HM23 Regulations

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES

(AUTONOMOUS)

UTUKUR (P), C. K. DINNE (V&M), KADAPA, YSR DIST. – Approved by AICTE, New Delhi & Affiliated to JNTUA, Anantapuramu. Accredited by NAAC with 'A' Grade, Bangalore.

M.TECH. IN THERMAL ENGINEERING COURSE STRUCTURE & SYLLABI

SEMSTER - III

S.No.	Course	Course Name	Category	Hours per week		Cred	
	codes			L	Т	Р	its
1.	23HPE8813 23HPE8814 23HPE8815	Program Elective Course – V Optimization Techniques & Its Applications Jet Propulsion & Rocketry Aircraft and Space Propulsion	PE	3	0	0	3
2.	23HOE1E01 23HOE0502 23HOE0303	Open Elective Business Analytics Internet of Things Mechatronics	OE	3	0	0	3
3.	23HPR8801	Dissertation Phase – I	PR	0	0	20	10
4.	23HCA8801	Co-curricular Activities					2
		Total					18

SEMESTER - IV

S.No.	Course codes	Course Name	Category	Hours per week			Credits
				L	Т	Р	
1.	23HPR8802	Dissertation Phase – II	PR	0	0	32	16
		Total					16

M Rami Dancas

h. Day chande ten

Que

Dr. G. JAYACHANDRA REDDY Professor of Mechanical Engineeing YSR Engineering College of YVU PRODDATUR 516 360

(AUTONOMOUS)

UTUKUR (P), C. K. DINNE (V&M), KADAPA, YSR DIST. -

Approved by AICTE, New Delhi & Affiliated to JNTUA, Anantapuramu. Accredited by NAAC with 'A' Grade, Bangalore.

M Rami Dankant

h. Tan chande ten

Quit

Dr. G. JAYACHANDRA REDDY Professor of Mechanical Engineeing YSR Engineering College of YVU PRODDATUR 516 360

(AUTONOMOUS)

UTUKUR (P), C. K. DINNE (V&M), KADAPA, YSR DIST. -Approved by AICTE, New Delhi & Affiliated to JNTUA, Anantapuramu. Accredited by NAAC with 'A' Grade, Bangalore.

UNIT – V	Lecture Hrs:9					
Non Traditional Optimization Alg	Non Traditional Optimization Algorithms: Genetics Algorithm-Working Principles, Similarities and					
Differences between Genetic Algori	hm and Traditional Methods. Simulated Annealing- Working Principle-					
Simple Problems. Application in pro	duction problems.					
Textbooks:						
1. Optimization theory and Application	1. Optimization theory and Applications, S.S.Rao, New Age International.					
2. Optimization for Engineering Design, Kalyanmoy Deb, PHI						
Reference Books:						
1. Operations Research, S.D.Sharma,						
2. Operation Research, H.A.Taha ,TMH						
3. Optimization in operations research, R.LRardin						
4. Optimization Techniques, Belagundu & Chandraputla, Pearson Asia.						

5. Optimization Techniques theory and practice, M.C.Joshi, K.M.Moudgalya, Narosa Publications

M. Rami Damento

h. Day chande her

(AUTONOMOUS)

UTUKUR (P), C. K. DINNE (V&M), KADAPA, YSR DIST. – Approved by AICTE, New Delhi & Affiliated to JNTUA, Anantapuramu. Accredited by NAAC with 'A' Grade, Bangalore.

Course Code	JET PROPULSION & ROCKETRY	L	Τ	P	С		
23HPE8814	Program Elective Course - V	3	0	0	3		
	Semester	III					
Course Objective	Course Objectives: Student will be able to						
• Analyze thern and specific fu	nodynamics of an aircraft jet engine and calculate the performance nel consumption in terms of design requirement.	measu	ires, s	uch as t	thrust		
• Be able to esti	mate the best possible engine performance as a function of princip	al des	sign p	aramete	ers,		
 such as maximum engine temperature, pressure ratio, and flight speed Analyze the internal mechanisms of gas turbine engine components and understand the factors that limit the practical performance of inlets, combustion chambers, and nozzles. 							
Course Outcome	s: - Student will be able to						
• Understand thangles, and directly angles, and directly and angles.	e operating characteristics of compressors and turbines in terms rection of rotation	of g	iven b	olade sh	napes,		
• Design a gas t	urbine engine using the understanding of the relationship between lecting the number of spools and stages	compo	onents	s, at leas	st at		
 Understand th 	be broader context of aircraft propulsion technology including	the er	viron	mental	and		
economic issu	es	ine en	.,	memui	und		
UNIT – I		Lect	ure Hı	rs:9			
 Turbo Jet Propulsion System: Gas turbine cycle analysis – layout of turbo jet engine. Turbo machinery-compressors and turbines, combustor, blade aerodynamics, engine off design performance analysis. Flight Performance: Forces acting on vehicle – Basic relations of motion – multi stage vehicles. Principles of let Propulsion and Rocketry: Fundamentals of jet propulsion. Rockets and air breathing jet 							
engines – Classification – turbo jet, turbo fan, turbo propulsion, rocket (Solid and Liquid propellant rockets) and Ramjet engines.							
UNIT – II		Lect	ure Hı	rs:9			
Nozzle: Theory and Characteristics and Parameters: Theory of one dimensional convergent – divergent nozzles – aerodynamic choking of nozzles and mass flow through a nozzle – nozzle exhaust velocity – thrust, thrust coefficient, Ac / At of a nozzle, Supersonic nozzle shape, non-adapted nozzles, summer field criteria, departure from simple analysis – characteristic parameters							
1) characteristic velocity, 2) specific impulse 3) total impulse 4) relationship between the characteristic parameters 5) nozzle efficiency, combustion efficiency and overall efficiency.							

