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CHAPTER 1

Introduction to Probability

1.1 Introduction

In communication, signals are broadly classified into two types: Deterministic signals

and Non-deterministic signals.

1.1.1 Deterministic signal

The value of the signal can be determined at any instant of time. The deterministic

signals convey no information.
Example: M (t) =10 x t

1.1.2  Non-Deterministic signal

The value of the signal cannot be determined at any instant of time. This signal carry
the information. It is also called as random signals or statical signals.
Examples:
* Unpredictable information signals
— Audio signal, Video signal, Voice signal, Image signal
* Noise generated in the receiver and channel
* (’s and 1’s generated by the computer

* stock market
Communication is a process of conveying information from one point to another

point . Communication system consists of three major blocks as shown in Fig. 1.1

Random or Channel
Statistical signal e Receiver Output signal
(XMTR) (RCVR)
(Source of Noise) (Source of Noise)

Source of Noise

Fig. 1.1 Basic communication system

The transmitter (XMTR) and receivers (RCVR) are sources of noise, which is gener-

ated by a resistor, diode, transistor, FETs, etc., These components are used in XMTR’s



and RCVR’s. Channel is major source of noise, which are man-made noise, interfer-
ence from other XMTR’s etc., To analyze of information signal and noise, the proba-
bility concepts are used. Analysis means calculation of power, energy and frequency

etc.,

1.2 Basics in Probability (or) Terminology in Probability

1.2.1 Outcome

The outcome is an end result of an experiment.

Examples:
* Getting Head or Trail in tossing a coin.

* Getting 1,2, 3,4, 5,6 in throwing a dice.
1.2.2  Trail

It is the single performance of random experiment.

Example:
* One attempt of rolling dice

* One attempt of tossing a coin

1.2.3 Random experiment

An experiment whose outcome s are not known in advance.

Example:
* Tossing a coin.
* Rolling a dice.

* Measuring a noise voltage at the terminals of the system.

1.2.4 Random event

A random event is an outcome or set of outcomes of an random experiment that share a
common attribute.
Example:
* In arolling a die getting even number or odd number are called as random event.
i.e., Total outcome S = {1,2,3,4,5,6}
Getting even number A, = {2,4,6}
Getting odd number A, = {1, 3,5}

1.2.5 Certain event

If the probability of an event is equal to one (1), then it is caller certain event.

Example: Rising the sun in the East.



1.2.6 Impossible event

If the probability of an event is equal to zero (0). Ex: Rising of sun in the West.

1.2.7 Elementary event

The single outcome of an random experiment is called elementary event.

Example: Getting Head in tossing a coin

1.2.8 Null event

If there is common element between two events then it is called null event.
Example: In a rolling a dice the total outcome S = {1,2,3,4,5,6}
Getting even number A, = {2,4,6}

Getting odd number A, = {1,3,5}

LANA, =0

1.2.9 Mutually exclusive event

The two events A and B are said to be mutually exclusive, If they have no common
element. Example: In a rolling a dice the total outcome S = {1,2,3,4,5,6}

Getting even number A, = {2,4,6}

Getting odd number A, = {1, 3,5}

Getting numbers less than 4, i.e., Ay = {1,2,3} . A, N A, = ¢

A, and A, — are mutually exclusive event.

A. N Ay — are not mutually exclusive event.

1.2.10 Equally Likely event

If the probability of occurrence of events are equal then they are called likely events.
Example: In a rolling a dice the total outcome S = {1,2,3,4,5,6}

Getting even number A, = {2,4,6}; P(A.)=3/6=1/2

Getting odd number A, = {1,3,5}; P(A,) =3/6=1/2

So, P(A.) and P(A,) are likely event.

Getting numbers less than 5, i.e., A5 = {1,2,3,4} then P(A;) = 4/6 = 2/3. So,this

not likely event.

1.2.11 Exhaustive event

The total number of outcomes of an random experiment is called exhaustive event.
Example: In a rolling a dice consisting of ‘6" outcomes.

In a rolling two dices, the exhaustive events are ‘36’.



1.2.12 Union of a event

The union of two events A and B is the set of all outcomes, which belongs to A or B or
both. Example: A, or A5 = A, + A5 = Ac U A5 ={1,2,3,4,5,6}

1.2.13 Intersection of an event

It is the common elements between A and B events. Example: A, N A5 = {2,4}

1.2.14 Complement of an event

It is the complement of an event A is the event containing all the point in ‘S’, but not in
‘A’. Example: In a rolling a dice the total outcome S = {1,2,3,4,5,6}

Getting numbers less than 5, i.e., A = {1,2,3,4}

Complement of Ais A = {5,6}

1.2.15 Sample space

The set of possible outcomes of an random experiment is called sample space.

Example:

* In tossing a coin, sample space is { H, T’}

 Sample space in rolling a dice, S = {1,2,3,4,5,6}

* The sample space of a random experiment in which a dice and coin are tossed.
S =A{(H,1),(H,2),(H,3),(H,4),(H,5),(H,06),
(1,1),(T,2),(T,3),(T,4),(T,5),(T,6)}

 Sample space of tossing two coins: S = {HH, HT,TH, TT?}

» Sample space of two dice rolled.

§={(1,1),(1,2),(1,3),(1,4),(1,5), (1,6),
(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)...
(6,1),(6,2),(6,3),(6,4),(6,5), (6,6)}

Types of sample space

1. Discrete sample space: If the sample space consists of discrete set of samples
then the sample space is said to be discrete sample space.It is two types.
* Finite sample space: S = {7, H} in tossing a coin — finite.
* Infinite sample space: Finding odd or even or integer number — infinite.
2. Continuous sample space: If the sample space contain infinite number of out-
comes or sample space then it is called continuous sample space.
Example: Finding real number

The probability of sample space is always equal to one.



1.2.16 Difference

The set consisting of all elements of ‘A’ which do not belongs to ‘B’ is called the
difference of A and B. It is denoted by A — B.

1.3 Definition of Probability

Mostly used definitions are
1. Relative frequency approach — Experiment

2. Classical approach — Theory
3. Approximate approach — Theory

1.3.1 Relative frequency approach

It is based on experimentation or practical. The probability of an event (or outcome) is
the proportion of times the event would occur in a long run of repeated experiments.
Suppose if the random experiment is performed ‘n’ number of times then event A

has occurred n 4 times then probability of event A can be written as

P(A) = lim 4, 0<PA) <1 (1.1)

n—oo N

It is also known as a posteriori probability, i.e., the probability determines after the
event.

Consider two events A and B of the random experiment. Suppose we conduct ‘n’
independent trails of this experiment and events A and B occurs in n(A) and n(B) trails
vice versa. Hence, the event AU B or A + B or P(A or B) occurs in n(A) + n(B)
trails and

P(AUB)=P(A+ B)
_ i ATt B
n—o0 n

. na . np
= lim — 4+ lim —
n—,oo M n—,oo N,

— P(A) + P(B)

where, n — number of times experiment performed

n4 — number of times event A occurred; ng — number of times event B occurred.

. P(AUB) = P(A+ B) = P(A) + P(B) (1.2)

The equation (1.2) gives that, A and B are mutually exclusive event. If they are not

mutually exclusive then, it is given in equation (1.3).

(1.3)



Example: An experiment is repeated number of times as shown in below. Find the
probability of each event.

Random Experiment Getting Head

1 1
10 6
100 50

Solution: Relative frequency:

P(A)=1lim —; 0<P(A)<1
n—oo 1
M 1 M 6 M 50
Pl=x=1=t PB=F=1m PO9=F=m

1.3.2 Classical approach

It is based on theoretical approach, which means without experimentation. Here the
number of total outcomes of an random experiment is calculated and probability of
event A is calculated by finding number of favourable outcomes of event A.

ie, P(A) =4
where n — tgtal number of sample points in sample space.
n4 — number of favourable outcomes to event A.

Example: Tossing a coin. S = {T, H}. Here n =2 and P(H) = P(T) = 3

1.3.3 Approximate or Axiomatic approach

It is based on the axioms of theorems. Let us consider *.S” be the sample space consist-
ing all possible outcomes an experiment. The events A, B, C... are subsets of sample
space. The function P(.) defines which associates with event ‘A’ is a real number called

probability of A. This function P(.) has to satisfies the following axioms.
Axiom 1. Non-negativity: For every event ‘A’; 0 < P(n) <1
Axiom 2. Certainty or normalization: For sure or certain events; P(S) = 1

Axiom 3. Additivity: If A and B are mutually exclusive events;
P(A+ B)=P(A)+ P(B)

1.3.4 Probability Measure, Theorems

Theorem 1.3.1. If ¢ is an empty set then P(¢) =0



Proof. Let ‘A’ be any set such that A and ¢ are mutually exclusive. i.e., A + ¢ = A.

Using Axiom 3,
P(A+¢) = P(A)
P(A) + P(¢) = P(A)
. P(¢) =0. O

Theorem 1.3.2. In sample space ‘S’ such that B = A+ A; P(A) =1 — P(A).

Proof. The sample space S can be divided into two mutually exclusive events A and A

as shown in Venn diagram.
P(S)=1

P(A) + P(A) = 1

A
D :
S P(A)=1-P(A).

Theorem 1.3.3. If A C B then P(A) < P(B)

Proof. If A C B, then B can be divided into two mutually exclusive events A and B as

shown in Venn diagram. Thus,

P(B) = P(A) + P(B — A) S A
P(B—A)>0, - Axiom1 @
P(A) < P(B). ’

Theorem 1.3.4. If A and B are two events, then P(A — B) = P(A) — P(AB)

Proof. The event A can be divided into two mutually exclusive events A — B and AB

as shown in venn diagram. Thus,

P(A) = P(A— B) + P(AB) S -
P(A — B) = P(A) — P(AB) &e’
P(A) < P(B).

O

Theorem 1.3.5. If A and B are two events, then P(A+ B) = P(A)+ P(B) — P(AB)

Proof. The events A+ B can be divided into two mutually exclusive events A — B and

B as shown above Figure. Thus,

P(A+ B)=P(A—- B)+ P(B)
= P(A) — P(AB) + P(B) " (TheoremA)

. P(A+ B)=P(A)+ P(B) — P(AB).
If AN B = ¢ then P(AUB) = P(A+ B) = P(A) + P(B) O

7



Example 1.3.1. If two coins tossed simultaneously , Determine the probability of ob-
taining exactly two heads.

Solution: Number of sample points = 2 X 2 =4
1
S={T1),T,H),(HT),(H H)}; P(getting two heads) = 1

Question. 2: A Box contain 3 White, 4 Red, and 5 Black balls. A ball is drawn at
randomly. Find Probability i.e., 1) Red i1) Not black 1i1) Black or White.

Solution:

(1) Red balls=4; White balls =3; Black balls = 5;

P(Red) Ways of choosing a Red ball 4 4 1
(& - = —_ —_— = —
Total ways of choosingaball 3+4+5 12 3
(i1)
P(Black) = il
12
5 7
P(Not a Black) =1— P(Black) =1— — = —
12 12
(ii1)
P(W hite or Black) = P(B + W)
5 3 2
=P(B)+ P =—4+ ===
(B) + P(W) 12 12 3

Question. 3: A Bag contain 12 balls numbered from 1 to 12. If a ball is taken at
random. What is the Probability having a ball with a number. Which is multiple of
either 2 or 3?

Solution: Let A is an event that ball is multiples of 2
B is an event that ball is multiples of 3

A=1{24,6,8,10,12};  B=1{3,6,9,12};  then AN B = {6,12};

6 1 2 1
P(A) = —; P(B) = =; P(ANB) = = = —;
(4) = 5 (B) = 3; (ANB) =15 =5

1 3
P(AUB)=P(A)+ P(B)—P(ANB) =

+ L_ 8 _
6 12

1 1 2
2 3 3

2
Hence, the required probability is 3

Question. 4: A coin is tossed four times in succession. Determine the probability of
obtaining exactly two heads?



Solution: Sample points: 2¢ = 16
Sample space :
0000 0001 0010 0011 0100 0101 0110 O111
1000 1001 1010 1011 1100 1101 1110 1111

6
P(exactly two heads) = %3

Question. 5: A die is tossed find the probability of event A = {odd number}, B =
{number larger than 3 show up}, AU B and AN B.
Solution: Sample space: S = {1,2,3,4,5,6}
A=1{1,3,5} B = {4,5,6}
AUB=1{1,3,4,5,6} AnNB={5}

P(A) = g — P(B) = g

P(ANB) =

o
D o | —

P(AUB) =

Verification: AU B = P(A) + P(B) - P(ANB)=—+

o w
W
|
|
| Ot




Question. 6: An experiment consists of rolling a single dice, two events are defined
as A = {a 6 show up}; B ={a 2 or ab show up};
(i) Find P(A) and P(B) (ii)) P(C) =1— P(A) — P(B)

Solution: A = {a 6 show up}; B = {2,5}; P(A) = %
1 1 1

B=PeU=grg=y

P(C)=1-P(A)—P(B)=1— -~ ==~

(©) =1~ P(A) - PB) =1 ¢~ 2=

Question. 7: A pair of dice are thrown. Person A wins if sum of number showing up is
six or less and one of the dice shows four. Person B wins if the sum is five or more and
one of the dice shows a four. Find (a) Probability that A wins. (b) The probability that
B wins. (c) The probability that both A and B wins.

Solution:
(a) Person A — sum of number is six or less (< 6), but one dice 4.
4
P(A) = P(Awins) = P(2,4) + P(1,4) + P(4,2) + P(4,1) = %

(b) Person B — sum of number is five or more (> 5), but one dice 4.

P(B) = P(B wins)

Question. 8: When three dice are thrown. What is the probability that sum on three
faces is less than 16.
Solution: Sample space S: 6 x 6 x 6 = 216
P(sum < 16) =1 — P(sum > 16)
=1—{P(sum = 16) + P(sum = 17) + P(sum = 18)}
6 3 1 } _q 10 206

=1-{ —4+ =4 — —— =
{216 + 216 * 216 216 216

Question. 9: Two dice are thrown. Determine,

1. The probability that sum on the dice is seven, i.e., P(A) = P(7).
2. The probability of getting sum ten or eleven, i.e., P(B).

3. The probability of getting the sum between 8 to 11,
ie., P(C) = P(8 < sum < 11).
4. The probability of getting sum greater than 10, i.e., P(D).

10
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10.

P{(8 < sum < 11) U (10 < sum)}.

P{(8 < sum < 11) N (10 < sum)}.

P{(sum > 10)}.

A die will shows a 2 and the other will shows 3 or larger.
P(10 < sum and sum < 4)

Let X and Y denote the numbers are the first and second die respectively. Find
(1) PIX =Y] (i1) P(X+Y)=8] (ii))P(X+Y)>8 (iv) P(Tor1l)
(v) X be the event that Y is larger than 3. Find X, P(X).

Solution: Number of sample points in sample space = 6 x 6 = 36

10.

S Ly P(A)
Ly P(C)
B
{_»P(D)
—=e—== i
Fig. 1.2 Dice Sample Space
6 1
P(A) = P(T) = — = =
(A)=P() = o=+
P(B)=P(10or 11) = %
14
P(C)=P@B <sun<11) = T
3 1
P(D)=P 10) = — = —
(D) (sum > 10) %= 13
10 )
. P <11 1 = = __
{(8 < sum < 11)U (10 < sum)} 36 = 18
2 1
P{(8 <11)n (10 =—=—
{(8 < sum < 11)N (10 < sum)} %6~ 18
6 1
. P >10) = —= ==
(sum 2 10) = 35 = 5
P(2and > 3) = {(2,3),(2,4), (2,5), (2,6), (3,2), (4,2), (5,2), (6,2)}
1 2
=5(3) =3
12 1
) P(l()gsumandsumgél):%:g
6
D) PIX =YV] = — =
@ P ] 36

] 1=

(i) P[(X+Y)=8 =

11



(i) P[(X +Y)>8 = =

36
(v) P(Tor 11) = P(7) + P(11) — P(TN11) = 6,2 ,_8_4
oriy= ~36 36 36 17
V) X={(z,y):2 € Nyye N,1<x<6,4<y<6}and
¢ 18 ]
PX = — = — = —
X)=%5=35"3

1.3.5 Probability: Playing Cards

Cards -52

v
v v

26 Red 26 Bllack
I
vio) Qv (A &)y
Diamond Heart  Club Sped
(Atin) (Klavar)
Ace Ace Ace Ace
2 2 2 2
3 3 3 3
4 4 4 4
5 5 5 5
6 6 6 6
7 7 7 7
8 8 8 8
9 9 9 9
10 10 10 10
Jack Jack Jack Jack
Queen Queen Queen Queen
King King King King

Fig. 1.3 Playing Cards table

The primary deck of 52 playing cards in use today and includes thirteen ranks of
each of the four French suits, diamonds (<), spades (#), hearts (©) and clubs (&), with
reversible Rouennais “court” or face cards (some modern face card designs, however,
have done away with the traditional reversible figures).

