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Introduction to Set

« Set: A set is a well defined collection of objects. These objects
are called elements or members of the set. Usually uppercase
letters are used to denote sets.

 The set theory was developed by George Cantor in 1845-1918.
Today, it is used in almost every branch of mathematics and
serves as a fundamental part of present-day mathematics.

* In everyday life, we often talk of the collection of objects such
as a
bunch of keys, flock of birds, pack of cards, etc.

e |In mathematics, we come across collections like natural
numbers, whole numbers, prime and composite numbers.



Laws in set theory

« ANB=BNA(Commutative law)

« (ANB)NC =AN (BNC) (Associative law)

« ONA=0 (Law of D)

« UNA=A(Law of V)

« ANA=A(ldempotent law)

«  ANBUC)=(ANB) U(ANC) (Distributive law) Here N distributes overu

« Also, AuBNC)=(AUB) N (AUC) (Distributive law) Here udistributes
over N



Probability

Experiment:

In probability theory, an experiment or trial (see below) is any
procedure that can be infinitely repeated and has a well-
defined set of possible outcomes, known as the sample
space.

An experiment is said to be random if it has more than one
possible
outcome, and deterministic if it has only one.

A random experiment that has exactly two (mutually exclusive)
possible outcomes is known as a Bernoullitrial.



Experiment

Experiment Outcomes
Flip a coin Heads, Tails
: Numbers: 0, 1, 2, ..., |
| Exam Marks 100 :
Assembly Time t> 0 seconds
Course Grades FD C B A A+
| A




Random Experiment

* An experiment is a random experiment if its outcome cannot
be predicted precisely. One out of a number of outcomes is
possible in a random experiment.

* A single performance of the random experiment is called a
trial. Random experiments are often conducted repeatedly, so
that the collective results may be subjected to statistical
analysis.

« A fixed number of repetitions of the same experiment can be
thought of as a composed experiment, in which case the
individual repetitions are called trials.

* For example, if one were to toss the same coin one hundred
times and record each result, each toss would be considered
a trial within the experiment composed of all hundred tosses.



Relative frequency, Experiments

Relative Frequency:

Random experiment with sample space S. we shall assign non-
negative number called probability to each event in the sample
space. Let A be a particular event in S. then “the probability of
event A’ is denoted by P(A).

Suppose that the random experiment is repeated n times, If the
event A occurs n, times, then the probability of event A is
defined as “Relative frequency

Event A is defined as

P(4) = lim

n—x 4]



Sample Space

« Sample Space: The sample space is the collection of all
possible outcomes of a random experiment. The elements of
are called sample points. A sample space may be finite,
countable infinite or uncountable.

« A list of exhaustive *don't leave anything out] and mutually
exclusive outcomes [impossible for 2 different events to occur
In the same experiment] is called a sample space and is
denoted by S.

 The outcomes are denoted by O4, O,, ...,O

« Using notation from set theory, we can represent the sample
space and its outcomes as:

S ={0,, O,, ..,0



Sample Space

« Given a sample space S = {04, O,, ...,0}, the probabilities
assigned
to the outcome must satisfy these requirements:

(1) The probability of any outcome is between 0 and 1
l.e. 0= P(O) < 1for eachi,and

(2) The sum of the probabilities of all the outcomes equals 1
l.e. P(O)) + P(O,) +..+P(O)=1



Discrete and Continuous Sample Spaces

* Probability assignment in a discrete sample space: Consider a
finite sample space . Then the sigma algebra is defined by
the power set of S.

« For any elementary event, we can assign a probability such
that, For any event , we can define the probability

Continuous sample space

suppose the sample space S is continuous and uncountable. Such a
sample space arises when the outcomes of an experiment are
numbers. For example, such sample space occurs when the
experiment consists in measuring the voltage, the current or the

resistance.



Events

« The probability of an event is the sum of the probabilities of
the

simple events that constitute the event.

 E.g. (assuming a fair die) S ={1, 2, 3, 4, 5, 6} and P(1) = P(2)
= P(3) =
P(4) =P(5) =P(6) =1/6

 Then: P(EVEN)=P(2) + P(4) + P(6) =1/6 + 1/6 + 1/6 = 3/6 =
1/2



Types of Events

1. Exhaustive Events:

A set of events is said to be exhaustive, if it includes all the
possible events. EX. In tossing a coin, the outcome can be
either Head or Tall and there is no other possible outcome.
So, the set of events{ H, T } is exhaustive.

2. Mutually Exclusive Events:

Two events, A and B are said to be mutually exclusive if they
cannot occur together. i.e. if the occurrence of one of the
events precludes the occurrence of all others, then such a set
of events is said to be mutually exclusive. If two events are
mutually exclusive then the probability of either occurring is



Types of Events

3. Equally Likely Events:

If one of the events cannot be expected to happen In
preference to another, then such events are said to be Equally
Likely Events.( Or) Each outcome of the random experiment
has an equal chance of occurring.

EXx. In tossing a coin, the coming of the head or the tail is
equally
likely

4.Independent Events:
Two events are said to be independent, if happening or
failure of one does not affect the happening or failure of

the other. Otherwise, the events are said to be
dependent.



Probability Definitions and Axioms

Relative frequency Definition:

Consider that an experiment E is repeated n times, and let A and

B be two events associated with E. Let nyand ng be the number
of times that the event A and the event B occurred among the n
repetitions respectively. The relative frequency of the event A in
the 'n' repetitions of E is defined as

f(A)=nA/n



Axioms of Probability

The Relative frequency has the following properties:
O0<f(A)<1

f(A) =1 if and only if A occurs every time among the n
repetitions.

If an experiment is repeated n times under similar conditions
and the event A occurs in natimes, then the probability of the
event Ais defined as



Joint probability

« Joint probability:

Joint probability is defined as the probability of both A and B
taking
place, and is denoted by P(AB) or P(ANB).

« probability notation: P(AB) = P(A | B) *P(B)



Conditional Probability

« Conditional probability is used to determine how two events are
related; that is, we can determine the probability of one event
given the occurrence of another related event.

« Experiment: random select one student in class.
« P(randomly selected student is male)
« P(randomly selected student is male/student is on 3 row)

« Conditional probabilities are written as P(A | B) and read as “the
probability of A given B” and is calculatedas

P(A and B)
P(B)

P(A| B)=



Bayes' Theorem

« Bayes’'Law is named for ThomasBayes,an eighteenth
century
mathematician.

 In its most basic form, if we know P(B |A),

* we can apply Bayes’ Law to determine P(A | B)

« Bayes' theorem centers on relating different conditional
probabilities. A conditional probability is an expression of

how probable one event is given that some other event
occurred (a fixed value).

* For a joint probability distribution over events A and B,
P(A"B), the conditional probability of given is defined as



Bayes' theorem

i PUARB)
P(A|B)= ——.
P(B)

*Note that P(A”B) is the probability of both A and B occurring,
which is the same as the probability of A occurring times the
probability that B occurs given that A occurred P(B/A)*P(A)
‘Using the same reasoning P(A”B), is also the probability that B
occurs times the probability that A occurs given that B occurs:
P(A/B)*P(B) The fact that these two expressions are equal leads

to Bayes' Theorem. Expressed mathematically, this is:

P(ANB) e

P(A|B) = —  if P(B) # 0,
P(B)

~ PBnA . _ ..

P(B| A) = , Jif P(A) # 0,
P(A)

= P(ANB) = P(A | B) x P(B) = P(B| A) x P(A),
P(B|A)x P(4) .
> P(A | B) , if P(B) # 0.

P(B)



Bayes' theorem

The probabilities P(A) and P(AC) are called prior probabilities
because they are determined prior to the decision about taking
the preparatory course.

The conditional probability P(A | B) is called a posterior
probability (or revised probability), because the prior
probability i1s revised after the decision about taking the
preparatory course.



Random variable

* A (real-valued) random variable, often denoted by X (or some
other capital letter), is a function mapping a probability space
(S, P) into the real line R. This is shown in next slide.

« Associated with each point s in the domain S the function X
assigns one and only one value X(s) in the range R. (The set
of possible values of X(s) is usually a proper subset of the real
line; i.e., not all real numbers need occur. If S is a finite set with
m elements, then X(s) can assume at most m different values
as svariesinS.)



RV in graphical representation

A random variable: a function

X

Domain: probability space Range: real line



RV in graphical representation

Random variable

— A numerical value to each outcome of a particular
experiment

A W\
WU Y

-3 -2 -1 0 1 2 3




Discreterandom variable

A random variable is called a discrete random IS piece-
vanatadat. Thusis flat except at the points of jump wise If
theceatimpigy.space  is discrete the random defined on itis
variable

always discrete.

I—



Continuous random variable

« X Is called a continuous random variable if is an absolutely
continuous function of x. Thus is continuous everywhere on and
exists everywhere except at finite or countable infinite points.

&

F(x)

T

&

v

X—

F, (x)
1

Y

X—



Mixed random variable

« X s called a mixed random variable if has jump discontinuity at
countable number of points and it increases continuously at
least at one interval of values of x. For a such type RV X.

I—



Random Variable

Review of the concepts

Random Experiment

Random Event

QOutcomes

Sample Space

Random Variable:

Mapping of sample space to a
real line

abkowbE



Random Variable

Mapping of sample space to a
real line



Distribution function

Probability Distribution Function

The probability P(X < x) is the probability of the event
{X <x} ie

E(x) =P{X<x}, —oco<x=<oo



Properties of CDF

The properties of a distribution function:
o Fy(—o) = 0
¢ Fy(o0) = 1
e 0<E.(x)<1
o F.(x;) <FE.(x,),if x; < x, (Non-decreasing function)
o P{x; <X < x5} = F(x;) — F(x)
e £.(x*) =FE,(x) (Continuous from the right)



Properties of CDF (contd..)

Proof for F,(x,) — F,.(x4)

e The events {X < x;} and {x; < X < x,} are mutually
exclusive, i.e. {X <x,} ={X < x; }U{x; <X < x,}
o P{IX <x,} =P{X <x;}+P{x; <X < x5}
o P{x; < X <x,} =P{X <x,} —P{X < x,}
= F.(x,) — E.(x;)



Properties of CDF (contd..)

If X is a discrete random variable taking values
x;, i =1,2,....,N, then E.(x) must have a staircase

function given by

N
E.(x) = Z P{X = x;}ulx — x;)
=1

LN
= Z P(x;) u(x — x;)
i=1

where u(.) is the unit-step function defined by:
1, x =0
u(x) = {U, x <0
If N is infinite, then



Probability density function
Probability Density Function

The probability density function of the random variable
X is defined as the derivative of the distribution

function:
dF,(x)
dx

fr(x) =



Probability density function (contd..)

1.If the derivative of E.(x) exists then f,.(x) exists

dFy(x) is not defined at

2. There may be places where

points of abrupt change, then we shall assume that
the number of points where E,(x) is not

differentiable is countable.
3.For discrete random variables having a stair step form

of distribution function.

N
f(x) = Z P(x,)6(x —x;)
i=1



Properties of PDF

Properties of Density Functions.
e 0 < f.(x)allx

e [ fi(x)dx=1
¢ F.(x) = [ f(x)dx =1
e Plx, < X <x,}= f:ifr(x)dx



Gaussian Probability density function

Gaussian Density Function

A random variable X is called Gaussian if its density

function has the form

1
f.(x) = e—(x—ax)z/Zsz
.51 s o
Where g, > 0 and —o° < a,. < °° are real constants.
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Gaussian Probability density function (contd..)
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1.lts maximum value (2mo5 ) 2 occursatx = a,, .

2.1ts “spread” about the point x = a,, is related to g,

3.The function decreases to 0.607 times its maximum at
x=a, +0,andx = a, — 0,.

4.The Gaussian density is the most important of all

densities. It enters into nearly all areas of engineering



Gaussian Probability density function (contd..)

Fx(X) - e—(«f—ex)z/Zaxzdf

Fx(x)
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Gaussian Probability density function (contd..)

e This integral has no known closed-form solution and
must be evaluated by numerical methods.

e We could develop a set of tables of E,.(x) for various x
and a, and g, as parameters (infinite number of
tables ).

e Only one table of E,(x) for the normalized (specific)

values a,, = 0 and o0, given by

F(x) = —§%/2q¢

1 X
— e
V2T f_m
which is a function of x only & tabulated for x = 0.

e For negative values of x we have
F(—=x)=1-F(x)



Gaussian Probability density function (contd..)

{—-a

e Making the variable change u = - = we get
(x—ay)/ox X —a
E.(x) = e"Ut/Z gy = F( I)
8 \JZTE — 3 ﬂ-x



Binomial Probability density function

Binomial Denéity Function
N

N
L@ =Y )k —pVFsG - k)
k=0
where (i’r) is the binomial coefficient defined as

(N) N!
kI k'(N — k)!
and 0 <p<1 N=1,2......

