A leftmost derivation is obtained by applying production to the leftmost

variable in each step.

 Rightmost derivation − A rightmost derivation is obtained by applying production to the

rightmost variable in each step.

 Example

Let any set of production rules in a CFG be

X → X+X | X*X |X| a

over an alphabet {a}.

The leftmost derivation for the string "a+a*a" is

X → X+X → a+X → a + X*X → a+a*X → a+a*a

The rightmost derivation for the above string "a+a*a" is

X → X*X → X*a → X+X*a → X+a*a → a+a*a

Derivation or Yield of a Tree

The derivation or the yield of a parse tree is the final string obtained by concatenating the labels of the

leaves of the tree from left to right, ignoring the Nulls. However, if all the leaves are Null, derivation is

Null.

parse tree pictorially shows how the start symbol of a grammar derives a string in the language. If

nonterminal A has a production A XYZ , then a parse tree may have an interior node labeled A with

three children labeled X, Y, and Z, from left to right:

Given a context-free grammar, a parse tree according to the grammar is a tree with the following

properties:

1. The root is labeled by the start symbol.

2. Each leaf is labeled by a terminal or by e.

3. Each interior node is labeled by a nonterminal

.

If A is the nonterminal labeling some interior node and X I , Xz, . . . ,Xn are the labels of the children

of that node from left to right, then there must be a production A → X1X2 . . Xn . Here, X1,

X2,. . . , Xn, each stand for a symbol that is either a terminal or a nonterminal. As a special case,

if A → c is a production, then a node labeled A may have a single child labeled E

Ambiguity

A grammar can have more than one parse tree generating a given string of terminals. Such a grammar is

said to be ambiguous. To show that a grammar is ambiguous, all we need to do is find a terminal string

that is the yield of more than one parse tree. Since a string with more than one parse tree usually has

more than one meaning, we need to design unambiguous grammars for compiling applications, or to use

ambiguous grammars with additional rules to resolve the ambiguities.

Example :: Suppose we used a single nonterminal string and did not distinguish between digits and

lists,

Fig. shows that an expression like 9-5+2 has more than one parse tree with this grammar. The two trees

for 9-5+2 correspond to the two ways of parenthesizing the expression: (9-5) +2 and 9- (5+2) . This

second parenthesization gives the expression the unexpected value 2 rather than the customary value 6.

Two parse trees for 9-5+2

Verifying the language generated by a grammar

The set of all strings that can be derived from a grammar is said to be the language generated from that

grammar. A language generated by a grammar G is a subset formally defined by

L(G)={W|W ∈ ∑*, S ⇒G W}

If L(G1) = L(G2), the Grammar G1 is equivalent to the Grammar G2.

Example

If there is a grammar

G: N = {S, A, B} T = {a, b} P = {S → AB, A → a, B → b}

Here S produces AB, and we can replace A by a, and B by b. Here, the only accepted string is ab, i.e.,

L(G) = {ab}

.

 Writing a grammar

A grammar consists of a number of productions. Each production has an abstract symbol

called a nonterminal as its left-hand side, and a sequence of one or more nonterminal

and terminal symbols as its right-hand side. For each grammar, the terminal symbols are drawn from a

specified alphabet.

Starting from a sentence consisting of a single distinguished nonterminal, called

the goal symbol, a given context-free grammar specifies a language, namely, the set of

possible sequences of terminal symbols that can result from repeatedly replacing any nonterminal in

the sequence with a right-hand side of a production for which the nonterminal is the left-hand side.

There are four categories in writing a grammar :

1. Lexical Vs Syntax Analysis

2. Eliminating ambiguous grammar.

3. Eliminating left-recursion

4. Left-factoring.

Each parsing method can handle grammars only of a certain form hence, the initial grammar may have

to be rewritten to make it parsable

1. Lexical Vs Syntax Analysis

Reasons for using the regular expression to define the lexical syntax of a language

a) Regular expressions provide a more concise and easier to understand notation for tokens than

grammars.

b) The lexical rules of a language are simple and to describe them, we donot need notation as

powerful as grammars.

c) Efficient lexical analyzers can be constructed automatically from RE than from grammars.

d) Separating the syntactic structure of a language into lexical and nonlexical parts provides a

convenient way of modularizing the front end into two manageable-sized components.

2. Eliminating ambiguous grammar.

Ambiguity of the grammar that produces more than one parse tree for leftmost or rightmost

derivation can be eliminated by re-writing the grammar.

Consider this example,

G: stmt→if expr then stmt

|if expr then stmt else stmt

|other

This grammar is ambiguous since the string if E1 then if E2 then S1 else S2 has the following two

parse trees for leftmost derivation

.

Two parse trees for an ambiguous sentence

The general rule is “Match each else with the closest unmatched then.This disambiguating rule can be

used directly in the grammar,

To eliminate ambiguity, the following grammar may be used:

stmt→matched | unmatchedstmt

matched→if expr stmt then matched else matchedstmt | other

unmatched→ if expr then stmt | if expr then matched else unmatchedstmt

3. Eliminating left-recursion

.

Because we try to generate a leftmost derivation by scanning the input from left to right, grammars of the

form A A x may cause endless recursion.Such grammars are called left-recursive and they must be

transformed if we want to use a top-down parser.

 A grammar is left recursive if for a non-terminal A, there is a derivation A+ A

 To eliminate direct left recursion replace

1) A A | with A’ A’|

2) A A1 | A2 | ... | Am | 1 | 2 | ... | n

with
A 1B | 2B | ... | nB

B 1B | 2B | ... | mB |

4. Left-factoring

Left factoring is a grammar transformation that is useful for producing a grammar suitable for predictive

parsing. When it is not clear which of two alternative productions to use to expand a non-terminal A, we

can rewrite the A-productions to defer the decision until we have seen enough of the input to make the

right choice.

 Consider S if E then S else S | if E then S

 Which of the two productions should we use to expand non-terminal S when the next

token is if?

We can solve this problem by factoring out the common part in these rules.

A 1 | 2 |...| n |

becomes

A B|

B 1 | 2 |...| n

Consider the grammar , G : S → iEtS | iEtSeS | a

E → b

Left factored, this grammar becomes

S → iEtSS’ | a

S’ → eS |ε

E → b

 PARSING

It is the process of analyzing a continuous stream of input in order to determine its grammatical

structure with respect to a given formal grammar.

Types of parsing:

1. Top down parsing

2. Bottom up parsing

Top-down parsing : A parser can start with the start symbol and try to transform it to the

input string. Example : LL Parsers.

.

Bottom-up parsing : A parser can start with input and attempt to rewrite it into the start symbol.