Each suit includes an ace, depicting a single symbol of its suit; a king, queen, and
jack, each depicted with a symbol of its suit; and ranks two through ten, with each card
depicting that many symbols (pips) of its suit.

Two (sometimes one or four) Jokers, often distinguishable with one being more colorful
than the other, are included in commercial decks but many games require one or both
to be removed before play ... A deck often comes with two Joker Cards that do not
usually have hearts, diamonds, clubs or spades, because they can be any card in certain

games. In most card games, however, they are not used.

12



Question. 10: A card is drawn at random from an ordinary deck of 52 playing
cards. Find the probability of its being (a) an ace; (b) a six or a Heart; (c) neither a nine

nor a spade; (d) either red or a king; (e) 5 or smaller; (f) red 10.

Solution:
4 Aces 1
(a) P(Ace) = =
(b) P(6+ H) = P(6)+ P(H) — P(6H) — — + 5 _ L _ 2
©) N T 52 52 52 13
P(9S)=P(O+9)
=1—P(9+5)
=1—[P(9) + P(S) — P(9S)]
B [ 4 13 1 ] 9
TR TR R B
(d)
P(RUK) = P(R) + P(K) — P(RK)
26 4 2 7T
“m T n R 13
(e)

4 fives +4 fours + 4 threes + 4 twos

P(cards <5) =

52 cars
4444444 16 4
a 52 52 13

[1ten of heart + 1 ten of diamond] 2
P 10) = —
() Plred 10) 52 cards 52

Question. 11 In an experiment of drawing a card from a pack the event of getting a
spade is denoted by A, getting a pictured card (king, queen or jack) is denoted by B.
Find the probability of A, B,AN B, AU B.

Solution: 13 o - ;
X
P(A) = —; P(B) = S— P(ANB) = =
13 12 3 22
P(AUB)=P(A)+ P(B)— P(AB)= — 4+ — — —

52 52 52 52

1.4 Conditional, Joint Probabilities and Independent events

1.4.1 Conditional Probability

Let us consider ‘A’ and ‘B’ are two events of a random experiment. conditional prob-

ability is defined as

A

= . P(A)£0; (1.4)

By P(AB) P(ANB)
P ( )Z P(A) P(A)

13



Here P(A) is called elementary probability; P(AB) is joint probability;
B
P(Z) is conditional probability. i.e., the probability of B given that event A has

already occurred.

1.4.2 Joint probability

The joint probability of two events may be expressed as the product of the conditional

probability of one event given the other, and elementary probability of the other.
B A
P(AB) = P<Z> P(A) = P(E> P(B) (chin rule or multiplication rule)
If occurrence of event A does not effect the occurrence of event B,

then P(%) — P(B),

then, it is called A and B are statistically independent events.

P(AN B) or P(AB) = P(A)P(B) (1.5)

P(AN B) = P(AB) = ¢ is a null event, then A and B are called mutually exclusive

event.

Question. 12: In a box there are 100 resistors having resistance and tolerance as given
in Table.

Resi Tolerance
esistance
5% 10% Total 1. P(A),P(B), P(C)
22€) 10 14 24 2. P(AB),P(BA),P(CA)
470 28 16 44
P (3)r(e)-P(e)

100€2 24 8 32

Total 62 38 100
Let a resistor be selected from the box and assume each resistor has the same likely-

4. Is A, B, C' are independent.

hood of being chosen. Define three events are A as draw a 47¢) resister, B as draw 5%
tolerance resistor and C' as draw 100¢2 resistor. Now find elementary probabilities, joint
and conditional probability.

Solution:

1. Probability of getting 67 resistor: P(A) = &
Probability of getting 5% tolerance: P(B) = %

Probability of getting 1002 resistor: P(C) = -

2. Probability of the resistor building 472 and 5% tolerance: P(AB) = 2=
Probability of the resistor building 1002 and 5% tolerance: P(BC) = Z¢
Probability of the resistor building 472 and 10012 resistor: P(AC) = ¢ =0

14



P(ANB) 28 100 _ 14

het
e
—~
~—
| |

% “P(A) 100 ° 62 31
P(§) =% =0
P(8) = "5 =1 < 5 =1
4. P(AB) = P(A) x P(B)
P(AB) = 100 - %
P(A) x P(B) = 156 X 156 = 35 X 35

So, P(AB) and P(A) x P(B) values are unequal. Therefore they are dependent.

1.4.3 Properties of conditional probability

1. For any two events A and B in sample space. If B C A then P (%) =1

Proof:
S S S
A A
@ B
® (i) (iii)
Fig. 1.4
A . .

P<%> - _Ijj((BE;) — % =1 " From Fig. 1.4 (i), P(AB) = P(B)

2. If B C A then P(%) — (Ag
Proof: P(%) — P;?AB)) — (_Bg

A
3. P <§> > 0, it is non-negative.
A) P(AB)
B P(B)

P(B) % 0. So, P(%) >0

4. If two events A and B are in the sample space S then,

P(5) = r(3) -1

Proof: P( then P(AB) > 0;

Proof: From Fig. 1.4 (ii) and (i) then,
S SA (4)
P(3)=P(55) = pray — 1P #0
Similarly, P(%) - ];f(ig) - ]ngg; —1;P(B)#£0
. P(%) — P(A) and P(?) — P(B)
Proof: P(g) = P;EL;S;) = P(1A> = P(A)
similarly, P(%) _r ;ﬁg) _r <1B ) _ p(p)



1.4.4 Joint Properties and Independent events
1.4.4.1 Joint Properties

P(AB) = P(A).P(2)

BN Is

1.4.4.2 Independent

If P(B/A) = P(B) then P(AB) = P(A)P(B)
If P(AB) = 0, then it is mutually exclusive events.

If the random experiment is consisting on ‘n’ events, i.e., Ay, As, ..., A,. If n
events are independent then P(A;, Ay, ..., A,) = P(A1)P(As) ... P(A,) is probabil-

ity multiplication theorem.
Theorem 1.4.6. If events A and B are independent then Aand B, Aand B, A and B
are also independent.

1. P(AnB) = P(A)P(B)

2. P(ANnB) = P(A)P(B)

3. P(ANnB) = P(A)P(B)

Proof. 1. _
P(ANB)=P(AUB) = P(AUB)
—1- P(AUB)
- —pm®+P@ﬂ—PmBﬂ
—1— P(A) — P(B) + P(A)P(B)
:@—Pmﬂ—mmﬁ—Pmﬂ
:1—PMﬂP—Hm}
— P(A)P(B)
2.




]

Question. 13: One card is selected from ordinary 52 cards and events defined as event
A as select a king, event B as Jack and Queen and event C' as select Heart. Determine
whether A, B and C are independent.

Solution:

* Event A select a King: P(A) = P(King) = 2
* Event B select a Jack and Queen: P(B) = P(JUQ) = P(J)+ P(Q) = %
* Event A select a Heart: P(C') = P(Heart) = £
* P(AB) = P(King and Jack or Queen) = 0
* P(BC) = P(Jack or Queen and Heart) = 5%
« P(CA) = P(Heart, King) = =
* P(AB) = P(A).P(B) = 0 # 5.5
So, A and B are dependent.
« P(BC)=PB).PC)=3=58=2=2
So, B and C' are independent.

« P(AC) = P(A).P(C) = L =41 - 1 _ L

= 5252
Hence, A and C are independent.
.. P(AB) = 0 the A and B are Mutually exclusive events.

Question. 14: Find the probability of drawing first card is diamond and second card is

heart (first card is not replaced).

o\ 13 13
luti :PDH:PD.P(—):_ 20
Solution: P(DH) (D) o) 52 X 51

Question. 15: What is the probability that a six is obtained on one the dice in a throw
two dice, given that the sum is 7.

Solution: Let A be the event getting sum is 7 and B the event, 6 appears on any one of
the dice. 6 5
A=1(2,5),(3,4),(4,3),(5,2),(6,1),(1,6)} So, P(A) = 36 P(ANB) = 36

17
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Question. 16: A pair of dice thrown, find the probability that the sum is 10 or greater,

if (1) 5 appears on the first dice
(i1) 5 appears on the at least one of the dice.

Solution:

(i) Let A be the event that 5 appears on the first dice then
A={(51),(52),(5,3),(5,4),(5,5),(5,6)} ;
Total sample space S = 6 x 6 = 36, therefore P(A) = 6

6
2
Let B the event that sum is 10 or greater, P(AN B) = 3
IR
A P(A) % 9

(i) Let C' be the event that 5 appears on atleast one of the dice, then
C= {(57 11)7 <5a 2)7 (57 3)7 (5a 4)a (57 5)7 (57 6)a (L 5)7 (27 5)7 <3a 5)7 (4> 5)7 (57 5)}

P(A)—;)—6
P(AC) =

c\ PlCcA) & 3
P(3)= P(A) 11

1.5 Total Probability

Let us consider a random experiment whose sample space ‘S which consisting of ‘n’
mutually exclusive events. i.e., B, the probability of elementary event A in terms of all

mutually exclusive events called total probability and it is written as P(A).
P(A) = iP(B )P<£> (1.6)
= . B _

Proof. Let us consider a simple space ‘S’ as shown in Fig. 1.5 Here B,, is exclusive
events. i.e., B, N B, =¢; m#n=1,2,3,... N

N
S=U\,B,=) B,
n=1

18



B1

B3

Fig. 1.5 Total probability

From Fig. event ‘A’ in terms of sample space ‘S’ can be written as,

N
A:AmS:SmA:AmZBn

n=1
N
=> ANB,
n=1
N
P(A)=> P(ANB,); (. Axiom 3)
n=1

Ay  P(ANB,) |
P(5) = "pmy B2

Given that N mutually exclusive events B,, n = 1,2, 3,... N, whose union equals

the sample space S on the sample space. The probability of any event A, P(A) can be

written in terms of conditional probability as,

P(A) = i P(Bn)P<B£n>

This result is known as “Total Probability” of event A.

Question. 17: There are three boxes such that box one contain 3 red, 4 green, 5 blue;
box two contain 4 red, 3 green, 4 blue; and box three contain 2 red, 1 green, 4 blue;

these boxes are selected randomly with equal probability and then one ball is drawn

from the selected box. Find the probability that the drawn ball is red.

Solution: X
P(Box;) = P(Boxy) = P(Boxs) = B

19



3 Red
P(Red) = P(Box,)P ( Box >
n=1 "
_ p(Boxl)P( gji) v P(Bom)P< g;i) n P(Boxg)P< Rfj?,)

~Gxa)* Gxa)+ G<3)

1,242
-3()
1.6 Baye’s Theorem

It is a rule of inverse probability or rule of inverse conditional probability.

Let us consider a random experiment where sample space‘S” such that consists of

By .
‘n’ mutually exclusive events. Now the probability of P <Z> is

By P(B)P(L)
P (z) =T P (1.7)
" A
where P(A) = E P(Bl)P(g), then
B; P(Bz')P<BAZ.)
P(3) -5 P(B)P(Z) (19

k3

Here, P(B;) is priori probabilities i.e., event before performance of experiment.
P(A) is total probability.

* This Baye’s theorem formulae widely used in biometrics, epidemiology and com-

munication theory.

« The term P(4) is known as the posteriori probability of an given B and P(Aﬁi)
is called a priori probability of B given A; and P(A;) is the casual or a priori
probability of A;.

* In general a priori probability are estimated from past measurements or pre-
supposed by experience while a posteriori probabilities are measured or computed

from observations.

* A example of Baye’s formula is the Binary Symmetric Channel (BSC) shown in
next Fig. (1.6), which model for bit errors that occur in a digital communication

system. For binary system, the the transmitted symbols has two outcomes {0, 1}.

20



Question. 18 Determine probabilities of system error and correct transmission
of symbols of a binary communication channel as shown in Fig. 1.6
It consisting of transmitter that transmits one of two possible symbols 0 or 1 over a
channel to receiver. The channel causes error so that symbol 1 is converted to 0 and
vice-versa at the receiver. Assume the symbols 1 and 0 are selected for the transmission

as 0.6 and 0.4 respectively.

0.9

Symbol ‘1’

B2 P(A2/B2) A
Symbol ‘0’

0.9

Fig. 1.6 Binary Symmetric channel

Solution:
The effect of the channel on the transmitted symbol is described by conditional proba-
bilities.

* Let P(B) represents the probability of transmitting symbol ‘1°.

* P(By) represents the probability of transmitting symbol ‘0.

* The conditional probabilities or transmitting probabilities are
Ay A, Ay A
P(5.)-7(5) 7(5)*(5)
By By By By

* P(A;) represents probability of receiving symbol ‘1’
* P(A,) represents probability of receiving symbol ‘0’

* The reception probabilities given as ‘1’ was transmitted to

P<%;> ~0.1; P(%j) ~0.9

A A
* Channel effect 0's in the same manner, P(—1> =0.9; P<—2> =0.1
Bs B,

A A
¢ As seen in both cases, P(—1> + P<—2) = 1. Since, A; and A, are mutually

B; B;
exclusive and are the only receiver events possible.
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B
P (A—1> — Probability of occurrence of B; provided A; as already occurred, then
1
what is the probability that the received A; is due to B; in communication.

From the theorem of total probability,

where ZnNzl B,, = S and N = total number of events in *S’. By using above theorem

we obtain probabilities of A; and As; i.e., received symbol probabilities are,

P(A,) = P(%) P(By) + P(%)P(Bz)
— 0.9 % 0.6+ 0.1 x 0.4 = 0.54 + 0.04 = 0.58
P(Ay) = P(%)P(Bl) + P(%)P(Bg)

1 2
=0.1x06+09 x0.4=0.42

Let P (%) and P (%) are probabilities of system error then,

B\ P(&)P(B1)  0.1x0.6

P<_2>  P(4y) 042 0143
By\ P(5H)P(B2)  0.1x0.4

P(A_1>  P(A) 058 = 0.069

Let P <g—1> and P (g—i) are represents the probability correct system transmission

of symbols and are obtained by using given Baye’s theorem,

P<Bl> P(%;)P(Bﬁ L 09x06

By _ _ —0.931
Ay (Ay) 0.58
B P(£2)P(B 9x04
P<_2>: G)PBa) 0904 _ ooz
e P(4y) 0.42

Problem: 19 A bag ‘X’ contains 3 white and 2 black balls another bag contains 2
white and 4 black balls. If one bag is selected at random and a ball is selected from it
then find the probability that ball is white.

Solution: Given
X =— Bj contains 3 White and 2 Black

Y — B, contains 2 White and 4 Black
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P(Bag:) = P(Bagz) = %

Total probability: P(A) = S | P(A|B,) - P(B,)

S P(W)=Y_P(W|B,)- P(B,)

= P(W|By) - P(B1) + P(W|By) - P(Bs)
312 1

=5%376%3

= (0.46667
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CHAPTER 2

Random Variables or Stochastic Variables

2.1 Random variable

A random variable is a real valued function defined over a sample space of a random
experiment, it is called random or stochastic variable. Random variables are denoted by
capital or upper case letters such as X, Y etc., and the values assumed by are denoted
by lower case letters with subscripts such as x1, z2, y1, yo etc.,

Example: Let us consider a random experiment is tossing three coins, there are eight

possible outcomes of this experiment. The sample space can be written as,

S — HHH, HHT, HTH, HTT, THH, THT, TTH, TTT
X - X1, T2, xs, Ly, X5, Ze, X7, Ts
Cond. = 3 2 2 1 2 1 1 0

Here, S denotes a sample space, X denotes a random variable and the condition is
number of heads.
2.1.1 Conditions for a function to be a random variable

* A random variable should be a single valued function i.e., every sample point in

sample space ‘S’ must correspond to only one value of the random variable.

* The probability of event a < X < b is equal to sum of the probabilities of all

elements between a and b.

* The probability of the events { X = —oo} and {X = +o0} should be zero.

2.1.2 Types of random variable

1. Discrete random variable: If the random variable takes finite set of discrete values
then it is called discrete random variable.

Ex: In tossing a three coins, a random variable ‘X’ takes 0, 1, 2 and 3 values.

2. Continuous random variable: If the variable takes infinite set of values then it is

called continuous random variable.
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Ex: Finding the real value between 0 to 12 in a random experiment, sample space
Swill be {0 < S < 12}.

3. Mixed random variable: If the random variable takes both discrete and continuous
values then it is called mixed random variable.
Ex: Let us consider a random experiment in which the temperature is measured
by selecting thermometer randomly, then selection of thermometer takes finite
values it is called discrete random variable and measuring the temperature takes
continuous value and it is called continuous random variable. Combination of

these two is called mixed random variable.

