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Introduction to Set
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• Set: A set is a well defined collection of objects. These objects

are called elements or members of the set. Usually uppercase

letters are used to denote sets.

• The set theory was developed by George Cantor in 1845-1918.

Today, it is used in almost every branch of mathematics and

serves as a fundamental part of present-day mathematics.

• In everyday life, we often talk of the collection of objects such

as a

bunch of keys, flock of birds, pack of cards, etc.

• In mathematics, we come across collections like natural

numbers, whole numbers, prime and composite numbers.



Laws in set theory
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• A∩B = B∩A (Commutative law)

• (A∩B)∩C = A∩ (B∩C) (Associative law)

• Ф ∩ A = Ф (Law of Ф)

• U∩A = A (Law of ∪)

• A∩A = A (Idempotent law)

• A∩(B∪C) = (A∩B) ∪(A∩C) (Distributive law) Here ∩ distributes over∪

• Also, A∪(B∩C) = (AUB) ∩ (AUC) (Distributive law) Here∪distributes

over ∩



Probability
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• Experiment:

In probability theory, an experiment or trial (see below) is any

procedure that can be infinitely repeated and has a well-

defined set of possible outcomes, known as the sample

space.

• An experiment is said to be random if it has more than one

possible

outcome, and deterministic if it has only one.

• A random experiment that has exactly two (mutually exclusive)

possible outcomes is known as a Bernoulli trial.



Experiment
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Random Experiment
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• An experiment is a random experiment if its outcome cannot

be predicted precisely. One out of a number of outcomes is

possible in a random experiment.

• A single performance of the random experiment is called a

trial.Random experiments are often conducted repeatedly, so

that the collective results may be subjected to statistical

analysis.

• A fixed number of repetitions of the same experiment can be

thought of as a composed experiment, in which case the

individual repetitions are called trials.

• For example, if one were to toss the same coin one hundred

times and record each result, each toss would be considered

a trial within the experiment composed of all hundred tosses.



• Relative Frequency:

Random experiment with sample space S. we shall assign non-

negative number called probability to each event in the sample

space. Let A be a particular event in S. then “the probability of

event A” is denoted by P(A).

• Suppose that the random experiment is repeated n times, if the

event A occurs nA times, then the probability of event A is

defined as “Relative frequency

• Event A is defined as

Relative frequency, Experiments

7



Sample Space
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• Sample Space: The sample space is the collection of all

possible outcomes of a random experiment. The elements of

are called sample points. A sample space may be finite,

countable infinite or uncountable.

• A list of exhaustive *don’t leave anything out] and mutually

exclusive outcomes [impossible for 2 different events to occur

in the same experiment] is called a sample space and is

denoted by S.

• The outcomes are denoted by O1, O2, …,Ok

• Using notation from set theory, we can represent the sample

space and its outcomes as:

S = {O1, O2, …,Ok}



Sample Space
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• Given a sample space S = {O1, O2, …, Ok}, the probabilities

assigned

to the outcome must satisfy these requirements:

(1) The probability of any outcome is between 0 and 1

i.e. 0 ≤ P(Oi) ≤ 1 for each i,and

(2) The sum of the probabilities of all the outcomes equals 1

i.e. P(O1) + P(O2) + …+ P(Ok) = 1



Discrete and Continuous Sample Spaces
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• Probability assignment in a discrete sample space: Consider a

finite sample space . Then the sigma algebra is defined by

the power set of S.

• For any elementary event, we can assign a probability such

that, For any event , we can define the probability

Continuous sample space
• Suppose the sample space S is continuous and uncountable. Such a

sample space arises when the outcomes of an experiment are

numbers. For example, such sample space occurs when the

experiment consists in measuring the voltage, the current or the

resistance.



Events
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• The probability of an event is the sum of the probabilities of

the

simple events that constitute the event.

• E.g. (assuming a fair die) S = {1, 2, 3, 4, 5, 6} and P(1) = P(2)

= P(3) =

P(4) = P(5) = P(6) = 1/6

• Then: P(EVEN) = P(2) + P(4) + P(6) = 1/6 + 1/6 + 1/6 = 3/6 =

1/2



Types of Events
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1.Exhaustive Events:

A set of events is said to be exhaustive, if it includes all the

possible events. Ex. In tossing a coin, the outcome can be

either Head or Tail and there is no other possible outcome.

So, the set of events{ H , T } is exhaustive.

2.Mutually Exclusive Events:

Two events, A and B are said to be mutually exclusive if they

cannot occur together. i.e. if the occurrence of one of the

events precludes the occurrence of all others, then such a set

of events is said to be mutually exclusive. If two events are

mutually exclusive then the probability of either occurring is



Types of Events
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3.Equally Likely Events:

If one of the events cannot be expected to happen in

preference to another, then such events are said to be Equally

Likely Events.( Or) Each outcome of the random experiment

has an equal chance of occurring.

Ex. In tossing a coin, the coming of the head or the tail is

equally

likely

4. Independent Events:

Two events are said to be independent, if happening or

failure of one does not affect the happening or failure of

the other. Otherwise, the events are said to be

dependent.



Probability Definitions and Axioms
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Relative frequency Definition:

Consider that an experiment E is repeated n times, and let A and

B be two events associated with E. Let nA and nB be the number

of times that the event A and the event B occurred among the n

repetitions respectively. The relative frequency of the event A in

the 'n' repetitions of E is defined as

f( A) = nA /n



Axioms of Probability
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• The Relative frequency has the following properties:

• 0 ≤f(A) ≤1

• f(A) =1 if and only if A occurs every time among the n

repetitions.

• If an experiment is repeated n times under similar conditions 

and  the event A occurs in nAtimes, then the probability of the 

event A is  defined as



Joint probability
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• Joint probability:

Joint probability is defined as the probability of both A and B

taking

place, and is denoted by P (AB) or P(A∩B).

• probability notation: P(AB) = P(A | B) * P(B)



Conditional Probability
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• Conditional probability is used to determine how two events are

related; that is, we can determine the probability of one event

given the occurrence of another related event.

• Experiment: random select one student in class.

• P(randomly selected student is male)

• P(randomly selected student is male/student is on 3rd row)

• Conditional probabilities are written as P(A | B) and read as “the

probability of A given B” and is calculatedas



Bayes’ Theorem
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• Bayes’Law is named for ThomasBayes,an eighteenth

century

mathematician.

• In its most basic form, if we know P(B | A),

• we can apply Bayes’ Law to determine P(A | B)

• Bayes' theorem centers on relating different conditional

probabilities. A conditional probability is an expression of

how probable one event is given that some other event

occurred (a fixed value).

• For a joint probability distribution over events A and B ,

P(A^B), the conditional probability of given is defined as



Bayes’ theorem
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•Note that P(A^B) is the probability of both A and B occurring,

which is the same as the probability of A occurring times the

probability that B occurs given that A occurred P(B/A)*P(A)

•Using the same reasoning P(A^B), is also the probability that B

occurs times the probability that A occurs given that B occurs:

P(A/B)*P(B) The fact that these two expressions are equal leads

to Bayes' Theorem. Expressed mathematically, this is:



• The probabilities P(A) and P(AC) are called prior probabilities

because they are determined prior to the decision about taking

the preparatory course.

• The conditional probability P(A | B) is called a posterior

probability (or revised probability), because the prior

probability is revised after the decision about taking the

preparatory course.

Bayes’ theorem

20



Random variable
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• A (real-valued) random variable, often denoted by X (or some

other capital letter), is a function mapping a probability space

(S, P) into the real line R. This is shown in next slide.