Example : LR Parsers.

TOP-DOWN PARSING

It can be viewed as an attempt to find a left-most derivation for an input string or an

attempt to construct a parse tree for the input starting from the root to the leaves.

Types of TOP-DOWN PARSING

1. Recursive descent parsing

2. Predictive parsing

 RECURSIVE DESCENT PARSING

Recursive descent is a top-down parsing technique that constructs the parse tree from the top and the

input is read from left to right. It uses procedures for every non-terminal entity. This parsing technique

recursively parses the input to make a parse tree, which may or may not require back-tracking. But the

grammar associated with it (if not left factored) cannot avoid back-tracking. A form of recursive-

descent parsing that does not require any back-tracking is known as predictive parsing.

This parsing technique is regarded recursive as it uses context-free grammar which is recursive in

nature.

This parsing method may involve backtracking.

Example for :backtracking

Consider the grammar G : S → cAd

A→ab|a

and the input string w=cad.

The parse tree can be constructed using the following top-down approach :

Step1:

Initially create a tree with single node labeled S. An input pointer points to ‘c’, the first symbol of w.

Expand the tree with the production of S.

Step2:

The leftmost leaf ‘c’ matches the first symbol of w, so advance the input pointer to the second symbol

of w ‘a’ and consider the next leaf ‘A’. Expand A using the first alternative.

.

Step3:

The second symbol ‘a’ of w also matches with second leaf of tree. So advance the input pointer to third

symbol of w ‘d’. But the third leaf of tree is b which does not match with the input symbol d. Hence

discard the chosen production and reset the pointer to second backtracking.

Step4: Now try the second alternative for A.

Now we can halt and announce the successful completion of parsing.

 Predictive parsing

It is possible to build a nonrecursive predictive parser by maintaining a stack explicitly, rather than

implicitly via recursive calls. The key problem during predictive parsing is that of determining the

production to be applied for a nonterminal . The nonrecursive parser in figure looks up the production to

be applied in parsing table. In what follows, we shall see how the table can be constructed directly from

certain grammars.

A table-driven predictive parser has an input buffer, a stack, a parsing table, and an output

stream. The input buffer contains the string to be parsed, followed by $, a symbol used as a right

endmarker to indicate the end of the input string. The stack contains a sequence of grammar symbols

.

with $ on the bottom, indicating the bottom of the stack. Initially, the stack contains the start symbol of

the grammar on top of $. The parsing table is a two dimensional array M[A,a] where A is a nonterminal,

and a is a terminal or the symbol $. The parser is controlled by a program that behaves as follows. The

program considers X, the symbol on the top of the stack, and a, the current input symbol. These two

symbols determine the action of the parser. There are three possibilities.

1 If X= a=$, the parser halts and announces successful completion of parsing.
2 If X=a!=$, the parser pops X off the stack and advances the input pointer to the next input symbol.

3 If X is a nonterminal, the program consults entry M[X,a] of the parsing table M. This entry will be

either an X-production of the grammar or an error entry. If, for example, M[X,a]={X- >UVW}, the

parser replaces X on top of the stack by WVU(with U on top). As output, we shall assume that the

parser just prints the production used; any other code could be executed here. If M[X,a]=error, the

parser calls an error recovery routine

Implementation of predictive parser:

1. Elimination of left recursion, left factoring and ambiguous grammar.

2. Construct FIRST() and FOLLOW() for all non-terminals.

3. Construct predictive parsing table.

4. Parse the given input string using stack and parsing table

Algorithm for Nonrecursive predictive parsing.

Input. A string w and a parsing table M for grammar G.

Output. If w is in L(G), a leftmost derivation of w; otherwise, an error indication.

Method. Initially, the parser is in a configuration in which it has $S on the stack with S, the start symbol

of G on top, and w$ in the input buffer. The program that utilizes the predictive parsing table M to

produce a parse for the input is shown in Fig.

set ip to point to the first symbol of w$. repeat

let X be the top stack symbol and a the symbol pointed to by ip. if X is a terminal of $ then

if X=a then

pop X from the stack and advance ip else error()

else

if M[X,a]=X->Y1Y2...Yk then begin pop X from the stack;

push Yk,Yk-1...Y1 onto the stack, with Y1 on top; output the production X-> Y1Y2...Yk

end

else error()

until X=$ /* stack is empty */

.

 FIRST AND FOLLOW

The construction of a predictive parsing table is aided by two functions associated with a grammar:

1. FIRST

2. FOLLOW

To compute FIRST(X) for all grammar symbols X, apply the following rules until no more

terminals or e can be added to any FIRST set.

Rules for FIRST ():

1. If X is terminal, then FIRST(X) is {X}.

2. If X → ε is a production, then add ε to FIRST(X).

3. If X is non-terminal and X → aα is a production then add a to FIRST(X).

4. If X is non-terminal and X → Y1 Y2…Yk is a production, then place a in FIRST(X) if for

some i, a is in FIRST(Yi), and ε is in all of FIRST(Y1),…,FIRST(Yi-1);that is,

Y1,….Yi-1=> ε. If ε is in FIRST(Yj) for all j=1,2,..,k, then add ε to FIRST(X).

Rules for FOLLOW ():

1. If S is a start symbol, then FOLLOW(S) contains $.

2. If there is a production A → αBβ, then everything in FIRST(β) except ε is placed in

follow(B).

3. If there is a production A → αB, or a production A → αBβ where FIRST(β) contains

ε, then everything in FOLLOW(A) is in FOLLOW(B).

 Algorithm for construction of predictive parsing table:

Input : Grammar G

Output : Parsing table M

Method :

1. For each production A → α of the grammar, do steps 2 and 3.

2. For each terminal a in FIRST(α), add A → α to M[A, a].

3. If ε is in FIRST(α), add A → α to M[A, b] for each terminal b in FOLLOW(A). If ε is in

FIRST(α) and $ is in FOLLOW(A) , add A → α to M[A, $].

4. Make each undefined entry of M be error.

.

Example:

Consider the following grammar :

E→E+T|T

T→T*F|F

F→(E)|id

After eliminating left-recursion the grammar is

E →TE’

E’ → +TE’ | ε

T →FT’

T’ → *FT’ | ε

F → (E)|id

First() :

FIRST(E) = { (, id}

FIRST(E’) ={+ , ε }

FIRST(T) = { (, id}

FIRST(T’) = {*, ε }

FIRST(F) = { (, id }

Follow():

FOLLOW(E) = { $,) }

FOLLOW(E’) = { $,) }

FOLLOW(T) = { +, $,) }

FOLLOW(T’) = { +, $,) }

FOLLOW(F) = {+, * , $,) }

Predictive parsing Table

.