2.2 Probability Density Function (PDF) and Cumulative Distribution Func-
tion (CDF) of a Discrete Random Variable

The Probability of a random variable is called probability density function (PDF) or
probability mass function (PMF) of a discrete random variable. It is represented as
P(X =z) = fx(x);{1 < X < 1}. The cumulative addition probability density func-
tion from X = —oo to oo} is called probability distribution or cumulative distribution
function (CDF) and it is denoted by F'y(z) = P{—o0 < X < o0}.

Question. 1: Find the PDF and CDF of a random experiment in which three coins are
tossed and condition to get random variable is getting head.

Solution:

Sample space S = {HHH, HHT,HTH, HTT, THH,THT,TTH, TTT}

Random variable X = {x1, 9, 23, x4, X5, T6, T7, T3}

No.of Heads (Condition) = {3 2 2 1 2 1 1 0}

Apply the condition to random variable X, getting head X = {01234} The probability
density function (PDF) is the probability of random variable.

ol Woo| w

The probability density function (PDF) is given by
fx(x)

o|w
o|w

Q0|
0|

The expression for probability density function is
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1 3 3 1
The expression for CDF function is

Fx(z) = %u(m) + §u(yc -1+ §u(1’ —2)+ %u(m —3)

fx(x)
A
1
PDF
3/8 3/8
1/8A T T 1/8
1 > x
0 1 2 3
Fx(x)
A 1
1 7/8
4/8
CDF
1/8
>
» X
0 1 2 3

Question. 2: Two dies are rolls, find PDF and CDF of a random variable ‘X’ which is
getting sum on two dies.

Solution: The sample space ‘S”

Condition to get random variable getting sum of two dice.
X =1{2,3,4,5,6,7,8,9,10,11, 12}

1 ) 3
P(X =92)= — P(X =3)= — PIX = 4) = 2
( ) 36 ( 3) 36 ( ) 36
4 5 6
P(X =5) = — P(X =6) = — P(X =7)= >
( 5) v ( 6) 2 ( 7) 2
5 4 3
P(X =8) = — P(X =9)= — P(X = 10) = —
( 8) v ( 9) % ( 0) 2
2 1
P(X =11) = — P(X =12) = —
36 36
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The expression for probability density function is

(@) = =60 —2) + =60 — 3) + —0(x —4) + —(z —5) + —3(z — 6)

36 36 36 36 36
1 1 1 1
+%5(x -7)+ %5@ -8)+ %5@ -9)+ %5(17 —10)
1 1

The expression for CDF function is

Fx(z) = iu(x —-2)+ 3u(ﬂlz —3)+ iu(x —4)+ iu(ac —5)+ i(5(35 —6)

36 36 36 36 36
40 =T+ D@ = 8) + u(z — 9) + —eu(z — 10)
—u(x — —u(x — —u(x — —u(x —
36 36 36 36
2
—|—%u(:ﬁ —11) + B—u(a; —12)
6/36 — 636
5/36 — 536 5‘/36
4/36 — 41/36 4‘/?6
3/36 — 3/36 3/36
236 — 2/36 2/36
1/36 — 1f6 156
— <t r L Lt & 5 555

36/36 =
35/36 -
33/36 —
30/36 —
26/36 =
21/36 -
15/36 —
10/36 —
6/36 =
3/36
1/36 —

\/

Fig. 2.1 Two dice PDF and CDF plot

Question. 3: The probability density function of a discrete random variable is given by

X=z|-1] 0 1 12 3 4 > 6 | 7
fx(z) | K |2K |3K | K | 4K | 3K | 2K | 4K | K

Find (i) K (i) P{X <2} (iii) P{X >4} (w) P{l1 <X <4} and (v) PDF
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and CDF.
Solution: Total probability = 1;
@)
KA+2K+3K+ K+4K +3K + 2K +4K+ K =1

21K =1
K=
21
(ii)
P{X<2}=P(X=-1)+P(X=0)+P(X=1)+P(X =2)
=K+2K+3K+ K
ST gL
21 21
(iii)
P{X>2}=P(X=5+P(X=6)+PX=7)
=2K+4K + K
21 21
@iv)
P{l1<X<4}=P(X=5+PX=6)+PX=T7)
= K+4K + 3K
8 g 1
21 21

The expression for probability density function is

fx(z) = %5(1} +1) + %5(1‘) + 3cS(x —-1)+ %5(% —2)+ i5(:(: —3)

21 21
3 2 4 1
+i(5(l‘ — 4) + i&($ — 5) + ﬁ(;(ft — 6) + 55(:13 — 7)

The expression for CDF function is

Fx(x) = %u(m +1)+ 3u(x) + iu(x -1)+ iu(:zc —2)+ %u(m —3)

21 21 21
3 2 4 1
ol — 4+ Sl — Zulr — —ulr —
—|—21u(9c )+ 21u(x 5)+ 21u(:zc 6) + 21u(x 7)

2.3 PDF and CDF of Continuous Random Variable

Let fx(x) and F'x(x) are the PDF and CDF of a continuous random variable X.
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A T><(O<)

PDF
13/49 = 13749

11/49 e

/A4 e

Z/AOD 7/a49

5/4.O e 5/49

3/4O == 3/49

1/49 =

J L) 1
© a 2 3 4 5

V)

A F> (<)

CDF 49/49
13/49O e

36749

11/4 9O e

25/49

/4D e

16/4

T/AD e

/49
5/4 O e

a4/49
3/49O e

1/a0 —4112

4-
"
-
N
o
o

2.3.1 Properties of PDF

* Itis a non-negative function.
. . . o
* The area under the PDF curve is unity. i.e., [~ _ fx(z)dz = 1.

T

* The probability of a random variable between intervals a and b can be written as

Pla< X <b}=Pla<X<b}=P{la<X<b}=P{a< X <b}

_ / i Fy(x)dz

The accumulative distribution function (CDF) of random variable X in terms of PDF
can be written as
Fx(x) = P{—-o0o < X <z} =P{X <z}= ff:_oo fx(u)du

2.3.2  Properties of CDF

* Fx(x) has minimum value is zero at —oo and maximum value at +oc is one. i.e.,
Fx(—00) =0;  Fx(+00) =1

* Fx(x)lies between 0 to 1. i.e.,0 < Fy(x) < 1:

* Fx(x) is non decreasing function. i.e., Fix(z1) < Fx(z2)
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Proof. Let X be the random variable, which takes the variable from —oo to +o0.

:P[(—oo <X<z)U( <X gscg)]
= P[(—oo <X<x)+(r <X < xg)] . mutually exclusive
:P(ZL‘1>+P(I‘1 <X<ZE2)
So, Fx($2) >FX(Z'1);ifl’2 > . O
¢ The cumulative distribution function between x; and x, can be written as
Play £ X S ao} = Fx(22) — Fx(z1); 22> a1
Proof. Let us consider X be the random variable which takes —oo to +o0.
Pl-co< X <z} +P{ri < X <t} + P < X <0} =1
Fx<$1)+P{$1 < X < 31:2}—4—1 —Fx(xg) =1
P{ OO<X<.CE1} Fx<(L'2) Fx(xl) O
d
* In terms of PDF and CDF can be written as fx(x) = d—FX(x)
x
Question. 4: The PDF of a continuous random variable is given by
Clz—1); 1<z<4
fx(z) =
0; else where
(i) Find the value of constant ‘C” (ii) Find P{2 < X < 3} (iii) Plot fx(z) and Fx(x)
Solution:
(1) Area under PDF from —oo to 400 is unity. So,
[ fx(x)de =1
4
/ Clzr—1)dx =1
r=1
x? 4
C [— - } ~1 2
2 Ml —(r—1); 1<zx<4
9 fx(z) = 9
C [5} =1 0; else where
2
C=-
9
(ii)
52
P{2<X <3}= §(x—1)dx
r=2
_2[:62 ]3 _2[3}_1
ol2 ~ "l T ol2l T3

1
P2<X <3} =1
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x(X)
A

PDF
8/9=—

6/9 =i
4/9 =
2/9=—

Fx(x)
A

8/9 =
6/9 =i
4/9 =
2/9=—

(iii) To find Fx(x), we have three intervals. From Fig. (a). Fix(x) for —oo < z <1
(b). Fx(x)for1l <z <4(c). Fx(x)ford <z < 4o0.

(a). Fx(x) for—oo <x <1

Fy(z) = P{—c0 < X < 1}

(b). Fx(z)forl <z <4

Fy(z) = P{—co < X <1} + P{1 < X < 4}

= [ it [ e

2
:O+/ —(u—1)du
u:19

2

ZE[U__U]I

(©). Fx(z)ford <z < +o0
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Fy(z) = P{—0o < X <1} + P{1 < X <4} + P{4 < X < 00}
1 4 0
— [ @i [ pe@iss [ fetud
_D2+0

4 (ZE
:o+/
=1 9

0; —o<zr<l1
—1)2
Fy(z) = (xg), l<z<4
1 x >4

Question. 5: The probability density function of a random variable ‘X’ is given by

— —g<zx<
fX(x): 2@, aSsSTssa

0; else where

uuﬁ—gSng} (i4) Plot fx(x) and Fx(z)

Solution:
a/2
(”p{_ESXSE}: _lM
2 2 o=—a)2 2a
1 [ }G/Q
= — |z
2a —a/2

(b) The PDF function fx(x) is shown in Fig. To find F' X (z), we have three inter-
vals. i.e., (). Fx(z) for —oo <z < —a (ii). Fx(z)for—a <z <a
(iii). Fx(x) fora <z < +o0.

(). Fx(z) for—oco <z < —a

Fx(z) = P{-00 < X < —a} = /i fx(u)du =0

Fx(z) = 0; —o0o<z<-—a
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1/2a

Fx(x)

12

o

(ii). Fx(x)for—a <z <a

Fx(x) = P{—ooc < X < —a}+ P{—a < X <a}

:/m_a fX(x)der/ui_an(u)du

_0+/$ 1d—1<)z —1<+>

B u:_a2au_2au—a_2a$ “
1

Fx(m):%<$+a), —a<z<a

(©). Fx(z)fora <z < +o0

Fx(z)=P{-c0o < X< —a}+P{-a< X <}+Pla<X < +o0}

- /w ioo fx(x)dx + / : fx(z)de + /u ;fx(U)du

@ 1 1 a 1
:0+/ Q—dx—i—Oz—[x} :—[a%—a}:l

a 2a —a 2a

r=—a

Fx(x) =1; a<x <400

Question. 6: The PDF of a continuous random variable is given by

b
—x—l—b; —a<z<0

fx(@) =4 %
—§+b; 0<z<a

where a and b are constants. (i) Find the relation between a and b. (ii) Plot PDF and
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CDFE
Solution: We know that [~ fy(z)dz =1

(a)
/O <b§+b>d:ﬂ+/a (—%—l—b)da::l
r=—a z=0

G5l ¢ [T ] =
o- (855 b)) [(4 ) o] -1
—(ﬁ%—ab)%—(_;b%szab):l
_Tavaab_Tab—l—abzl
—ab+2ab=1
ab=1

1

“=%

(b) From the graph of fx (z): Fx(z) = [ fx(u)du
(i) Fx(z) for the interval —co < z < —a
: Fx(x) = 0; —0o<z< —a
(ii) F'x (x) for the interval —a < x <0

fwmzlﬂ(amm+/xﬁWMu

=— i b =—a
:0—|—/ (—u+b>du
u=—a @
b u? z
_[2E b}
|:CL2 + ufa
b ba?
=g e (G )
b ab
=557 +b$—§+ab
b , ab
=577 +b$+3
9 ab
Fx(r) = —x —Hm—i-?; —a<z<0

(iii) Fix(x) for the interval 0 < z < a

FX(:zc):/x_a fX(:zc)der/O fX(x)dx+/uiOfX(u)du

N Vi S S
r=—a u=0
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= [éx—2+bx}0a+ [—Qu—Q—i-bu]m

a 2 a 2 0
=~ G )]+ [-55 v
Z_Tab—l—ab—gxg—l—bx
:—%f—l—bx-i—%b
FX(x):—%xz—l—bx%—%b; 0<z<a

(iv) Fx(x) for the interval a < z < 400

A= [ s [ s [ @ [T o

=—00

:0+/$ (§x+b)dx+/a (—ga:—H))d:c—l—O
T=—a =0

= [éx—Q—l-beia%— [—éxj—i—bx]a

b a? b a®
- (5 -]« [(- ) -
[ a 2 “ * a2+a
ab ab
——?—i—ab—?—l—ab
= —ab+ 2ab
=ab
Fx(z) = ab; a<z <00
(
0; —0o<z<-—a
b b
—x2+bx+a—; —a<z<0
Fx(z) = 2a 2ab
——2% + b + —; 0<zr<a
a 2
ab; a<zrz<oo
\
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Question. 7: A random variable has an experimental PDF: fx(z) = ae~**! where a

and b are constants. (i) Find the relation between a and b. (ii) Plot PDF and CDF.

Solution: .
ae’; —oo<z <0

fx(z) = -

ae . 0<z<o0

(i) We know that [~ fx(x)dz =1

0 fe’e)
/ ae?dxr + / ae dr =1
rT=—00 x=0

bx —bx

() ;=
(G-0)+ (0+5) -

2a

?:1
a 1
b2
a 1
b2

(ii) Find the expression for F'y (z) in two intervals, i.e.,
(@A) —co<z<0;Mb)0 <z < +o0.
(a) Fx(z) for the interval —oo < z <0

Fy(z) = / ioo Fx(u)du

1
FX(x)ziebw; —00< <0

(b) Fx(z) for the interval 0 < = < +oc.

=—0Q

€T
:/ aebxdx—i—/ ae” " du
T=—00 u=0
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_ @4y O
b b b
20 a _,,
7 "
=1- le_bx
2
I,
Fx(x):1—§€ “ 0<z< 400
L,
—e’; —oo0o<z<
Fx(z)=42 |
1—56*”, 0<z<
A fx(x)
a
ae ae™
0 > X
AFX(X)
1 -
a=1, b=2
0.5
0 » X
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2.4 Statistical parameters of a Random variable

Expectation: It is process of averaging the random variable X.

Moment: Expected values of a function g(x) of a random variable X is used for cal-

culating the moment. Two types: (1) Moment about origin (2) Moment about mean.

(1) Moment about origin:

Let the function g(z) = 2™; n = 0,1,2,.... The moment about origin can be written

as

m, = E[X"| :ﬁ:/ 2" fx(z)dz

o0

=—0Q

If n = 0 then my = f, o [x(x)dx

where my is the total area of PDF curve.

Ifn=1thenm; = E[X] =X = [ afx(x Ydr = X
where m; is called mean value of random variable X or (or the expected or the

average or D.C value of X).

Ifn=2thenmy = E[X? = X2 = [* 2%fy(z)ds

where ms is called mean square value of random variable X, which is total power
of random variable. i.e.,

my = E[X?| = Total Power = AC Power + DC Power

If n = 3 then ms = E[X?] = X3 = [ fx(x)da;

where my is a 3"*moment about origion.

(2) Moment about mean or Central moment:

Let the function g(z) = (X — X)" n = 0,1,2,.... The central moment of a random

variable X can be written as

i =Ela=-Xp1= [ (o-%) Fxo)o

=—00

« Ifn=0thenpy= [~ _ fx(z)dx

where 11 1s the fotal area of PDF curve.

e If n = 1 then

= Ele -3 = [ T @ - T fxlo)de

=—00

o0 oo =1
:/ vfx(z)dr — X T)dx

=—00 T=—00

=X-X=0

1 =0
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e If n = 2 then

o0

szm—7ﬂ=/’ (& — 0 fx(2)da

=—00

o2 = E[X2 L X 2)(?]
E[X? + E[X’] - 2XE[X]

X2+ X 92X
X2 -X
:mg—m%

[ty = 0% = My — m? = mean square value — square of mean

The second central moment is called variance, and denoted by og(. Which is
equal to AC power of random variable X.

In many practical problems, the measure of expected value £(X) of a random
variable ‘X’ does not completely describer or characterize the probability distri-
bution. So, it is necessary to find spread or dispersion of the function about mean
value. The quantity used to measure the width or spread or dispersion is called

variance.

— The +4wve square root of variance is called standard deviation ox of X.

It is measure of the spread in the function fx(x) about the mean. oy =
\/ Mo — m%

— If my = 0thenox = \/my = \/mean square, Itis called root mean square

value or rm.s value or AC component of random variable X

e If n = 3 then -
p= Bl -%) = [ - X)hea)is
_ E[X3 _3X%X 4 3XX0 - 73} (0 — b = a® — 302 + 3ab? — I
= E[X?® - 3XE[X?] +3X E[X] - X
:Emwnm@+YWm?_? My = 0%+ X
- E[X3 - 3XUX —3X +3X - X

= m3 — 3m oy —m;

ugzﬁ—370§(—73:m3—3m10§(—m§

The third central moment is called skew of PDF and it is measures asymmetry of fx ()

about mean. If a density function is symmetric about = X then its skew is zero. The
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normalized third central moment, a3 = M_g, is known as skewness of PDF or coefficient
g

X
of skewness.