• Associated with each point s in the domain S the function X

assigns one and only one value X(s) in the range R. (The set

of possible values of X(s) is usually a proper subset of the real

line; i.e., not all real numbers need occur. If S is a finite set with

m elements, then X(s) can assume at most m different values

as s varies in S.)



RV in graphical representation
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RV in graphical representation
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Discreterandom variable
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• A random variable is called a discrete random

variable

is piece-

wiseconstant. Thusis flat except at the points of jump

discontinuity.

If

defined on it isthe sample space is discrete the random

variable

always discrete.



Continuous random variable
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• X is called a continuous random variable if is an absolutely

continuous function of x. Thus is continuous everywhere on and

exists everywhere except at finite or countable infinite points.



Mixed random variable
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• X is called a mixed random variable if has jump discontinuity at

countable number of points and it increases continuously at

least at one interval of values of x. For a such type RV X.



Random Variable
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Review of the concepts

1. Random Experiment

2. Random Event

3. Outcomes

4. Sample Space

5. Random Variable:

Mapping of sample space to a 

real line



Mapping of sample space to a 

real line

Random Variable

28



Distribution function
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Properties of CDF
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Properties of CDF (contd..)

31



Properties of CDF (contd..)
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Probability density function
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Probability density function (contd..)
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Properties of PDF
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Gaussian Probability density function
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Gaussian Probability density function (contd..)
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Gaussian Probability density function (contd..)
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Gaussian Probability density function (contd..)
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Gaussian Probability density function (contd..)
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Binomial Probability density function
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Binomial Probability density function (contd..)
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Binomial Probability density function (contd..)
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Poisson Probability density function
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Poisson Probability density function (contd..)
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Uniform Probability density function
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Uniform Probability density function (contd..)
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Uniform Probability density function (contd..)
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Exponential Probability density function
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Exponential Pdf (contd..)
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Exponential Pdf (contd..)
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Rayleigh Probability density function
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Rayleigh Probability density function (contd..)
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Rayleigh Probability density function (contd..)
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Conditional distribution function
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Properties of Conditional distribution function
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Conditional density function
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Properties of Conditional density function
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Methods of conditioning event
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Methods of conditioning event (contd..)
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Methods of conditioning event (contd..)
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Methods of conditioning event (contd..)

62



Methods of conditioning event (contd..)
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Operation of single Random Variable

and Multiple Random Variables
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Moments about origin
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Moments about mean
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Characteristic function
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Moment generating function
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Moment generating function
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Monotonically increasing RV
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Monotonically increasing RV (contd..)
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Nonmonotonic Transformation of a RV
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Nonmonotonic Transformation of a RV (contd..)
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Nonmonotonic Transformation of a RV (contd..)
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Transformation of a DiscreteRV
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Transformation of a DiscreteRV (contd..)
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Expected value of a RV
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Expected value of a RV (contd..)
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Conditional Expected value of a RV
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Conditional Expected value of a RV (contd..)
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Moments about origin
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Moments about origin (contd..)
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Moments about mean
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Moments about mean (contd..)
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Variance
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Variance (contd..)
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Skew
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Skew (contd..)
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Functions That Give Moments
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Moment generating function of r.v. X
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Chernoff's inequality
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Ex 3.3-3:
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Vector random variables

94

• There are many cases where the outcome is a vector of

numbers. We have already seen one such experiment, in,

where a dart is thrown at random on a dartboard of radius r.

The outcome is a pair (X, Y) of random variables that are

such that X2 + Y2 ≤ r2.

• we measure voltage and current in an electric circuit with

known resistance. Owing to random fluctuations and

measurement error, we can view this as an outcome (V, I)of a

pair of random variables.

• Mapping the sample space to joint sample space

Comparision of sample space s 

with sj



Joint distribution function
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• Let X and Y be random variables. The pair (X, Y) is then called 

a (two-

dimensional) random vector.

• The joint distribution function (joint cdf) of (X, Y) is defined as 

F(x, y)

= P(X ≤ x, Y ≤ y) for x, y ∈R.

• Assume the joint sample space SJ has only three possible

elements  (1,1),(2,1),(3,3).The probabilities of the elements 

are to be  P(1,1)=0.2,P(2,1)=0.3 ,P(3,3)=0.5.We find

FX,Y(X,Y)

• In constructing joint distribution function we observe that has no

elements for x<1,y<1.only at the point (1,1)does the function

assume a step value.

• So long as x≥1,y≥1 this probability is maintained.For larger x

and y the point(2,1) produces a second stair step of 0.3 which

holds the region x≥2,y≥1.The second step is added to the

first.Finally third step of 0.5 is added to the two for x≥3,y≥3



Properties of Joint Distribution
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• Properties:

1)

Note

that
2)

3)

is right continuous in both the

variables

4)



Properties of joint distribution
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5)

6)

Called marginal cumulative distribution

function



Marginal distribution functions
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• The distribution of one random variable can be obtained by

setting the other value to infinity in FX,Y(x,y). The functions

obtained in this manner FX(x),FY(y) are called marginal

distribution functions.

• Example:

FX,Y(x,y)=P(1,1)u(x-1)u(y-1)+P(2,1)u(x-2)u(y-1)+ P(3,3)u(x-

3)u(y-3)

P(1,1)=0.2,P(2,1)=0.3,P(3,3)=0.5if we set y=∞ then

FX(x)= 0.2u(x-1)+0.3u(x-2)+ 0.5u(x-3)

similarly

FY(y)= 0.2u(y-1)+0.3u(y-1)+ 0.5u(y-3)

=0.5u(y-1)+0.5u(y-3)



Marginal distribution functions
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• Consider two jointly distributed random variables and with

the

joint CDF

1)Find the marginal CDFs

2) Find the probability P(1<x≤2, 1<y≤2)

 (1  e 
 2  x  

)(1  e
 y 

) x  0 , y  0
F X  , Y ( x , y )  

 0 o th e r w is e



Marginal distribution functions
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a

) y 

x 

1 e 
2 x

x  0

elsewhere

F X ( x )  lim F X ,Y ( x , y ) 

0

1 e 
y

y  0

elsewhere
FY ( y )  lim F X ,Y ( x , y ) 

0

P {1   X       2 ,    1  Y      2} F ( 2 , 2 ) F (1,1)F (1, 2 ) F ( 2,1)
X  ,Y X  ,Y X  ,Y X  ,Y

(1 e 
4 

)(1 e 
2 

) (1 e 
2 

)(1 e 
1 

) (1 e 
2 

)(1 e 
2 

) (1e 
4 

)(1 e 
1 

)

= 0 .0 272



Joint Probability Density Function
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• If

and

are two continuous random variables and their joint

and then we can 

define

distribution function is continuous in

both

joint probability density function by

provided it

exists.

Clearly

X , Y X , Y
f F ( x , y ) ,


2

(  x  ,  y  ) 
 x  y

f X ,Y (u , v )dvdu

x y

F X  ,Y  ( x , y )   




Marginal density function
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• The marginal CDF and pdf are same as the CDF and pdf of

the concerned single random variable. The marginal term

simply refers that it is derived from the corresponding joint

distribution or density function of two or more jointly random

variables.