Stack Implementation

- 24 -

.

 LL(1) GRAMMAR

The parsing table algorithm can be applied to any grammar G to produce a parsing table M.

For some Grammars, for example if G is left recursive or ambiguous, then M will have at

least one multiply-defined entry. A grammar whose parsing table has no multiply defined

entries is said to be LL(1). It can be shown that the above algorithm can be used to produce

for every LL(1) grammar G, a parsing table M that parses all and only the sentences of G.

LL(1) grammars have several distinctive properties. No ambiguous or left recursive grammar

can be LL(1). There remains a question of what should be done in case of multiply defined

entries. One easy solution is to eliminate all left recursion and left factoring, hoping to

produce a grammar which will produce no multiply defined entries in the parse tables.

Unfortunately there are some grammars which will give an LL(1) grammar after any kind of

alteration. In general, there are no universal rules to convert multiply defined entries into

single valued entries without affecting the language recognized by the parser.

The main difficulty in using predictive parsing is in writing a grammar for the source

language such that a predictive parser can be constructed from the grammar. Although left

recursion elimination and left factoring are easy to do, they make the resulting grammar hard

to read and difficult to use the translation purposes. To alleviate some of this difficulty, a

common organization for a parser in a compiler is to use a predictive parser for control

constructs and to use operator precedence for expressions.however, if an lr parser generator

is available, one can get all the benefits of predictive parsing and operator precedence

automatically.

 ERROR RECOVERY IN PREDICTIVE PARSING

The stack of a nonrecursive predictive parser makes explicit the terminals and nonterminals

that the parser hopes to match with the remainder of the input. We shall therefore refer to

symbols on the parser stack in the following discussion. An error is detected during

predictive parsing when the terminal on top of the stack does not match the next input

symbol or when nonterminal A is on top of the stack, a is the next input symbol, and the

parsing table entry M[A,a] is empty.

Consider error recovery predictive parsing using the following two methods

Panic-Mode recovery

Phrase Level recovery

Panic-mode error recovery is based on the idea of skipping symbols on the input until a

token in a selected set of synchronizing tokens appears. Its effectiveness depends on the

choice of synchronizing set. The sets should be chosen so that the parser recovers quickly

from errors that are likely to occur in practice.

As a starting point, we can place all symbols in FOLLOW(A) into the synchronizing set for

nonterminal A. If we skip tokens until an element of FOLLOW(A) is seen and pop A from

the stack, it is likely that parsing can continue.

It is not enough to use FOLLOW(A) as the synchronizingset for A. Fo example , if

semicolons terminate statements, as in C, then keywords that begin statements may not

appear in the FOLLOW set of the nonterminal generating expressions. A missing semicolon

after an assignment may therefore result in the keyword beginning the next statement being

skipped. Often, there is a hierarchica structure on constructs in a language; e.g., expressions

appear within statement, which appear within bblocks,and so on. We can add to the

.

synchronizing set of a lower construct the symbols that begin higher constructs. For

example, we might add keywords that begin statements to the synchronizing sets for the

nonterminals generaitn expressions.

If we add symbols in FIRST(A) to the synchronizing set for nonterminal A, then it

may be possible to resume parsing according to A if a symbol in FIRST(A) appears in the

input.

If a nonterminal can generate the empty string, then the production deriving e can be

used as a default. Doing so may postpone some error detection, but cannot cause an error

to be missed. This approach reduces the number of nonterminals that have to be considered

during error recovery.

If a terminal on top of the stack cannot be matched, a simple idea is to pop the

terminal, issue a message saying that the terminal was inserted, and continue parsing. In

effect, this approach takes the synchronizing set of a token to consist of all other tokens.

Phrase Level recovery

This involves, defining the blank entries in the table with pointers to some error routines

which may

Change, delete or insert symbols in the input or

May also pop symbols from the stack

 BOTTOM-UP PARSING

Constructing a parse tree for an input string beginning at the leaves and going towards the root is

called bottom-up parsing. A general type of bottom-up parser is a shift-reduce parser.

2.6.1 SHIFT-REDUCE PARSING

Shift-reduce parsing is a type of bottom-up parsing that attempts to construct a parse tree for

an input string beginning at the leaves (the bottom) and working up towards the root (the

top).

Example:

Consider the grammar: S → aABe

A → Abc | b

B → d

The sentence to be recognized is abbcde.

REDUCTION (LEFTMOST) RIGHTMOST DERIVATION

abbcde (A → b) S → aABe

aAbcde(A → Abc) → aAde

aAde (B → d) → aAbcde

aABe (S → aABe) → abbcde

S

The reductions trace out the right-most derivation in reverse.

.

Handles: A handle of a string is a substring that matches the right side of a production, and

whose reduction to the non-terminal on the left side of the production represents one step

along the reverse of a rightmost derivation.

Example:

Consider the grammar:

E→E+E

E→E*E

E→(E)

E→id

And the input string id1+id2*id3

The rightmost derivation is :

E→E+E

→ E+E*E

→ E+E*id3

→ E+id2*id3

→ id1+id2*

In the above derivation the underlined substrings are called handles.

Handle pruning:

A rightmost derivation in reverse can be obtained by “handle pruning”. (i.e.) if w is a sentence

or string of the grammar at hand, then w = γn, where γn is the nth right sentential form of

some rightmost derivation.

Actions in shift-reduce parser:

• shift - The next input symbol is shifted onto the top of the stack.

• reduce - The parser replaces the handle within a stack with a non-terminal.

• accept - The parser announces successful completion of parsing.

• error - The parser discovers that a syntax error has occurred and calls an error recovery routine.

Conflicts in shift-reduce parsing:

There are two conflicts that occur in shift-reduce parsing:

1. Shift-reduce conflict: The parser cannot decide whether to shift or to reduce.

2. Reduce-reduce conflict: The parser cannot decide which of several reductions to make.

.

Stack implementation of shift-reduce parsing :

1. Shift-reduce conflict:

Example:

Consider the grammar:

E→E+E | E*E | id and input id+id*id

.

2. Reduce-reduce conflict:

Consider the grammar: M→R+R|R+c|R

R→c

input c+c

INTRODUCTION TO LR PARSERS

An efficient bottom-up syntax analysis technique that can be used CFG is called LR(k) parsing.

The ‘L’ is for left-to-right scanning of the input, the ‘R’ for constructing a rightmost derivation in

reverse, and the ‘k’ for the number of input symbols. When ‘k’ is omitted, it is assumed to be 1.