Summary:

Table 2.1 Summary of statistical parameters of a random variable X

S.No Parameter Mathematical Equation
1.  Mean Value mi=EX]=X= [~ _xfx(z)dz.
2. Mean square value my = E[XY =X2= [ _2’fx(v)dx.
3. 3" moment about origin my = E[X% = X3= [ 2*fx(z)dx.
4.  Variance o = 0% = my —m?

5.  Standard deviation ox = \/My —m? = \/liz

r.m.s value of random variable X Ifm; =0, ox = \/mas

standard deviation Ifm; #0, ox = /2
6.  Skew ps = mgz — 3myo% —ms
PDF symmetry about X If u3 =0
PDF anti-symmetry about X If ug # 0
7. Skewness or coefficient o3 = M—;’
Ox

Question. 8: Find all statistical parameters of continuous random variable X,

whose PDF is given by

fx(x) = g(”f—l); 1<zr<4

0; else where

Solution: o
1. Meanvalem; = E[X] =X = [~ xfy(z)dz.

E[X]:/xoo xg(x—l)dng/:l(xQ—x)d:c

27x_3 x4
=515 %),

_2[43 42 (1 1”
S 9l3 2 3 2
2 8

= —_— —:3
0" %

—_
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x(X)
A

PDF
8/9=—

6/9 =i
4/9 =
2/9=—

Fx(x)
A

8/9 =
6/9 =i
4/9 =
2/9=—

2. Mean square value my = E[X?] = X2 = [~ 22 fx(x)dz.
F 92 2 (Y 5 s
me = x'=(x—1)dz = = (x° — z%)dx

T=—00 9 9 =1
2rxt 234

_5-2_3]1

24t 8 (1 1)}

S 9l4 3 \4 3
21255 63

S e
9L 4 3]

3. 374 moment about origin mz; = F[X% = X3 = [~ 3 fx(z)dx.

x
T=—00

00 ) ) 4
ms = / ¥ (x — 1)dr = —/ (z* — 2%)dx
T= 9 9 =1

2:10_5 rty4
*53_2]1
24 44 (1 1)}
o9l 4 5 4
271023 255
=—|————| =313
9L 5 4]

4. Variance ptp = 0% =my —m? =952-32=95-9=105
5. Standard deviation ox = \/my — m? = \/jiz = v/0.5 = 0.7071

6. Skew pi3 = mg — 3myo% —m? = 31.3 — 3(3)(0.5) — 3% = —0.2
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Question. 9: Find all statistical parameters of continuous random variable X, whose

PDF is given by

fx()={ 2 -

Solution:

1/2a

Fx(x)

1/2

\ 4
x

1. Meanvalem; = E[X]| =X = [~ afx(z)dx.

= [ rggte = [ sae= 5] =l -5 o

—a

2. Mean square value my = E[X? = X2 = [ 2?fx(z)dx.

T

oo 1 1 a
me = / 2’ —dr = — 2?dx

—w 2a 2a J),—_,
_L[fﬁr _L[&S_(—_COS}_LQ_&_G_Q
S 2al31-a 2al3 3 1 2a3 3

3. 3" moment about origin m; = F[X%] = X3 = [~ 3 fx(x)dw

T
T=—00

1 1 @
3 3
mg—/ T x r’dr

1 [x‘*}a 1 [a4 (—a)‘j 0
“2al4)0 2al4 4 1

2 2

4. Varianceu2:a§<:m2—m%:%—0:%

5. Standard deviation ox = \/my — mi = \/liz = T =&

2
6. Skew p3 = mz — 3myo% —m$ =0 — 3(0)(%) —0=0
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Conclusion: Skew is zero. So, the PDF function is symmetry.

Question. 10: Find all statistical parameters of continuous random variable X, whose

PDF is given by fx(z) = 56"”‘; —00 < x < oo; where a and b are constants.
Solution: Given fx(z) = §€|Z|; —00 < 1 < oo;
A FXx(X)
1/2

A Fux)

/

[0]

T o<z <0

)

fx(z) =

DO | O | =

—e " 0<r <

1. Meanvale m; = E[X] =X = [° _ xfx(z)dz.

E[X]:/O xfx(x)dx—i—/oo v fx(2)dz

r=—00 x=0
0 00
1 1

:/ m—exdx—i—/ r—e dx

r=—00 2 =0 2

1 0 1 0
- et dfete ]

1

2. Mean square value my = E[X?] = X2 = [ 22 fy(z)dx.

T

me = /xi_oo 2 fx(x)dr + /:O 2% fx(v)dz

=0

R | |
:/ T .—emdx—i-/ 22 e %dx
r=—00 2 x=0 2

1 0 1
=3 [(m2 — 2z + 2)696} + 3 [(—x2 —2x+42)e"

[e.9]

00 0
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17, o 1r o, B IRES
:—xex—2x6$—26x} +—[—J}€I—21‘€x—26 “’}
2L —00 2 0
17 1
-2 (0—0+2)—(0—0+0)}+§[(—0—0—0)—(0—0—2)]
2!
2

2] +%[(+2)} —14+1=2

3. 374 moment about origin mz = E[X%] = X3 = [~ 2%fy(z)dx

r=—00 x
0 1 +oo 1
ms :/ $3.§6xd$+/ x3.§e_xda:
T=—00 =0

1 0 1
=3 [63([173 — 327 + 62 — 6)] + 3 [e_“”(—x?’ — 32% — 67 — 6}

_%[60(0—0+0—6)] +%[—(e°(0—0—0—6))}

[e o]

0

4. Variance g = 0% =my —mi=2-0=2
5. Standard deviation ox = \/my — m? = /i3 = V2 = 1.414
6. Skew 3 = mz —3myo%x —m3=0—-0—-0=0

7. Skewness a3 = =0 So, itis symmetric PDF function about mean value.

Lacd
0%
2.4.0.1 Skewness

Skewness of a probability distribution is a measure of asymmetry (or lack of symmetry).
Recall that the probability distribution of random variable X is said to be symmetric
about point X . Often a distribution system is not symmetric about any value but instead

has one of its tails longer than other.

<
as>0 a;<0

* If the longer tail occurs to the right, the distribution is said to be skewed to the

right.
* If the longer tail occurs to the left, the distribution is said to be skewed to the left.
* Measures describing this assymetry are called coefficients of skewness (or) briefly

Ble-w*] _ B[@-%)]

o3 o3

skewness. i.e, ag = =4
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* The measures a3 will be positive then distribution is skewed to the right, ag will
be negative then distribution is skewed to the left, and o3 will be zero then ther

PDF is a symmetric.

2.4.1 Properties of Expectation

Let ‘X’ be the random variable with PDF fx (z).
Expectation is defined as E[X] = X = m; = [*_afx(z)dx

1. If random variable ‘X"’ is constant then Expectation is also constant.

Proof. E[X] =X =m; = [ afx(z)dz
Let X = K = Constant

EIK) =X =my = [%, K.fx(@)de = K.[*_fxt@)

L EK] =K O
2. Expectation of KX is K F[X]

Proof. E[KX] = [T Ku.fx(z)de =K. [*_zfx(z)de = KE[X] O

3. ElaX + b] = aE[X] + b; where a an b are constants.

Proof. -

ElaX +b] = / (ax + b).fx(z)dx
_ a/oo z.fx (z)dz + b%l
=aF[X]+b

]

4. If z and y are two random variables with joint probability density function fxy (z, y)
then E[X + Y] = E[X] + E]Y]

Proof. Let X and Y be the two random variables with joint PDF fxy (z,y)

EX+Y]= / / (x + ) fxy(x,y)dxdy

/ / zfxy(z,y d:vdy+/ / yfxy (z,y)drdy

= /m:Oo xdx /y:oo fxv (@, y)dy + /y:oo ydy /x:oo Fxv (z,y)da
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— ioo wdx f,(z) + / ioo ydy fv (y)
= E[X] + E[Y]

5. If X and Y are two independent random variables with PDF fxy (x,y) then
E[XY] = E[X]E[Y]

Proof. We know that, if two random variable are independent then fxy (x,y) =

fx () fy(y) or P(AB) = P(A)P(B)

EIXY] = / L / ry fxy (v, y)drdy
[ atstas [ i

y=—00

— E[X]E[Y]

6. If X and Y are two independent random variable such that Y < X then
EY] < E[X]

Proof. V¥ < X
Y —-X<O0

EY — X]
Ely] - E[X
EY] < E[X]

IN
tq

[ ]

—
—

Il/\

ence Proved.

Question. 10: The PDF of continuous random variable is given by

fx(x) = g(ﬂﬂ—l); 1<z <4

0; else where

Find E[X], E[X?, E[3X], E[3X +5], E[(X — 1)?]
Solution:

1. B[X] :/1 z.fx(x)dz
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_42.75} ~95
3. E[3X] =3E[X] =3x3=09
4. E[3X +5 =3E[X]+5=9+5=14

5.B[(X —1)’] = B[X?* - 2X +1]
= B[X? - 2E[X] + 1
=95-2x3+1
=45

Question. 11: The PDF of continuous random variable is given by

fx(z) =

3z%, 0<zx<1
0; else where

Find (a) E[X] (b) E[X?] (c) E[3X — 2]

Solution: )

(a) E[X] = /°° z.fx(z)de = /le.3x3dx = 3[%]1 = %

—00

(0) E[XQ] = /OO Q?Q-fx(x)dﬂf = /01x2.3x3da: = 3[%}1 = g

—00

@ngx—ngEuj—Eppa%-)—zz
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Question. 12: The continuous random variable ‘X’ is defined by

—2 with a probability 1/3;
X = ¢ 3 with a probability 1/2;
1 with a probability 1/6;
Find (a) E[X] (b) E[X?] (c) E[2X + 5]

Solution:

—
RO H W

1
PO =1x() | 5 | 5] 3

(a). BIX] =) afx(z) = (—2)(%> +3<%) + 1(%) _

(0). EIX?) = o fx(z) = (—2)2(%) + 32(%) + 12(é) —6

(). E2X +5] =2E[X|+5=2(1)+5=7

Question. 13: The PDF of continuous random variable is given by

5e7% 0 <z <00

fx(z) =

0; else where
Find (i) If PDF is valid. (i1) E[X] (ii1) E[3X — 1] (iv) E[(X — 1)?]

Solution: (i) The integration of PDF is equal to one, then it is valid.

Total Probability =1
0 [e’e} -5
_ —5z _ € o — —oo 0 — —1(—
/1, fx(x) = /0 S.e dx = 5[—_5}0 1[6 e ] 1(—1)

=—00

=1

So, the given PDF is valid.

(ii) E[X] = /OOO r.fx(x)dr =5 /OOO z.e” " dx
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(i41) E[(X —1)’] = E[X? — 2X + 1] = E[X?] - 2E[X] + E[1]

BIX? = /OOO 22 fy(2)da

<

:5/ x2.e % dy ‘.‘/uv:u/v—/du/
0

—5x -5 00
— [:):26 — /Qxe dx]
-5 ) 0

- E[(X —1)’] = E[X?] —2E[X] + E[1]

2 1
2% \5) "
210425

25
17

T 25

Question. 14: Let ‘X’ be the random variable defined by the density function

fx(x) = {%COS<%)§ —4<z<4

0; else where

Find (i) E[3X] (i1) E[X?]
Solution:
(1) E[3X] = 3E[X]

e}

BX] = / v fx(2)dz

o0

4
= /_4 x.%cos(%c)dx

:?6/_ixcos(%x)dm '.‘/uv:u/v—/du/v
_ 1”_6[;(;/@05(%) - /dx/cos(w—;)dx}:

T _/152n§%>d$:|4
g —4

7 [ sin(%)
-Gl

|3
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l[xsmg%) —cﬂos(?”)}4
16 5 (§)(F) 1
T 8 . TX 8 X
6 X —[msm(§) ;cos(§)} B
1 . mx 4 1 8 mr 14
3 mein()]+ g2l
1 _ —Ar 4 A7 AT
3 [48172(—) — 4sm(T)] + = [cos(g) — cos(g)
1 T 4
5 % 83m§ + ;(O)
1
5(O) +0
0
3E[X] = 3(0) = 0
/ 2% fx(z)dx
/4w21cos(ﬂ)dx "/uv—u/v—/du/v
., 16 8 ' B
T [*, 7wz
— | x°cos(—)dx
16 ), 8
G PR S / 20 gy
16 3 3 —4

T 8[ ., .  Tx LN
22 K W) e
T X - [az sin( 5 ) /:csm( 3 )d:c} B

4
1 x2sin(ﬂ) - 2[x.i(?) - / 1._Cos?d:v]]
—4

I : :

1: 16 n(z)1]’
— | 2sin( ™ __[_ (i Sm_S}

5 z”sin( 8) . xcos( 5 )+ : 4

16 128

1 1 —(0) — —
(16.+16) + —(0) Wm]

1 128
2—— X — x2
X 3 5 2
128
T2
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2.4.2 Properties of Variance

Let ‘X’ be the random variable with PDF fx(x). Variance or Second central moment

or ac power is defined as

Var(X) = s = El(x — X)) = / - (2 - %) Fx(2)da

=—00

1. Var(X) = 0% = my — m? = E[X?] — (E[X])?
Proof.

[
=EX*+X - XX|
— E[X?+X —XE[X]
= B[X? - X - 2X"
= EX?-X"
2. Variance of constant is zero.
Proof. LetX =K
Var(X) = E[(X — X)?]
Var(K) = af( = F[(K — 7)2]
:E[(F—F)Q] K=K
=0

3. 0%y = Var(KX) = K*Var(X) where ‘K’ is constant.
Proof.

ofx =Var(KX) = E[(KX — KX)?

=B[(KX — KX)¥ KX =FE[KX]=KX
X

=FE[K*(X -X
Var(KX) = K2E[X — X ]

)]

4.02x,, = Var(aX +b) = a*Var(X)
Proof.

Var(aX +b) = B|[(aX +b) - (@X + D)

:E[[(aXer)_(aYer)]?] caX +b=FElaX +b =aX +b
= Bla*(X — X)?]
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= a*Var(X)

5. 0%,y =Var(X +Y) =Var(X)+ Var(Y); If X,Y r.v are independent
Proof.

Var(X +Y)=E[(X +Y) - (X +Y)?

:E[[(X+Y)—(7+?)ﬂ X FY=EX+Y]=X+Y
— B|[(X - X) + (¥ - V)]

— BI(X X0 + BI(Y + V)] + 2B6=X] Ep=T]
=E[(X - X)’|+ E[(Y +Y)? CEX-X]=X-X=0

= Var(X) + Var(Y)

6.0% v =Var(X —Y) =Var(X)+ Var(Y); If X,Y r.v are independent
Proof.

Var(X =Y) =Var(X + (-Y))
=Var(1.X)+ Var(-Y)
= 1*Var(X) + (=1)*Var(Y)
=Var(X)+ Var(Y)

7. If X, Y are two independent random variable with joint PDF fxy (x,y) then
Var(XY) = E[XEY? - XY

Proof.
Var(XY) = E[(XY — XY)?]
=E(XY -XY)? XY =EXY]|=EXEY]=XY
—EX*Y?+ X Y —2XYX Y]
= EXUEY)+ XY -2X° ¥
= E[XYE[Y? - XY

8. 0%,y =Var(X +Y) =Var(X)+ Var(Y)
Proof.




- E[(X X2+ (Y -V 2X - X)(Y —7)]

- E[(X—7)2+(Y—?)2+2(XY—X?—7Y+Y?)]

—E[(X - X+ E[(Y +7)Y + 2<E[XY] ~ E[XY] - E[XY] + E[X _])
XY -¥7+¥7)

=Var(X)+ Var(Y) + 2<E[XY] — 77)

=Var(X)+Var(Y) + 2<E[XY] —

If two r.v X, Y are independent, then E[XY] = E[X|E[Y]=X Y

Var(X +Y) = Var(X) + Var(Y) + 2()??‘—7/?;
Var(X+Y) =Var(X) + Var(Y)
Similarly

Var(X —Y) = Var(X) + Var(Y) — 2<E[XY] X 7)
Var(X —=Y) = Var(X) + Var(Y) for independence r.v case.