• With the help of the two-dimensional Dirac Delta function, we

can define the joint pdf of two discrete jointly random

variables. Thus for discrete jointly random variables and

f 
X ,Y 

( x , y )  
( xi , y j )R X RY .

 p 
X   ,Y  

( x ,  y ) ( x   x 
i 
,  y  y

j
)



Marginal density function
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X ,Y X ,Y
F ( x , y )

• The joint density function

 (1  e 
 2  x  

)(1   e 
 y

) x  0  , y  0
F

X  , Y  
( x , y )  

 0 o t h e rw i se


2

f ( x , y ) 
 x  y


2

 [(1  e 
 2 x 

)(1  e 
 y

) ] x  0 , y  0
 x  y

 2 e 
 2 x 

e 
 y

x  0 , y  0



Conditional distribution
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• We discussed the conditional CDF and conditional PDF of a

random variable conditioned on some events defined in terms

of the same random variable. We observed that



Conditional density function
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• Suppose and are two discrete jointly random variable with the

joint PMF fxy(x,y) . The conditional PMF of y given x=x is

denoted by and defined as
f 

y / x  
( y  /  x)



Conditional Probability Distribution Function
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• Consider two continuous jointly random variables and with the

joint probability distribution function We are interested to find

the conditional distribution function of one of the random

variables on the condition of a particular value of the other

random variable.

• We cannot define the conditional distribution function of the

random variable on the condition of the event by the relation

F
Y  / X

P (Y  y , X  x )

P ( X  x )


( y  / x )  P (Y  y / X  x )



Point conditioning
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• First consider the case when X and Y are both discrete. 

Then the

marginal pdf's

• fY(y)=P(Y=y) fX(x)=P(X=x)

• The joint pdf is, similarly

fX,Y(x,y)=P(X≤x,Y≤y)

• Conditional density function is given by

fX(x/B)=



Point conditioning (contd..)
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• The conditional pdf of the conditional distribution 

Y|X is

•Distribution function of one random variable X conditioned by

that  second variable Y has some specific values of y. This is 

called point  conditioning

• B={y-Δy<Y≤y+Δy}

Where Δy is a small quantity that we eventually let 

approach 0.



Point conditioning (contd..)
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Fx(x/ y-

Δy<Y≤y+Δy)=


y   y

y   y

y    y x

 
y   y  

f

f  Y  (  )  d 

) d  d (  , 
211 2X , Y

N M

F 
X ,Y 

( x , y )  P ( x 
i , 

y 
j 
) ( x  x 

i 
) ( y  y

j 
)

i 1 j 1

Now the specific value of y of interest is yk

= y k ) =f x ( x / Y

= y k ) =F x ( x / Y

i

i

P  (  x  i  ,  y  k )

P  (  y  k )

P  (  x  i  ,  y  k )

P  (  y  k )
u ( x  x )

N


i  1

N


i  1

 ( x  x )



Interval Conditioning
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• Distribution function of one random variable X conditioned by

that second variable Y has some specific values of y. This is

called point conditioning B={ya<Y≤yb}

• P(x1,y1)=2/15,P(x2,y1)=3/15.etc.since P(y3)=4/15+5/15=9/15

find

fx(x/y=y3)



Statistical independence
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• Let and be two random variables characterized by the joint

distribution

function

and the corresponding joint density

function



Sum of two random variables
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• We are often interested in finding out the probability density

function

of a function of two or more RVs

•The received signal by a communication receiver is givenby

• where is received signal which is the superposition of the

message

signal and the noise.



Sum of two random

variables

corresponding to each

z.

We can find a variable

subset



Central Limit Theorem
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• Consider n independent random variables x1,x2,x3……xn ,The

mean

and variance of each of the random variables are assumed to

be
2

known. Suppose E[x]=µx var(x)=ςx and . Form a random
variable

YN=X1+X2+…….XN

The mean and variance of YN are given by

E[yn]= µx 1 + µx 2 + µx 3………. + µx n



Central Limit Theorem (contd..)
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The CLT states that under very general

conditions

converges in distribution to as

1. The random variables are independent and identically

distributed.

2. The random variables are independent with same mean and

variance, but not identically distributed.

3. The random variables are independent with different means

and

same variance and not identically distributed.

4. The random variables are independent with different means

and

each variance being neither too small nor too large.

n  



UNIT-III

Operation of Multiple 

Random Variables
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Expected Values of Random Variables
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g = E g ( X ,Y )  =

g (x ,y )f
X ,Y

(x ,y )d x d y C o n tin uo u s

D is c re te

 




 i k

    

  g ( x 
i 
,y 

k 
) P

X ,Y 
( x 

i 
, y 

k
)

• If g(x,y) is a function of a continuous random variables X and 

Y then

then the expected value of is given by



Example
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•Consider the discrete random variables x and y. The joint

probability mass function of the random variables are tabulated

in Table . Find the joint expectation of g(x,y)=xy.

( x , y )E [ XY ]    g ( x , y ) p
XY

x y

 1  1  0 .35  1  2  0 .01

 0 .37



Properties
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• Expectation is a linear operator. We can generally 

write  

E[a1g1(x,y)+a2g2(x,y)=a1E(g1(x,y)+a2E(g2(x,y))  

E[xy+5logexy]=E[xy]+5E[logexy]

• If x and y are independent random variables and  

g(x,y)=g1(x,y)×g2(x,y) then 

E[g(x,y)]=E[g1(x,y)]×E[g2(x,y]



Joint moments about the origin
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For two continuous random variables X and Y, the joint

moment

of order m+n is defined as

 

E ( X  
m 

Y  
n
)    x 

m
y 

n  
f ( x , y)dxdy

XY

 

And the joint central moment of order m+n is defined as
 

E ( X   ) 
m   

E (Y   )
n   
 ( x   ) 

m   
( y   )

n    
f ( x , y )dxdy

x y   x y X Y

   

  E [ x ]
x

  E [ y ]
y



Joint moments about the origin
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For two discrete random variables X and Y, the joint moment of

order

m+n is defined as

And the joint central moment of order m+n is 

defined as

f
XY

( x, y )dxdyE ( X
m 

Y
n

)    x 
m 

y
n

x y

( x  , y )f
X Y

  E  [ x ]
x

  E  [ y  ]
y

( x   ) 
m   

( y   )
n

x y

x y  
E ( X   ) 

m   
E  ( Y   ) 

n


x y



Covariance of two random variables
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The covariance of two random variables X and Y is 

defined as

Cov(X,Y)=E(X-μx)E(Y- μy)

Cov(X, Y) is also denoted as ςXY.

y

y

 E ( X Y )   
x

 E ( X Y )   E  ( X )   E  ( y )   
Y X X Y

 E ( X Y  

E ( X   ) 
m

E ( Y   )
n

x y

X   Y    )
x x y

Cov ( X  , Y ) 



Uncorrelated random variables
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Two random variables are called uncorrelated if

Cov(X,Y)=0

Which also means E(XY)=μxμy

If are independent random variables, then

f XY       ( x , y)  f X       ( x )  f Y     ( y)

Thus two independent random variables are always

uncorrelated.



joint characteristic function
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The joint characteristic function of two random variables X 

and Y is

defined by

If and are jointly continuous random variables,

then

 

 ( , )  f ( x , y ) e 
j 1 x  j 2 y dxdy

X ,Y 1 2   XY



 ( ,
XY 1 2

) E [ e 
j 1 x j 2 y]



Two Random variables
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Two random variables X and Y are called jointly Gaussian if 

their joint

probability density

2

2

)
2

2

)
2

2
)1

YXY

X y y

XY

XY X

x y XY

X,Y



 ]
( x )( y ) ( y 1 ( x 

2 (1

 [
x

2

2  1 

f (x, y)  e

-∞<x<∞,-∞<y<∞

means μx and

μyvariances ς
2

x yς 2

correlation coefficient ρXY

We denote the jointly Gaussian random variables

and
2 2

with these parameters as (X,Y)~ N(μx,μy,ςx ,ςy ,ρXY
)



Transformations of multiple random variables

126

The joint density function of new random variable 

Yi=T(X1,X2,……XN)  i=1,2,3….n

The random variable Xj can be obtained from inverse

transformation

X j=Tj
-1(Y1,Y2,…..YN)




 



 * *





k  n , y , , y1 2
x  g 

 1 y
n n

1 , y 2 , , yk
x  g 

 1 y
2 2

x  g 
 1 y , y , , y 1 1 1 2 k



• Assuming that the partial derivatives exist at every

point

Transformations of multiple random variables
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called as the Jacobian of the transformation specified by

(**). Then, the joint pdf of Y1, Y2,…,Yk can be obtained

by using the change of variable technique of multiple

variables.