* I‘{x}
0.1560
o + U.Iiﬁﬁ (N=6, p=0.25)
0.17804 0.1318
1 0.0330 0.0044 0.0002
' | ]

1 3 4 5 6 x



Binomial Probability density function (contd..)

1.The binomial density is applied to Bernoulli trail
experiment, having only two possible outcomes on
any given trial.

2.1t applies to many games of chance, detection
problems in radar and sonar, and many

experiments



Binomial Probability density function (contd..)

By integration, the binomial distribution function is

found:
N
Felx) = z< > A —p)VNR5(x — k)
Fx(x)
0.9624 0.9954 0.9998 1.0000
10k 9
0.8306
0.5340
0.5k
21780
\ L X i . "
0 1 2 3 4 S 5 =

Figure: Binomial distribution function (N =6, p =0.25)



Poisson Probability density function

Poisson Density Function

oo

bk

felr) = ™0 ) =8 (x — k)
k=0
= Lk

F.(x) =e™? Fu(x — k)
k=0

where b > 0O is a real constant.
e These functions appear quite similar to binomial
e [fN = coand p — 0 for the binomial case in such a

way that Np = b, a constant, the Poisson case results.

e The Poisson random variable applies to a wide variety
of counting-type applications.



Poisson Probability density function (contd..)

e |t describes

» the number of defective units in a sample taken
from a production line,

» the number of telephone calls during a period of
time,

» the number of electrons emitted from a small
section of a cathode in a given time interval, etc.

» If the time interval of interest has duration T, and
the events being counted are known to occur at
an average rate X and have a Poisson
distribution, then b =X T



Uniform Probability density function

Uniform Density Function

( 1
. ) , g<=<x<b
fx(x) = *; b —
\ 0, elsewhere
Jilx)
(b - a)
0 a b X

for real constants —eoc < a < ee2and b > a.



Uniform Probability density function (contd..)

0 X <0
X —a
E.(x) = P ag=sx<b
1 <X

O o o e
|
|
|
|
|
|
L
a b



Uniform Probability density function (contd..)

» The error of quantization of signal samples prior to
encoding in digital communication systems.

» Quantization amounts to “rounding off” the actual
sample to the nearest of discrete quantum level.

» The quantization error introduced in the round-off

process are uniformly distributed.



Exponential Probability density function

Exponential Density Function

1
_ ,—(x—a)/b

fe@) = 15° v
0, x < a

Sylx)

/b

0 a
for real numbers —coc < a < ecand b > 0



Exponential Pdf (contd..)

1 — e~ (x—a)/b X > a
0, o <l |

R = |




Exponential Pdf (contd..)

» The exponential density is useful in describing
raindrop sizes when a large number of rainstorm
measurements are made.

» It is also known to approximately describe the

fluctuations in signal strength received by radar

from certain types of aircraft.



Rayleigh Probability density function
Rayleigh Density Function

2
£o(x) = E(x — a)e~(x-a2/b, X = da
(%) =

0, R

Sx x)

2
0.607 ;=

)

for the real constants —ece < g < ecand b > 0



Rayleigh Probability density function (contd..)

1 — g~ B/ X =0
0, ¥r<a




Rayleigh Probability density function (contd..)

» The Rayleigh density describes the envelope of
white gaussian noise when passed through a band-
pass filter.

» Itis also is important in analysis of errors in various
measurement systems.



Conditional distribution function

Conditional Distribution Function|

e Let A and B be the two events & P(B) # 0, then
P{A N B}

P(B)
e Let A be defined as the event {X < x} for the

random variable X.
e The resulting probability P{X < x|B} is defined as
the conditional distribution function of X, which is

denote d by

P(A|B) =

F.(x|B) = PX < x|B) P{X < x N B}

X = < X =

: * == TG

where {X < x N B} is the joint event {X < x} N B. This
joint event consists of all outcomes s such that
X(s)<xandseB




Properties of Conditional distribution function

Properties of Conditional Distribution Function
¢ Fi(=oo|B) =0
e F.(eo|B) =1
e 0 <F.(~|B)<1
o Fe(x1|B) < Ec(x2|B)  if x1 <,
o P{x; <X < x3|B} = F(x3]|B) — F(x1|B)
 F,(x7|B) = F(x|B)



Conditional density function

Conditional Density Function

The conditional density function of the random variable
X 1s defined as the derivative of the conditional

distribution function, and is given by

. dF(x|B)
fo(x|B) = =

If F,.(x|B) contains step discontinuities (when X is a
discrete or mixed random variable), we assume that
impulse functions are presentin f,.(x|B) to account for
the derivatives at the discontinuities.



Properties of Conditional density function

Properties of Conditional Density Function
* fr(x|B) = 0
o [T fe(x|B)dx =1
X .
¢ Fx(x‘B) = f_m]‘x(ﬂB) dé
¢ Pix; <X <xq|Bj = f;g fx(x|B)dx
1



Methods of conditioning event

Methods of Defining Conditioning Event

If event B is defined in terms of the random variable X
as B = {X < b}, where b is some real number
—oo < h < oo & P{X < b} # 0, then we have

F.(x|B) = P{X < x|B}
= P{X < x|X < b}
PIX <xnNnX < b}
T P{X < b}




Methods of conditioning event (contd..)

Case (i):

If b < x, then the event {X < b} is an subset of the
event {X < x},s0{X <x}nN{X < b} =1{X < b}. Then

we have
P{X <xNX < b}
F.(x|X <b) = PX <)
P{X < b}
= — - =1 X =>b

PiX < b}



Methods of conditioning event (contd..)

Case (ii):

P{X <xnX< b}
P{X < b}
PIX<x} F(x)
TPX<b) E(b)

F(x|X <b)=

x < b




Methods of conditioning event (contd..)

By combining the last two expressions, we have
Fy (x)
Fr(x|X < b) = { F.(b)
1, xX=b
From our assumption that the conditioning event has
nonzero probability, O<E,.(b) < 1, so the conditional
distribution function is never smaller than the ordinary

distribution function F,.(x|X < b) = F,.(x)

x <b




Methods of conditioning event (contd..)

Similarly the conditional density function is
) )
fe(x|X < b) = { Fx(x) f_bmf;f(x)dx
0, x=Db
From our assumption 0<f,.(x) < 1, so the conditional

density function is never smaller than the ordinary

x < b

density function

xlX <b) = fi(x)  x<b
The result can be extended to more general event
B= {a<X<bh}



Operation of single Random Variable
and Multiple Random Variables



Moments about origin

Moments About the Origin

The expected value of X™, n=10,1,2, ......... IS given

by
E[x"] = f ¥ F () dx

gives the moments about the origin of the random
variable X. These are also called standard moments

and are denoted as m,,



Moments about mean

Moments About the Mean

The expected value of (X = X)), n=10,1,2,......... is
given by

E[(X - X)) = f (x — X (x)dx

gives the moments about the mean of the random

variable X. These are also called central moments and
are denoted as u,,



Characteristic function

Characteristic Function

The characteristic function of a random variable Xis
defined by

O, (w) = E[e/9¥] = ] eJOX £ (x)dx

—_ 00

where = +v—1. It is a function of the real number
—oo < () < ©9,

D, (w) is seen as the Fourier transform (with the sign
of w reversed) of £, (x)



Moment generating function

Moment Generating Function

The moment generating function of a random variable
Xis defined by

My (v) = E[e™] = f_mféf(X)E'”dx

Where v is a real number —eo < p < oo,



Moment generating function

e Moments are related to M,.(v) by the expression
d"M, (V)
n
dv 0
¢ The main disadvantage of the moment generating

function is that it may not exist for all random
variables.

My = (_j)n

e In fact, M. (v) exists only if all the moments exist



Monotonically increasing RV

Transformations of A Random Variable

e Quite often one may wish to transform one random
variable X into a new random variable Y by means
of a transformation

2 Iy—ro)

fr (%) £ )

e Typically, the density function f,.(x) or distribution
function F,(x) of X is known, and the problem is
to determine either the density function f,(y) or

distribution function F,(y) of Y.

e The transformation T can be linear, nonlinear,
segmented ,staircase, etc



Monotonically increasing RV (contd..)

Monotonic Transformation of a Continuous

Random variable

e Atransformation T is called monotonically

increasing if T(x4) < T(x,) for any x; < x,.
y=Tix)




Nonmonotonic Transformation of a RV

Nonmonotonic transformations of a
continuous random variable

vy = T(x)

¢ In this case, there may be more than one interval of
values of X that correspond to the event {Y < y,}
corresponds to the event {X < x;and x, < X < x5}



Nonmonotonic Transformation of a RV (contd..)

e Thus, the probability of the event{Y < y,} now
equals the probability of the event

{x valuesyieldingY < y,}, which we shall write as

{x|Y < yptie,
RO =plr Sy =pll Sy)=| s
e Differentiating we get the density function of Y as
fy(Yo) = < foe(x) dx

AYo Jix|v<y,)



Nonmonotonic Transformation of a RV (contd..)

e The density function is also given by

£ = 2 f ()

dT (x)
dx N
where the sum is taken so as to include all the roots
x,n=12,....,which are the real solutions of the

equation
y =T(x)



Transformation of a DiscreteRV

Transformation of a Discrete Random Variable
e |f X is adiscrete random variable

f@) = ) p() = x,)
FG) = ) pr)ulx = x,)

where the sum is taken to include all the possible
valuesx,, , n=1,2,...... ,of X.

e |If the transformation Y =T(X) is continuous and
monotonic, there is a one-to-one correspondence
between X and Yso that a set {x,}, through the
equationy, = T{x, } sothat P{y,} = P{x,}.



Transformation of a DiscreteRV (contd..)

e |f the transformation Y = T(X) is continuous and
monotonic, there is a one-to-one correspondence
between X and Y so that a set {x,,}, through the
equation y,, = T{x,,} so that P{y,,} = P{x,}.

¢ Thus,we have

EOEDIWICALICESS

T
Fy(y) = Znpn)u(y — yn) where y, = T(xy,)
e |[f 7 is not monotonic, the above procedure remains
same, but P(y,,) will equal the sum of the
probabilities of the various x,, for which y,, = T'(x,,)



Expected value of a RV

Expected Value of a Random variable

In general, the expected value of any random variable
X is defined by

E[X] = X = [mxfx(x)dx



Expected value of a RV (contd..)

If X is discrete with N possible values x; having
probabilities P(x;) of occurrence, then

N
frlx) = Z x;P(x;)6(x — x;)
Then we have =
N
Elx] = x;iP(x;)
2

If the density is symmetrical about a line x = a i.e.
fx(x+a)= fi(—=x +a)
then
Elx] = a



Conditional Expected value of a RV

Conditional Expected Value

If f,.(x|B) is the conditional density where B is any
event defined on the sample space of X, then the
conditional expected value of X, is given by

E[X|B] = fmxf;f(xlB)dx



Conditional Expected value of a RV (contd..)

If the event B ={X < b}, co < b < o0
[ fxx)
fr(x|X < D) =+ f_bmf;:(x)dx

\ 0 X =Db
Then, the conditional expected value is given by

D xfe()di
P fGodx

which is the mean value of X when X is constrained
to the set {X < b}.

x <b

Elx|X < b]




Moments about origin

Moments About the Origin

The expected value of X™, n=10,1,2, ......... IS given

by
E[x"] = f ¥ F () dx

gives the moments about the origin of the random
variable X. These are also called standard moments

and are denoted as m,,



Moments about origin (contd..)

Forn = 0,

my = E[X°] = fm x” fr (x)dx = jmﬁf(%)dﬂf

is the area of under the function f,.(x).

Forn = 1,

()

m, = E[X] = f xf(x)dx = X

— 00

Is the expected value of X.



Moments about mean

Moments About the Mean

The expected value of (X = X)), n=10,1,2,......... is
given by

E[(X - X)) = f (x — X (x)dx

gives the moments about the mean of the random

variable X. These are also called central moments and
are denoted as u,,



Moments about mean (contd..)

Forn = 0,

o0

fn = ELC= 0" = | (= D" fi()d
o = EIx =01 = [ fe@)da
is the area of under the function f,.(x).

Forn = 1,
uy = E[(X — X)] = E[X] — X=0



Variance

Variance

The second central moment i, is given by

1y = E[(X — X)?] = f (X — B)2f(x)dx

1.1t is popularly known as the variance r::rf of the

random variable X.

2.The positive square root g, of variance is called the
standard deviation of X.

3.1t is @ measure of the spread in the function f,.(x)
about the mean.



Variance (contd..)

The second central moment is given by
U, = E[(X — X)?]

By expanding we get
i, = E[X% —2XX + X“]
= E[X?]| - 2XE[X]+ X*
= FE[X*] - X% =m, — u;°



Skew

Skew

The third central moment is given by

us = E[(X — X)°}

i = E[X> — 3X°X +3XX?* — X°]
= E[X?] - 3E[X?]X + 3X%E[X]-X?
= my — 3mypq + 3> — py°
= My — 3Mopy + 20,3



Skew (contd..)