Question. 15: If a random variable‘ X" is such that E[(X — 1)?] = 10 and
E[(X —2)?] = 6 then find (a) E[X]  (b)Var(X)
Solution:

(a)
E[(X —1)*=FE[X*+1-2X] =10 — E[X?] - 2E[X]+ 1 =10 .1)
E[(X -2 =FE[X?+4—-4X]=6 — E[X*| —4E[X]+4=6 (2.2)
By adding eqn.2.1 and eqn.2.2 — 2F[X]| — 3 = 4; E[X? =16
7

2 4 4—4
7) :16——9:6 9:15

4 4 4
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2.5 Standard PDF and CDF for Continues Random Variable (or) Differ-
ent types of PDF and CDF

2.5.1 Uniform PDF
A continuous random variable X is said to follow a uniform distribution [a, b] if its PDF
is fx(z)=K; a<z<b

1

fx(@)={b—a
0; Else where

a<zx<b

Proof. From figure.
¢, a<xz<b

0; FElse where

fx(z) =

We know that, the area under the curve is unity, i.e., f;ifoo fx(z)dz = 1.

. Af(x)
/ fx(z)dx =1 1/b-a
r=a ,
dr =1
|
b _
C[x]a - F(x) : |
cb—al=1 A | :
_ 1 - !
= b—a i |
I |
' . >
a b

]

Application:It is used to represent the quantization noise in digital communication
systems. Quantization is roundoff process in which actual sample value is rounded to
nearest quantization level.

Quantization noise = Actual sample — rounded noise.
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2.5.1.1 Statistical Parameters for Uniform PDF

Question. 16: Calculate all statistical parameters for uniform random variable, whose
PDF is shown in Fig.

Solution:
fx(z), fx(z), fx(z),
| | } } } }
—a a < 0 2a T a g z

Fig. (a) Fig. (a) Fig. (a)

Expectation: E[X] = X | Expectation: E[X] = X | Expectation: E[X] = X

my = fjiox - [x(x)dx my = ff:ax - fx(x)dx

a
my = fxzfax ’ fX('T)d'T 2a 1 b 1
= [ > -xdx = _ —— xdx
a 1 z=0 2a r=a b—a
= 5> - xdx
——a 2 X 2a b
z a ca 1 |2 _ 1 |22
_1[:01@ =u|7), =2|7),
2a ] 2 —a _ 1 [4a2—0:| _ 1 |:b2—a2i|
T 2a 2 T 2a 2
=0
_ __atb
= q = 2
Mean square: E[X?] Mean square: E[X?] Mean square: E[X?]
a 2 _ [2a 2 __rb 2
me = [* 2 fx(x)de | mp= [ 2% fx(x)dx | mo= [ _ 2% fx(z)dr
_[a 1 2 _ (20 1 2 _ b 1,2
= Jo=—a2a T dx - fzzO 2 T dx - fx:a b—a T dx
1 ﬁ a 1 ﬁ 2a o ﬁ b
C2a | 3], _2a30 Cb—a | 3],
— 1,3 3 — 1]8 _ 1 |p¥=d®
_6a|:a +(l:| _6a|:3] _b—a|: 3 i|
_a _ 4a? _ bp¥-d®
3 = 73 = 30-a)

Variance: E[(X — X)?] Variance: E[(X — X)?] Variance: E[(X — X)?]

_ 2 _ 2 _ 2 2 _ 2 2
H2 = O0x = My — My M2 = O0x = Mg — MYy H2 = O0x = M2 — MYy

_a® _ 4a? 2 _ b>—a® _ ra+b\2

=5 0 =3 —4a = 30-a) (%5°)

_a? _a _ (b=a)?

— 3 B 12
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3rd momentum: F[X?]

3rd momentum: E[X?]

3rd momentum: F[X?]

my = [, [x(x)de
= f:}ca:fa % ’ I‘Sdl’
1 |zt N
-3 5],
=0

ms = fjio 3 fx(x)dx

:f2a L. 23de

=0 2a

_Lﬁ&z
T 2| 4 0

_ 1 |16a*-0
~ 2a 4

= 2a3

my = [1_ 2% fx(x)d

: T%f
[4

]
(b—)

b

b

1
b—
1
b—
bi—

Standard deviation: o x

Standard deviation: o x

Standard deviation: o x

V2 = /Mg —mf VI my — mi my — mi
— . /a _ /e _ ) (=a)?
- ~— V3 - 12
_ a a __ b—a
X = OX = U5 OX = s
Skew: 3 Skew: 3 Skew: 3

_ 2 3
f3 = M3 — 3mio5% — mj

—0-0-0
—0

NOTE: The mean value locates for continuous r.v, the center of gravity of the area

under the PDF curve.
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Question. 17: Let ‘X" is uniform random variable, which represents Quantization
Noise Power (QNP) and defined as

1

— 0<z<20
fxy=4200 " =07

0; Else where

1. Find average QNP?
2. What is the probability the QNP is greater than the average power?

3. What is the probability the QNP is £5 about the average power?

Solution:
1. Average QNP E[X] = [~ _ xfx(z)dx
= fjﬁo 2—10xdx
L [,2120
5[]
_ 1 20><20]
20| 2
=10

2. Probability the QNP is greater than the average power
P{X >10} = [ fx(z)dz

_r20 1
= Joz10 2097

3. Probability that QNP £5 about the average power.
P{5 < X <15} = [°, fx(x)da
[ s

=5 20

1 15
=44,
]

N

Question. 18: ‘X" is a continuous random variable X (6) = Acos#; which PDF is

a uniform (0,27) random variable. Find the mean value of r.v?

Solution: L
E[X(0)] = X(0)
= [oo_ X(0)fx(0)do
=4 fj;ro Acosfdf
=0
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Question. 19: ‘X" is a continuous random variable (—5, 5);

fx(z),

1

b—qg —O&— O

1. What is the PDF of ‘X’ fx(z)?

2. What is the CDF of ‘X" F(x)?

L O—O—
3. what is the F[X], E[X?], E[e*]? -5 5 T
Solution:
1.PDF function fx ()
fx(z) = 52
1
10
1
fx(@) =15 —H<w<5
=0; Else where

2. CDF function Fx(x)

Fx(z) = =% a<z<b
Fx(r) =48 —-5<x<5
SFx(m) =52 —5<a2<5h
=0; Else where

3. E[X] :foi_ooxfx(x)dx:fS ridr =0

T rz=-5"10

BIX%) = [Z P fx(x)de = 7,

51 3.
N xlodx—O

Ele?) = [[Z_ e fx(z)dw =

x

(odd function)

(odd function)

5
5 x 1 1 T
[ s efsdr = 15 [e }_5 = 14.84

Question. 19: * X is a uniform random variable with expected value £[X] = 7 and

variance Var|[X] = 3. What is the PDF of ‘X"?

Solution: )
E[X] = “;F =7
b— 2
Var[x] = o2 = . 12‘” =3=(b=a)=6
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From the above equations, a = 4; b= 10

1; 4<zx<10
L fx(z) =46
0 Else where

Question. 19: Given the function gx (x) = 4cos(%; )rect(s;). Find the range values
of ‘b’which gx () is valid?

Solution: .
rect
i
1
We know that [ _ gx(z)dz =1
= f p dcos(Gp)rect(5p)dr = 1 R >
= f y dcos(ZE)dr =1 / YS(E)
=4x [szb} =1 < = D » X
=b=1 /4\
<« > x
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2.5.2 Exponential random Variable

An exponential distribution function (PDF) can be defined for a continuous random

variable X is
—(z—a)
e

%e ;T >a
fx(z) =
0; z<a
The cummulative distribution function (CDF) is
fx(x)
v A
Fx(z) = fx(u)du X
U=—00 b
x 1 _G—a)
- / L5 gy 3¢ 7
:a—(u—a)
lre o T
=31, a »x
- Fy(x)
=1—e"0 A
11— ef(xbfa); r>a
Fx(z) =
0; r<a
» X
Applications:

* The exponential density function is useful in describing rain drop sizes when a

large number of strome measurements are made.

* Describes the fluctuation in signal strength received by RADAR from certain
types of air-cradft

* In communication systems, if occurance of events over non-overlapping intervals
are independent, such as arrivel times of telephone calls or bus arrival times at
a bus-stop, then the waiting time distribution of these events can be shown to be
exponentional.

2.5.2.1 Statistical Parameters for Exponential PDF

Question. 20: Calculate all the statistical averages or parameters for exponetional PDF
as shown in Fig.

Ix ()
A
ES
—(x) N
%e v x>0 “] L
fX(l') = EQ_T
0; x <0
) P x
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Solution:
1. Mean Value E[X] =X = [ afy(z)dz

|
b

1 e—w/b e—z/b 00
sy _/(—1/5)(—1/17)“]0
Lr 2
Slo—0-(0-b )}

b

2. Mean Square Value E[X? =X = [* _ 2?fx(z)dz

< o1
Mo :/ 22 =e by
=0 b
1 Qefx/b efx/b 00
_ — [ d }
b[x /b / T
—(0 0o
:1 — ba? + [Z—b/xe_x/bdx}
0 b 0

= 2b° -.» from mean value calculation / re Py = b?
0

3. 3rd momentum E[X?] = X = [* 2% fy(z)dx

< o1
ms :/ x3ge */bdy

=0

1 3€—r/b e z/b 0o
S~ — (3 d

b[ “1/b / i x}o
1 3 - 3b [, —z/b
=-| = . + [?/0 e dx}

:3'@2_-;;;) [

x/b 56 =0 b
= 2bre™"
3 —1/b . / bxe dzx

oo
= 6b(b .- from mean value calculation / re /bdy = b?
0

= 6b°
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4. Variance piy = 0% = my — m? = 20* — b*> = b*
5. Standard Deviation oy = /jis = Viz =1
6. Skew p3 = msz — 3myps — ms = 6b* — 3bb? — b3 = 2b3

Question. 21: Calculate all the statistical parameters for given exponetional PDF.

—(z—a)
%e b, r>a
fx(z) =
0; r<a

Solution:
1. Mean Value E[X] =X = [* _ xfy(z)dz

0
= - ab—b2(0—1)]
b
Lr 2
—E_ab—kb}
EX]=a+b

2. Mean Square Value E[X? =X = [* 22 fx(z)dz

o 1
~(z—a)
Mo :/ 2 Ze b dx
= b

=a

1 r ef(acbfa) ef(acbfa) oo
= 2. — [ 22 d
b (”C —1/b> /w “1/b x]

a

oo

= % (—b) (:c2e’°° — CL2€O) + 21)[/ xe_(zb_a) da:]]

Tr=aqa
¢ —-a)
/ ze b dr=a-+b
X

=a

(=5) [0 — @] +26(v2 + ad)

a-]_
b
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= / xef(zbﬂ) dr = ab + b?
X

=a

1 ,
; a’b + 2b + 2ab?

E[X?] = a® + 2ab + 2b*

3. 3rd momentum E[X?] = X = [* 2% fy(z)dx

ms = / x3 . le—(zb—a) do
- b
r —(z—a) —(z—a) o0
1 g3 € b e b
=3 <x~_1/b>—/3x-_l/bd:c]
1 3 —c0 30 Ty —e-a
=3 (—b)(a:e —ae)—i—Sb[ xe b dx}

(=b) [0 - ai”} +3b (a% b+ 2ab2)] % / io 2re 5 dy

= —|a®b + 3a%b* + 6b* + 6ab®

E[X?] = a® + 3a®b + 6b® + 6ab

= a% + 2% + 2ab

4. Variance: iy = 05 = m2 —m]

=a* + 2ab + 2b* — (a + b)?
=a* + 2ab + 2b* — a* — b* — 2ab
=?

5. Standatd deviation: ox = /s = Viz =1
6. Skew: f13 = m3 — 3mypy — m3

= a® + 3a®b + 6b° 4 6ab® — 3(a + b)b* — (a + b)®
= a® + 3ab + 60> + 6ab® — 6ab® — 46> — a® — 3a%b

= 2p?
203
7. Skewness: M—; = = 2
ox b

63



Question. 22: The power reflected from an aircraft of complicated shape that is
received by a RADAR can be described by an exponentional random variable P, the

density of ‘P’ is given by

Lew; p>0
fr(p) =41"
0; p<0

where p, is the average amount received power. What is probability that the received
power is larger than the power received on the average?

Solution:

1—]}06%; p>0
Fp(p) =
0; p<0

Fp(-co<P<p)=1-cw
=1—¢!

=0.632

Above the average power = 1 — Fp(—oo < P < pg) = 0.368
The received power is larger that its average value about 36.8% of the time.

Question. 23: The power reflected from an aircraft of completed shape that is re-
ceived by a RADAR can be described by an exponentional random variable X, the PDF
is described by

e x>0

fx(z) =

O o=

X <0
* Find the average power (reflected power)?
* Find the probability that the received power is greater than the average power?

Solution:

1. Average power




S

oo v -]

0+ b

1
b

=b
2. Probability that the received power is greater than average power is

Fp(bngoo):/ —eb

u=

= 0.367

Question. 24: X is an exponentional random variable with variance Var(X)=25.
1. What is the PDF of ‘X’?

2. Find E[X?] and

3. Find P(X > 5).

Solution:
We know that, the mean, mean-square and variance for exponentional r.v is
EX|=my =1 E[X?] = my = 2b% Var(X) = pp = 0% = b?
S P=25=b=5
1. The PDF function

=z

%e 5; x>0
fx(x) =
0; x <0
2. Var(X) =my —mi = 25 =my — 25 = my = 50 - E[X?] =50

o]

3 P(X >5) = /Oo5fX(a:)dm _ /iéezﬁ _ % [e_ ]
r= r= 5

=— [em — 61] —e ! =0.367

[
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2.5.3 Rayleigh PDF

An Rayleigh distribution function (PDF) can be defined for a continuous random vari-
able X is

(2
(x—a)e™ 5" z>a

fx(z) =

2

b

0; r<a
The CDF function is

Fx@) = [ fe(wdu

=—o00

z 2 —(u—a)?
:/ g(u—a)e T du

= u—a=Vbt
NG

= du = 7t—l/Zdt

fu=a=1t=0;
(x —a)? 1
2

fu=ax=t=

(z—a)?
2 b
:/ ’ —\/bte_tﬁt_mdt
u=0 b 2

(z—a)?

0.393

Applicationas:

* The Rayleigh PDF describes the envelope of one type of noise when passed
through a band pass filter.

It is used to analyze different types of errors in various measurement systems.

It is useful in describing the noise in RADAR system.

In communication system, the signal amplitude values of a randomly received
signal usually can be modelled as a Rayleigh distribution.
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Question. 25: The life time of a computer is expressed in weeks is Rayleigh r.v, its
PDF is

fX(x) _ l“g—oeﬁ;
0; r<a

x>0

1. Find the probability that the computer will not fail in a full week?
2. What is the probability that the life time of a computer will exceed one year?