/  yg
 1

i i





n


n


 y1 y n

  g
1

 g 
 1

  y1 y n

(y1, y2,…,yk=n). Under these assumptions, we have the

following  determinant J

  g
1

 g 
 1 


1 1



J  det  



• As a result, the new p.d.f. is defined as

follows:

Transformations of multiple random variables
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f
n

0 ,otherwise

n 1 22

1 1 1

1 2 n

, y g , g , , g | J |, for y , y ,
g y , y , , y  

X  1  , ,X n 1



Linearly transformation of Gaussian RV
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• Linearly transforming set of Gaussian random variables 

X1,X2,…..XN for which the joint density function exists. The 

new variables

Y1,Y2,…..YN are

• Y1=a11X1+a12X2+……+a1NXN

• Y2=a21X1+a22X2+……+a2NXN.

• YN=aN1X1+aN2X2+……+aNNXN

=

[Y]=[T][

X]

Xi=Ti-

1(Y1…..YN)=ai1Y1+ai2y2+….+aiNYN



Stochastic Processes: Temporal  
Characteristics and Spectral Characteristics

130



Random Process
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 The concept of random variable was defined previously as

mapping

from the Sample Space S to the real line as shown below
S a m p l e S p a c e

S

s n  2s n  1
s n

s n  1

x n  1

x n  2

x n

x n  1

A random process is a process 

(i.e.,  variation in time or one

dimensionalspace) whose behavior is not

completely predictable and can

be  characterized by 

statistical laws.

 Examples of random

processes  Daily stream

flow

Hourly rainfall of storm

events  Stock index



X (t1 )

Random Process (Contd..)

132

is a random

variable

The concept of random

process can be extended to

include time and the

outcome will be random

functions of time as shown

beside x (t , s )

Where s is the outcome of

an experiment

 The functions

x n  2 (t ), x n  1 (t ), x n ( t ), x n 1 ( t ) ,

are one realizations of many 

of  the random process X(t)

 A random process also represents a random variable when time 

is fixed



Classification of Random Process
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Classification of random

process

Continuous random process

Discrete random process

Continuous random sequence

Discrete random sequence

Continuous time t => x(t) = Random

process  Discrete time n => x[n] = 

Random sequence



Continuous Random Process
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 Continuous random

process

Continuous time

t  x(t) =

Continuous

Random process



Discrete Random Process
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 Discrete random

process

Continuous time t

x(t) = Discrete

Random  process



Continuous Random Sequence
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 Continuous random

sequence

discrete time n  

x(n) =

Continuous

Random sequence



Discrete Random Sequence
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 Discrete random

sequence  discrete time

n

x(n) = discrete

Random  sequence



Random Process Concept
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X  ( t )  A co s( t   ),
0

A ,  ,  : r.v.'s
0

 Deterministic random process

Future values of any sample function can be predicted 

exactly from  the past values

 Non deterministic random process

 Future values of any sample function can not be predicted

exactly

from the past values



What is a distribution and density?
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 A distribution characterises the probability (mass) associated with

each  possible outcome of a stochastic process

 Distributions of discrete data characterised by probability mass

functions

 Distributions of continuous data are characterised by probability

density

functions (pdf)


i

i
P ( X  x  )  1




 

f ( x ) dx  1

i
P ( X  x )

x

f ( x )

 For RVs that map to the integxers or the real numbers, the

cumulative

density function (cdf) is a useful alternative representation

0 1 2 3



Stationary and Independence
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 Stationary Random Process

 all its statistical properties do not change with

time

 Non Stationary Random Process

 not stationary



Stationary and Independence (Contd..)
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 First-order densities of a random process

 A stochastic process is defined to be completely or totally  
characterized if the joint densities for the random variables

X ( t
1 
),  X ( t 

2 
), X ( t 

n 
) are known for all times  t

1 
, t 

2 
, , t

n
and all

n.

 For a specific t, X(t) is a random variable with distribution

F ( x , t )  p [ X ( t )  x ]

 The function F(x,t) is defined as the first-order distribution of 

the  random variable X(t). Its derivative with respect to x

x

is the first-order density of X(t).

F ( x , t )
f ( x , t ) 



 If the first-order densities defined for all time t, i.e. f(x,t), are all
the same, then f(x,t) does not depend on t and we call the
resulting density the first-order density of the random process
{x(t)} ; otherwise, we have a family of first-order densities.

 The first-order densities (or distributions) are only a partial
characterization of the random process as they do not contain
information that specifies the joint densities of the random
variables defined at two or more different times.

Stationary and Independence (Contd..)
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 For t = t1 and t = t2, X(t) represents two different random

variables

X1 = X(t1) and X2 = X(t2) respectively. Their joint distribution is 

givenby

F ( x , x , t , t )  P { X ( t )  x , X ( t )  x }
X 1 2 1 2 1 1 2 2

and

Stationary and Independence (Contd..)
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1 2 1 2

1 2

X 1 2 1 2

X


2

F ( x , x , t , t )
f ( x , x , t , t ) 

 x  x

represents the second-order density function of the process X(t).

 Similarly f X  
( x 1  , x 2 , x n , t1 , t 2 , t n  ) represents the nth order 

density

function of the process X(t).



Mean and variance of a random process
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b

y

The first-order density of a random process, f(x,t), gives the

probability density of the random variables X(t) defined for all time

t. The mean of a random process, mX(t), is thus a function of time

specified by


m
X

( t )  E [ X ( t )]  E [ X
t
]    x

t
f ( x

t
, t ) dx

t

 For the case where the mean of X(t) does not depend on t, we

have

m X  ( t )  E [ X ( t )]   m X (a constant)

 The variance of a random process, also a function of time, is

defined
2

X X t X
 (t )  E [        X ( t )  m ( t)] 

2  E [ X  
2  

]  [ m ( t )] 
2



Stationary and Independence
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 The random process X(t) can be classified as follows:

 First-order stationary

A random process is classified as first-order stationary if its

first-order probability density function remains equal regardless of

any shift in time to its time origin.

If we Xt1let represent a given value at time t1then we define a

first- order stationary as one that satisfies the following

equation:

f X (x t1 ) = f X (x t1 + τ)

 The physical significance of this equation is that our density

function,
f X (x t1 ) is completely independent of 

t1  and thus any time shift t

For first-order stationary the mean is a constant, 

independent of

any time shift



Second-order stationary

A random process is classified as second-order stationary if its

second- order probability density function does not vary over any

time shift applied to both values.

 In other words, for values Xt1 and Xt2 then we will have the

following

be equal for an arbitrary time shift t

Stationary and Independence (Contd..)
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f 
X 

(x 
t1 

,x 
t2 

) = f 
X 

(x 
t1 + τ 

,x 
t2 +τ 

)

From this equation we see that the absolute time does not affect

our functions, rather it only really depends on the time difference

between the two variables.



For a second-order stationary process, we need to look at the

autocorrelation function ( will be presented later) to see its

most important property.