* i3 is @a measure of asymmetry of f,.(x) about the

mean.

e |t will be called the skew of the density function.

e If a density is symmetric about x = X, it has zero
skew. For this case, u,, = 0 for all odd values of n.

e The normalized third central moment u;/0,> is

known as the coefficient of skewness.



Chebychev’s inequality P[X ~ X‘>5]<0—
ol = j (x—X)? f, (x)dx > j|x_x|> (x— X)Zf (x)dx
> gzj

|x X|>8

f, ()dx = £?P[X ~ X2 ¢]

I\/Iarkovsmequalltyp[x <0] = O :> PIX > a] < E[X]

@) d
Ex 3.2-3: P|]X X‘>3GX]<9X2: 5
GX




Characteristic function of r.v. X
CDX (6()) = E[eja)X ] — J‘_OO fX (X)eijdx

® — jox Fourier transform
fx(x):ij‘_wCDX(a))ej dow

D, (w)|< ji\ f ()][e Fdx< j‘: f, (x)dx=1=®, (0)

d"® (w ~ _ o
X( ) :j f, (X)j"x"e""dx| O:j”j f, (X)x"dx = J"E[X"]
do" P “= oo
d"'®d, (w
3 e

=0



Functions That Give Moments

Moment generating function of r.v. X

M, (v) = E[e"] = ji f, (x)e"dx

d"M ) (V)
dv"

= [ £ 00x7e%dx|, o = [ f ()xdx =m,

v=0

Ex 3.3-1 & Ex3.3-2:




a _ l—'a) y a —(%—ja))x
D, (&) =E[e ] =—e[ e v dx= e
b a b _(l_' )
1. b J@
1 e e =
i o — -
b (%—ja)) 1=Jeb g (@) jaek= (1- jab)+eie jb
va dow (1~ jab)’
M, (V) =E[e*]= TE dM, (v) _ ae  (1-vb)+e b
dv (1-vb)?
_ w40, (@) _
ml_(_J) dXC() =a+b ml:w (V) —a+b

=0 dV 0



Chernoff's inequality Ex 3.3-3:

v>0

P[X >a]= j: f, (X)dx = ji £, (X)u(x—a)dx

< _[_O; f, (x)e'"@dx=e""M, (v)



Vector random variables

There are many cases where the outcome is a vector of
numbers. We have already seen one such experiment, In
where a dart is thrown at random on a dartboard of radius r.
The outcome is a pair (X, Y) of random variables that are
such that X2 + Y2<r2,

we measure voltage and current in an electric circuit with
known resistance. Owing to random fluctuations and
measurement error, we can view this as an outcome (V, l)of a

Nnair nf randnmiyrarinhlac
// 7

0000.00000000,0. ‘\\
o.oo::. OA N wX
00:0 "o (X<x V<))
"0’00"0000 N
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WRRILAXHN XX ‘

ol “(Y< )\

XXX RRRRHAIARHH 0
O0ARIRHANARS N
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Punain % Comparision of sample space s
with sj



Joint distribution function

Let X and Y be random variables. The pair (X, Y) is then called
a (two-

dimensional) random vector.

The joint distribution function (joint cdf) of (X, Y) is defined as

F(X,y)

=PX<x, Y=y)forx,y €eR.

Assume the joint sample space S; has only three possible
elements (1,1),(2,1),(3,3).The probabilities of the elements
are to be P(1,1)=0.2,P(2,1)=0.3,P(3,3)=0.5.We find
FX,Y(X’Y)

In constructing joint distribution function we observe that has no
elements for x<1,y<l.only at the point (1,1)does the function
assume a step value.

So long as x=1,y=21 this probability is maintained.For larger x
and y the point(2,1) produces a second stair step of 0.3 which
holds the region x=22,y=1.The second step is added to the
first.Finallv third step of 0.5 is added to the two for x=3.v=3



Properties of Joint Distribution

* Properties:
1) Fyy(=o,y) = Fyy(x,-m) =0

Note (¥ ¢-a 7 (y)c(f < a)
that
2) Fx,y':leljin,}f (Z, o 1f 3 2 x, andy, =¥,
Ifx < x, and v < v,
X 2m, 0 2 Ol Sx. 0 2o
.'.P{}fi:-'fl,}‘riyl} iP{fiIE,F iyg}

R & U L I T T L
3) Fyylem,ch=1

4) Fy.(x) is right continuous in both the
variables Fy (2) = Fyy(x,409)



Properties of joint distribution

5) If x; < x, and =, < 27,

Pl{n <A &xy, g <T L)) =Fx,y(xz=yz:'_Fx,F(I1=J’z:"FE,F(I:4=J’1:'+FX,1":I1J1:'
Feylzyl, -2z m-o{yle

6)

Hy (%) = Fyy (x,+00)

(X £ x} ={X £ 2} {F £ +oo}
() = P{X L= P{X L ¥ L) = F,  (x, +o)

Fy () = Hype (00, 3]

Fyylry), -olrde-odyle

Fo0 and 70 Called marginal cumulative distribution
function



Marginal distribution functions

The distribution of one random variable can be obtained by
setting the other value to infinity in Fyy(X,y). The functions

obtained in this manner Fy(x),F,(y) are called marginal
distribution functions.

Example:
Fy v(X,y)=P(1,1)u(x-1)u(y-1)+P(2,1)u(x-2)u(y-1)+ P(3,3)u(x-
3)u(y-3)
P(1,1)=0.2,P(2,1)=0.3, P(3,3)=0.5if we set y=« then
Fy«(X)= 0.2u(x-1)+0.3u(x-2)+ 0.5u(x-3)
similarly
Fy(y)= 0.2u(y-1)+0.3u(y-1)+ 0.5u(y-3)
=0.5u(y-1)+0.5u(y-3)



Marginal distribution functions

« Consider two jointly distributed random variables and with

the

joint CDF [1-e *)1-e’) x20,y>0

I:x ,Y(X!y): %
1 0 otherw ise

1) Find the marginal CDFs
2) Find the probability P(1<x<2, 1<y<2)



Marginal distribution functions

_ [1-e x>0
a Fx(x):"m FX,Y(X’y):%
y=oe 0 elsewhere

N

_ [1-e”  y>0
F,(y)=lim FX,Y(X YY) =1
X 0 elsewhere

P<X<2 1<Y<B=F (22+F (LD-F (L2-F (21

=(1l-eY1-e))+(1-e))1-eN-(1-e)1-e))—L-e)1-e)
=0.0272



Joint Probability Density Function

o If are two continuous random variables and their joint
drsdribution function is continuous in and then we can
both define

joint probablllty density: functlon b))/

X,y )=
o0XxXaoYy

provided it
exists.

Clearly x Y
Fyy (X j j fy,(u,v)dvdu



Marginal density function

« The marginal CDF and pdf are same as the CDF and pdf of
the concerned single random variable. The marginal term
simply refers that it is derived from the corresponding joint
distribution or density function of two or more jointly random
variables.

« With the help of the two-dimensional Dirac Delta function, we
can define the joint pdf of two discrete jointly random
variables. Thus for discrete jointly random variables and

oy (X,y) = S Py (6 Y)S(X =X, Y=Y, )

(Xi,yj)e RxxRy.



Marginal density function

« The joint density function

[1-e?)(1-e?) x=20,y>0
FX,Y(X’y):4

|0 otherw ise
5 2
fX,Y (x,y)= X0y F)(’Y (X,Y)
PE
= [(1-e *")(1-e)]
OX0oYy

=2e e  x>0,y>0



Conditional distribution

« We discussed the conditional CDF and conditional PDF of a
random variable conditioned on some events defined in terms
of the same random variable. We observed that

Pl{X <afnB)
P(B)
d

fo (i1 B)=—Fy 11 5)

F,(x/B)= P(B) =0



Conditional density function

Suppose and are two discrete jointly random variable with the
joint PMF fxy(x,y) . The conditional PMF of y given x=x is
denoted by and defined as

Fy (Y 1X)

Pyp¥Vix)y= F{¥ = {5 = x})
_ PE = a2 = o)

P = a3
= Py LX) provided gL (x) =0
o i a0
Thiis,
Pyrxlof xy = D222V prowided p(x) =0

B X))



Conditional Probability Distribution Function

« Consider two continuous jointly random variables and with the
joint probability distribution function We are interested to find
the conditional distribution function of one of the random
variables on the condition of a particular value of the other
random variable.

 We cannot define the conditional distribution function of the
random variable on the condition of the event by the relation

F, .« (Y /x)=P((Y <yl X =X)
P(Y £y, X = X)
P(X = Xx)




Point conditioning

* First consider the case when X and Y are both discrete.
Then the
marginal pdf's

« fW(y)=P(Y=y) &(X)=P(X=Xx)

« The joint pdf is, similarly
fx v(X,y)=P(X=x,Y<y)

« Conditieraddensity function is given by
f (x/B)=




Point conditioning (contd..)

* The conditional pdf of the conditional distribution

Y[Xis
Foyin=PFeylX=x
riX

PFeyX=x
FX=x)

Distribution function of one random variable X conditioned by
that second variable Y has some specific values of y. This is
called point conditioning
* B={y-Ay<Y<y+Ay}
Where Ay is a small quantity that we eventually let
approach O.



Point conditioning (contd..)

FX(X/ Y- Ol g agag,
AY<YSY+AY): ey a
Fuay(X,¥)=2 2 P(X;¥)8(x=x)8(y-Y )

Now the specific value of y of interest is y,

Fx(x/Y = yk) = I:)(Xi’yk)u(x—xi)

. P (y)
fx(x/Y = yk) = P(Xi’yk)é)‘(x— X )
—. P (y )




Interval Conditioning

 Distribution function of one random variable X conditioned by
that second variable Y has some specific values of y. This is
called point conditioning B={y,<Y<y,}

«  P(X1,y1)=2/15,P(X,,y;)=3/15.etc.since  P(y3)=4/15+5/15=9/15
find
L(Xly=ys) e




Statistical independence

 Let and be two random variables characterized by the joint
distribution
function Folry)=HL izl Ly)

and the corresponding joint density
function

fx,y(xay) - a%ﬁﬂ (%))



Sum of two random variables

* We are often interested in finding out the probability density
function
of a function of two or more RVs

*The received signal by a communication receiver is given by

=4+

X P =

* where is received signal which is the superposition of the
message
signal and the noise.



corresponding to each (z<zWe can find a variable D,
Z. subset

{(x.>) g(xy) <z

L E(zV =P Z <=1
= P{{x2) (=)= D]
"L S



Central Limit Theorem

« Consider n independent random variables X;,X,,Xs...... xn ,The
mean

and variance of each of the random variables are assumed to

be

known. Suppose E[X]=4, var(x)Z:c;X and . Form a random
variable

Y =X A Kot Xy

The Meyar (V) = o —E{Z{Jf fig) Y

iml

SEE -l ¢ Y B ) (K- )

jm] lm] el i

= Gt Oy Tty

|
A, and }fj. are independent for: # ;.



Central Limit Theorem (contd..)

The CLT states that under very general {f;zxz}
conditions F W, )

converges in distribution to as

n— o

1. The random variables are independent and identically
distributed.

2. The random variables are independent with same mean and
variance, but not identically distributed.

3. The random variables are independent with different means
and
same variance and not identically distributed.

4. The random variables are independent with different means
and
each variance being neither too small nor too large.



UNIT-III
Operation of Multiple
Random Variables



Expected Values of Random Variables

* If g(x,y) Is a function of a continuous random variables X and
Y then
then the expected value of Is given by

U I g(x,y)f,, (x,y)dxdy  Continuous

a=E X,Y)|=
g=E[9(X.Y)] tZZg(xi,yk)Px,Y(Xuyk) Discrete



Example

*Consider the discrete random variables x and y. The joint
probability mass function of the random variables are tabulated
In Table . Findthe joint expectation of g(Xx,y)=xy.