Advantages of LR parsing:

1. It recognizes virtually all programming language constructs for which CFG can be written.

2. It is an efficient non-backtracking shift-reduce parsing method.

3.A grammar that can be parsed using LR method is a proper superset of a grammar that

can be parsed with predictive parser

4.It detects a syntactic error as soon as possible.

Drawbacks of LR method:

It is too much of work to construct a LR parser by hand for a programming language grammar.

A specialized tool, called a LR parser generator, is needed. Example: YACC.

Types of LR parsing method:

1. SLR- Simple LR

Easiest to implement, least powerful.

2. CLR- Canonical LR

Most powerful, most expensive.

3. LALR- Look-Ahead LR

Intermediate in size and cost between the other two methods.

.

The LR parsing algorithm:

The schematic form of an LR parser is as follows:

It consists of an input, an output, a stack, a driver program, and a pa parts (action and goto).

a. The driver program is the same for all LR parser.

b. The parsing program reads characters from an input buffer one at a time.

c. The program uses a stack to store a string of the form s0X1s1X2s2…Xmsm, where sm is

on top. Each Xi is a grammar symbol and each si is a state.

d. The parsing table consists of two parts : action and goto functions.

Action : The parsing program determines sm, the state currently on top of stack, and ai, the current

input symbol. It then consults action[sm,ai] in the action table which can have one of four values:

1. shift s, where s is a state,
2. reduce by a grammar production A → β,

3. accept,

4. Error.

Goto : The function goto takes a state and grammar symbol as arguments and produces a state.

LR Parsing algorithm:

Input: An input string w and an LR parsing table with functions action and goto for grammar G.

Output: If w is in L(G), a bottom-up-parse for w; otherwise, an error indication.

Method: Initially, the parser has s0 on its stack, where s0 is the initial state, and w$ in the input buffer.

The parser then executes the following program:

.

set ip to point to the first input symbol of w$; repeat forever begin

let s be the state on top of the stack and a the symbol pointed to by ip;

if action[s, a] = shift s’ then begin

push a then s’ on top of the stack; advance ip to the next input symbol end

else if action[s, a] = reduce A→β then begin pop 2* | β | symbols off the stack;

let s’ be the state now on top of the stack; push A then goto[s’, A] on top of the stack; output the

production A→ β

end

else if action[s, a] = accept then

return

else error()

end

CONSTRUCTING SLR(1) PARSING TABLE

To perform SLR parsing, take grammar as input and do the following:

1. Find LR(0) items.

2. Completing the closure.

3. Compute goto(I,X), where, I is set of items and X is grammar symbol.

LR(0) items:

An LR(0) item of a grammar G is a production of G with a dot at some position of the right side. For

example, production A → XYZ yields the four items :

A→.XYZ

A → X . YZ

A → XY . Z

A → XYZ .

Closure operation:

If I is a set of items for a grammar G, then closure(I) is the set of items constructed from I by

the two rules:

1. Initially, every item in I is added to closure(I).

2. If A → α . Bβ is in closure(I) and B → γ is a production, then add the item B → . γ to I , if it

is not already there. We apply this rule until no more new items can be added to closure(I).

Goto operation:

Goto(I, X) is defined to be the closure of the set of all items [A→ αX . β] such that [A→ α . Xβ] is in I.

Steps to construct SLR parsing table for grammar G are:

1. Augment G and produce G’

2. Construct the canonical collection of set of items C for G’

3. Construct the parsing action function action and goto using the following algorithm that requires

FOLLOW(A) for each non-terminal of grammar.

Algorithm for construction of SLR parsing table:

Input : An augmented grammar G’

Output : The SLR parsing table functions action and goto for G’

Method :

1. Construct C = {I0, I1, …. In}, the collection of sets of LR(0) items for G’.

2. State i is constructed from Ii.. The parsing functions for state i are determined as

follows:

(a) If [A→α∙aβ] is in Ii and goto(Ii,a) = Ij, then set action[i,a] to “shift j”. Here a must be

terminal.

(b) If [A→α∙] is in Ii , then set action[i,a] to “reduce A→α” for all a in FOLLOW(A).

(c) If [S’→S.] is in Ii, then set action[i,$] to “accept”.

If any conflicting actions are generated by the above rules, we say grammar is not SLR(1).

3. The goto transitions for state i are constructed for all non-term

If goto(Ii,A) = Ij, then goto[i,A] = j.

4. All entries not defined by rules (2) and (3) are made “error”

5. The initial state of the parser is the one constructed from the [S’→.S].

Example on SLR (1) Grammar

S → E

E → E + T | T

T → T * F | F

F → id

Add Augment Production and insert '•' symbol at the first position for every production in G

S` → •E

E → •E + T

E → •T

T → •T * F

T → •F

F → •id

I0 State:

Add Augment production to the I0 State and Compute the Closure

I0 = Closure (S` → •E)

Add all productions starting with E in to I0 State because "." is followed by the non-terminal. So, the I0

State becomes

I0 = S` → •E

E → •E + T

E → •T

Add all productions starting with T and F in modified I0 State because "." is followed by the non-

terminal. So, the I0 State becomes.

I0= S` → •E

E → •E + T

E → •T

T → •T * F

T → •F

F → •id

I1= Go to (I0, E) = closure (S` → E•, E → E• + T)

I2= Go to (I0, T) = closure (E → T•T, T• → * F)

I3= Go to (I0, F) = Closure (T → F•) = T → F•

I4= Go to (I0, id) = closure (F → id•) = F → id•

I5= Go to (I1, +) = Closure (E → E +•T)

Add all productions starting with T and F in I5 State because "." is followed by the non-terminal. So, the

I5 State becomes

I5 = E → E +•T

T → •T * F

T → •F

F → •id

Go to (I5, F) = Closure (T → F•) = (same as I3)

Go to (I5, id) = Closure (F → id•) = (same as I4)

I6= Go to (I2, *) = Closure (T → T * •F)

Add all productions starting with F in I6 State because "." is followed by the non-terminal. So, the I6

State becomes

I6 = T → T * •F

F → •id

Go to (I6, id) = Closure (F → id•) = (same as I4)

I7= Go to (I5, T) = Closure (E → E + T•) = E → E + T•

I8= Go to (I6, F) = Closure (T → T * F•) = T → T * F•

Drawing DFA

SLR (1) Table

Explanation:

First (E) = First (E + T) 𝖴 First (T)

First (T) = First (T * F) 𝖴 First (F)

First (F) = {id}

First (T) = {id}
First (E) = {id}

Follow (E) = First (+T) 𝖴 {$} = {+, $}

Follow (T) = First (*F) 𝖴 First (F)

= {*, +, $}

Follow (F) = {*, +, $}

1) I1 contains the final item which drives S → E• and follow (S) = {$}, so action {I1, $} = Accept

2) I2 contains the final item which drives E → T• and follow (E) = {+, $}, so action {I2, +} = R2,

action {I2, $} = R2

3) I3 contains the final item which drives T → F• and follow (T) = {+, *, $}, so action {I3, +} =

R4, action {I3, *} = R4, action {I3, $} = R4

4) I4 contains the final item which drives F → id• and follow (F) = {+, *, $}, so action {I4, +} =

R5, action {I4, *} = R5, action {I4, $} = R5

5) I7 contains the final item which drives E → E + T• and follow (E) = {+, $}, so action {I7, +} =

R1, action {I7, $} = R1

6) I8 contains the final item which drives T → T * F• and follow (T) = {+, *, $}, so action {I8, +}

= R3, action {I8, *} = R3, action {I8, $} = R3.