Since we have already stated that a second-order stationary

process depends only on the time difference, then all of these

types of processes have the following property:

R XX ( t,t+ τ ) = E [X (t) X (t+ τ )]

=  R XX (τ)

Stationary and Independence (Contd..)
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Wide-Sense Stationary (WSS)
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The converse is not true in

general

 A process that satisfies the following:

The mean is a constant and the autocorrelation function 

depends only

on the difference between the time indices

E X (t)  = X = co n s tan t

E X (t)X (t + τ ) = R 
XX 

( τ)

is a Wide-Sense Stationary (WSS)

Second-order stationary Wide-Sense Stationary



Similarl

y

 ( t )  E { X ( t )}   aE {cos(  t   )}
X 0

 a cos  t E {cos  }  a sin  t E {sin  }  0 ,
0 0

2

Wide-Sense Stationary (Example)
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20 120 1

2

a
2

a
2

 cos  ( t  t ).
0 1 2

)  2  )} E {cos  ( t  t )   cos(  ( t  t

  ) cos(  t   )}
0 2

R ( t , t )   a 
2
E {cos(  t

XX 1 2 0 1

X ( t )  a cos(  t    ),  ~ U ( 0 ,2 ).
0

This gives


2

0
since 1 

2
cos   d  0   E {sin  }.E {cos  } 

So given X(t) is

WSS

Consta

nt



Nth order and Strict-Sense Stationary
In strict terms, the statistical properties are governed by the joint
probability density function. Hence a process is nth-order Strict-Sense

Stationary (S.S.S)

For any c, where the left side represents the joint density function of

150

and the right side corresponds to the joint density function of the

randomvariable

s

 A process X(t) is said to be strict-sense stationary if 

equation (1)true for

all

the random variables X
1
 X ( t ), X  X ( t ), , X  X ( t )

1 2 2 n n

X 1
  X  ( t1   c ), X 2

  X ( t 2    c ), , X n
  X ( t n  c ).

t i , i  1, 2 , , n , n   1, 2 , and any c .



Ergodic Process
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A stationary random process for which time averages equal

ensemble

averages is called an ergodic process:

x n   m x

  x x   m x n  m x n 





Ergodic Process (Contd..)
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2

L 1

n  0
L


n  0

x

2

x

x

1

  x n  m x 
 n

L
x n  m x 

 n

1

L

L  1

 x n
n  0

L 1

1

L

x n  m̂

m̂



In practice, we cannot

compute with the limits,

but instead the quantities.

Similar quantities are often

computed

a

s

estimates

of  the mean,

variance,

and

autocorrelation

.

It is common to assume that a given sequence is a sample

sequence of an ergodic random process, so that averages can

be computed from a single sequence.



Time Average and Ergodicity
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 The time average of a quantity is 

defined as

Here A is used to denote time average in a manner analogous 

to E

for the statistical average.

The time average is taken over all time because, as applied to

random processes, sample functions of processes are presumed

to exist for all time.

1

T   2 T
A [  ] l im

T

 T
[ ]d t



 Let x(t) be a sample of the random process X(t) were the 

lower case

letter imply a sample function.
We define the mean

value

x = A x ( t) 

( a lowercase letter is used to imply a sample

function)and the time autocorrelation

function
X X

 (τ) as

follows:
T1

x (t) d t
2T  T

x =  A x ( t)  = lim
T  



X X
 (τ ) = A x ( t) x ( t + τ ) 

1
x (t) x ( t + τ ) d t

2T
= lim

T  

T

 T

 For any one sample function ( i.e., x(t) ) of the random process

X(t),

the last two integrals simply produce two numbers.
 A number for the

average

for a specific value of 

Time Average and Ergodicity (Contd..)
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x and a number for  XX 
(τ)



 Since the sample function x(t) is one out of other samples

functions

of the random process X(t),
 The average

x

and the autocorrelation  (τ) are random
variables

XX
 By taking the expected value 

for x

and  (τ) ,we
obtain

X XT1

2T  T


E [x ] = E [A [x ( t ) ] ] = E lim


x (t) d t

 T   
 


T1

E [x ( t)] d t
2T  T

 lim
T  



T1
X d t

2T  T

 lim
T  

 = lim X (1 )
T  

= X

T1

2T

 
E [ (τ )] = E [A [x (t) x (t + τ )] ]

X X
= E  lim

 T   
 T

x (t )x (t + τ ) d t 

1

Time Average and Ergodicity (Contd..)
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1

2T 2T
= lim

T  

T

 T
E [x ( t )x ( t + τ ) ] d t = lim

T  

T

 T
R X X (τ ) d t = R X X (τ )



1

xy
T  2T

 ( )  A [ x ( t ) y ( t   )]  lim x ( t ) y (t   )dt
T

 T

x  X

Time Average and Ergodicity (Contd..)
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 Time cross

correlation

 Ergodic

=>  ( )  R ( )
xx XX

 Jointly Ergodic => Ergodic X(t) and

Y(t)

 ( )  R ( )
xy XY



Introduction to Autocorrelation
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 Autocorrelation occurs in time-series studies when the errors

associated with a given time period carry over into future time

periods.

 For example, if we are predicting the growth of stock dividends,

an overestimate in one year is likely to lead to overestimates in

succeeding years.

 Times series data follow a natural ordering over time.

 It is likely that such data exhibit intercorrelation, especially if the

time interval between successive observations is short, such as

weeks or days.



Introduction (contd..)
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 We expect stock market prices to move or move down for several

days in succession.

 We experience autocorrelation when

E ( u i u  j )   0

 Tintner defines autocorrelation as ‘lag correlation of a given

series within itself, lagged by a number of times units’ whereas

serial correlation is the ‘lag correlation between two different

series’.



 The autocorrelation function of a random process X(t) is the

correlation

Autocorrelation and its Properties
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E X 
1 
X 

2 of two random variables X = 

X ( t )
1 1

and X 
2 
= X (t 

2
)

by the process at times t1 and t2

R
X X

( t
1
,t

2
) = E X (t

1
)X (t

2
) 

 Assuming a second-order stationary

process
R 

X X  
( t, t + τ ) = E X ( t) X ( t + τ )  R

X X
(τ ) = E X (t) X (t + τ ) 



x The value of 

(

) at  equal to 0 is the 

variance, 
x
2

0
x

T

x(t) - x .x(t  τ) - x dt
1

T
 ( )  Lim

T  

 The autocorrelation, or auto covariance, describes the

general  dependency of x(t) with its value at a short time 

later, x(t+)

time, t

 Autocorrelation :

x(t)



T

 Normalized auto-correlation :

R()=

Autocorrelation and its Properties (Contd..)
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R(0)=

1

 ()/x x
2



1

R()

Autocorrelation and its Properties (Contd..)
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0

Time lag, 

 The autocorrelation for a random process eventually decays

to

zero at large 

 The autocorrelation for a sinusoidal process (deterministic) is

a

cosine function which does not decay to zero



R()

1

0

Time lag, 

 The area under the normalized autocorrelation function for the

fluctuating wind velocity measured at a point is a measure of

the average time scale of the eddies being carried passed the

measurement point, say T1

 If we assume that the eddies are being swept passed at the

mean velocity,U.T1 is a measure of the average length scale of

the eddies. This is known as the ‘integral length scale’, denoted

by lu




0
1

T  R(  )d 

Autocorrelation and its Properties (Contd..)
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(2 ) R X X   (  )   R X X   ( )

(3) R ( 0 )  E [ X ( t ) 
2
]