ELXY 1=> > g(x,y)py (Xx,Y)

\Y\ 0 1 2 2y ()
v
0 025 0.1 0.15 0.5
1 0.14 035 | 0.01 0.5
po(x) | 035 045 | 046

=1x1x0.35 +1x2x0.01

= 0.37




Properties

« Expectation is a linear operator. We can generally
write
E[a;9:1(X,y)+a202(x,y)=a1E(91 (X, y)+a:E(g2(X.y))
E[xy+5logexy]=E[xy]+5E[l0gexy]

« If x and y are independent random variables and
9(x,y)=g1(x,y)*xg2(x,y) then
Elg(x,y)I=E[91(x,y)]XE[92(x,y]

g X, ¥ = 2o ':-;f-:'gz (F)

= T T & (X)g, (F) Frp (x y)dx

—_— s -0

— | | & (X)g, (V) Fy(x) /5 O)dxdy

bl = Ry = = |

= j = I::I:]f_.rlzﬂf}if?f? £, X Y ey
= Eg1 {X}Egz ':-.F::'



Joint moments about the origin

For two continuous random variables X and Y, the joint
moment
of order m+n is defined as

E(X™Y") = j jxmy“fXY(x,y)dxdy
And the joint central moment of order m+n is defined as
E(X —p )TE(Y — )" H(x—u )" (y—p )" f (x,y)dxdy

y XY

— 00 — 0

p# =E[x]

ﬂy=E[y]



Joint moments about the origin

For two discrete random variables X and Y, the joint moment of
order
m+n is defined as

E(X™Y")=> > x"y" f, (x,y)dxdy
y

X

And the joint central moment of order m+n is

defined as
E(X Y E( - uyr e = e )" (- ) (xy)

p# =E[x]
uy=E[y]



Covariance of two random variables

The covariance of two random variables X and Y is

defined as
Cov(X,Y)=E(X-u,)E(Y- uy)
Cov(X, Y)Is also denot as
Cov (X( Y) )— ?dﬂ ($XY n

- E(XY —pu X —p Y +,Uxﬂy)
= EBE(XY ) - pu E(X)—u EQY)+pu u
= BE(XY ) —u n,



Uncorrelated random variables

Two random variables are called uncorrelated if
Cov(X,Y)=0

Which also means E(XY)=p,p,

If are independent random variables, then

fxv (X’Y) — fx (X) fY (y)

Thus two independent random variables are always
uncorrelated.



joint characteristic function

The joint characteristic function of two random variables X
and Yis o
defined by ¢ (0, 0 )=E[e"""""]

If and are jointly continuous random variables,
then

¢ (a) @ )_ Hf (x,y) e "7 dxdy

— 00— 00



Two Random variables

Two random variables X and Y are called jointly Gaussian if
their joint

probability density 1 - et 5,

e 2-py’) oy og, o’

fX,Y (X’ y) - )
Z”UXO'yW/l_P «

1 o) ey y)Z]

-0 X< 00, ~e0 Y00

means pu, and
ariances ¢ G2
correlation coefficient pyy
We denote the jointly Gaussian random variables

and
with these parameters as (X,Y)~ N(Hx,ui,gxz,gy Pxy



Transformations of multiple random variables

The joint density function of new random variable
Y=T(X, %y, ... Xy) =1,23...n

The random variable Xj can be obtained from inverse
transformation

X j:Tj-l(Yl’YZ’ . YN)

X1 = 91_1(3’1’)’2’5 1yk)

-1
2 gz (y1’YZ1Dva )
|

F**

-1
Xn - gn (yl’yz’D’y kzn),




Transformations of multiple random variables

« Assuming that the partial derivatives; /oy, exist at every
bainy.,....Yi-n). Under these assumptions, we have the
following determinant J

-1 -1
ogt L pet
| OYy1 0Yn |

J =det| | 0 o
| g2 og- Ll
g
S BT P
| oY1 n ||

called as the Jacobian of the transformation specified by
(**). Then, the joint pdf of Y4, Y,,...,Y,can be obtained
by using the change of variable technique of multiple
variables.



Transformations of multiple random variables

« As aresult, the new p.d.f. is defined as
follows:

1,0 @700, 0,9 N3 for (v,,y,,0,y e

gy, y,, 0,y )=+
|LO,othervvise



Linearly transformation of Gaussian RV

« Linearly transforming set of Gaussian random variables
X1,%,,.....X5 fOor which the joint density function exists. The

new variables
Y, Y. Yyare

o Yi=ap XitapXot. ..., +a Xy
¢ Y2:a2 1X1+ a22X2+ ...... +a2NXN
i YN:aN 1X1+aN2X2+ ...... +aNN

X
a1l Nal2... alN
IT] =|a21 a22.. a2N
aN1l aN2.. aNN
¥1
Yl = ‘ X=Tr
¥N

1Y,....Yy=alY +aiy,+. .. .+aNY

[YI=[TIL
X]



Stochastic Processes: Temporal
Characteristics and Spectral Characteristics




Random Process

 The concept of random variable was defined previously as

mapping
from the Sample Space S to the real line as shown below
A random process is a process

(i.e., variation in time or one
dpaeakianiabse behavior is not
completely predictable and can
be characterized by
statistical laws.
1 Examples of random
processes Daily stream
flow
Hourly rainfall of storm
events Stock index




Random Process (Contd..)

dThe concept of random
process can be extended to
iInclude time and the
outcome  will be random
functions of time as shown
beside x(t, s)

dWhere s Is the outcome of
an experiment

O The functions

O X,,,(t), anl(t)’_xn (t), x, . (1),O
are one realizations of many

of the random process X(t)

Q Arantomrprabess also represents a random variable when time
is fixedariable



Classification of Random Process

Q Classification of random
process

dContinuous random process
dDiscrete random process
dContinuous random sequence
dDiscrete random sequence
Continuous time t => x(t) = Random

process Discrete time n => x|n] =
Random sequence



Continuous Random Process

L Continuous random
process

Continuous time
t x(t) =

Continuous
Random process




Discrete Random Process

U Discrete random
process

Continuous time t

X(t) = Discrete

Random process




Continuous Random Sequence

L Continuous random
sequence

discrete time n
X(n) =

Continuous
Random sequence




sequence discrete time

] Discrete random
n

Discrete Random Sequence

|-

qll.'l

=

’ll'll-

X(n) = discrete
Random sequence

T

r

TTTT]

-
——

-1
L
-

——.— —— —e—

1 1]

111

—

——

1
I
1

——




Random Process Concept

U Deterministic random process
dFuture values of any sample function can be predicted
exactlyfrom the past values

X(t):Acos(a)ot+9), Ao ,0: r1v.'s

O Non deterministic random process
4 Future values of any sample function can not be predicted
exactly
from the past values



What is a distribution and density?

O A distribution characterises the probability (mass) associated with
each possible outcome of a stochastic process

4 Distributions of discrete data characterised by probability mass

functions
P(X. =x)
| I I > P(X =x)=1
. . . 0 1 2. 3 X . .
4 Distributions of continuous data are characterised by probability
density

functions (pdf)
f(x) .
J f(x)dx =1
O For RVs that map to the integ*ers or the real numbers, the
cumulative
density function (cdf) is a useful alternative representation




Stationary and Independence

4 Stationary Random Process
d all its statistical properties do not change with
time

1 Non Stationary Random Process
[ not statior One particular realization of the random process {X(#)}

A \
S
I
1
|
5 l I: \vvs . >
u \I‘/ 'U \\JW\/ time, t
A
A

X() FDE] /\ X(7)
PDI/ >/ iR

// time, t




Stationary and Independence (Contd..)

4 First-order densities of a random process

Q A stochastic process is defined to be completely or totally
characterized if the joint densities for the random variables

X (t,), X(t,),0Xx(t )areknown foralltimes t ,t,, 0,t and all
n.

O For a specific t, X(t) is a random variable with distribution
F(x,t) = p[X (t) < x]

U The function F(x,t) is defined as the first-order distribution of
the random variable >f(gt). tIt)s deripative with respect to x
X, =

OX

IS the first-order density of X(t).



Stationary and Independence (Contd..)

4 If the first-order densities defined for all time t, i.e. f(x,t), are all
the same, then f(x,t) does not depend on t and we call the
resulting density the first-order density of the random process
{x(t)} ; otherwise, we have a family of first-order densities.

O The first-order densities (or distributions) are only a partial
characterization of the random process as they do not contain
Information that specifies the joint densities of the random
variables defined at two or more differenttimes.



Stationary and Independence (Contd..)

dFort=t;and t =t,, X(t) represents two different random
variables
X1 = X(t1) and Xz = X(t2) respectively. Their joint distribution is
given by
FX (xl, X tl,tz) =P { éz(lgl)(gxlx,lx’zx, tf’f%z))s x2}
fo(x,, x,,t,t)= i
and ox, 0x,
represents the second-order density function of the process X(t).

d Similarly f, (x,.x,,0x,.t.t,0,t,) represents the nthorder
density
function of the process X(t).



Mean and variance of a random process

dThe first-order density of a random process, f(x,t), gives the
probability density of the random variables X(t) defined for all time
t. The mean of a random process, my(t), is thus a function of time

specified by

+00

m, (1) = E[X ()] = E[X, 1= | x f(x.t)dx,

 For the case where the mean of X(t) does not depend on t, we
have

m,(t)=E[X(t)]=m, (a constant)

d Bbhe varignce of a random process, alsqg a function of time, Is
defined’ x ) = E?[X(U— m, (D17 g= E[X T-[m, ()]



Stationary and Independence

U The random process X(t) can be classified as follows:
4 First-order stationary

A random process is classified as first-order stationary if its
first-order probability density function remains equal regardless of

any shift in time to its time origin.

QIf we X, let represent a given value at time tlthen we define a
first- order stationary as one that satisfies the following

equation:
fu(Xp)=FTx(Xyt1)

H The physical significancg gf tisiEeyAReLdl e prio SeNSHItY

function, t1 and thus any time shift t

dFor first-order stationary the mean is a constant,

Independent of
any time shift



Stationary and Independence (Contd..)

dSecond-order stationary

A random process is classified as second-order stationary Iif its
second- order probability density function does not vary over any
time shift applied to both values.

A In other words, for values X, and X, then we will have the
following
be equal for an arbitrary time shift t

fX(X tl’X t2):fX(X t1+T’X t2+r)

dFrom this equation we see that the absolute time does not affect
our functions, rather it only really depends on the time difference
between the two variables.



Stationary and Independence (Contd..)

For a second-order stationary process, we need to look at the
autocorrelation function ( will be presented later) to see its
most important property.

Since we have already stated that a second-order stationary
process depends only on the time difference, then all of these
types of processes have the following property:

R o (L17) = E[X (D)X (t+7)]

= Ryx (1)



Wide-Sense Stationary (WSS)

1 A process that satisfies the following:

J The mean is a constant and the autocorrelation function
dependsonly
on the difference between the time indices

E[X(t)] = X = constant

E[X (X (t+ 1)] =R (1)
Is a Wide-Sense Stationary (WSS)

Second-order stationary Wide-Sense Stationary

The converse Is not true Iin
general



Wide-Sense Stationary (Example)

X (t)= acos( a)ot+go), o ~U(0,27).
This gives

p ()= E{X(1)} =akE{cos( o t+¢)}

= a cos a)OtE{cos o} — asin a)OtE{sin »}=0, Consta
nt
2r
since.  E{cos ¢}= -t [ cos pdp =0 =E{sin ¢}
0

2

Similarl

y
R (t.t) = a’E {cos( ot +p)cos( @t +¢)}

2

a

= —E{cos o (t, -t,) +cos( w (t, +1,)+2 @)}
2
a2

- —cos @ (t —t). So given X(t) is

2 WSS



Nth order and Strict-Sense Stationary

In strict terms, the statistical properties are governed by the joint

probability density function. Hence a process is nth-order Strict-Sense

Stationary (S.S
VA [z vttty =falxo xo vt AL L bEA) forall . L fyand At

For any c, where the left side represents the joint density function of

the random variables X=X(t) X =X(t) O, X =X(t)
and the right side corresponds to the joint denS|ty fuhction of the
ven@dme X := X (t,+c), X,= X(t,+c), O, X'= X(t.+¢c).

S

O A process X(t) is said to be strict-sense stationary if
truedoationt(l)i=1,2,0,n, n=1,2,0 and any c.

all



Ergodic Process

A stationary random process for which time averages equal
ensemble
averages Is called an ergodic process.

x[n] = m |

<x[n R m]x[n]*>: s [m]



Ergodic Process (Contd..)

It Is common to assume that a given sequence is a sample
sequence of an ergodic random process, so that averages can
be computed from a single sequence.

In practice, we cannot ) in[n]
compute with the limits, L
but instead the quantities.

Similar quantities are often L =
computed estimates 1 L1

of thea mean, <x[n+m]x*[n]> = —Y x[n+m]x"[n]
autooaariaten - L

and



Time Average and Ergodicity

O The time average of a quantity is
defined as 1T
Ale]=lim — [ [e]dt
To@T I°T
Here Ais used to denote time average in a manner analogous
to E
for the statistical average.

dThe time average is taken over all time because, as applied to
random processes, sample functions of processes are presumed
to exist for all time.



Time Average and Ergodicity (Contd..)