- 27 -

UNIT –III

More Powerful LR parser (LR1,LALR) Using Armigers Grammars Equal Recovery in Lr parser

Syntax Directed Transactions Definition, Evolution order of SDTS Application of SDTS. Syntax

Directed Translation Schemes.

UNIT -3

 CANONICAL LR PARSING

CLR refers to canonical lookahead. CLR parsing use the canonical collection of LR (1) items to build

the CLR (1) parsing table. CLR (1) parsing table produces the more number of states as compare to the

SLR (1) parsing.

In the CLR (1), we place the reduce node only in the lookahead symbols.

Various steps involved in the CLR (1) Parsing:

1) For the given input string write a context free grammar

2) Check the ambiguity of the grammar

3) Add Augment production in the given grammar

4) Create Canonical collection of LR (0) items

5) Draw a data flow diagram (DFA)

6) Construct a CLR (1) parsing table

In the SLR method we were working with LR(0)) items. In CLR parsing we will be using LR(1)

items. LR(k) item is defined to be an item using lookaheads of length k. So ,the LR(1) item is

comprised of two parts : the LR(0) item and the lookahead associated with the item. The look ahead

is used to determine that where we place the final item. The look ahead always add $ symbol for the

argument production.

LR(1) parsers are more powerful parser.
for LR(1) items we modify the Closure and GOTO function.

Closure Operation

Closure(I)

repeat

for (each item [A -> ?.B?, a] in I)

for (each production B -> ? in G’)

for (each terminal b in FIRST(?a))

add [B -> .? , b] to set I;

until no more items are added to I;

return I;

Goto Operation

Goto(I, X)

Initialise J to be the empty set;

for (each item A -> ?.X?, a] in I)

Add item A -> ?X.?, a] to se J; /* move the dot one step */

return Closure(J); /* apply closure to the set */

LR(1) items

Void items(G’)

Initialise C to { closure ({[S’ -> .S, $]})};

Repeat

For (each set of items I in C)

For (each grammar symbol X)

if(GOTO(I, X) is not empty and not in C)

Add GOTO(I, X) to C;

Until no new set of items are added to C;

 ALGORITHM FOR CONSTRUCTION OF THE CANONICAL LR PARSING

TABLE

Input: grammar G'

Output: canonical LR parsing table functions action and goto

1. Construct C = {I0, I1 , ..., In} the collection of sets of LR(1) items for G'.State i
is constructed from Ii.

2. if [A -> a.ab, b>] is in Ii and goto(Ii, a) = Ij, then set action[i, a] to "shift j". Here
a must be a terminal.

3. if [A -> a., a] is in Ii, then set action[i, a] to "reduce A -> a" for all a in
FOLLOW(A). Here A may not be S'.

4. if [S' -> S.] is in Ii, then set action[i, $] to "accept"

5. If any conflicting actions are generated by these rules, the grammar is not
LR(1) and the algorithm fails to produce a parser.

6. The goto transitions for state i are constructed for all nonterminals A using the
rule: If goto(Ii, A)= Ij, then goto[i, A] = j.

7. All entries not defined by rules 2 and 3 are made "error".

8. The inital state of the parser is the one constructed from the set of items

containing [S' -> .S, $].

Example,

Consider the following grammar,

S‟->S

S->CC

C->cC

C->d

Sets of LR(1) items

I0: S‟->.S,$

S->.CC,$

C->.Cc,c/d

C->.d,c/d

I1: S‟->S.,$

I2: S->C.C,$

C->.Cc,$

C->.d,$

I3: C->c.C,c/d C-

>.Cc,c/d C-

>.d,c/d

I4: C->d.,c/d

I5: S->CC.,$

I6: C->c.C,$

C->.cC,$

C->.d,$

I7: C->d.,$

I8: C->cC.,c/d

I9: C->cC.,$

Here is what the corresponding DFA looks like

- 43 -

3.3.LALR PARSER:

We begin with two observations. First, some of the states generated for LR(1) parsing

have the same set of core (or first) components and differ only in their second component,

the lookahead symbol. Our intuition is that we should be able to merge these states and

reduce the number of states we have, getting close to the number of states that would be

generated for LR(0) parsing. This observation suggests a hybrid approach: We can construct

the canonical LR(1) sets of items and then look for sets of items having the same core. We

merge these sets with common cores into one set of items. The merging of states with

common cores can never produce a shift/reduce conflict that was not present in one of the

original states because shift actions depend only on the core, not the lookahead. But it is

possible for the merger to produce a reduce/reduce conflict.

Our second observation is that we are really only interested in the lookahead symbol

in places where there is a problem. So our next thought is to take the LR(0) set of items and

add lookaheads only where they are needed. This leads to a more efficient, but much more

complicated method.

 ALGORITHM FOR EASY CONSTRUCTION OF AN LALR TABLE

Input: G'

Output: LALR parsing table functions with action and goto for G'.

Method:

1. Construct C = {I0, I1 , ..., In} the collection of sets of LR(1) items for G'.

2. For each core present among the set of LR(1) items, find all sets having that core

and replace these sets by the union.

3. Let C' = {J0, J1 , ..., Jm} be the resulting sets of LR(1) items. The parsing actions

for state i are constructed from Ji in the same manner as in the construction of the

canonical LR parsing table.

4. If there is a conflict, the grammar is not LALR(1) and the algorithm fails.

5. The goto table is constructed as follows: If J is the union of one or more sets of

LR(1) items, that is, J = I0U I1 U ... U Ik, then the cores of goto(I0, X), goto(I1,

X), ..., goto(Ik, X) are the same, since I0, I1 , ..., Ik all have the same core. Let K

be the union of all sets of items having the same core asgoto(I1, X).