XX

(4 ) s ta tio n ary & erg od ic X  (t ) w ith no p erio d ic c o m po nen ts

2

Autocorrelation and its Properties (Contd..)
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XX
| | 

 lim  R ( )  X

(5 ) s ta tio nary X ( t ) h as a perio d ic co m p on e nt

 R ( ) h as a p erio d ic co m p o n en t w ith th e sam e p erio d.
XX

 Properties of Autocorrelation function

R 
X X 

( t , t   )  E [ X (t ) X (t   )]  R 
X X 

( )

(1) R X X  ( ) R X X ( 0)




T

0T  
xy

   τ) - y dtx(t) - x . y(t
1

T
c ( )  Lim

 The cross-correlation function describes the general

dependency  of x(t) with another random process y(t+), 

delayed by a time  delay, 

time, t

 Cross-

correlation

x(t)


T

time, t

y(t)

T



x

Cross-correlation

164

y



Correlation Coeffeicient
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 Correlation coefficient

 The correlation coefficient, , is the covariance normalized 

by the

standard deviations of x and y

x' (t).y' (t)
ρ 

σ 
x  

.σ
y

When x and y are identical to each other, the value of  is +1

(full

correlation)

When y(t)=x(t), the value of  is 1

In general,  1<  < +1



 Correlation - application :

 The fluctuating wind loading of a tower depends on the

correlation  coefficient between wind velocities and hence 

wind loads, at  various heights

For heights, z , 

and z
1 2

:
σ 

u 
(z 

1 
). σ 

u 
(z 

2
)

u' (z 
1 
).u' (z 

2
)

1 2
ρ(z , z ) 

Application of correlation
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z
1

z
2



Properties of Cross Correlation
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1
(3) R 

X Y 
( )  R 

X X 
( 0 ) R

YY 
( 0 ) 

2

E [{Y ( t   )  X  ( t )} 
2  

]  0, 

1
(0)]

2
XX YY XX YY

R (0 ) R (0 )  [ R ( 0 )  R

Properties of cross-correlation function of jointly w.s.s.

r.p.’s:

R 
XY 

( )  E [ X ( t )Y ( t   )]

(1) R X Y (  ) RYX ( )

(2 ) R X Y ( )  R X X(0 ) RYY (0 )



Example of Cross Correlation
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A , B : r.v .'s   con s t
0

2
E [ A 

2 
] E [ B 

2 
]  E [ A ]  E [ B ]  0, E [ A B ]  0,

X  (t )  A co s( t )  B s in ( t ),
0 0

Y ( t )  B co s( t )  A sin ( t )
0 0

E [ X ( t )]  E [ A cos( t )  B s in ( t )]  E [ A ] co s( t )  E [ B ] sin ( t )  0
0 0 0 0

R XX ( t , t   ) E [ X ( t ) X ( t   )]

 E [ A 
2   

c os( t ) cos( t    )  A B  c o s( t ) sin ( t  )
0 0 0 0 0 0

 A B  sin ( t ) cos( t    )  B 
2   

sin ( t ) sin ( t  )]
0 0 0 0 0 0


2 
{ c o s( t ) cos( t    )  s in ( t ) sin ( t  )} 

2 
c o s (  )

0 0 0 0 0 0 0

 X ( t ) : w .s .s .



Y ( t ) : w .s .s .

R XY ( ) E [ X ( t )Y ( t  )]

 E { [ A c os( t )  B  sin ( t )][B c o s( ( t    ))  A s in ( ( t   ))]}
0 0 0 0

 E [ A B  c os( t ) cos( t    )  B 
2   

sin ( t ) cos( t  )
0 0 0 0 0 0

 A 
2   

c os( t ) sin ( t    )  A B  sin ( t ) sin ( t  )]
0 0 0 0 0 0


2 
[ s in ( t ) cos( t    )  c o s( t ) sin ( t  )]

0 0 0 0 0 0

= 
2 
s in (  )

0

 X ( t ) & Y ( t ) : jo in t ly w .s .s .

Example of Cross Correlation
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Covariance
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0T  
xy

T 

x(t) - x .y(t) - ydt
1

T
c (0)  x (t). y (t)  Lim

 Covariance

 The covariance is the cross correlation function with the

time

delay, , set to zero

 Note that here x'(t) and y'(t) are used to denote the

fluctuating

parts of x(t) and y(t) (mean parts subtracted)



Auto Covariance
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 The auto covariance Cx(t1,t2) of a random process X(t) is 

defined as the  covariance of X(t1) and X(t2)

Cx(t1,t2)=E[{X(t1)-mx(t1)}{X(t2)-mx(t2)}]

Cx(t1,t2) = Rx(t1,t2)-mx(t1)mx(t2)

 The variance of X(t) can be obtained from Cx(t1,t2)

VAR[X(t)] = E[(X(t)-mx(t))2] = Cx(t,t)

 The correlation coefficient of X(t) is given by

x 1 2

ρ 
x 
(t 

1 
, t 

2 
)  1

ρ (t , t ) 
C 

X 
( t

1 
, t

2 
)

C 
X  

( t
1 

, t
1

) C 
X 

( t 
2 
, t

2 
)



Auto Covariance Example#1
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Example:

Let X(t) = Acos2πt, where A is some random variable

The mean of X(t) is given by

m X  ( t )  E [A cos 2 t ]  E [ A ] cos 2 t

The autocorrelation is

R X  ( t1 , t 2 )  E [ A cos( 2 t1 ) A cos( 2  t2 )]

R ( t , t )  E [ A 
2 
] cos( 2 t  ) cos( 2  t )

X 1 2 1 2

And the autocovariance

C 
X 

( t
1 
, t 

2 
)  R 

X 
( t

1 
, t 

2 
)  m 

X 
( t

1 
) m 

X 
( t

2 
)

C 
X  

( t
1 
, t 

2 
)  E  [ A ]  E [A ] cos( 2  t

1 
) cos( 2  t

2 
)

2 2

C 
X 

( t
1 
, t 

2 
)  VAR [ A ] cos( 2  t

1 
) cos( 2  t 

2
)



Auto Covariance Example#2
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1





2
cos(  t   )  0m ( t )  E [cos(  t   )] 

X

1

2

1

21

1 2 1 2

X 1 2

X 1 2

C ( t , t ) 

C ( t , t )   2

cos(  ( t  t ))

 t ))  cos(  ( t
1 
cos(   ( t  t )  2 )d

2

The autocorrelation and autocovariance are then

C 
X 

( t
1 
, t 

2 
)  R 

X 
( t

1 
, t 

2 
)  E [cos(  t

1 
  ) cos(  t 

2
  )]





Example:

Let X(t) = cos(ωt+θ), where θ is uniformly distributed in the interval (-

π,π).

The mean of X(t) is given by
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 The cross covarianceCx,y(t1,t2) of a random process X(t) 

and Y(t) is  defined as

Cx,y(t1,t2)=E[{X(t1)-mx(t1)}{Y(t2)-my(t2)}]

Cx(t1,t2) = Rx,y(t1,t2)-mx(t1)my(t2)

 The process X(t) and Y(t) are said to be 

uncorrelated if  Cx,y(t1,t2) = 0 for all t1, t2
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R and om S equ ence (= D iscre te -tim e R .P )

X ( n T
s 
)  X [ n ]

M e a n E ( X [ n ] )

R 
XX 

( n , n  k )  E ( X [ n ] X [ n  k ])

C XX ( n , n  k ) E { ( X [ n ] X [ n ])( X [ n  k ] X [ n  k ])}

 R ( n , n  k ) X [ n ] X [ n  k]
XX

R 
XY 

( n , n  k )  E ( X [ n ]Y [ n  k ])

C XY ( n , n  k ) E { ( X [ n ] X [ n ])(Y [ n  k ]  Y [ n  k])}

 R ( n , n  k ) X [ n ]Y [ n  k ]
XY



 Then, X(t) is referred to as normal or Gaussian process

if all the

elements of X are jointly Gaussian
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)


2

 

 X ( t n  )


X (t

 Let X(t) be a random process and let X(t1), X(t2), ….X(tn) be the 

random  variables obtained from X(t) at t=t1,t2……..tn sec

respectively

 Let all these random variables be expressed in the form of a

matrix

 X  ( t1 ) 
X
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X ( t ),   t - contin u ous r.p .