4 Let x(t) be a sample of the random process X(t) were the

lower case
letter imply a sample function
Q We define the mean x=A[x(1)]
(YW Fercase letter is used to imply a sample
aAncctiom}ime autocorrelation R (1) as
function follows:

Xx=A[x(t)] = lim iJTx(t)dt
Tow 2T <7

R, (1) = A[x(@)x(t+ 1)] = lim L X () x (t +1) dt
Tow 2T -7

O For any one sample function (i.e., X(t) ) of the random process
X(1),
then Agirive  RépeRalS SIMply RrodugetWaAHBIeSR . (1)

average
for a specific value of t



Time Average and Ergodicity (Contd..)

d Since the sample function x(t) is one out of other samples

functions
O PR AN AP Butocorrelation (1) are random
X variables
O By taking the expected value ~— and 9* (1) ,we
for I 1 7 X obta}in X X T
E[x] = E[A[x(1)]] = E Hm o _Tx(t) dtJ = TIer; ;j_TE[X(t)] dt
_dim [ Xdt = lim X(1) =X
To>w 2T ¢-T T—>o
E[% (0] = E [ALXOxX(t + ©)] :E|[Iim 2 okt + 0 at |
Tow T *°7

1 T 1 T
= lim —j E[x()x(t + 1)] dt = lim —j R,,(t)dt = R, (1)
Tow 2T 777 Tow 2T °°7T



Time Average and Ergodicity (Contd..)

d Time cross

correlation 1 T
R () =A[x(t)y(t+7)]=lim S x(t)y(t+ 7)dt
To>wo?T -T
Q Ergodic X=X
=> R (r)=R _(7)

4 Jointly Ergodic => Ergodic X(t) and
Y(1)

® (r)=R_(7)



Introduction to Autocorrelation

Autocorrelation occurs In time-series studies when the errors
associated with a given time period carry over into future time
periods.

For example, if we are predicting the growth of stock dividends,
an overestimate in one year is likely to lead to overestimates in
succeeding years.

Times series data follow a natural ordering over time.

It is likely that such data exhibit intercorrelation, especially if the
time interval between successive observations is short, such as
weeks or days.



Introduction (contd..)

We expect stock market prices to move or move down for several
days in succession.

We experience autocorrelation when

E(Cu;u ;) #0
Tintner defines autocorrelation as ‘lag correlation of a given
series within itself, lagged by a number of times units’ whereas

serial correlation is the ‘lag correlation between two different
series’.



Autocorrelation and its Properties

U The autocorrelation function of a random process X(t) is the
eqrxehatipn of two random variables x = and X,=X(t,)

X (t
by the proceés)at timestl and t2 : !
R X X (tl’tz) = E [X (tl)x (tz)]

1 Assuming a second-order stationary

process
Ryx(tt+t)=E[X(t) X (t+1) ] Ry (1) = E[X ()X (t+ 1)]



Autocorrelation and its Properties (Contd..)

J Autocorrelation:

AN o\

w

o

T

time, t T
O The autocorrelation, or auto covariance, describes the
general dependency of x(t) with its value at a short time

later, x(t+t ; _
(px)(r): Lim ij [x0 -x J[xt+ o -x Jat
T—> o T 0
d The value of p ) at T equal to O is the Z
. variance, o
a “ormallzed auto-correlation:  p(t)o,? R(0)=

R(7)= 1



Autocorrelation and its Properties (Contd..)

R(t)

—

0 ~___
Time lag, ©
O The autocorrelation for a random process eventually decays

to
zero at large T

O The autocorrelation for a sinusoidal process (deterministic) is
a
cosine function which does not decay to zero



Autocorrelation and its Properties (Contd..)

T,= [ R(o)dr

0

R(t)

Z

Time lag, t

O The area under the normalized autocorrelation function for the
fluctuating wind velocity measured at a point is a measure of
the average time scale of the eddies being carried passed the
measurement point, say T,

d If we assume that the eddies are being swept passed at the

mean velocity, U.T,is a measure of the average length scale of
the eddies. This is known as the ‘integral length scale’, denoted

byl,



Autocorrelation and its Properties (Contd..)

O Properties of Autocorrelation function
R (t,t+7)=E[X({)X(t+17)]=R,,(7)

() |Rux (£)|<Ryx(0)
(2) Ry (=7) =Ry (7)
(3) R_(0)=E[X(1)’]

(4) stationary &ergodic X (t) with noperiodic components

—2
= Im R, (7)=X

|7] =

(5) stationary X (t)has a periodic component

= RXX (r)hasaperiodiccomponentwith thesam eperio d.



Cross-correlation

1 Cross-
correlation j/\vm ~
| N/
t X
: time, t T
y(t)
~o N Y
N LN AN
: y
time, t T

 The cross-correlation function describes the general
dependency of x(t) with another random process y(t+1),
delayed by a time delay, t

e, (t)=Lim —[ fko-x ft +o-y]a
To>w T 0



Correlation Coeffeicient

[ Correlation coefficient

 The correlation coefficient, p, is the covariance normalized
by the

standard deviations of x andy
X' (t).y" (t)

p:
G,.0

y

When x and y are identical to each other, the value of p is +1
(full

correlation)

When y(t)=—x(t), the value of pis -1
In general, - 1< p <+1



Application of correlation

 Correlation - application:

d The fluctuating wind loading of a tower depends on the
correlation coefficient between wind velocities and hence
wind loads, at various heights

u(z,).u(z,)

Gu(zl)'cu(ZZ)

For heights,z, p(z,.2,)=
and z



Properties of Cross Correlation

Properties of cross-correlation function of jointly w.s.s.
r.p.’s:

Ry (7) =EL[X(1)Y (t+7)]

1) Txv(—f)r R\Yf (T)

(2) Ry (7) < 1 Ryx(0)Ryy (0)
(3) ‘RXY(T)‘S;[RXX(O)JrRYY(O)]

EHY (t+7)+a X (1)}?]120, Va

JRo O)R,, (0) < %[Rxx (0)+R.,, (0)]



Example of Cross Correlation

A,B:rv.'s @ =const
] . . 0

E[A]=E[B]=0, E[AB]=0, E[A?]=E[B%]=0 °
X (t)= Acos(a)ot)+ Bsin(a)ot), Y(t)=Bco s(coot)— Asin(a)ot)

E[X(t)]= E[Acos(a)O t)+ Bsin(a)0 t)] = E[A]cos(a)0 t)+E[B]sin(co0 t)=0

Ry (t,t+7)=E[X(t)X(t+7)]
= E[AZCOS(%) t)cos(ao) t+o 7)+ AB cos(cé) t)sin(cé) t+(gr)
+AB sin(e t)cos(o t+o 7)+ stin(ao) t)sin (o t+wo7)]

=o’{cos(w t)cos(@w t +® 7)+ sin (@ t)sin (o tJBa)T)}:JZCOS(c%T)
0 0 0

= X(t):w.s.s.



Example of Cross Correlation

Y(t):w.s.s.

Ry (2)=E[X(1)Y (t+17)]
= E{[Acos(a)ot)+ B sin (a)ot)][BCOS(a)O(t + 7)) — Asin (a)o(t+r))]}

= E[AB cos(w t)cos(o t+o 7)+ B* sin (@ t)cos(e t+ar)
~— A’ cos(w t)sin(e t+o 7)- ABsin(e t)sin(o t+w7)]
= o ’[sin (@ t)cos(w t+o 7)-cos(w t)sin(w t+wr)]

=—o’sin (@ )

= X(t)&Y(t):jointlyw.s.s.



Covariance

1 Covariance

[ The covariance is the cross correlation function with the
time
delay, t, set to zero L.
c,, (0) =x'@y @=Lim . ?jo [x(t) - x].[y(t)- y]at

U Note that here x'(t) and y'(t) are used to denote the
fluctuating
parts of x(t) and y(t) (mean parts subtracted)



Auto Covariance

O The auto covariance Cx(t1,t2) of a random process X(t) is
defined asthe covariance of X(t1) and X(t2)

Cx(t1,t2)=E[{X(t1)-mx(t1){X(t2)-mx(t2)}]
Cx(11,t2) = Rx(t1,t2)-mx(t1)mx(t2)

O The variance of X(t) can be obtained from Cx(t1,t2)
VAR[X(1)] = E[(X(t)-mx(t))2] = Cx(t,1)

O The correlation coefficient of X(t) is given by

C (1)
p,(t,,t,)=
O (1, 1) 4/C (15, 1,)

‘px(tl’tz)kl




Auto Covariance Example#l

Example:

Let X(t) = Acos2Tt, where A iIs some random variable
The mean of X(t) is given by

m, (t)= E[Acos 2zt]=E[A]cos 2xt
The autocorrelationis

R, (t,,t,)=E[Acos(2xt,)Acos(2rt,)]
R (t,t)= E[Az]cos(27zt1)cos(27zt2)
And the autocovariance
Cu(t,t,)=R, (t,,t,)—m,(t;)m,(t,)
C, (t,t,) = E[Az]— E[A]Zécos(z zt,)cos(2 rt,)

C,(t,,t,)=VAR[A]cos(2 rt,)cos(2rt),)



Auto Covariance Example#?2

Example:
Let X(t) = cos(wt+0), where 0 is uniformly distributed in the interval (-
TT, 7).

The mean of X js GYEIN: - oy - - [ cos( ot s )=0

The autocorrelation and autocovariance are then
C,(t,t,)=R (t,,t,)=E[cos( wt,+ 8) cos( mt,+ )]

C,(t,t,)= iji{cos( w(t, —t,)) +cos(@(t, +1,)+26)}d6
2m ° 2

C,(t,t)= icos(a)(tl—tz))
2



Cross Covariance

O The cross covariance Cx,y(t1,t2) of a random process X(t)
and Y(t) is defined as

Cx,y(t1,t2)=E[{X(t1)-mx(t1)KY (t2)-my(t2)}]
Cx(11,t2) = Rx,y(t1,t2)-mx(t1)my(t2)

O The process X(t) and Y(t) are said to be
uncorrelatedif Cx,y(t1,t2) = 0 for all t1, t2



Random sequence

Random Sequence (=Discrete-time R.P)

X(nT,)=X[n]

Mean=E(X[n])

Ry (n,n+k)=E(X[n]X[n+k])

Co (N, n+k)=EL(X[N]=X[N](X[Nn+k]-X[n+k])}
—R (n,n+k)=X[n]X[n+k]

XX

Ry (n,n+k)=E(X[n]Y[n+k])

Co (N n+K)=E{(X[n]=X[N])(Y [n+K]=Y[n+k])}
=R (n,n+k)=X[n]Y [n+k]



Gaussian Random Process

A Let X(t) be a random process and let X(t1), X(t2), ....X(tn) be the
random variables obtained from X(t) at t=t1,t2........tn sec
respectively

O Let all these random variables be expressed in the form of a

madtrix | |
X(t,)
X = fx (tﬂ
| |
| X(t,)]
d Then, X(t) is referred to as normal or Gaussian process
If all the

elements of X are jointly Gaussian



Gaussian Random Process

- continuous r.p. X(t), —-ow<t<w
1 1 — —
fx(xllm’XN;tpD’tN): EXp{——[X—X] CX [X_X]}
\/(27Z')N Cx‘ 2
X, =E[X(t,)] c,=C._(t.,t)

stationary = E[X(t)]=X_ (const) & R,,(t,t,)=R,, (t, —-t.)

CXX(ti’tk):CXX(tk_ti)

w.s.s. Gaussian = strictly stationary



Gaussian Random Process

W.s.s. gaussianr.p. X(t)

|

_ _ 1
X =4 R, (r)=25e t=t,+ —, 1=1,2,3.

C. =C_(tt)=R (t,t)-X >=25e 2 —16
) | _
) ) 25-16  25e 2-16 25e° -16 |
n Cin Cy 3 3
c,=:C, C,_ C,i=l25e2-16 25-16  25e 2 —16
C C 3
-t 8l o5e® 16 25e 2-16  25-16




Properties of Gaussian Process

O If a gaussian process X(t) is applied to a stable linear filter, then
the random process Y(t) developed at the output of the filter is
also gaussian.

O Considering the set of random variables or samples X(t1),
X(t2),.....X(tn) obtained by observation of a random process X(t)

at instants t1t2,....... tn, iIf the process X(t) is gaussian, then this
set of random variables are jointly gaussian for any n, with their
n-fold joint

p.d.f. being completely determined by the set of means.
mx(ti) = E[X(t1)] fori=1,2,....n
and the set of auto covariance function
Cxx(t1,t2) = E[{X(t1)-E[X(t1)][H{X(t2)-E[X(t2)]}]
O If a gaussian process is wide sense stationary, then the process

IS also
stationary in the strict sense
4 If the set of random variables X(t1),X(t2)...X(tn) are uncorrelated
then
they are statistically independent



Poisson Random Process

dwe introduced Poisson arrivals as the limiting
behavior of Binomial random variables

where
(" k arrivals  occur in an k
P l=e_l—/} K =0,1 2.0
| interval of duration A" k!
A
A=np = uT - — = uA
T
kTairat SELEL

) RAY




Poisson Random Process (contd..)

1 It follows that

(" Kk arrivals occur in an L: e_zm(z/%)k

P4 k=0,1 2,0,
| interval of duration 2A" | k!
since in that
2A
case np, =ul -—=2uA=2A.
T
O From the above equations, Poisson arrivals over an interval
form
a Poisson random variable whose parameter depends on the
duration

of that interval.

dThe Bernoulli nature of the underlying basic random arrivals,
events over non overlapping intervals are independent. We shall
use these two key observations to define a Poisson process
formally.