- 44 -

6. Then goto(J, X) = K.

Consider the above example,

I3 & I6 can be replaced by their union I36:C->c.C,c/d/$

C->.Cc,C/D/$

C->.d,c/d/$

I47:C->d.,c/d/$

I89:C->Cc.,c/d/$

Parsing Table

state c d $ S C

0 S36 S47 1 2

1 Accept

2 S36 S47 5

36 S36 S47 89

47 R3 R3

5 R1

89 R2 R2 R2

 HANDLING ERRORS

The LALR parser may continue to do reductions after the LR parser would have spotted an

error, but the LALR parser will never do a shift after the point the LR parser would have

discovered the error and will eventually find the error.

 DANGLING ELSE

The dangling else is a problem in computer programming in which an optional else clause in

an If–then(–else) statement results in nested conditionals being ambiguous. Formally, the

context-free grammar of the language is ambiguous, meaning there is more than one correct

parse tree.

- 45 -

In many programming languages one may write conditionally executed code in two forms:

the if-then form, and the if-then-else form – the else clause is optional:

Consider the grammar:

S ::= E $

E ::= E + E

| E * E

| (E)

| id

| num

and four of its LALR(1) states:

I0: S ::= . E $?

E ::= . E + E +*$ I1: S ::= E . $?I2: E ::= E * . E +*$

E ::= . E * E +*$ E ::= E . + E +*$ E ::= . E + E +*$

E ::= . (E) +*$ E ::= E . * E +*$ E ::= . E * E +*$

E ::= . id +*$ E ::= . (E) +*$

E ::= . num +*$ I3: E ::= E * E . +*$ E ::= . id +*$

 E ::= E . + E +*$ E ::= . num +*$

-

E ::= E . * E +*$

Here we have a shift-reduce error. Consider the first two items in I3. If we have a*b+c and

we parsed a*b, do we reduce using E ::= E * E or do we shift more symbols? In the former

case we get a parse tree (a*b)+c; in the latter case we get a*(b+c). To resolve this conflict, we

can specify that * has higher precedence than +. The precedence of a grammar production is

equal to the precedence of the rightmost token at the rhs of the production. For example, the

precedence of the production E ::= E * E is equal to the precedence of the operator *, the

precedence of the production E ::= (E) is equal to the precedence of the token), and the

precedence of the production E ::= if E then E else E is equal to the precedence of the token

else. The idea is that if the look ahead has higher precedence than the production currently

used, we shift. For example, if we are parsing E + E using the production rule E ::= E + E

and the look ahead is *, we shift *. If the look ahead has the same precedence as that of the

current production and is left associative, we reduce, otherwise we shift. The above grammar

is valid if we define the precedence and associativity of all the operators. Thus, it is very

important when you write a parser using CUP or any other LALR(1) parser generator to

specify associativities and precedence‟s for most tokens (especially for those used as

operators). Note: you can explicitly define the precedence of a rule in CUP using the %prec

directive:

E ::= MINUS E %prec UMINUS

where UMINUS is a pseudo-token that has higher precedence than TIMES, MINUS etc, so

that -1*2 is equal to (-1)*2, not to -(1*2).

Another thing we can do when specifying an LALR(1) grammar for a parser

generator is error recovery. All the entries in the ACTION and GOTO tables that have no

content correspond to syntax errors. The simplest thing to do in case of error is to report it

and stop the parsing. But we would like to continue parsing finding more errors. This is

called error recovery. Consider the grammar:

S ::= L = E ;

| { SL }

; | error ;

SL ::= S ; |

SL S ;

The special token error indicates to the parser what to do in case of invalid syntax for S (an

invalid statement). In this case, it reads all the tokens from the input stream until it finds the

first semicolon. The way the parser handles this is to first push an error state in the stack. In

case of an error, the parser pops out elements from the stack until it finds an error state where

it can proceed. Then it discards tokens from the input until a restart is possible. Inserting

error handling productions in the proper places in a grammar to do good error recovery is

considered very hard.

 LR ERROR RECOVERY

An LR parser will detect an error when it consults the parsing action table and find a

blank or error entry. Errors are never detected by consulting the goto table. An LR parser will

detect an error as soon as there is no valid continuation for the portion of the input thus far

scanned. A canonical LR parser will not make even a single reduction before announcing the

error. SLR and LALR parsers may make several reductions before detecting an error, but

they will never shift an erroneous input symbol onto the stack.

 PANIC-MODE ERROR RECOVERY

We can implement panic-mode error recovery by scanning down the stack until a

state s with a goto on a particular nonterminal A is found. Zero or more input symbols are

then discarded until a symbol a is found that can legitimately follow A. The parser then

stacks the state GOTO(s, A) and resumes normal parsing. The situation might exist where

there is more than one choice for the nonterminal A. Normally these would be nonterminals

representing major program pieces, e.g. an expression, a statement, or a block. For example,

if A is the nonterminal stmt, a might be semicolon or }, which marks the end of a statement

sequence. This method of error recovery attempts to eliminate the phrase containing the

syntactic error. The parser determines that a string derivable from A contains an error. Part of

that string has already been processed, and the result of this processing is a sequence of states

on top of the stack. The remainder of the string is still in the input, and the parser attempts to

skip over the remainder of this string by looking for a symbol on the input that can

legitimately follow A. By removing states from the stack, skipping over the input, and

pushing GOTO(s, A) on the stack, the parser pretends that if has found an instance of A and

resumes normal parsing.

 PHRASE-LEVEL RECOVERY

Phrase-level recovery is implemented by examining each error entry in the LR action

table and deciding on the basis of language usage the most likely programmer error that

would give rise to that error. An appropriate recovery procedure can then be constructed;

presumably the top of the stack and/or first input symbol would be modified in a way deemed

appropriate for each error entry. In designing specific error-handling routines for an LR

parser, we can fill in each blank entry in the action field with a pointer to an error routine that

will take the appropriate action selected by the compiler designer.

The actions may include insertion or deletion of symbols from the stack or the input

or both, or alteration and transposition of input symbols. We must make our choices so that

the LR parser will not get into an infinite loop. A safe strategy will assure that at least one

input symbol will be removed or shifted eventually, or that the stack will eventually shrink if

the end of the input has been reached. Popping a stack state that covers a non terminal should

be avoided, because this modification eliminates from the stack a construct that has already

been successfully parsed.