1 1

2
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X
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i
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w .s .s . gaussia n r.p . X ( t )

X  4
 3

R 
XX 

( )  2 5e
2

i  1
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i
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0
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2 2

ik XX i k XX i k
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3
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 If a gaussian process X(t) is applied to a stable linear filter, then
the random process Y(t) developed at the output of the filter is
also gaussian.

 Considering the set of random variables or samples X(t1),
X(t2),…..X(tn) obtained by observation of a random process X(t)
at instants t1,t2,…….tn, if the process X(t) is gaussian, then this
set of random variables are jointly gaussian for any n, with their
n-fold joint
p.d.f. being completely determined by the set of means.

mx(ti) = E[X(ti)] for i=1,2,….n

and the set of auto covariance function

Cxx(t1,t2) = E[{X(t1)-E[X(t1)]}{X(t2)-E[X(t2)]}]

 If a gaussian process is wide sense stationary, then the process
is also
stationary in the strict sense

 If the set of random variables X(t1),X(t2)…X(tn) are uncorrelated
then
they are statistically independent
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we introduced Poisson arrivals as the limiting

behavior  of Binomial random variables

where
occur in an 

of duration  " 

k  0 , 1, 2 ,
k !

" k arrivals
P 
 interval

 k

  e
 

,

  np   T 


  

T


0 T

k ar riv a ls

2 

0 T

k ar riv a ls



since in that

case

 From the above equations, Poisson arrivals over an interval

form

a Poisson random variable whose parameter depends on the

duration

of that interval.

The Bernoulli nature of the underlying basic random arrivals, 

events  over non overlapping intervals are independent. We shall 

use these two  key observations to define a Poisson process

formally.

1

Poisson Random Process (contd..)
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2

T
np  T   2   2 .

k !

(2 )
k

 It follows that

" k arriv a ls occu r in a n 
P    e 

 2 
,

 in te rv a l o f dura tio n 2 " 

k   0 , 1, 2, ,



an

d
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121 2
,

k !
k   0 , 1, 2 , , t  t  t

( t )
k

P {n ( t , t )  k }  e 
  t

(ii) If the intervals (t1, t2) and (t3, t4) are non overlapping, then the

random

variables n(t1, t2) and n(t3, t4) are independent.

Since n(0, t) ~ P ( t ), we have

E [ X ( t )]  E [ n ( 0 , t )]   t

and

E [ X 
2 
( t )]  E [ n 

2 
( 0 , t )]   t   2 

t 
2 
.

 Definition: X(t) = n(0, t) represents a Poisson process if

(i) the number of arrivals n(t1, t2) in an interval (t1, t2) of length t =

t2 – t1
is a Poisson random variable with parameter  t .

Thus



Bu

t
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and hence the left side of above equation can be 

rewritten as

Similarl

y

Thu

s

)  n ( 0 , t )  X ( t )  X ( t )
1 2 1

n  ( t , t )  n  ( 0 , t
1 2 2

E [ X ( t 1  ){ X ( t 2 )  X ( t 1 )}]

t 2 , t 2  t1 .

 R ( t , t )  E [ X 
2

( t )].
XX 1 2 1

 t )  E [ X  
2
( t )]

1 1

  t   2
t

1 1

R ( t , t )   2 
t ( t

XX 1 2 1 2

t 2  t1 .  2
t t ,

1 2
R ( t , t )   t

XX 1 2 2

t1 , t 2 ).t 2   min(R ( t , t )   2
t

XX 1 2 1

Thu

s

( t , t To determine the autocorrelation function R ), let t2 > t1 ,
XX 1 2

1

then from (ii) above n(0, t1) and n(t1, t2) are independent

Poisson  random variables with parameters  t and  ( t 2

 t1 ) respectively.

1
 t ).E [ n ( 0 , t ) n ( t , t )]  E [ n ( 0 , t )] E [ n ( t , t )]   2 

t ( t
1 1 2 1 1 2 1 2



Notice that the

Poisson  process X(t) 

does not  represent a

wide

sense stationary

process.

 Define a binary level process

Y ( t )  (  1 )
X ( t  )

that represents a telegraph signal Notice that the transition

instants {ti} are random Although X(t) does not represent a

wide sense stationary process,

0 t
1

t
i

X  ( t )

t

Y ( t  )

t

 1

Poisso

n
arrival
s

t

 1
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1
t



an

d

an

d

its derivative X (t ) does represent a wide sense stationary

process.
X ( t ) X (t )

d ( )

dt

(Derivative as a LTI

system)

From there

1

2

2 1 1 2

X X  1 2

t  t
1 2 R ( t , t ) 

2
t

R ( t , t ) 
X X 1 2  
 t  t   t  t

  2
t   U ( t  t )

1 1 2

a constant ( t ) 
d 

X 
( t ) 


d  t 

  ,

dt dt
X 

2
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1

2

1

 t ).
 t

 R ( t , t )
R ( t , t ) 

X X  1 2

X X  1 2
     ( t



Define the

processes
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Proof

:

so

that

an

d

we claim that both Y(t) and Z(t) are independent Poisson

processes

with parameters pt and  qt respectively.

n  k

But given X(t) = n, we

have



Y ( t )  P {Y ( t )  k | X ( t )  n } P { X ( t )  n )}.

X ( t )

; Z ( t )   (1  N i )  X ( t )  Y ( t )

X ( t )

Y ( t )   N i

i 1 i 1

~ B ( n , p)

n

Y ( t )  N i

i 1

 n

k
p 

k 
q 

n  k
P {Y ( t )  k | X ( t )  n }  , 0  k  n,

.

n !

( t )
n

P { X ( t )  n }  e
  t



n
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n !
k !

(  t ) ( q  t)
( t )

k

( p t )
k

n  kp 
k 
e 

  t

n ! p 
k 
q 

n  k

( n  k ) ! k ! ( n  k ) !

e
 ( 1  q )  t



 (  p t )
k  e 

  p t
,

k ! k !



P {Y ( t )  k }  e 
  t 


n  k




n  k

e
q  t

k  0 , 1 , 2 ,

 
n n

p q
k ! m !

( q t )(  t )
k  m

(  p t )
k  m  

k

~ P (  p t ) .

More generally,

P {Y ( t )  k , Z ( t )  m }  P {Y ( t )  k , X ( t )  Y ( t )  m}

 P {Y ( t )  k , X ( t )  k  m }

 P {Y ( t )  k | X ( t )  k  m } P { X ( t )  k  m }


k m 

 e 
  t

 e 
  p t

e 
  qt  

( k  m ) !

P ( Y ( t )  k )

 P {Y ( t )  k } P { Z ( t )  m } ,

P ( Z ( t )  m )

which completes the

proof.
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X ( t ),   t -- in te ger-v alu ed d iscre te r.p .

X ( 0 ) 0 t
b 
 t

a
 X (t )   X (t )

b a

a b e 
 ( t a  tb ) ,
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[ ( t  t )]
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1
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X ( t1 )  k 1]P [ X  ( t 2  )  k 2 X ( t1 )  k 1 ] P [ X ( t 2 ) X ( t1 )  k 2  k 1

 P [ X (t )   X  ( t  ) k  k ]
2 1 2 1

 [  (t  t )]
( k 2  k1 )

k  k



(k  k ) !
2 1






X (t )  Po is so n r.p .