Solution:

1 a
0 200
let 22/400 = t = z = 20/t; dz = 10t~ /2dt

Ifr=0=1t=0; Ifz=1=1t=1/400

1/400 20 t
= / —\/_e_tlot_l/2dt
-—0 200

1/400 —t
= / e tdt = .
=0 —1

_ _[6—1/400 _ 6—0] B D 6—1/400]

P{0<z <1} = e 0 dx

- 1/400

=1-1.0025
= 0.0025

67



2.5.3.1 Statistical Parameters for Rayleigh PDF

Question. 25: Calculate all statistical averages of continuoues random vaiable ‘X’ with

Rayleigh PDF.
Case I. , Case I1.
2pe=%; x>0 2(z — a)e
fX (ZL’) - fX(I) _
0; Else where 0;
CaseI:
1. Mean Value: £ (x)A
E[X] = / fo(x)dg; 0.607E ....... :
o 2 I2 :
my = / r—xe b dx :
=0 b
2 /°° 5 a2 :
=7 re b dr
b z=0 \/g

1
let 2?/b=1t= 2 =Vbvt; de=Vbt2dt = dx = \/Eﬂdt

frxr=0=1t=0; fr=0c0=t=x

9 [o° 1
S bt et - Vb——dt
my b/t: (& 2\/Z

0

= \/5/ tl_% e tdt
0

= \@/ ts . e tdt
0

We know that I'(n) :/ e 2" tdx; T(n+1) =nl(n); F(
0

= \/B/OO ettt gt
0

- VR (3 41) = Vgr () =
Vbr

=

2. Mean Square Value:

B = [ 2 fx(a)ds

=—o00
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1
let ?/b=1= 2 = \/5\/5, de = Vbt~ V24t = dx = \/52—\/¥dt

Ifz=0=1t=0; fr=c0=t=

2 [ 1
My = — Vbt)e ™t Vb ——dt
2 /t< ) 2\/%
2/00331
= — b2tz bz -
b Jizo

73 e~tdt
1 o0 [ee]
== / bte tdt = b / te~tdt
b t=0 t=0

_b[_mt_ml —b[O—O—(O—l)]

oMo = b

N | —

3. 3rd Momentum:

E[X%) = / T P (w)de

T=—00

<402 o2
ms = z° - —xe bdr
=0 b

2 [ 22
= - / e T dr
b x=0

1
let 22/b =t =z = Vovt; de= Vbt V2t = dx = \/gﬂdt

7
fxr=0=1t=0; fr=0c0=1t=0c

2 [ 1
=2 bt)?et Vo—=dt

| o

0
= b\/l;/ t2 e tdt
0
> 1
We know that I'(n) = / e 2" 'dx; T(n+ 1) =nl(n); F<§> =7
0
=bVb / ettty
0
3 33
- b\/5F<§+1> _ b\/5§1“<§>
3.1 3 1.1 3
= b\/z'aér(5 +1) = ib\/%r(? = Zb\/g\/%

3

4. Variance:

2 2
Ox = H2 = M2 — My

> Vb2
A== ()
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5. Standard Deviation: oy = 1/b(1 — Z)
6. Skew:

3
p3 = mg — 3mqfy — M

3T 3\/%_[)(1 7r> - (\/%>3

4 2 4 2
3bvbr  3bvbr  3bvVbm-mwm  brvbw
— — + _
4 2 8 8
1
= —zb\/ br + Zbﬂv br
bvbr
Ha =4 <7T - 3)

Case II: Given PDF

fx(z) =

Q [SAIN)

1. Mean Value:

BIX] = / T (@)

=—00

o0 2 z—a)?
m1:/ xg(x—a)e’( - dp

=a

2 o0 z—a)?
:5/ x(m—a)e_( = d

=a

1
let (z —a)?/b=t= 12 =Vb/t +a dx:\/EQ—tdt

Vi
fz=a=1t=0; fr=00=t=0
2 [ 1
my == [ (Vot+a) Vbt et Vo—=dt
1 b/to( ) 2\/7_5

:/ <\/5t§+a>etdt:/ \/Et%etdt+/ ae~tdt
0 0 0

o0 —t 0o
- \/B/ e—t-t<%+1—1)dt+a[e—]
0

—11Jo
> 1
We know that I'(n) = / eram T+ ) =nl(m) T(5)=vr
0
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:\/5F<%+1>+a<0+1>
() cem e
Vor

my=a+t -

2. Mean Square Value:

2 o0 zfa,Q
:E/ $2(SE—CL)6_< v dp

=a

1
let (z —a)?/b=1t= 2= Vb/t+a; da::\/l_)2—tdt

i
fr=a=1t=0; fr=c0=t=0
2 [ 1
== Vvt +a)? - e Vvt - Vb ——dt
me b/t:0< a)®-e NG

= /t <bt +a® + 2a\/5\/z> e tdt

=0

:b/ te_tdt+a2/ e_tdt+2a\/5/ e_tt%dt
t t t=0

=0 =0

— b(1) + a2(1) + 2av/b r(% £1) T+ 1) = nl(n)
:b+a2+2a\/l;-%f‘<%> F(%):\/%

omg =a® 4+ aVbr + b
3. 3rd Momentum:

B = [ 2

T=—00

o0 2 Ifa2
mgz/ xg-g(as—a)e_( v d

=0

2 o0 r—a)?
—Z/ x?’(x—a)e_( - d

=0

1
let (z —a)?/b=1t= 2z = VbVt +a; dx:\/gﬂdt

\/_
fr=a=1t=0; fr=0c0=1t=0
2 [ 1
z—/ (VovE+a)* - e VoVt - Vb —= dt
b Jizo 2Vt

:/w(\/g\/f+a)3-e_tdt

=0
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P +3ab+3a2\/_F(

3 3 1 1
= b2 —F(— +a3+3ab+3a2\/_—f‘<—>
2 2 2
3 1 1
— b2 —F< >—|—a —i—3ab—i——a2\/—\/_
2 2 2
3
= b - SVt —|—3ab+—a2\/_\/_
3b 3a?
ms = a® + \/_\/—+ a\/_\/_+3b
4 2
4. Variance:
0§<=M2=m2—m3
NS
J§:a2+a\/l_)\/%+b—<a+77r>
b 2a\/b
= a® 4+ aVby/T + b — a? —Zﬂ— a2 T
bm
x
= (7
b
1)
4
5. Standard Deviation: ox = /b(1 — %)
6. Skew:
[13 = M3 — 3my iy — M

4 2

)
2—0—

[ b 2./b
a3—|—3\/_ﬁ+3a \/_ﬁ+3ab] —3la

oo
/ o i
0

T(n+1)=nl(n)

SORG

]

a® + 3ab + ga%/% + gb\/é\/%] — EWE\/E - gb\/B -/ + 3ab — %abw]

b\/[_);\/_ 342 bﬂ'd—i- v aa]
b /b
2 ovr — Sovor + Sor vor - ZEVIT
1 2 8 8
3bvVbr  bm Vbr
-1 T
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:W(W_g)

4

Question. 26: Calculate all statistical averages of continuoues random vaiable ‘X"’

for given PDF.
A

22 0.607
e 22 x>0 o
Solution: fx(z)=<¢"“
0; z <0
OI a )x
1. Mean Value:
E[X] :/ xfx(x)dx
o0 z2
my = / T - %e_ﬁdx
=0 Q
1 [ o2
== r?e 207 dx
o x=0
let 22/20% =t = = = V2aV/t
a? a? o
2adr =202 dt =>dr=—dt =>dr = ——— dt = de = —— dt
x V2 av/t V2Vt
fz=0=1t=0; fr=00=t=0
1 o0
my = 202t et & dt

a? Ji—g V2Vt
= V2at: et dt

t=0
= \/§a/ et 131
0
= 1
We know that I'(n) = / e "2 tdr; T(n+1) =nl(n); 1“(_> = /7
0

- ZQF(%—Fl):\@a%F(%):%ﬁ

™
m =« -

2

2. Mean Square Value:

E[X? = / T 2 f(w)da

T=—00

o0 22
_ 2 X -5
my = 7 —e 2 dx
X
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1 [ _a?
== e 22 dx
« x=0

let 22/20% =t = 2 = V2a/t
2 2

Srdr =200 dt = dr = “dt = dv = —— dt = dz = —~ dt

x V2 an/t V2Vt

fr=0=1t=0; fr=c0=t=x

me = 202
3. 3rd Momentum:

E[X% = / T P (w)de

T=—00

o 3 €T  _ a?
ms = T — e 2 dx
x=0 «@
1 [~ _a?
=— rre 22 dx
Q =0

let 22/20% =t = 2 = V2a/t
2 2

Sdr =202 dt = dr = dt = do = ——— dt = dx = ——
X

ﬂa\/f \/ﬁx/f
fz=0=1t=0; fr=0c0=t=x
1 [ «
= — 2t )P et —— dt
a? t:O( ) V2Vt
1 x
= — (4t a*) et - ¢ gt

a? Jizg V2 Vi
- / 2275 1275 % et dt
¢

dt




3 1
= 2\/5 8} - = ﬁ
29
T
ms = 30(3 §
4. Variance:

2 2
Ox = M2 = M2 — 1y

2
ox = 2a° — <a g)

T
=202 —a? =

-(e-3)

5. Standard Deviation: ox = « <2 — %)
6. Skew:

= m3z — 3Mmypla —

—304\/i—3 a\/7 2—— —< g>3
5 m@g@[ NG
—oz3\/gl3 6+3§—§]

A

7. Peak value Calculation for the above PDF:

T _ =2
fx(z) = 220
d d [ x 2
— =0=—|—€e 22 ) =0
dxfx(ﬁ) dx (0426 ’ >
1 d 22 d 22 22
= ?% (.276206) =0==z %6 202 4 € 27—

Substitute this x = « value in fx(z)
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(6] o? 1 _1 1
fx(z) = 3¢ 5aZ — —er = (0.6065)
0.6065
fx(x) =
(%

2.5.4 Gaussian (Normal) PDF

Gaussian PDF is the most important of all PDFs and it enters into nearly all areas of
science and engineering. In communication Gaussion is used to represent noise voltage
generated across the resistor, shot noise generated in semiconductor devices, thermal

noise, noise added by the channel while transmitting information from transmitter to
receiver through channel.

1 o2
Normal PDF: fx(z) = ez
V2T
1 [
Normal CDF: Fx(x) = —2/ ez (or)
T J—c0

Standard PDF: fx(z) = o Exp {—T‘Q} ; wherem =X =pu

fx(r)

‘ Xz

-3 -2 —1 1 2 3
Fx(z)
1 |
0.8
‘ e
1 2 3
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Question. 25: Calculate all statistical averages of continuoues random vaiable ‘X’
with Gaussion PDF.

1. 9.
Lo >0 1 e_(xz-rgﬁ s
—— e 7 xr > - ’ >
fx(w) = q v fx(x)= ¢V
0; Else where 0; r <0
12
Case-1: fx(x) = # e T
1. Mean Value: N
V2T
EX] = / rfx(x)dx
/ N e d
mq = €T - e 2dx
r=—00 27'(' - — —~ : : . :
1 [ -
= —= r-e 2dx
V2T /x:—oo
This integration of odd function is zero. fX(A")

z’.e.,/a fx(z)dz =0

for odd function f(—z) = — f(x);

odd function

»x

Area under curve zero

for even function f(—z) = f(z);

somy = E[X]=X=0

2. Mean Square Value:

E[X? = / h 22 fx(z)dx

T=—00

0 1 22
My = / % 5 e 2dx
T=—00 V 4T

let22/2 =t = = = V2Vt

2mdx=2dt:>dx:ldt:>dx:
x

1
V2t

If x =0thent = 0; If xr =ocothent = o0

dt

2 /OOQt -t ! dt
[ — e - _—
V21 Ji=0 \/5\/7_f
— 2 OO
VT Jizo
— 2 OO
VT Jizo

Sz

et 13 dt

et G- gt
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E[X3 =m3 = / 2% fx(z)dr =0 "~ it is odd function

o0

4. Variance: 0% =my —mi=1-0?=1

5. Standard deviation: ox = 1

6. Skew: p3 =m3 —3miock —mi=0-0—-0=0
Case-2:fx(z) = [—(”‘;’Z)Q}
1. Mean Value:

1
o2

EIX] = / T ()

=—00

o 1 _(@—m)?
my = T - e 202 dx
T=—00 o2

oV2T

letr —m=y=zc=y+m=dr=dy =
fr=—-0c0o=y=—-00;, fz=00=y=00

2

y+m e 207 dy

o \/271'

1 & m & y?
= 7] e_ﬁ + / m e 202
T J o V2T J_o

y e 202 *.» odd function

o \/271'

let—:t:>y:\/§0\/5
202

9 o? o?
2udy = 20° dt = dy = —dt = dy =
e T Ve
f* dt
o \/27r
m et 44

= 73 dt

2 ﬁ t=—00
=2. M e t. t%’l dt - even function
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2. Mean Squre Value:

E[X? = / T2 fe(w)da

r=—00
o 1 _(@—m)?
_ 2 3
ml — €x° - 6 20 daj‘
/x__oo o2
2 e _(a— 73)2 J functi
= 202 dx .. even function
o V2T
T —m
let =y=>cr=0y+m=dr=ody

Ifx:O:>y:O' fr=0c0=y=

9
(oy +m) efzy?g“dy

g/\/27r

2 2/ 9 ¥ 2/00— ///
=—|o y'e 2 dy+m 'z dy + 2o0m > dy
\/271'[ 0 0

2 [ y2 2 .
— g2 i/ y2€*l’7 dy + m2 £/ e*y? dy - even function
VT Jo VT Jo

2

let%:tiy:\/ﬂ

1
udy =2dt = dy = —=dt

V2t

Ify=0thent =0; Ify=oothent = oc;

\/_/ 2t - —dt+m —/ \/_

=0 —/ tt+1>1dt+—/ —tgal gy

2

= f/a_l“<2 1) —i—mTF(;) : F(n):/o e “a" dx

~Z ()t ve et e o(3) - va
= \(;—; VT +m?

E[X?] = o* + m?
3. Variance: 0% or jiy

2 _ 2
Ox = H2 = M2 — 1y

:J2—|—m2—m2

o e = 02

4. Standard Deviation: ox = o
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5. Skew: ps3 =0 -+ It is symmetry about mean X

2.5.4.1 Q-function:

The Gaussion function can be defined as

o 2.3)

J— z2
If X =0and o = £1 then fx(x) = \/LQ? e~z . This is called “Normal Gaussion PDF
function”.

The Normal Gaussion CDF function is

e‘g du
2.4)

This integral can not be evaluated in closed form and it must be computed numeri-

Fx(x)zP(—ooﬁXSf‘f):HXSx):/m fX(u)dUZJL?_w/i

cally. It is convenient to use the function Q)(-), defined as

Q@):P(Xm):/:wfx(u) du = \/;_ﬁ/je_ du

The area under fx(z) from 0 to co is Q(-). From the symmetry of fx(z) about

origion and total area under fx (x) is 1.

/fo(x) dz:1:»/iofx(x) dx+/ooofx(:r) dr =1= Fx(z)+ Q(z) =1

P{X <z} =Fx(z)=1-Q(x)
P{X > 2} = Q(x)

From equation (2.3), Gaussion PDF of Fx(x) is

Fx(z) =P(—0o < X <zx)=P(X <x)

x 1 T  (w=x)?
= u du: e 2(7%( du
/_OO Jx(w) ox V21w /—oo
let 7 =22 — du=ox dZ
ox

- X

fu=—-00=2=—ox; u:$:>Z:$
ox

| _

X
ox _LQ

e 2 -0x dz
=—c0

Ox V2T
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|

r—

2

1 TX Z
= ——V27 e 2 dJ
V2T Z=—00

= P{X <z}

- Fy(z) = _Q(”“"_X>

OXx

i (2o

P{X >z} =1-Fy (I_y) :Q(x_7>

ox

Summary:

1. Q(-) Definition:

1 w2
Q(zx) = \/ﬂ/ e 2z du

2. Property

x

[ 2

4. Relation to Error Functions

o= rse ().
erfo(z) = 2Q(zV?2)

5. Good Approximation

(good for programming in

calculator)

1 1
(1—a)z+ava?+bl V27

1
where a = —, b = 27.
e
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Question. 26: Find the probability of the event X < 5.5 for Gausssion random
variable having m = 3 and oy = 2.

Solution:

P(z <5.5) = P(—00 < X <5.5) = Fx() :1_Q(33—X)

t—X 55-3
ox n 2 n

s Fx(z) =1—Q(1.25) = Fx(1.25) = 0.8944

(or another method)

1.2

—1-—Q(1.25)
=1-0.1056
P(x <5.5) =0.8944 and also P(x > 5.5) = 0.1056

Question. 27: Find the probability of the event X < 7.3 for Gausssion random

variable having m = 3 and ox = 0.5.

Solution:
r—X
P($<55):P(—oo§X§55):FX(x):1—Q< )
Ox
r—X _ 73-17 _ 19
ox 0.5
o Fx(x) = Fx(0.6) =1 —Q(0.6)
=1-0.2743
P(x <5.5) =0.7257 and also P(x > 5.5) =0.2743

Question. 27: Assume that the height of clouds above the ground at some location
is a gaussion r.v with m = 1890 m and ox = 460 m. Find the probability that the
clouds will be higher than 2750 m?

Solution:
r—X
P(X >2750) =1— P(—oc0 < X < 2750) '.'P(X>x):Q( - )
X
- X
=1 Fx(2750) - P(X <) :1_Q(“f )
0Xx

- (ro(22)

2750 — 1830
_0 (%) — (2.0) = 0.2275 x 10”"

o P(X > 2750) = 0.02275

82



Question. 28: An analog signal received at the dector (measured in V') may be
modeled as Gaussion r.v with the mean value 200 and standard deviation 256. What is

the probability that the signal is larger than 250 pV'?

Solution:
r—X
P(X >250) =1— P(—o0 < X < 250) ‘.‘P(X>m):Q( )
0x
- X
= 1 — Fy(2750) '.'P(X<x):1—Q<x )
ox
—1-(1-0 2750 — 1830
460
= (0.195) = 0.4247
oo P(X > 250) = 0.4247
2.5.4.2 Error function “erf”:
The Gaussion function PDF can be defined as
1 _(@=X)?
fx(z) = e 27 (2.5)

J— z2
Let X = O then fx(z) = \/LZ? e 202, This is called “Normal Gaussion PDF function”.
Here X = m; = 0 means, in communication noise is zero.