Syntax Directed Translations

We associate information with a language construct by attaching attributes to the grammar symbol(s)
representing the construct, A syntax-directed definition specifies the values of attributes by associating

semantic rules with the grammar productions. For example, an infix-to-postfix translator might have a

production and rule

This production has two nonterminals, E and T; the subscript in E1 distinguishes the occurrence of E in

the production body from the occurrence of E as the head. Both E and T have a string-valued attribute

code. The semantic rule specifies that the string E.code is formed by concatenating Ei.code, T.code, and

the character '+'. While the rule makes it explicit that the translation of E is built up from the translations

of E1, T, and '+', it may be inefficient to implement the translation directly by manipulating strings.

a syntax-directed translation scheme embeds program fragments called semantic actions within

production bodies

There are two notations for attaching semantic rules:

1. Syntax Directed Definitions. High-level specification hiding many implementation

details (also called Attribute Grammars).

2. Translation Schemes. More implementation oriented: Indicate the order in which

semantic rules are to be evaluated.

Syntax Directed Definitions

Syntax Directed Definitions are a generalization of context-free grammars in which:

1. Grammar symbols have an associated set of Attributes;

2. Productions are associated with Semantic Rules for computing the values of attributes
Such formalism generates Annotated Parse-Trees where each node of the tree is a
record with a field for each attribute (e.g.,X.a indicates the attribute a of the grammar
symbol X).

The value of an attribute of a grammar symbol at a given parse-tree node is defined by
a semantic rule associated with the production used at that node.

We distinguish between two kinds of attributes:

1. Synthesized Attributes. They are computed from the values of the attributes of the

children nodes.

2. Inherited Attributes. They are computed from the values of the attributes of both the

siblings and the parent nodes

Syntax Directed Definitions: An Example

Let us consider the Grammar for arithmetic expressions. The Syntax Directed

Definition associates to each non terminal a synthesized attribute called val.

SDD of a simple desk calculator

S-ATTRIBUTED DEFINITIONS

Definition. An S-Attributed Definition is a Syntax Directed Definition that uses

only synthesized attributes.

• Evaluation Order. Semantic rules in a S-Attributed Definition can

be evaluated by a bottom-up, or PostOrder, traversal of the parse-tree.

• Example. The above arithmetic grammar is an example of an S-

Attributed Definition. The annotated parse-tree for the input 3*5+4n is:

L-attributed definition

Definition: A SDD its L-attributed if each inherited attribute of Xi in the RHS of A ! X1 :

:Xn depends only on

1. attributes of X1;X2; : : : ;Xi 1 (symbols to the left of Xi in the RHS)

2. inherited attributes of A.

Restrictions for translation schemes:

1. Inherited attribute of Xi must be computed by an action before Xi.
2. An action must not refer to synthesized attribute of any symbol to the right of that action.
3. Synthesized attribute for A can only be computed after all attributes it references have

been completed (usually at end of RHS).

Evaluation order of SDTS

1 Dependency Graphs

2 Ordering the Evaluation of Attributes

3 S-Attributed Definitions

4 L-Attributed Definitions

"Dependency graphs" are a useful tool for determining an evaluation order for the attribute

instances in a given parse tree. While an annotated parse tree shows the values of attributes, a
dependency graph helps us determine how those values can be computed.

1 Dependency Graphs

A dependency graph depicts the flow of information among the attribute in-stances in a
particular parse tree; an edge from one attribute instance to an-other means that the value of the first is
needed to compute the second. Edges express constraints implied by the semantic rules. In more detail:

Suppose that a semantic rule associated with a production p defines the value of inherited
attribute B.c in terms of the value of X.a. Then, the dependency graph has an edge from X.a to B.c. For
each node N labeled B that corresponds to an occurrence of this B in the body of production p, create an
edge to attribute c at N from the attribute a at the node M that corresponds to this occurrence of X. Note
that M could be either the parent or a sibling of N.

Since a node N can have several children labeled X, we again assume that subscripts distinguish
among uses of the same symbol at different places in the production.

Example: Consider the following production and rule:

At every node N labeled E, with children corresponding to the body of this production, the synthesized

attribute val at N is computed using the values of val at the two children, labeled E and T. Thus, a

portion of the dependency graph for every parse tree in which this production is used looks like Fig. 5.6.

As a convention, we shall show the parse tree edges as dotted lines, while the edges of the dependency

graph are solid.

2. Ordering the Evaluation of Attributes

The dependency graph characterizes the possible orders in which we can evalu-ate the attributes
at the various nodes of a parse tree. If the dependency graph has an edge from node M to node N, then
the attribute corresponding to M must be evaluated before the attribute of N. Thus, the only allowable
orders of evaluation are those sequences of nodes N1, N2,... ,Nk such that if there is an edge of the
dependency graph from Ni to Nj, then i < j. Such an ordering embeds a directed graph into a linear
order, and is called a topological sort of the graph.

If there is any cycle in the graph, then there are no topological sorts; that is, there is no way to
evaluate the SDD on this parse tree. If there are no cycles, however, then there is always at least one
topological sort

3. S-Attributed Definitions

An SDD is S-attributed if every attribute is synthesized. When an SDD is S-attributed, we can
evaluate its attributes in any bottom-up order of the nodes of the parse tree. It is often especially simple
to evaluate the attributes by performing a postorder traversal of the parse tree and evaluating the
attributes at a node N when the traversal leaves N for the last time.

S-attributed definitions can be implemented during bottom-up parsing, since a bottom-up parse
corresponds to a postorder traversal. Specifically, postorder corresponds exactly to the order in which an
LR parser reduces a production body to its head.

4 L-Attributed Definitions

The idea behind this class is that, between the attributes associated with a production body,
dependency-graph edges can go from left to right, but not from right to left (hence "L-attributed"). More
precisely, each attribute must be either

1. Synthesized, or

2. Inherited, but with the rules limited as follows. Suppose that there is a production A -> X1 X2

Xn, and that there is an inherited attribute Xi.a computed by a rule associated with this production.

Then the rule may use only:

Inherited attributes associated with the head A.

Either inherited or synthesized attributes associated with the occurrences of symbols X1, X2,... , X(i-1)

located to the left of Xi.

Inherited or synthesized attributes associated with this occurrence of Xi itself, but only in such a way

that there are no cycles in a dependency graph formed by the attributes of this X i

Application of SDTS

1 Construction of Syntax Trees

2 The Structure of a Type

The main application is the construction of syntax trees. Since some compilers use syntax trees
as an intermediate representation, a common form of SDD turns its input string into a tree. To complete
the translation to intermediate code, the compiler may then walk the syntax tree, using another set of
rules that are in effect an SDD on the syntax tree rather than the parse tree.