M Rami Dameno

h-Jam chande her

Quit

(AUTONOMOUS)

UTUKUR (P), C. K. DINNE (V&M), KADAPA, YSR DIST. – Approved by AICTE, New Delhi & Affiliated to JNTUA, Anantapuramu. Accredited by NAAC with 'A' Grade, Bangalore.

UNIT – III		Lecture Hrs:9				
Aero Thermo Chemistry of The Combustion Products: Review of properties of mixture of gases – Gibbs – Dalton laws – Equivalent ratio, enthalpy changes in reactions, heat of reaction and heat of formation – calculation of adiabatic flame temperature and specific impulse – frozen and equilibrium flows. Solid Propulsion System: Solid propellants – classification, homogeneous and heterogeneous propellants, double base propellant compositions and manufacturing methods. Composite propellant oxidizers and binders. Effect of binder on propellant properties. Burning rate and burning rate laws, factors influencing the burning rate, methods of determining burning rates						
UNIT – IV		Lecture Hrs:9				
Solid propellant rovarious parameter design. Rocket mo transfer considerat Liquid Rocket Pr and storage prope liquid propellant. system componen chamber wall stre injection patterns, UNIT – V Ramjet and Integ	Solid propellant rocket engine – internal ballistics, equilibrium motor operation and equilibrium pressure to various parameters. Transient and pseudo equilibrium operation, end burning and burning grains, grain design. Rocket motor hard ware design. Heat transfer considerations in solid rocket motor design. Ignition system, simple pyro devices.Liquid Rocket Propulsion System: Liquid propellants – classification, Mono and Bi propellants, Cryogenic and storage propellants, ignition delay of hypergolic propellants, physical and chemical characteristics of liquid propellant. Liquid propellant rocket engine – system layout, pump and pressure feed systems, feed system components. Design of combustion chamber, characteristic length, constructional features, and chamber wall stresses. Heat transfer and cooling aspects. Uncooled engines, injectors – various types, injection patterns, injector characteristics, and atomization and drop size distribution, propellant tank design.UNIT – VLecture Hrs:9					
thrust coefficient, combustion efficiency of ramjet engine, air intakes and their classification – critical, super critical and sub-critical operation of air intakes, engine intake matching, classification and comparison of IIRR propulsion systems.						
Textbooks:						
1. Mechanics and Dynamics of Propulsion, Hill and Peterson						
2. Rocket propulsion elements, Sutton						
1. Gas Turbines, Ganesan (TMH)						
2. Gas Turbines and Propulsive Systems, Khajuria & Dubey (Dhanpatrai)						
5. Kocket propulsion, Bevere 4. let propulsion, Nicholas Cumpsty						
4. Jet propulsion, ivenoias Cumpsty						

h-Jay chande her

Que

(AUTONOMOUS)

UTUKUR (P), C. K. DINNE (V&M), KADAPA, YSR DIST.

Approved by AICTE, New Delhi & Affiliated to JNTUA, Anantapuramu. Accredited by NAAC with 'A' Grade, Bangalore.