The Normal Gaussion CDF function is

a2
e 202 du

(2.6)

This integral is not easily evaluated and it can be evaluated using standard function

FX(J:)—P(—OOSXﬁx)—P(XSI>_/_x fX(u)du_\/LZ_ﬂ/i_

called “error function”, which is defined as

2 x

_ﬁ u=0

2
e " du

erf(u)

The complementary error function
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From the equation (2.5), the CDF can be evaluated by

1 L w2
Fy(e) = P(—o0 < X < a) = P(X <) = /fX du_m/ e du

[ /
u=—oo V 2mo? 27?02

U
let z = = dz = =du=+V2cdz
V2o \/_0
If u = B S -
u—x:Z—m,an A —2—0_2, U=00 = 2=00
o0 6_;(722 d
—1—/ \/_2 20 dz

2.5.4.3 Relationship between Q(-) and erfc(-):

er fe <\/g0> — 92— 2Fy(z)

=2[1 — Fx()]
— 2Q()
Q(z) = % erfe <\/g0)
(or)
Q($):1—§€Tf (\/ga>

Question. 29: ‘X’ is Gaussian r.v with F[X] = 0 and P[ |X]| < 10 ] = 0.1. What
is the standard deviation o x ?

Solution:

P(IX| < 10) = P(—10 < X < 10) = Fx[10] — Fy[—10]
= Fx[10] — (1 — Fx[10]) = 2Fx[10] — 1
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= —=0.15 c.ox = 066.6

Question. 30: Life time of IC chips manufactured by a semiconcuctor manufacturer
is approximately normally distributed with mean = 5 x 10° hours and standard deviation
is 5 x 10° hours. A mainframe manufacture requires that at least 95% of a batch should
have a life time greater than 4 x 10° hours will the deal be made?

Solution:

P(X >4x10°% =1—- P(X <4 x 10%
4% 105 —m T —m
() e -a((57)

g ag
4% 105 -5 x 106
:1—
Q( 5 x 10° )

=1 —10° =1 2) =1 2) = 0.0228
120 (5305) ~ - QD =1-QE =0

This deal can be made but with less certinity

Question. 30: The average life of a certain type of electric bulb is 1200 hours. What
percentage of this type of bulb is expected to fail in the first 800 hours of working?
What percentage of expected to fail between 800 and 1000 hours? Assume normal
distribution with o = 200 hours.

Solution: (i.)

P(X<x):1—Q(x;m>

=1-Q (M) =1-Q(—2) =0.0228

200
.. 2.28% of bulbs is expected to fail in first 800 hours of working.

(11.)

P(800 < X < 1000) = Fi(1000) — Fx (800)

1000 — 1200 —12
_ Py Ry 800 00
200 200

= Fx(—1) — Fx(-2)
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=1 - Fx(1) = [1 - Fx(2) FX(w):Q($_7>

0x
=Q(1) — Q(2) = 0.1587 — 0.0228 = 0.1359
*. 13.59% is expected to fail between 800 and 1000 hours.

Question. 31: in a distribution exactly Gaussion 7% of items are under 35 and 11%
are over 63. Find the mean and standard deviation of the distribution. Also find how
many items are between 40 and 60 out of 200 items?

Solution:

% / CA\ 1%

35 63

Given P(X < 35) =0.07and P(X > 63) =0.11
We know that

P(ng):P(—oonga:):FX(x_y):1—Q(x_7) 2.7)
ox ox

P(X > 1) =Pz < X < 00) = Fy (x_y) :Q<x;X7) (2.8)

):

Y

value is negative, then F'{—m} =1 — F{m}

- —F(35_X) =0.07

OXx

35— X
= ( ) =0.93
0Xx

From above , check F'[-] in table and put a negative sign in front.

As it is the left of mean. i.e., about m = 0.
35— X
=
ox
P(X <35) =X —1480x —35=0

= —1.48 " Fx(1.48) =0.93

From equation (2.8),

- X
P(X263):1—P(X§63):F<&> =0.11

oXx
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- X
:>F(63 >:1—0.11:0.89

value is positive, then F'{m} = F{m}

ox

:>F(63_X> = 0.89

%5'e

From above , check F'[-] in table and put a positive sign in front.
As it is the left of mean. i.e., about m = 0.
63— X
=
0x
P(X >63)= X +1230x —63=0

=123 - Fx(1.23)=0.89

From the above P(X < 35) and P(X > 63) solutions, we will get
ox = 10.3; X = 50.244

P{40 < X < 60} = Fx[60] — Fx[40]
60 —50.244] 40 — 50.244
10.3 X 10.3

= Fx[0.9] — Fx[—0.9]

= Fx[0.9] — (1 — Fx[0.9])

= 2Fx[0.9] — 1 =2x 0.8159 — 1
P{40 < X <60} = 0.6318

:FX[

2.5.4.4 Properties of Gaussion PDF

Ix(x) 1
o V2T

‘ P 0

CN\Ux(@) =

|

|

|

|

|

|

|

|

|

:

: x
—00 m o0

1. The Gaussion PDF is used to describe the noise generated by resistor (thremal),
noise generated by semiconductor (shot noise) and noise generated by channel

(channel transmitter).

2. The Gaussion PDF is symmetrical about its mean and it is bell shaped curve
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3. when S.D ox = 1 and mean m; = 0 = X, General Gaussion PDF is called

normal gaussion PDF as shown in figure.

4. The maximum value of normal Gaussion PDF is \/% atx = 0.
5. When
v =20, fx(z) = -
X
x==1, fx(z)= \/;_W e = ?/g
x =22, fx(z)= \/;_W e = (\)/12?)_;
x =23, fx(z) = \/;_W e = 0\'321_1:

0.606 0.135 0.0111
V2 T V2 T V2T

cor = %1, +2, 43, the maximum value falls to respectively

as shown in figure.

1
Var

1
/ / % \ | \
S esdsw 9973%
\
: ; : ’

0.135
%k

-1 0 1 -2 0 2 -3 0 3

6. For x = +1, 42, £3, the area of the curve is 68.26%, 95.45%, and 99.73% of the

total area respectively as shown in Figure.

P(-1<X<1)=F(1)— F(-1)=2F(1) — 1
=2(0.8413) — 1
= 0.6826 = 68.26%

P(—2< X <2)=F(2)— F(—=2) =2F(2) — 1
=2(0.9772) — 1
= 0.9545 = 95.45%

P(—3< X <3)=F(3)— F(—=3)=2F(3) — 1
= 2(0.9987) — 1
= 0.9973 = 99.73%

7. A continuous r.v X x and another continuous r.v X5, their mean and variance are

X170'X1, and X2,0X2, then
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1 _ (m—;n)z 1 _ (w—;n)z
fxi (1) = ———=¢ "™ fx (@)= ——=¢e %

ox, V21 Ox, V21

If ox, > o0x, then the normal distribution PDF is

8. In communication system, the noise representations with respect to different am-

plitudes is as follows.
 If the noise has equal positive amplitude and negative amplitude then its
mean is zero as shown in figure.

* If the noise has more positive amplitude then its mean is positive as shown

in figure.

* If the noise has more negative amplitude then its mean is negative as shown

in figure.

041

0.3

=
~
=021

9. The noise voltages with respect to standard deviation are

* For low value of standard deviation noise voltages are more closed to mean

as shown in figure.
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* For high standard deviation noise will have more amplitude variations about

mean as shown in figure.

f(z)
0.4} |
0.2 |
O | |
T
1
fv(v) o V2m
| 1
| fv(v) o Var
: v : v
vV="m v=m
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Az

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 | 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 | 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 | 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 | 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 | 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 | 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 | 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 | 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 | 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 | 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 | 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 | 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 | 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 | 0.9115 09131 0.9147 09162 09177
14 09192 0.9207 0.9222 0.9236 0.9251 | 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 | 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 | 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 | 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 | 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 09713 09719 0.9726 0.9732 0.9738 | 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 09772 09778 0.9783 0.9788 0.9793 | 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 | 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 | 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 | 0.9906 0.9909 0.9911 0.9913 0.9916
24 0.9918 0.9920 0.9922 0.9925 0.9927 | 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 | 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 | 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 | 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 | 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 | 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 | 0.9989 0.9989 0.9989 0.9990 0.9990
31 0.9990 0.9991 0.9991 0.9991 0.9992 | 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 | 0.9994 0.9994 0.9995 0.9995 0.9995
33 0.9995 0.9995 0.9995 0.9996 0.9996 | 0.9996 0.9996 0.9996 0.9996 0.9997
34 0.9997 0.9997 0.9997 0.9997 0.9997 | 0.9997 0.9997 0.9997 0.9997 0.9998
3.5 0.9998 0.9998 0.9998 0.9998 0.9998 | 0.9998 0.9998 0.9998 0.9998 0.9998
3.6 0.9998 0.9998 0.9999 0.9999 0.9999 | 0.9999 0.9999 0.9999 0.9999 0.9999
3.7 0.9999 0.9999 0.9999 0.9999 0.9999 | 0.9999 0.9999 0.9999 0.9999 0.9999
3.8 0.9999 0.9999 0.9999 0.9999 0.9999 | 0.9999 0.9999 0.9999 0.9999 0.9999
3.9 1.0000 1.0000 1.0000 1.0000 1.0000 | 1.0000 1.0000 1.0000 1.0000 1.0000

Table 2.5 Approximations of Fp;(z + Ax)

1 T
Fo;l(l') = \/ﬁ/ €_t2/2dt

Fu;o2<x) = Foa <

T —p
g
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2.6 Discrete random variable - Statistical parameters

Let ‘X’ be the discrete r.v which takes the values x; where © = —ooto + oo with
probability density function.

1. Expectation EX|=X=mi= Y z; fx(z;)

2. Mean square value | E[X?] = X2 =my= Y 22 fx(z;)

3. Third moment EX3 =ms= > a fx(x;)

4. Variance 0% = pz = Var[X] = my — m}

5. Standard deviation | ox = /2

6. Skew deviation Uz = msz — 3mypls — m;

Question. 32: Find mean, mean square, variance, and standard deviation of statis-
tical datais 2,4,4,4,5,5,7,9.

Solution:
fr () . mean :
A L o=1 1 ogog
L3 f
E_ H g. '
8 ! : .
2 = iz
x; 214151719 87 : 8 :
1 1 et 1
13 ]2(|1]1 = 8 8 8
x(@) | 51515553 5 T: TT
| I — —t—T—T>»X
o 1 2 3 4 5 6 7 8 9

E[X] = Zl’z fx(r)

1 3 2 1 1
=[|2x = 4 x = — — —
(><8>+(><8>+(5><8>+(7><8)+(9><8>
_2+12+10+7+9_5
- 2 —

E[X* =)} fx()

(ixd) s (ox e (D) (o) (-

_ A48 450 449481 232
- 8 o8

E[X] sz:x? fx(x)
= (SX%)+(64><g>+<125><§)+(343X%)+(729X%)
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841924250 + 343+ 729

29
8

Variance: 0% = my —m} =29 — 25 = 4 (or) other method

0% = Bl(zi = X)") = = (w; = X)* fx(2)

(2-5)2+3(4—=5)2+2(5—=5)2+(7T—5)2+(9—5)?

8
3342244 _9+3+4+16
= g = g =

cox =4

standard deviation: oy = V4 = +2

skew:

3 = ms — 3miox —mi =190.25 — 3 x 5 x 4 — 5% = 190.25 — 60 — 125 = 5.25

Skewness: £ = 22% — 0.65625
X
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Question. 33: Find all statistical parameters for given statistical data.

(i) 0,0,14, 14

(iii) 6,6,8,8

(i7) 0,6,8, 14

.
.

Solution

OH

el —ITXLXE-TIE =

I b'e —
gL — Eolwg — fw = €11 MoYS

OH
¢l —8C X LXE—898 =

1 X —
g — Eolwg — fw = €11 MaYS

OH
€Ve — 6001 — CLET =
¢l =6V X LXE—CLEL =

€

1 _
w — Xolwg — fw = &1 mays

IF=1)=Xo=qQs

¢F =GN =Yo=qs

6VF = 67N = Yo =a'S

T =67 —0g =g —au="730

GZ =6V — 7L = jw —%w = Xo

67 = 67 — 86 = qu — fw = X0

F9¢ =

06z + 80T =

(B zre+ () 91e =
(2) 8+ (2) 9 = [ex17

898 =

989 + 82T +¥¢ + 0 =

(5)wp20+ (F) ere+ (F) o1e+ (F) o =
(1) T+ (1) 8+ (1) 9+ (1) 0= [ex]a

CLET =

0c =
28 + 81 =

(3) 79+ (%) 9g =

(2) 8+ () 09 = [oxla

FL =
67 +9T+6+0=

(B)o6r+ (1) 19+ (7)) og+ (¥) o=

B a1+ () 8+ (5) 9+ (5) 0= [xlT

= ) = )=

(z)s+(2)9=Ixla (Drt+ )8+ (H)o+(f)o=[xla (2)vi+(E)o=Ixla
PR @Y auEEEN ElE @Y
g9 | viglojo| @ | pro| ‘@
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mean="7

fr () 5
' ]
' ]
1 o =—7 . 0=7 '
2 . 2
2 14 ' a
a ]
1
1
1 .
a :
1]
1
1
] T T T T T T 1 '
o] 2 4 6 5 8 10 12 14
mean="7
1] L] 1]
fr(x) ' '
. o= -5 . g=5 .
. T b
> . . .
= (] (] Ll
4 L] 1] 1]
. . .
. . .
S = 11 . 1
&N T4: T4 : T4
. . .
. . :
I T T — T T 1 » X
(0] 2 4 6 5 8 10 12 14
mean="7
f () :
A =111
1 T on
> 20 02
2 _| SR
a ]
1
1
1 | .
4 :
1]
1
1
T T 1 T T T » X
(o] 2 4 6 5 8 10 12 14

All three have the same expected value, E[X| = 7, but the “spread” in the distribu-
tions is quite different. Variance is a formal quantification of “spread”. There is more
than one way to quantify spread; variance uses the average square distance from the
mean.

Standard deviation is the square root of variance: SD(X) = /Var(X). Intuitively,
standard deviation is a kind of average distance of a sample to the mean. (Specifically,
it is a root-meansquare [RMS] average.) Variance is the square of this average distance.

NOTE:

1. The variance and standard deviation are closely related, measures spreding of

data about mean value.
2. Standard deviation is propotional to width of PDF fx ()

3. For low standard deviations data and events are more closely existed about mean

and viceversa.
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Question. 34: A fair coin is tossed three times. Let ‘X’ be the number of tails

appearing. Find PDF, CDF and also its statistical parameters ?

Solution:
Sample space S = {HHH HHT HTH THH HTT THT TTH TTT}
D.arv ‘X’ = { T i) T3 Ty Ty Tg it xTs }
Getting Tail = {0 1 1 1 2 2 2 3}

fx(x)

lw

3
8

ool
o=

Blx) = Y, fxla)

1 3 3 1
— Z 1x = 2% 2 -
(0x8)+(x8>+(x8>+(3x8>
_0+3+6+3 12 .
8 8

E[X* =) o} fx()

() ) (D) (o4

_0+3+1249 2,
- - =5 =

E[X*] =) af fx()

() () (D)1 04

0+3+24+481 108

Variance: 0% = my —m? =3 —1.52 = 0.75 (or) other method

ok = Bl - X)) = 3 = (- X fx(e)

1(0—-1.5)*+3(1—15)2+3(2—-15)2+1(3—1.5)
8
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~ 1.57+3(0.5%) + 3(0.5%) + 1(1.5%) 225+ 0.75+0.75+2.25 6
- 8 N 8 ~ 8

cLo% =0.75
standard deviation: ox = v/0.75 = 0.866

skew:

i3 = msz — 3myox —m: =13.5 -3 x 1.5 x 0.75 — 1.5°
=13.5—3.375 — 3.375 = 13.5

Skewness: & = 135 — 92().7864

37 0.866°
fx (%)
A
3 3 3
8 8 8
2
s —
1 1
% jé TB
! 1 T » X
O 1 2 3
fx(x)
A 3
8 8
8 3
7 8
Z —
s
g —
5
5 — 3
a 8
B —
3
8 —
1
1 8
8
T T T » X
Y 1 2 3
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CHAPTER 3

Binomial and Possion Random Variables

3.1 Binomial random variable

Let ‘X" be the discrete r.v, the probability density function (PDF) can be written as
N\ N—k
fx(@)=P(X=2)=3 (" )" Q0=p)" " d—k); k=0123..N

where N —L
k) (N -k

Here N no.of times random experiment is performed,

p, q are probabilities; g = 1 — p
The binamial distribution function (CDF) is

Fx(x) :Z(N) PP 1=pVFU@—-k); k=01,23,...N

where " —L
k) (n—k)k!