Poisson Random Process (contd..)

d Definition: X(t) = n(0, t) represents a Poisson process if
(i) the number of arrivals n(ty, to) in an interval (t1, t2) of length t =
to—11

IS a Poisson random variable with parameter 2.

Thus (A1)
P{n(t,t,)=k}=e"" T k=0,1,2,0, t=t, 6t
an '

¢i) If the intervals (t1, t2) and (ts, t4) are non overlapping, then the
random

variables n(t1, t2) and n(ts, t1) are independent.

Since n(0, t) ~ P (At),we have

E[X(t)]=E[n(0,t)]=At
and

E[X?(t)]=E[n?(0,t)]=At+ A%t°.



Poisson Random Process (contd..)

 To determine the autocorrelation functionrt,t ), let t2>t1,
then from (ii) above n(0, t1) and n(t1, t2) are independent

Poisson random variables with parameters ;t and A (t,
Ty respectively. ,
S E[n(0,t)n(t,t )I=E[n(0, t )IE[n(L, 1 )]=A"t(t —t).
Bu
t n(t,t)=n(0,t)-n(0,t)=X(t)- X(t)

and hence the left side of above equation can be
EWHIER BS )¢ x (1) - x (1)1 = R, (41— EDX (1))
R (tl,tz)z/lztgt - t)+ ELX Z(tl)]

_ 2
—ﬂt1+ﬂ,tlt2’ t,>1, .

L Ll 2

Similarl R O(t,t)=A4At +A°t t ., <.
y 2

Thu RO(L,t)=4"1 t,+ Amin( t,,t,).

S



Poisson Random Process (contd..)

Poisso
DR
; g . arrival

dNotice that the Ay | t
Poisson process X(t)
does not represent a .
wide v
sense stationary » _

process. >

-1

[ Define a binary level process
Y (t)=(-1)""

that represents a telegraph signal Notice that the transition
iInstants {t} are random Although X(t) does not represent a
wide sense stationary process,



Poisson Random Process (contd..)

its derivative x ¢)does represent a wide sense stationary

process. d(-)
X (1) > > X)
dt
(Derivative as a LTI
system)
From there
d t) dAt
,uxy(t)z #( ): =1, a constant
dt dt
an
d :
OR._(t,t 1A%t t <t
R (t,,t)= ol B h L
0 t, AL+ A4t >t
=1t + AUt —-t)
an 1 1 2
d 0 RXX'(tl’tZ) _

R (t,t,)= AT+ A8t | - t,).

ot



Poisson Random Process (contd..)

Define the
processes, .
Y(t)= 2N,  Z(t)= 2 (1-N;)= X(t)-Y(t)
we claim that both Y(t) and Z(t) are independent Poisson
processes
with parameters4pt and iqt respectively.
Proof

Y(t)=2 P{Y(t)=k[X(t)=n}P{X(t)=n)}

n=k n
But given X(t) = n, we Y(t)=2N; ~ B(n,p) so
have =t that

P{Y(t)=k[X(t)=n}=()p'a" ", O0<ks<n,

d P{X(t)=n}=e" (41) .

n!



Poisson Random Process (contd..)

k o — At

w0 : e °°
PLY(t)=k}=e""} (n_r;!)!k!pkqn_k Mnt!) B | (At)" 2. (?nl—t)k)!
n=k k! T[] [
e—(l—fl)/1t 1 ot k
=(Apt)" =e " (Apt)” ,  k=0,1,2, O
k! k!
~ P(Apt).

More generally,
P{Y(t)=k,Z(t)=m}=P{Y(t)=k,X(t)-Y(t)=m}
= P{Y(t)=k,X(t)=k+m}
= P{Y(t)=k|X(t)=k+m}IP{X(t)=k+ m}

K+ m n n
:(k+km)pkqm.e—/“ (;Lt) _e—/lpt (ﬁ’pt) e_,1qt (//th)

(k+rm)! gpggok! 0ooof!

P(Y(t)=k) P(Z(t)=m)
P{Y(t)=k}P{Z(t)=m}, Which completes the
proof.



Poisson Random Process (contd..)

-- Integer-valueddiscrete r.p. X(t), —oo<t<ow

X(0)=0 t<t, = X(t)<X()

a

PIX(t )= X (t)=k]= [A(t, ~1,)] e M v_01,2.0
k!

t<t<t<t, = X (ta)— X (tb) & X (tc)— X (td)are indep.

X (t)=E[X(1)] = At R, (t,t)= E[X(t) J=At+(At)

C, (t,t)=At



Poisson Random Process (contd..)

O<t <t —
1 2

PIX(t) =k, X(t,) =k, ] =P[X(t) =k, X(t,) =X(1,)=k,=k]

( (ﬂtl)kl e—/lt1 [ﬁ(tz _t)](kz—kl)
S (k —K)!
S

((ay)sae, -0)1%™

€
| — |
kl.(k2 k)l

|

AT S k>0

2 1

otherwise

k. >k >0

2 1

otherwise



Poisson Random Process (contd..)

O<t <t =
1 2

PIX (t,)=k, [X(t)=k,J=P[X(t,)-X(t)=k,~k,  |X(t)=k,]
=P[X (t) - X (t)=k —K]

([ﬁ(tz —Q](kz_kl) o ~Alte-t) K >k
| : 2 = ™1
= (k2 —kl)!

L 0, otherwise



X (t) =Poissonr.p.

O<t <t <t
1 2 3

PLX (1) =k, X (t,)=k, X (t;)=k;]
=PIX(t) =k X (t)-X(t)=k —k,X(t)=-X(t)=k —k]
= P[X(t)=kIP[X(t )= X(t)=k —k]IP[X(t)-X(t)=k —k]

B (/ﬁttl)kl o At [ﬂ'(tz _t1)](k2_kl) o ~Atzt) [)i(t3 B '[2 )](ks_kZ) o ~Alt-ta)
kl! (k2 —kl)! (k3 — kz)!

) (itl)kl[ﬁ(tz _t)](kz—kl)[/l(t - tz)](ks—kz) e_,ug
- k Mk —k)i(k —k )!




Stochastic Processes: Spectral
Characteristics



Introduction to Power density spectrum

O Fourier

integral I e e

X (t)= —J’ [j x(r)e drle'd w
27 - d-

O Fourier
transform

0

X (@) = LO x(t)e 'dt

O Inverse
Fourier

ransform 1 = -
transfo x(t):—J X(w)e''d w

21 °



Introduction (Contd..)

[ x(t), ~T <t<T
XT(t):%
| 0, o/w

)
Assume | % (D)dt<eo, forall finite T.
-T

T

X (o) = J_O; X (e dt = [ x(te ' dt

U Energy contained in x(t) in the interval (-
TT)

E(T)= j:xT ()*dt= [ x()*dt- ijz X, (@) do




Introduction (Contd..)

U Average power in x(t) in the interval (-
TT)

P(T)= 2 [  x@zdt= 1 [

2T -7 2 = 2T

X (@) |

dw

x(t) > X(t), take expectation, letT —ow.

O Average power in random process X(t)

E|X, ()] ]
d

] 1 .7 2 1 = .
P = 1im ;I_TE[X“) Jdt= ;I_wllm

)
T T 2T
2 1 ”
P =ALELX(1)°]} Prc = 5[, S (@)do
/AR
2
: E[‘XT(G))‘ ] densit trum
S, =lim power density spectru

T—>o 2T



Example-1

P =ALELX(1)]}

w.sss. = Pp.. =R (0)

XX XX

T
d Exampl  X(t)= A0 cos(a)ot+®) ® -- uniformly distributedon (0, —)
Q_ 2 Az2 :
E[X(t)2]=E[Af)cosz(a)ot+®)]=E[A°—+ —cos(2gt+20)]
2 2

A2 2 7 5 > A° z
_ o ﬁ Iz—COS(Za) L +20)d0 =i +2sin(20 ot +20) |920
2 2 %o g 2 o _

£t
=+ —-sin(2o | t)
2 T

1T AA As
P. =ME[X(1)']}= lim — [ [——-—sin(Qw t)]dt= —
" ITIED 2T I 2 ° 2



Example-2

d Example- X(t)= A cos(o t+0)
2 T
—jort T 1 jO . jo,t -jO . —jootq. —jot

X (o) =J' A, cos(w t+0)e dt= J’ A, —[e7e™ +e e e Tt

-T -T 2
_ ﬁeJ®J‘T ej(wo_w)tdt+ ie_je) jT e_j(a)0+a))tdt

-7 2 -7

o sin [(a)—a)O)T] _je SN [(a)+a)0)T]
=A'I;e +A0Te
(0 —@,)T (0 +w,)T
T 1 7 -l sin (BT
T 15 =t 15 pT
2
. ElX,(@)]] |
S« =lim power density spectrum

T 2T



Example-2 (Contd..)

X (a)):AT(()e o s in [(a)—a)O)T] .+ ATe o sin [(a)+a)o)T]
(a)—a)O)T (a)+a)0)T

) Csin[(w-o )T] sinf[(o+ o )T]
XT(a)) :A-l(;e - j® 0 " AOTe jo 0
(0 -0 )T (0 +o )T

, Sinz[(a)+a)o)T]

‘XT(a))‘Z:XT(w)XT(a))*=A§[TZSi? [(ca—)az);)zT]Jr ( =
a)—a)o a)+a)0

+A20T2(ej2® +ej2®)sin [(0—w,)T]sin[(w+w,)T]

(a)—a)o)T (a)+a)O)T

E[e”@ +e"2®]:E[ZCO s20]= _[2—2co s20d@ = —sin 26 Z/Z
0 T T

E[|XT(a))|2] Ajfr T sinz[(w—a)o)T] T sin’[(@ + o )T ]
= — + —

2T 2 (w—w0)2T2 T (a)+a)0)2T2




Example-2 (Contd..)

sin ~ X
J' —dx =7
c X
- T sin?(aT) » T sin®x 1
I — azj_ ————dx=1 (a)
. (aT)’ = X T
' T sin®(aT) JOO’ If o =0 (b)
im =
T— o g1 (OlT)Z LO, iIf a =0
i T sin®(aT)
(@) & (b) = lim — = 5(a)
T—> o g1 (aT)
2
E[IX.(w)] ] A2
S, (@)= 1lim ‘ ! ‘ = [0(0 —w,)+0(0 + o )]
T— o 2T 2
- 1~ Alx AL
P.=—1| S

XX (w)da)zz_ —[o(w-wo Jto(o+eo )]do = —



Properties Power density spectrum

Properties of the power density spectrum:
(1) S(®)=0
(2) X(t) real = S, (-w)=S,,(w)

(3) S, (@) is real E[|X; (@) ]

S, (@)=lim
1 o T oo 2T
(4) —j S, (@)do =A{E[X(1)°]}
21 7

PFOf(Z) XT(CO):J.T X(t)e_jwtdt

X (0) = j_TT X(t) e”dt= I_TT X (t)e”'dt= X, (o)

S (Cay tim EDCCOX G0N EDG@) X @)

a)
Tow» 2T To o 2T XX ( )



Properties Power density spectrum

Properties of the power density spectrum

X (t+g)—X(t
(5) S, (@) =0°S,, (@) d—X(t)zlim () - * ()
dt ¢>0 g
PF of(5):
[ X(t+e&)-X(1) it
%T(t)=|%|!m° £ ST
[ 0, o/w
f(t-a) «—> F(w)e
X (1) «—> lim X ()e” = X, (@) =jo X _ (@)
e—>0 &
% 2 Elljo X ’ i
S (@)=lim L T(w)‘]znm [‘Jw T(a))‘]za)zlim E[XT(Q)‘]zwzsxx(w)

T—>w 2T Tow 2T Toow 2T



Properties Power density spectrum

Bandwidth of the power density spectrum

X(t) real = S, (w)even

0

2
S, (@) lowpass form = W ? _[_0060 S,, (w)dw

ms

’ S do
root meansquare Bandwidth Lo o (@)

jwa)SXX (w)dw
0
S,, (w) bandpass form = o, =

meanfrequency

[ 8, (@)do

4Im(w—a70)zsxx (w)dw

rms 0

j S,, (w)dw

rmsBW




Example

10
S,, (w) = S,, (w) lowpass form
[1+(w/10)°]°

00 00 10 7zl 2 10 9
J' S .\ (a))da):j da):j 10sec” 0 d6
- = [1+ (@ 110)%]° 7121 + tan”® 8]°

22 100 7l2 , 712 1+cos26

:I d@:j 100cos 6’d9=j 100 d@ =50x
- l2 SEC20 - l2 - l2 2

w=10tand = dw =10sec’d do

° o 10w° @2 10°tan®@ .
I @ Sxx(a))da)zj' da):J‘ 10sec” @ dé
292 2 2
e o [1+ (@ /10)?] #i2[1+ tan? 6]
#2 10*an@ 712 712 1-c0s20
= d@:j 10%sin® o dH:I 10*
-z l2 SeC29 -z 12 -