1 Construction of Syntax Trees

Each node in a syntax tree represents a construct; the children of the node represent the
meaningful components of the construct. A syntax-tree node representing an expression E1 + E2 has
label + and two children representing the subexpressions E1 and E2

implement the nodes of a syntax tree by objects with a suitable number of fields. Each object
will have an op field that is the label of the node.

The objects will have additional fields as follows:

• If the node is a leaf, an additional field holds the lexical value for the leaf. A constructor function Leaf

(op, val) creates a leaf object. Alternatively, if nodes are viewed as records, then Leaf returns a pointer

to a new record for a leaf.

• If the node is an interior node, there are as many additional fields as the node has children in the

syntax tree. A constructor function Node takes two or more arguments: Node(op,ci,c2,... ,ck) creates an

object with first field op and k additional fields for the k children c1,... , .

Example

Figure 5.1 1 shows the construction of a syntax tree for the input a — 4 + c. The nodes of the

syntax tree are shown as records, with the op field first. Syntax-tree edges are now shown as solid lines.
The underlying parse tree, which need not actually be constructed, is shown with dotted edges. The

third type of line, shown dashed, represents the values of E.node and T-node; each line points to the
appropriate syntax-tree node.

.

2 The Structure of a Type
The type int [2][3] can be read as, "array of 2 arrays of 3 integers." The corresponding type

expression array(2, array(3, integer)) is represented by the tree in Fig. 5.15. The operator array takes
two parameters, a number and a type. If types are represented by trees, then this operator returns a tree
node labeled array with two children for a number and a type.

Nonterminal B generates one of the basic types int and float. T generates a basic type when T derives B
C and C derives e. Otherwise, C generates array components consisting of a sequence of integers, each
integer surrounded by brackets.

An annotated parse tree for the input string int [2] [3] is shown in Fig. 5.17. The corresponding type

expression in Fig. 5.15 is constructed by passing the type integer from B, down the chain of C's through

the inherited attributes b. The array type is synthesized up the chain of C's through the attributes t.

In more detail, at the root for T -» B C, nonterminal C inherits the type from B, using the inherited

attribute C.b. At the rightmost node for C, the production is C e, so C.t equals C.6. The semantic rules

for the production C [num] C1 form C.t by applying the operator array to the operands num.ua/ and

C1.t.

Syntax Directed Translation Schemes.

1 Postfix Translation Schemes

2 Parser-Stack Implementation of Postfix SDT's

3 SDT's With Actions Inside Productions

4 Eliminating Left Recursion From SDT's

syntax-directed translation scheme (SDT) is a context-free grammar with program fragments

embedded within production bodies. The program fragments are called semantic actions and can appear

at any position within a production body. By convention, we place curly braces around actions; if braces

are needed as grammar symbols, then we quote them.SDT's are implemented during parsing, without

building a parse tree.

Two important classes of SDD's are

1. The underlying grammar is LR-parsable, and the SDD is S-attributed.

2.The underlying grammar is LL-parsable, and the SDD is L-attributed.

1 Postfix Translation Schemes

simplest SDD implementation occurs when we can parse the grammar bottom-up and the SDD

is S-attributed. In that case, we can construct an SDT in which each action is placed at the end of the

production and is executed along with the reduction of the body to the head of that production. SDT's

with all actions at the right ends of the production bodies are called postfix SDT's.

Example 5.14 : The postfix SDT in Fig. 5.18 implements the desk calculator SDD of Fig. 5.1, with one

change: the action for the first production prints a value. The remaining actions are exact counterparts of

the semantic rules. Since the underlying grammar is LR, and the SDD is S-attributed, these actions can

be correctly performed along with the reduction steps of the parser.

2 Parser-Stack Implementation of Postfix SDT's

The attribute(s) of each grammar symbol can be put on the stack in a place where they can be
found during the reduction. The best plan is to place the attributes along with the grammar symbols (or
the LR states that represent these symbols) in records on the stack itself.

In Fig. 5.19, the parser stack contains records with a field for a grammar symbol (or parser state) and,

below it, a field for an attribute. The three grammar symbols X YZ are on top of the stack; perhaps they

are about to be reduced according to a production like A —> X YZ. Here, we show X.x as the one

attribute of X, and so on. In general, we can allow for more attributes, either by making the records large

enough or by putting pointers to records on the stack. With small attributes, it may be simpler to make

the records large enough, even if some fields go unused some of the time. However, if one or more

attributes are of unbounded size — say, they are character strings — then it would be better to put a

pointer to the attribute's value in the stack record and store the actual value in some larger, shared

storage area that is not part of the stack.

3 SDT's With Actions Inside Productions

An action may be placed at any position within the body of a production.It is performed immediately

after all symbols to its left are processed. Thus,if we have a production B -» X {a} Y, the action a is

done after we have recognized X (if X is a terminal) or all the terminals derived from X (if X is a

nonterminal).

More precisely,

• If the parse is bottom-up, then we perform action a as soon as this occurrence of X appears on the top

of the parsing stack.

• If the parse is top-down, we perform a just before we attempt to expand this occurrence of Y (if Y a

nonterminal) or check for Y on the input (if Y is a terminal).

4 Eliminating Left Recursion From SDT's

First, consider the simple case, in which the only thing we care about is the order in which the
actions in an SDT are performed. For example, if each action simply prints a string, we care only about
the order in which the strings are printed. In this case, the following principle can guide us:

When transforming the grammar, treat the actions as if they were terminal symbols.

This principle is based on the idea that the grammar transformation preserves the order of the terminals

in the generated string. The actions are therefore executed in the same order in any left-to-right parse,

top-down or bottom-up.

The "trick" for eliminating left recursion is to take two productions

A -> Aa | b

that generate strings consisting of a j3 and any number of en's, and replace them by productions that

generate the same strings using a new nonterminal R (for "remainder") of the first production:

A->bR

R —»• aR | e

If (3 does not begin with A, then A no longer has a left-recursive production. In regular-definition terms,

with both sets of productions, A is defined by 0(a)*.

Example 5 . 1 7 : Consider the following E-productions from an SDT for translating infix expressions

into postfix notation:

E -> E i + T { print('+'); }

E -> T

If we apply the standard transformation to E, the remainder of the left-recursive production is

a = + T { print('-r'); }

and the body of the other production is T. If we introduce R for the remainder of E, we get the set of

productions:

E --> T R

R --> + T { printC-h'); } R

R -> e

When the actions of an SDD compute attributes rather than merely printing output, we must be more

careful about how we eliminate left recursion from a grammar. However, if the SDD is S-attributed,

then we can always construct an SDT by placing attribute-computing actions at appropriate positions in

the new productions.