0  t  t  t
1 2 3

Example

191

1
k !

(  t )
k1 [ ( t [ (t

0  k  k  k 
1 2 3

P [ X  ( t1 )  k 1 , X  ( t 2  )  k 2 , X  ( t 3 )  k 3 ]

 P [ X  ( t  )   k  , X (t )   X  ( t  )  k
1 1 2 1 2

 k , X (t )  X (t )  k  k ]
1 3 2 3 2

 P[ X (t )  k ]P[ X (t )  X (t )  k  k ]P[ X (t )  X (t )  k  k ]
1 1 2 1 2 1 3 2 3 2

 t  ) ]
( k 2  k1 )

 t )]
( k 3  k 2 )


(k  k ) !

2 1

1 e 
 t1 2 1 e 

  ( t 2  t1 ) 3 2 e 
  ( t3  t 2 )

1 2 1 3 2 e 
 t3

(k  k )!
3 2

(  t  ) 
k1 [ (t  t ) ]

( k 2  k1 ) [  (t  t )]
( k 3  k 2 )


k !( k  k  ) !( k  k )!

1 2 1 3 2



Stochastic Processes: Spectral  
Characteristics

192



Introduction to Power density spectrum

193

 Fourier
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xT ( t ) d t  , fo r a ll f in ite T .
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Pro p ertie s of th e p ow er den sity sp ectru m :
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Output Statistics: the mean of the output
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h ( ) d    c , ( t )  
 

X   

Also R
XX

t ) so that reduces
to

2

( t1 , t 2 )  R 
XX 

( t1

21XYYY 1 2

 R ( )  h ( )  R ( ).
XY YY

R ( t    t ) h (  ) d ,   t  t
1 2

R ( t , t ) 
 

  

R ( )  R ( )  h 
* 
(   )  h ( ).

YY XX

XY 1 2
R ( t , t )    

  t  t .
1 2

 

R ( t  t   ) h 
* 
( ) d

XX 1 2

 R ( )  h 
*  

(  )  R ( ),
XX XY



the output process is also wide-sense stationary. This gives rise 

to the

following representation

LTI system

h(t)

Linear

system

X ( t )

wide-sense

stationary

process

Y ( t )

wide-sense

stationary

process.

LTI system

h(t)

X ( t )

strict-sense

stationary

process

Cross-Spectral Densities
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X ( t )

Gaussian

process

(also  

stationary)

Y ( t )

strict-sense

stationary 

process  (see 

Text for proof )
Y ( t )

Gaussian
process

(also stationary)

(a

)

(b

)

(c

)



 Shot noise

 Thermal

noise

k: Boltzmann’s constant = 1.38 x 10-23 joules/K, T is the

absolute

temperature in degree Kelvin.

2

2

1

volts

RR
2

2

TN

2

TN

2

TN

1
 f  4 kTG  f ampsE V  4 kT

E V  4 kTR  f  

E I 

Noise
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For w.s.s. white noise input W(t), we

have

W(t) is said to be a white noise process if

R ( t , t )  q ( t  ) ( t  t ),
WW 1 2 1 1 2

i.e., E[W(t1) W*(t2)] = 0 unless t1 = t2.

W(t) is said to be wide-sense stationary (w.s.s) white noise

if E[W(t)] = constant, and

R ( t , t )  q  ( t  t )  q  ( ).
WW 1 2 1 2

If W(t) is also a Gaussian process (white Gaussian process), 

then all of

its samples are independent random variables

White

noise

W(t)

LTI

h(t)

C o lo re d n o ise

N ( t )  h ( t )  W ( t )

White Noise Process
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an

d

White Noise Process
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wher

e

R ( )  q  ( )  h 
* 
(   )  h ( )

nn

 qh 
* 
(   )  h ( )  q  ( )

Thus the output of a white noise process through an LTI 

system

represents a (colored) noise process.

Note: White noise need not be Gaussian.

“White” and “Gaussian” are two different concepts!

 

 ( )   h ( )  h 
* 
(  )  h ( ) h 

* 
(   ) d  .

W
h ( ) d  ,



E [ N ( t )]    
a co n sta n t



·

2

re of the receivertemperatunoise

2

 ( )
N 0

N 0

W

W

R ( ) 

N
0
 kT

e

T
e

: equivalent

S ( f ) 

White noise
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Ideal Low-Pass Filtered White Noise
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2

2

0

exp( j 2  f  ) df
N 0

N

 N B sinc( 2 B  )
0

R ( ) 

-B  f  B

f  B


 N 0

S N (  f )  



B

  B



Correlation of White Noise with a Sinusoidal Wave
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T h e v a r a n c e

0 0
21

2

0

 



1 2 






T

c 2c 1

T

c

t )  d t d t
 T

o f w'  (  t  ) is

2

T
w ' ( t ) 


2

T

T T

  E w ( t 1 ) w ( t 2 ) c o s ( 2  f c t 1 ) c o s ( 2  f c t 2 ) d t 1 d t 2

0 0


2

T

T T

  R  W (  t  1  ,  t  2  )  c o s (  2   f  c  t  1  )  c o s (  2   f  c  t  2  )  d t  1  d t  2

0 0


2





2

T

N

T


T


T    N  0  

 ( t  t )  c o s (  2  f t )  c o s (  2  f t ) d t d t1
2 c   1 c 2 1 2

0 0 2

T N
0   

 c o s  
2   

(  2  f t ) d t 
0

c

0 2

T

w ( t )  c o s (  2  f t   )  w ( t )  c o s (  2   f  E  
 2

w ( t ) c o s ( 2  f t ) d t

X 
T

dt
0

, k is integer
k  

T

2

T
cos( 2 f ct ) , f c 

w ( t ) w 
' 
(t )White

noise



Two representations

a. in-phase and quadrature components (cos(2 fct), 

sin(2 fct))

b. envelope and phase

In-phase and quadrature representation

n ( t )  n ( t ) cos( 2 f t )  n ( t ) sin( 2 f t )
I c Q c

n I ( t ) and n
Q 

( t ) are low - pass signals

Narrowband Noise (NBN)
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Ideal Band-Pass Filtered White Noise

249

Compare

2 2

(a factor of  ),

exp( j 2  f  )df

j 2  f  ) 
c

N

R
N

( )   R
N

( )   2 N 
0
B sinc( 2 B  ).

I Q

 N B sinc( 2 B  )exp(  j 2  f  ) exp(
0 c

 2 N B sinc( 2 B  ) cos( 2  f   )
0 c

R ( ) 
f c  B N

0
exp( j 2  f  ) df  

f c B

 f c  B N
0

 f   B
c



1.nI(t) and nQ(t) have zero mean.

2.If n(t) is Gaussian then nI(t) and nQ(t) are jointly

Gaussian.

3.If n(t) is stationary then nI(t) and nQ(t) are jointly

stationary.
4

.

5. nI(t) and nQ(t) have the same

variance6.Cross-spectral density is purely

imaginary.

7.If n(t) is Gaussian, its PSD is symmetric about fc, then nI(t) and 

nQ(t) are

statistically independent.

0 otherwise
QI

 S 
N

( f  f 
c  

)  S 
N 

( f  f 
c
) , -B  f  B

S
N

(  f  )   S
N

( f )  



2

Important Properties
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. N 0

0 otherwise

f ,
cNcN

S 
N N

I Q

-B  f  B



 S  f  f jS  f
 

(  f  )    S ( f )
N Q N I