7 l2 2

dd =5000x



Example

o0

J' ®°S,, (0)do
= = =100

[ 8, (@)do

2
ms

rmsBW W_ . =10rad/sec

10
[1+(w/10)%]°

Sy (@) =



Relationship between PSD and autocorrelation

1 = .
Z_I S, (@w)e"”" do =A[R , (t,t+7)]
T Y—®

S, (@)= jw AR, (t,t+7)]e " dr

. E[X-(0) X;(@)] | T , T o
S = | - = lim —E[[ X(t)e’"dt X (t,)e " dt
XX (a)) Tl—>moo 2T T—)ooZT [J‘—T ( 1)e 1 J-—T ( 2) 2]

= lim —j j E[X(t)X(t )]e ™ dtdt
T>w2T

. 1 ! ! jo (t1-t)
:ll—>mo02T »[—T I_TRXX(ti’tz)eJ o dtzdtl
1 © . 1 © 1 T T . .
jot . . jo(trt), jot
Z—LOSXX (w)e da)_—2 —wTIImZ_T jTJTRXX(tl,tZ)e dt,dt. e do
T T —-® T

‘!'L“wZT_f j R, (t, tz)—J‘ e d pdtgt |



Relationship between PSD and autocorrelation

jw S(t)e “tdt=1

S(t) «—— 1 L.
5()= —| e'daw
2 —00

1 =
jor _ i R +t —t dtdt
zﬂj (@)e'" do TurlanT j j L (L) (e )
1 7 1 7
=lim — R (Lt +7)dt =lim — R , (L t+7)dt
T—ow 2T - T—)oo2T

= A[RXX (t,t+17)]

AR (tt+7)] «— S, (@)

S, (@) = ji A[R,, (t,t+7)]e 7dr



d X () w.ss. = AR, (t,t+7)]=R, (1)

R () «——> S, (o)

Sy (@) = [ Ry, (2) e '"dr

1 = .
R, (7)= —J' S,, (@)e'"dw
27 Y-



Cross-power density spectrum

W(t)=X(t)+Y (1)

Ryw(t, t+7)=EW ()W (t+2)]=E{[X(t)+Y(t)][X(t+7)+Y(t+7)]}
= RXX (t,t+7)+ Rw(t’t +7)+ va(t’t +7)+ va (t,t+7)

Syw(@)=S  (0)+S,, (0)+F{A[R, (t,t+ )]} +F{A[R,, (t,t+7)]}



Cross-power density spectrum

[x(t),  -T <t<T (y(t),  -T <t<T
X (1) =3 yr(t)=1
| 0, o/w | 0, o/w

Assume IT [ (D dt< o & IT |y (D)|dt<oo, forall finite T.
-T -T

X (1) «—> X, (@) Vo) —— Yi(@)

Cross Power containedin x(t), y(t)in the interval (-T,T)

. XT(a))*YT(a))da)

1 o« e .
0 = o 53, 0= xosoa- |
ot 2T T 27 I 2T

Parseval's theorem



Cross-power density spectrum

average Cross Power containedin X (t),Y (t)inthe interval (-T,T)

— 1 7 ijw E[XT(a))*YT(a))]dw
T Jo | 27 - 2T

total average Cross Power containedin X (t),Y (t)

1 T 1 =  E[X,(0)Y (0
P, =Ilim —| R _(t,t)dt=—| Ilim [X (@) ¥y )]da)
ToxoQ T J-T 2 ¥ Tow 2T
_ _ E[X. (@)Y (@)]
cross-power density spectrum S,y (@)= 1lim

Toow 2T



Cross-power density spectrum

1 %
PXY = gj._w SXY (a))da)

S ()= tim @) X; @)
T 2T

1 = «
P, = g.‘._w S,, ()dw =P

=P +P
Total cross power XY o

X (t),Y (t) orthogonal = P =P, =0

YX



Properties of cross-power density spectrum

X (t),Y (t) real

Properties of the cross-power density spectrum:
(1) Sy(@)=S,(-®)=S ()

PFof(1): XT(a)):IT X (t)e “'dt

xT(an*::I;_X(t)%ﬂmdtz j;_X(t)e””dt:X (o)

ELY, (o) X, (-] EV,(@)X (@)

S,, (—w)=1lim o (@)
T 2T T 2T
S,, (—w)=lim ELY, (o) %, (—a))]_ lim =, (@) 7 4(@) ] =S (@)

To> o 2T To>w 2T



Properties of cross-power density spectrum

(2) Re[va (a))] & Re[SYX (a))] -- Even
(3) Im[SXY(a))]&Im[SYX(a))] --o0dd

A[R y (t,t+r)]<——FF—> S (w)

X XY

A[R ) (t,t+r)]<——FF—> va (w)

Y.

(4) X(t)&Y(t) orthogonal = SXY(a))stx(a))zo

X(t)&Y(t) orthogonal = R (t,t+7)=0 = A[R_ (t,t+7)]=0
XY XY

(5) X (t) &Y(t) uncorrelated & have constant mean X_,Y_
= va (w )= va (w)=272XYo(w)



Properties of cross-power density spectrum

PFof(5): R, (t,t+7) =XY = A[R(t,t+7)]=XY

= S (o) =2x XY S (w) = S ()"

X (1),Y (1) -- jointly w.s.s. = R (r) «—> S, (o)

FT
RYX (T) S Syx (0))



Relationship between C-PSD and cross-correlation

1 - |
E__I S, (@)e” do = A[R,, (t,t+7)]
T — o0

S ()= fi A[R,, (t,t+7)]e 7 dr

S, (@)=lim S @ @] —i—E”' X(t)ye " dt j Y (t)e hdt ]
T 2T T 2T

— lim _I I E[X ()Y (t, )]e ”dtdt
T5w)T

— lim _I I R (1, t)e‘”’(t t)dtdt
T—>002T

0

Sy SWderLIm—jJ&HHWW%meM
27 27 2 To=2T

= lim —J' J' R, (t,t )—J' glelrrimtalg odtgdt

T—>O°2T XYy Y172



Relationship between C-PSD and cross-correlation

Im S(t)e tdt=1

S() «—> 1
1 o

S(t)= _j e'da
2 7

0

1 . - 1 T T
;L@ Sy (@)e” dao :IT'TOOZT_I-T [ R (Lt)o(m +t —t,)dtdt,

T 1 T

1 :
=lim — | R, (t,t +7)dt =lim —( R __(t,t+7)dt

1’71

Towo 2T J-T Tow DT ¢-T
= A[RXY (t,t+7)]

A[R,, (t,t+7)] «——> S, ()

S, (@) = ji A[R,, (t,t+7)]e *7dr



Example

Exampl

e. AB

R, (t,t+7)=—{sin(a7)+cos[w ,(2t+7)]}
2

1T
A[R,, (t,t+7)] :ILTOOZT— ; R, (t,t+7)dt

AB AB T
= —sin (o,r)+ —lim —J cos[w  (2t+7)]dt
2 2 T—>002T -T

AB AB
— —3in (a)oz-):_[ejwor —e! 0]
2 4]

AB _ jzAB
Sy (@)= —[276(0-0,) - 276 (w+ w )] =
4 ]

[0(w —~w,)-0(w +w,)]



Linear system fundamentals

0

Linear
system

—> Output y(t)

hit. 1)

Linear System y(t) = j_ X(EYh(t,E)dE  Inpuxi —>
o(t—-&) — h(t, &) Impulse response
Linear Time-Invariant System (LTI system) Tnput x(f) ——>

—> Output y(1)

0

y(t) = [ x(Eh(t-¢)d¢s = | h(&)x(t-¢)d¢g
y(t) =x(t) *=h(t) =h(t) = x(t) convolutionintegral

Y(w)=X(w)H(w)

Th(g)etade
X(t)z ejw'f &: '[_OO ot

X(t) e

= [ h(©e dE =H(o)



Linear system fundamentals

R :
Example-1: H(s)= =
sL+R o——"TW °
R Input x(1) R Outputy(f)
H(w) =
JoL+R
0 0
LTI causal < h(t)=0 fort<0

LTI stable <« J'

h(t]dt<o



Random Signhal Response of Linear
Systems



Linear system fundamentals

Ideal lowpass filter [ o )
1
(e_jtow, ‘a)‘ < W 4 | (e)
H (@)=
| 0, o/w o)
1 W - jty@ jto 1 w j(t-t) @
h(=—] e e l®g gy = — [ e''""P4g
27[ -W 272_ —-W | H () or O(w)
W —— | F () ; o
_ 1 1 e ilt-to)o
27 j(t-t,) » "
) ~0(w)
1 el(tW g -ilt-tow
272- j(t - to) | H )| or @)
. R R
_ 1
Wosin[(t-t)W ] ’
T (t -t )W — S
) ‘~~A__\”‘”“

Not causal = Not physically realizable



Random signal response of linear systems

X (t) --w.s.s.randominput Y(t)=_[ih(§)X(t—§)d§

E[Y ()] = E[[ h(E)X(t-£)del=| h(EELX (t-&)]dé

_ X_Loh(f)dg -y
Ry, (t,t+7)=E[Y (1)Y (t+7)]

SE[[ hE)X(t=¢)dE [ h(E)IX (t+7 =&)AL ]

o0

= [ EIX (=&)X (t+=&)INE)IN(E ) d gde

o —00 o —

S [ R, (T+& ¢ )NE)N(E)dsds

o —00 o —00

X(t) wss. = Y(t) w.s.s.



Random signal response of linear systems
Ry ()= [ [ Ry (&, ~EINE)AE INE )AL,

= [ [[ R, (=&, =&h(=E)dEIn(E g,

0

= [ Ry (&) *h(=¢)

J —0 51:2-_

= RXX (z)*h(-7)*h(7)

BLICHLES

EIV(D71= [ [ Ry (&-E)N(EN(E,)dEde,
Example-1: white noise X (t) R (7)=(Ny/2)5(7)
ENY ()= [ (N,/2)5(,~£)nENE )dEds,

— (N, /2)[ ()%,



Random signhal response of linear systems
R, (t,t+7) =E[X ()Y (t+7)]=E[X (t)j_ih(i)X(Hr—i)dﬁ]

= [ E[X ()X (t+7-&)Ih()d¢

o0

=[ Ry (r=&)h(&)d¢

o —00

= RXX (r)*h(r) = va (7)

Ry (7) =Ry (-7)=R(-7) *h(-7)=R,(7) *h (-7)
| Ry (=Oh(-H)d¢
X(t) wss. = X (t) &Y(t) jointly w.s.s.

Ry (7)=R,,(z)*h(-7)=R,, () *h(7)



Random signal response of linear systems

Example-2: white noise X (t) R (7)=(Ny/2)5(7)

Ry@=R @)= [ R (—H)N()d¢

_ I“’ (N 12)6(z=&)h(£)dé = (N /2)h(7)

Ry () =R, (-7)=(N,/2)h(-7)



Spectral characteristics of system response
Ry (7) =Ry (7) *h(7) Syy(@) =3 ,y(@) H(w)
Ry (1) =R, (7) *h (~7) Sy (@)=S(@)H(-w)=5,,(0)H(®)
Ry, (1) =R (1) %N (=7) =R 1 (r) *h (z) *h (~7)

S, (@ =5 (@)H(@) =5 (0)H(@H @) =5 (@)H()]

h(r) <—— H(w)

h(z) real = h(-7) «——> H(-o)=H(®)’



Spectral characteristics of system response

1 = 1 = 2
average power p - 5 (w)dw :—j S, (@ )‘H(a))‘ dw
2 I 2 <=
Example-1: N0 1
S, (@) =— H(w)= _
2 1+(jwL/R)
2 N./2
SYY (w):Sxx (a))‘H (w)‘ - :
1+(wL/R)?
1 = N . 1
P =—1[ S, (0)do =—2 do
Yoogp e 4z 7-=1+ (wL/R)?
N 1 R, N R . N R
==L —sec 0do = —° j dg = —°
4 J-7121+tan’ @ L 4L 2-ni2 41



Spectral characteristics of system response

h(t) = (R/L)u(t)e "'" «———>  H(w)= !

1+(joL/R)
By Example-1,

N N N R . NR
| h(t)2dt = —2 [ (R/L)%e Rtdt = —2 e 2RUt|" _ o
YY

2 7 2 0 4L 0 4L




Random process through a LTl System

Impulse o
X(t) —> response [—=> Y1) Y (t)= J' h(z,)X (t - 7,)dr,
h(t) "

where h(t) is the impulse response of the

system
ﬂv(t): E [Y (t)]

C e =Er_’. h(Tl)X(t—Tl)dT—l
If E[X(1)] is finite [ )= t
zpadeSeyStemls = I_Zh(rl)E [X(t— rl)]dr1
If X(t) is =Iwh(fl)ﬂx(t—rl)drl
btédiorgystem DC =
response.