Course Code	AIR CRAFT AND SPACE PROPULSION	L	Т	Р	С
23HPE8815	Program Elective Course - V	3	0	0	3
	Semester			Ш	
Course Objectiv	res: Student will be able to				
Gain insight	on the working principle of rocket engines, different feed system	ns, pro	opellar	nts and	their
properties an	d dynamics of rockets.				
Course Outcom	es: - Student will be able to				
Understand the w	orking of different types of aircraft and rocket propulsion systems a	nd the	ir perf	formanc	ce
characteristics.			-		
UNIT – I		Lect	ure Hr	s:9	
GAS DYNAMIO	CS				
Wave motion - C	compressible fluid flow through variable area devices – Stagnation s	state N	Iach		
Number and its in	nfluence and properties, Isentropic Flow, Rayleigh and Fanno Flow.	Defla	gratio	n and	
Detonation – Nor	rmal shock and oblique shock waves.				
UNIT – II		Lect	ure Hr	s:9	
THERMODYN	AMICS OF AIRCRAFT ENGINES				
Theory of Aircra	ft propulsion – Thrust – Various efficiencies – Different propulsion	system	ms –		
Turboprop – Ran	n Jet – Turbojet, Turbojet with after burner, Turbo fan and Turbo sha	aft. Va	riable	thrust-	
nozzles – vector	control.				
UNIT – III		Lect	ure Hr	s:9	
PERFORMANC	CE CHARACTERISTICS OF AIRCRAFT ENGINES				
Engine - Aircraft	matching - Design of inlets and nozzles - Performance characterist	ics of	Ramje	et, Turb	ojet,
Scramjet and Tu	bofan engines.				
UNIT – IV		Lect	ure Hr	s:9	
ROCKET PRO	PULSION				
Theory of rocket	propulsion - Rocket equations - Escape and Orbital velocity - Mult	i-stagi	ing of		
Rockets – Space	missions – Performance characteristics – Losses and efficiencies				
UNIT – V		Lect	ure Hr	s:9	
ROCKET THR	UST CHAMBER				
Combustion in solid and liquid propellant classification – rockets of propellants and Propellant					
Injection systems – Non-equilibrium expansion and supersonic combustion – Propellant feed systems –					
Reaction Control	Systems - Rocket heat transfer.				
Textbooks:					
1. Philip G. Hill and Carl R. Peterson, Mechanics and Thermodynamics of Propulsion, Second					
2. Edition, Addition – Wesley Publishing Company, New York, 2009.					
3. Zucrow N.J. Principles of Jet Propulsion and Gas Turbines, John Wiley and Sons New York, 1970					
Reference Books:					
1. Zucrow N.J. Aircraft and Missile Propulsion, Vol. I and Vol. II, John Wiley and Sons Inc, New York,					
19/5.					
2. S. M. Yanya, Fundamentals of Compressible Flow. Third edition, New Age International Pvt Ltd, 2003.					
3. Bonney E.A. Zucrow N.J. Principles of Guided Missile Design, Van Nostranc Co., 1956.					

M Rami Dancas

h-Day chande her

Qui

(AUTONOMOUS)

- UTUKUR (P), C. K. DINNE (V&M), KADAPA, YSR DIST. -

Approved by AICTE, New Delhi & Affiliated to JNTUA, Anantapuramu. Accredited by NAAC with 'A' Grade, Bangalore.

2. Business Analytics by James Evans, persons Education.

M Rami Dankant

h. Tan chande ten

Dr. G. JAYACHANDRA REDDY Professor of Mechanical Engineeing YSR Engineering College of YVU PRODDATUR 516 360

Out

(AUTONOMOUS)

UTUKUR (P), C. K. DINNE (V&M), KADAPA, YSR DIST. -

Approved by AICTE, New Delhi & Affiliated to JNTUA, Anantapuramu. Accredited by NAAC with 'A' Grade, Bangalore.

M Rami Dament

h. Day chande her

Dr. G. JAYACHANDRA REDDY Professor of Mechanical Engineeing YSR Engineering College of YVU PRODDATUR 516 360

Dur

(AUTONOMOUS)

UTUKUR (P), C. K. DINNE (V&M), KADAPA, YSR DIST. -

Approved by AICTE, New Delhi & Affiliated to JNTUA, Anantapuramu. Accredited by NAAC with 'A' Grade, Bangalore.

Dur

(AUTONOMOUS)

UTUKUR (P), C. K. DINNE (V&M), KADAPA, YSR DIST. -Approved by AICTE, New Delhi & Affiliated to JNTUA, Anantapuramu. Accredited by NAAC with 'A' Grade, Bangalore.

UNIT - V	Lecture Hrs: 09

PROGRAMMABLE LOGIC CONTROLLERS: Basic Structure - Programming: Ladder diagram -Timers, Internal Relays and Counters - Shift Registers - Master and Jump Controls - Data Handling - Analog input / output - PLC Selection - Application.

PROGRAMMABLE MOTION CONTROLLERS: Introduction - System Transfer Function – Laplace transform and its application in analysing differential equation of a control system - Feedback Devices: Position, Velocity Sensors - Optical Incremental encoders - Proximity Sensors: Inductive, Capacitive,

Textbooks:

A text book of Mechatronics by Er.R.K. RAJPUT., S. CHAND publications
 A text book of Mechatronics by Nitalgour Premchand Mahalik., McGraw Hill publications

Reference Books:

1. A text book of Mechatronics by W.Bolton ., Pearson Publications

M Rami & ameno

h Jam chande ten