Hy =Uy I h(Tl) dT]_:ILlXH (0),



Random process through a LTI System

Consider autocorrelation function of
Y(1):
_RYE(tF ) T] (Er IV)YX(E)'{Y— (T,U)) ]dr ) _ |
_ Lj—oo 1 X 1J_wh(T2)X(ﬂ zz)dz2|J
If E[ X ?(t)]11s finite and the system is

stable, .

Ry (t,u)= | h(z, )R (-7 u—7)

2

drlh(rl)J‘_ dr

— 00

f R, (t-v, u-7,)=R,(t-—u-7, T7)_
(§tat|onary)

R, (1) = Z I: h(z,)h(z,)Rx (7 - 7,4+ 1,) dr,dz,
Stationary input, Stationary

output o
R, (0) = ErLYZ(t)]z j j h(z)h(z,)R (z -7 ) dz ds



Power Spectral Density (PSD)

Consider the Fourier transform of
a(t),
G(f) = j_w g (t)exp( — j2=ft) dt
g(t) = j_@@G(f)exp( j 2 xft)df

Let H(f ) denote the frequency
response, T =72-7T1

h(z,) = j_w H (f)exp(j2zfr,) df

ElY?(t) | .‘_wj_w[j_w H (f )exp(jZ;zle)dﬂP(z JR (7, —7)de dz,

|

_ (7 df H(f) derzh(rz)jwRx(rz—rl)exp(jZﬁffl)dfl

- | T df H(f) jwdrzh(rz Jexp(j27 fr )1 "R, (r)exp(-j2z fr)dz

d

H "(f) (complexconjugate response of the filter)




Power Spectral Density (PSD)

E|_|_Y2(t)] = j:df |H(f) HZ R (t)exp(-j2xfr)dr
H(f)| :the magnitude

s, (f)= Iw R, (r)exp(-2nft) dr
response -

ENYE(1)]= j_w|H ()] s, (fdf
Define: Power Spectral Density ( Fourier Transform of

R(7)) 2 -
ELrY (t)jz J_w J_OO h(z )Rx(z —1z)dz dr
1, |f+f|<iat
Reca -y T
I [ (Jf £ [>tar
Leq H(f) pe the magnitude response of an ideal narrowband
filter o
D f : Filter ——— R
Bandwidth

If Af << f_and S, ( f)is continuous L

E [Yz(t)]z 2A1S 3 ( fc) in W/Hz | af -




The PSD of the Input and Output Random Processes

X(t Y(t

) . h(t) ) .
Sx Sy

(f) (f)

R, (7) = J'_Ooj._wh(rl)h(rZ)RX(T—Tl"‘TZ) dr drz,

S, (f)= J‘_wJ'_wJ'_wh(Tl)h(Tz)Rx(T—Tl+72)exp(—j27zfr)drldrzdf

Letr—rl+rzzro , or Z'ZZ'O-I-Z'l—Z'Z

S, (f)= J‘_w‘[_wj_wh(rl)h(rz)Rx(rl)exp(jZﬂfro)exp(—jZﬂfrz)exp(—j27rf2'O)dfldfzdfo
=S (f)H(f)H*(f)

:|H(f)|28x(f)



Relation Among The PSD and

The Magnitude Spectrum of a Sample Function
Let x(t) be a sample function of a stationary and ergodic

Process X(t).
In general, the condition for Fourier transformable is

[ x()] dt <
This condition can never be satisfied by any stationary x(t) with
Infinite
WeTaiNtite x (,7)- |

Ergodic = Take time average

T

X(t)exp(— j2n~ft)dt
.

1 T
R, (z)=Ilim — X(t+ 7)x(t) dt
THOOZT -T

If X(t) is a power signal (finite average

power) e . 2
— [ x(t+o)x()dt e —|X(f,T) |
2T -7 2T

Time-averaged periodogram
autocorrelation function



Relation Among The PSD and

The Magnitude Spectrum of a Sample Function
Take inverse Fourier

Transforif x(t+ 7)x(t)dt = jw i|X(f,T) |2 exp(j2z fT)df
we 27
have R, (7)=lim j —|X(f T)| exp(j2xfz)df
Note that for any given x(t) periodogram does not converge as T
Since x(t) is —> o
ergodic E[R, (r)]=R ,(r)= I|m j —E[X(f —T)\ ]exp( j2xfr)df
0 2T
» [
R, (r)=[ ﬁllm —E[X(f T) \ } j2xfr)df

R, (r)= f S (f)exp( j2nfr)df

. (f)=1lim iE[X(f T) \]

T—>

IS used to estimate the PSD of

1
X(t) _lim —E
T2 T L

2
T

fT x(t) exp( — j2zft)dt| |

|




Cross-Spectral Densities

va ()=

SYX (f)=

o0

R, (r)exp(-j2x fr)dr

o0

[ R, (r)exp(-J2x fr)dr

S,,(f)and S,, (f) maynotbereal.

R, ()= IZ S,y (f)exp(j2xfr)df

R,, (1) = jz S, (f)exp(j2rfr)df

Ry (1) = Ryy(-7)
SXY(f): SYX(_f): S:x ()



Cross-Spectral Densities Example

Example: X(t) and Y(t) are jointly
St

X(t) —=>{ () = /(1) Y(t) =~ ho(2) > 7(1)

R, (t,u) =E

| |

V(t)Z(u)]

= E '_OO h (z,)X (t—rl)drlj‘oo hZ(TZ)Y(U_Tg)de—I

|

1
[ ]

- j_w [ h(z)h (z )R (t-7.U-7 Ydrdr,

¢ — 00

Let r=t—-u

R, (7) = j_w I_w h (zr)h, ()R, (r—7 +7,)drdr,

F
— S, (f)=H [ (f)H (f)Sx (f)



Cross-Spectral Densities

Output Statistics: the mean of the output

Process o
is given by #, (1) =E{Y (1)}= | E{X(r)h(t-z)dr}

_ Ij:,ux(r)h(t—r)dr = 1 (1) = h(t).

Similarly the cross-correlation function between the input and

output

processes is given by )
R (t .t )=E{X()Y [t )}
S E{X(ti)j_ X "(t, —a)h " (a)d a}

+

| E{X(t,)X(t, - a)}h’(a)da

+ o0

= R_(t,t,-a)h (a)da

¥ — 0

=R _(t,t ) h*(tz).
Finally the output autocorrelation function is
given by



Cross-Spectral Densities

R (t,t)
YY 1 2

or

R (t

YY 1

m (1)

Rxx (tl’tZ)

= E{Y (t)Y " (t )}

S E{[ _X(t,- Hh(BABY (1)}

+

+ o0

J — Q0

= [ E{X(t,~ )Y (t,)}h(B)dp
— [ R_(t =Bt )h(B)dp

=R (1:1,’[2)>!< h(tl),

t)=R (t,t,)xh (t,)*h(t)

—

h(t)

— ILlY(t)

h*(t2)

(a

Rxy (ty.tp)

(b)

— h(t.) |—— R (t,t,))




Cross-Spectral Densities

In particular if X(t) is wide-sense stationary, then we

oo u (t)y=u
bave ﬂy(t):ﬂxf h(z)dz = u c, a constant.
that ~
AlsOR (t,,t,)=R (t, —t)So thatreduces

to

+ o© 2

R (t,t,)= J’_ RXX (t1 —t2 +a)h (a)da

0

=R (T)*h*(—f)fRXY (r), 7= t —t.

Thus X(t) and Y(t) are jointly w.s.s. Further, the
output
autocorrelation simplifies to

+ o0

R, (4,t,)=[ R (L =F-t)h(F)df, 7=t -t

— o0

=R (¢)*h(r) =R (7).
We XY YY

obtain

RYY (7) = RXX (r)*h (- 17)*h(7).



Cross-Spectral Densities

the output process is also wide-sense stationary. This gives rise

v

v

to the
followsng yepresentation
wide-sense LTI system
stationary h(t)
process a
)
X ()
strict-sense LTI system
stationary h(t)
process (b
)
X(t)
Gaussian | Linear
process
(also _SySter?C

stationary)

)

v

Y (t)
wide-sense
stationary

process.

Y ()
strict-sense

stationary
process (see

Text for proof)
Y (t)
Gaussian
process

(also stationary)



Noise

J Shot noise
O Thermal
noise . S
E[/:}\]C) gu
vl ()
( )_-C> (h)
Elvz |= 4kTR Af 2
AN volts
E -|2 1= 1 2 1 2
12 1= —E|v? |= 4kT —Af = 4kTG Af  amps
R*? R
K: Bolzmann’s constant =1.38 x 10-23 joules/K, T Is the
absolute

temperature in degree Kelvin.



White Noise Process

W(t) is said to be a white noise process if
RO(t,t)=q(t)o(t —t)

l.e., E[W(t1)) W'(t2)] = O unless t1 = to.

W(1) is said to be wide-sense stationary (w.s.s) white noise

If E[W(t)] = constant, and

R (t,t)=qd(t —t)=qd(r)

If W(t) is also a Gaussian process (white Gaussian process),

then all of

its samples are independent random variables

White
noise
W(t)

For w.s.s. white noise input W(t), we

have

LTI
h(t)

—»

Colored noise

N(t)=h(t)*W(t)



White Noise Process

EIN ()] :yWJ'_+: h(r)dz, a constant

an
d
Rnn(f)=q5(f)*h*(—f)*h(f)
=gh (- 7)*h(r)=qp(7)
wher
e

Thus (& bauf o & Winiid nbise§fddedg thfdiidh an Lm
system
represents a (colored) noise process.
Note: White noise need not be Gaussian.
“White” and “Gaussian” are two different concepts!



White noise

S“(f) I\’“!(T)
No A AZ'O o(7)
0 £ 0 ’
(a) (b)
N 0
Sy ()=
2
N, = kT,
T, :equivalent  noise temperatu re of the receiver
N 0
Ry (7)= o(7)

2



ldeal Low-Pass Filtered White Noise

S\,(f) N RN(TJ
2 NoB
-B 0 B ! /QVK 1 /\3\
28 B 2B 2B 2B
(a) (b)
N -B < f < B
S N ( f) - % 2
0 ‘ f ‘ > B
B N
Ry (7) = | —exp( j2 xfr)df
- B 2

= NOBsinc( 2B 1)



Correlation of White Noise with a Sinusoidal Wave

White w(t) [ a wo(t),

noise
2 k
—cos( 2xfct) , fe= — , Kkisinteger
T T

w'(t) = 1/T2—joT w (t) cos( 2xf _t)dt

The varance of w' (t)is
: [2 7T ]
o :E[T_J.o IOW(tl)cos(Zﬂfctl)w(tz)cos(zﬂfctz)dtldtz|

2 T T
=—j j E[w(t,)w(t,)]cos( 27 f t,)cos( 2~ f_ t,) dt, dt,
0 0

2 T T
—j j R,(t,,t,)cos(2 xf t,)cos(2 mf,t,)dt,dt,
0 0

-
N
ot = 2] st -t cos(2af t,)cos( 2 f t,)dt, dt,
T "0 o 2
N N
_ Ojcosz(ZﬂfCt)dt: 0

T 0 2



Narrowband Noise (NBN)

Syis

|

| 1

1 1

i 1

| )

! '

1 1 ¢

-8 A o+ N ( -8 f, S+ A

Two representations

a.in-phase and quadrature canponents (cos(2m fctj',

sin(2n b))

b. envelope and phase
In-phase and quadrature representation
n(t)= n (t) cos( 27zfct)— n (t)sin( 27zfct)

) Lovep b 71, (1) ) - "
) ilte + l
11 (1) —p 2 cos (2wf. 1) 0s (27/. 1) ( i 12
‘ Low-p - \ T
e —| filte b 11, (1) ,\,(I) t )
2 sin (2w f.0 sin (2 f.1)
(c2) (s




ldeal Band-Pass Filtered White Noise

—f+BN f+BN
R, (1) = [~ ——exp( j2xfr)df + [ ——exp( j2xfr)df
N -f -8B y) t-B 9

= N _B sinc( 2B r)|exp( —j2zfr)exp( j2xf7)]
= 2NOBsinc( 2B r)cos(2nf 1)
Compare (a factor of 7),

Ry (z)=R, (r)=2N,Bsinc( 2B 7).



Important Properties

1.n,(t) and ng(t) have zero mean.

2.1f n(t) is Gaussian then n|(t) and ng(t) are jointly
Gaussian.

3.1f n(t) is stationary theP n(t) and ny(t) are jointly
- S, (f-—f)+S,(f+f), -B<f<B
4SRN g gy TR

| 0 otherwise
5. ny(t) and ng(t) have the same N7
BaRELspectral density is purely
iImagjinary.f ) =-S (f)
(ils  (f + £ )-s (f-f) B < f<B
= |
_ _ _ 0 _ otherwise
7.1f n(t) is GaLSssnan, its PSD is symmetric about f,, then n|(t) and

no(t) are
statistically independent.