The special case of binomial distribution function with N = 1, then it is also called
the Bernouli distribution.
Application:

1. The binomial density function is applied in the Bernouli trails experiment.
2. Bernouli experiment contains any two outcomes. For example

 Hit or Miss of target in RADAR,
¢ Pass or Fail in exam,

* Hed or tail in a tossing a coin,

* Winning or loosing of game,

* Receiving ‘0’ or ‘1°.
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* the number of disk drives that crashed in a cluster of 1000 computers, and

¢ the number of advertisements that are clicked when 40,000 are served.

Problem: Let N = 6, P = 0.25 the find PDF and CDF for Binomial.

Solution: The PDF function is

fx(z) = Z (JID PP 1=pNFS(xr—k); k=0,1,2,3,...N

k=0

e (1) =
26: ( ) (0.25)% (0.75)57% §(x — k);

k=0

6
(o)
6
2

6
1

N———

(0.75)% §(z — 0) + < ) (0.25)' (0.75)° 6(z — 1)

D

)1
) :
gol

. (0.25)° (0.75)* §(z — 5)

(0.75)% 8(x 4)+(

6

(0.25)°

(0.25)? (0.75)* 6(z — 2) + (3) (0.25)* (0.75)* §(z — 3)
(0.25)* )

6 (0.25)°

(0.75)° 8(z — 6)

S o
N N

6

r=0; fx(0) (0) (0.25)° (0.75)° 6(0 — 0) = 0.1779
r=1; fx(1) = (f) (0.25)! (0.75)° 6(1 — 1) = 0.35595
r=2; fx(2) = (g) (0.25)? (0.75)* 6(2 — 2) = 0.29663
r=3; fx(3) = (g) (0.25)* (0.75)% 6(3 — 3) = 0.13183
r=4; fx(4) = (i) (0.25)* (0.75)% 6(4 — 4) = 0.03295
v =5; fx(5) = (g) (0.25)° (0.75)" 6(5 — 5) = 0.00439
r=6; fx(6) = (g) (0.25)% (0.75)° 6(6 — 6) = 0.000244
The CDF function is
Fy(x) = kz: (]Z) P U@ k) k=0,1,23...N
Fx(0) = P(X <0) = 0.1779
Fx(1)= P(X <1) = P(X <0) 4+ P(X = 1) = 0.1779 + 0.3559 = 0.5339
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Fx(2)=P(X <2)=P(X <1)+ P(X =2)=0.5339 + 0.2966 = 0.83043
Fx(3)=P(X <3)=P(X <2)+ P(X =3)=0.8343 + 0.1318 = 0.96223
Fx(4) = P(X <4)=P(X <3)+ P(X =4) =0.9622 + 0.0329 = 0.99518
Fx(5) = P(X <5)=P(X <4)+ P(X =5) =0.9951 + 0.0043 = 0.99957
Fx(5) =P(X <5)=P(X <5)+ P(X =6) =0.9995 + 0.00024 = 0.9998
Jx(x)
A
0.5 — (o))
Ty
0.4 — g §
N
0.3 — A S
© e
0.2 — ‘,: 2 ® 3 o
A° s 8 8 8
0.1 — o o Q
1344
S 1 | | | —>» x
1 2 3 4 5 (S
Fx(x)
A
1 — 0.995 ,LQQ- .
o8 —] I0.830
0.6 — :
0.4 — '
0.2 “No.17s :
S ] | I | I —>» x
1 2 3 4 5 6

3.1.1 Statistical parameters of Binomial R.V

Let ‘X’ be the random variable, the PDF can be written as

e = (D)o a-m = (V) = s o)

a

1. Mean Value
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< N(N - 1)! |
_; (N —@-D[l@—1 """

N—l)'

H
||M2
|
-
E?
|
C
—
8
|
N

rx—1
N-1 N
= IVp [p—l—Q] N (x) p* qN
E[X]= Np p+q=1
E[X] = Np

2. Mean Square Value

= @’ fx(x)

al N| N—zx N| r N—x
:z%z(x—l) (N—a:)‘xlpxq —|—2%:E (N—:B)'x'p q
: - )
= N‘ r N—=x
S 2 e Y ]
I NN -2 P P
_;[W—z)—(x—zﬂ!(w—z)!p [ Vi)
— (N -2) oo (V-2 (o2
=NV Y G
(p+<;rN2
+ E[X]
o
=NIN-1)p"(p+q) " "+ Np
N?p* =N p*+ Np Tptg=1
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L B[X? = N p? — N g + Ny

3. Third moment about origin
N
= ZxSfX(x) ca(r—)(r—2) =2 — 327 + 2z
N
= Z [x(:z: —1)(z —2) +32% — 23:} - fx ()

:Zx(z—l)(w—Z fx(x +3Z$ fx(x QfoX

Bx?] E[X]

=Y a(e—1)(z - 2)fx(x) +3E[X* - 2E[X] =1

Let Y a(x —1)(x —2)fx(z)

= Let Zx(x —1)(z —2) ({Z) P g™
N N! N-z & N-z
:;x(x—l)(x—Q)mpxq D q
B N o _ N(N = 1)(N —2)(N = 3)!
_; x(r = =2)(z - 3)! [(N_?’)_(m_?’)]x

o p [(N—:a)—(z_s)]

NIN-DN =2)(N=3)" 5 [(N-3)—(-3)]
(= 3)! [(N =3) — (¢ - 3)]

=N(N - 1)(N -2)p’(p+
= N(N—-1)(N-2)p’
= (N* —2N? — N* +2N) p*
_ N3p3 _ 3N2p3 + 2Np3

(1) = N*p® — 3N?p* + 2Np® + 3[N?p? — Np* + Np| — 2Np
= N3p® — 3N?p® + 2Np® + 3N?p* — 3Np* + 3Np — 2Np
= Np — 3Np* + 3N?p? + 2Np* — 3N?*p® + N3p?

- E[X? = Np — 3Np* + 3N?*p* + 2Np* — 3N?p* + N3p?
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4. Variance:

Variance: 0% = Npq

5. Standard deviation : ox = /12 = /Npq
6. Skew: 3

ps = E[X°] = 3E[X]o% — (E[z])?
= Np — 3Np? + 3N?p? + 2Np® — 3N%p® + N3p® — 3Np(Npq) — (Np)?
= Np — 3Np* + 3N?p* + 2Np® — 3N?p* + N3p® — 3N?p(1 — p) — (Np)®
= Np — 3Np? + 3N*p* + 2Np® — 3N?p* — 3N*P” + 3N
= Np — 3Np* + 2Np?
= Np(1 —3p) +2Np® = Np(q — 2p) + 2Np*  ~-q=1—p
= Npq — 2Np® + 2Np* = Npq — 2Np*(1 — p)
= Npq — 2Np°q = Npg(1 — 2p)

. pt3 = Npq(1 — 2p)

7. Skewness:
ps _ Npg(1—2p)
o%n (Npq)?
o 1=2p

Npq

[N

" ox = (Npq)

Problem: Find the probability in Tossing a fair coin five times, there will be appear

1. Getting three heads

2. Two heads and three tails

3. Atleast one head

4. not more than one tail
Solution:

Let p is the probability of getting headp = 0.5
q 1s the probability of getting tail¢g =1 —p = 0.5

No.of times experiment performed N = 5

PIX = a] = fx(x) = <1;7>pqux
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P|[Getting three heads| = P[X = 3]

_ 5 3 5-3 _ 5! 3 2
= (3)0.5 057 = 21,0.5%0.5

5><4><3><2><1 1

S 3x2x1x2x1 32
10

=0.3125
e
2. .
P|[3 tails and 2 heads] = (2) 0.5%0.5° = 0.3125
3.
P[At least one head] = P[X > 1]
5
5 )0 520.5° = 0.3125
5 0 5
=1-1{, (0.5)°(0.5)
— - L 096875
32
4,

P[Not more than one tail] = Not more than one tail

= P[X = 0]+ P[X =1]

5 5
= (0)0.500.55 + (1) 0.5'0.54

= 0.03125 4 0.15625 = 0.1875

Problem: If the mean and variance of binomial r.v 6 and 1.5 respectively. Find
E[X — P(X > 3)] and also find its PDF and CDF.

Solution: Given Mean value E£[X]| = Np =6 — @
Variance 0% = Npg =15 — @

(2)=6¢=15 (D
=q=0.25
p=1—q=0.75

(1)= N(0.75) =6 = N =8

p=0.75  ¢=025  N=38

E[X - P(X >3)] = EX] - E[P(X >3)] =(3)
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E[P(X >3)]=1- P[X < 3]
=1—-{P[X=0]+P[X=0+P[X=0]}

8
P[X = 0] = fx(0) = <o> 0.75°0.25° =1 x 1 x 0.25° = 1.525 x 1077
8
P[X =1] = fx(1) = <1> 0.75'0.25" = 8 x 0.75 x 0.25" = 3.662 x 104

8
PIX =2] = fx(2) = (2> 0.75%0.25° = 1 x 0.75% x 0.25° = 3.8452 x 107*

- E[P(X >3)]=1-P[X < 3]
=1-4.2239 x 1073
= 0.995

=®

E[X — P(X >3)] = E[X] — E[P(X >3)] =6 — 0.995 = 5.005

s E[X - P(X >3)] =5.005

PDF and CDF:
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Jx(%)
A

-
-
0 ©
?
Y \ S —
A 9
g ° A -
3 S A 3
TS A A
s = A
L %
%) bt @
M) o
n [\l
s\l
| T
o | | » x
1 2 3 4 5 6 7 8
Fx(x)
0.98128
0.8811——
0.615 ;
0.304
3 0.1042
R R
. S o -
! P
o .
v i
0 X A
o 0,
° 0
% M
V) p—
o
v
oo
—
oT N B L

N

3 4 5 6 7 8

o8]

P(X =3) = fx(3) = >0.7530.255 = 0.0230

OO/‘E/\ N —

3
P(X =4) = fx(4) = 4> 0.75'0.25" = 0.0865
P(X =5)= fx(5) = . 0.75°0.25° = 0.20764

8
P(X =6) = fx(6) = (6) 0.75%00.25% = 0.34446

8
P(X=7)= fx(7) = (7)0.7570.251 = 0.26696

P(X =8) = fx(8) = (:)0.7580.250 —0.10011

3.2 Possion random variable

Let ‘X’ be the random variable with probability density function

7bbz
fx(x)ze —; =0,1,2,...00
xZ.
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Where b = AT and b > 0, real constant
T = Time duration in which number of events are conducted.

A = The average number of events per time

Let constant b = 2, plot PDF and CDF.

—-b bm
We know that fx(z) = P[X =z] = ‘ '
z!
Given that b = 2

—2 20

atz =0= P[X =0] = fx(0) = ol =0.135
—2‘21

atxr=1= P[X =1] = fx(1) = T =0.27
6_2‘22

atr =2 = P[X =2] = fx(2) = 5 =0.27
—2‘23

atr =3 = P[X =3] = fx(3) = i =0.18
—2‘24

atr =4 = P[X =4] = fx(4) = m =0.09
672‘25

atx =5= P[X =5] = fx(5) = = = 0.036

Jx(x)
A
0.27 0.27

0.18

0.178 0.09 0.036
5 | | | | » x
1 2 3 4 5
Fx(x)
0.981
0.945 —
0.855 :_'
'
o0.675 '
0.405 "'
0.135 !
o 1 T I 1 T » x
1 2 3 4 5
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Ix()

T T T
(06} o b=
-b b
0.15 ol [ fX(x):e o b=10 |
- x! o b=20

® =
0.10 | b=30 ]
0.05 |- i
OOO i | - | | | | | |

0 10 20 30 40 50 7
Applications:

1. Itis used in counting applications.

* Number of vehicles arrived at a petrol pump
* Number of customers arrived at super market

¢ Number of account holders arrived at bank
2. It is describes

* The number of units in a sample taken from a production line.
* The number of telephone calls made during a period of time.

¢ The number of electrons emmitted from a small section of a cathode in a
given time.
3.2.1 Statistical parameter of Possion random variable

Let ‘X’ be the random variable with probability density function defined as

7bbz
fX('r):e ) .T:0,1,2,...

z!

1. Mean value
EX]=X=m; = fox(:c)
x=0
i —b bm
o b-b*— 1
o?
Z@(x_ o]

> bxl

_bz (x —1)!
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b b
=be [1+b+2'+3|+ ]
2 3
_p b b x x
=be’xe’=b 6—1+.CB+2'—|—3'—|—
2. Mean squre value
EX*=X2=m Zx Fx(z
i 6—bbx
=0 ’
- e b b® )
:Z[x(x—l)jo} o r(r—1)4+ov=ux
=0 :
o0 —bb$ o —bbx
=0
i[ ] efbb2bm 2
=) lzlz—T) + E[X]
2le—T] (z — 2)
o pr—2
=" b L E[X] =0
e Z(x_2),+ - BX]
=e b [1+b+b2+b +...]+b
= o
2?28
=R XL b=+ sl =tre s gt
L EX?) =mg=b+b
3. Third moment about origin
EX}=X3=my=>Y a° fx(x)
=0
- e b b*
:Zx2 o (e —1)(z —2) + 327 — 2v = 2?
=0 ’
> —b 1z
ZZ[x(x—l)(x—2)+3x2—2x}e b
=0 !
0o 0o _bb 00 _bbx
=3 [ola = 1) -2 * Y 2)
o 7bb3ba: 3
_ZWW B — 2(X]
(x—3
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xr—2

— et b§2m<x_2)| +3b+0% 2] -|E[XY =b+0b% E[X]=b
b3 b2 3 )
=e b [1+b+§+§+.”]+3b +3b—2b
$2 £L‘3
=P x A3+ b=+ 307 +b - e =1ta+ gt

LE[XP =ms =02+ 30 + b

4. Variance: 0% =mgo —m2 =b+10?>— (b)2 =b
5. Standard deviation: ox = Vb
6 . Skew:

ps = E[X?] = 3E[X]o% — (E[X])’
= b + 3b” + b — 3b(b) — (b)®
=b

b 1

3
7. Skewness: @ = —— = —
o% bz Vb

Problem: Assume vehicles arrived at petrol bunk follows possion random variable

and occured at average rate of 50 per hour. The petrol bunk has only one station. It
is assumed that one munute is required to obtain fuel. What is the probability that a
waiting line will occur at the petrol bunk?

Solution: Given
Average rate of arriaval of cars A = 50/hour = % =0.833

Time required to filling fuel 7' = 1 min

b=XM=0833x1=0.833

A waiting line willoccur if two or more vehicles in a minute.
Probability of a waiting line = P(waiting) = 1 — (P[z = 0] + P[X = 1])

e b b*
PIX = 2] = fu(o) =
~0.833 () 8330
PIX = 0] = fx(0) = 6T = 0.4347
~0.833 () 8331
PIX =1] = fx(1) = ef = 0.3621

. P(waiting) = 1 — (0.4347 4+ 0.3621) = 0.2032
Problem: A random variable is known to be possion with constant b = 4.
Find the probability of event P{0 < X < 5}.
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Solution: Given b = 4

P{O< X <5} =P[X =0+P[X =1+ P[X =2+ P[X = 3]
+P[X =4]+ P[X = 5]
= 0.0183 + 0.0732 + 0.1464 + 0.1952 + 0.1952 + 0.156
= 0.7843
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CHAPTER 4

Probability Generating Function

4.1 Functions that give moments

Two functions can be defined that allow moments to be calculated for random variable
‘X’. They are
1. Characteristic function 2. Moment Generating function

4.1.1 Characteristic function

The characteristic function of random variable X is dfined by

Oy (w) = E[e?]; j=+v—-land — 00 <w < o0

- 7 Fx(2)el® duw

where fy(x) is probability density function

It is similar to Fourier Transform with sign reversed inh exponential. Therefore, the
PDF function defined as

fx(z) = % / P x(w) e 7" dw

The PDF and characteristic function are Fourier Tranform pair.

fx(z) = Bx(w)

n'" moment can be obtained by derivating ® x (w) in ‘n’ times with respect to w and
setting w = 0.
. dn(I)X (w)
n=(=J)" ——— ; =1,2,3,...
my = (=) == n
w=0
. dCI)X (w)
_ (1
my; = ( j) dw i
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o PPy (w

e (g 0
w=0

a B3Py (w

my = () o)
w=0

Problem 1: Find the moment of exponential PDF of continuous r.v ‘X" is given

_(z=a)

e, T>a

fx(z) =

O_ o=

Tz <a

using characteristics function

Solution: Characteristic function

dx(w) = B[] = / fx(z) &% dw

r=—00

o
1 r—a .
= / 56_( 7 e

(¢
[SIS)
1
<
('b‘
=l ole
. 1
+
<
I
)
| R |

First moment m; = (—j)*




dex(w)  d elwa
do  dw|1—jwb »

(1 — jwb)-L(edw) — elwr (1 — jwb)

1= 7y B
(1= jwb) e - ja] — e [0 — jb]
1= P B

= ja+jb
LD =m = (—j)[jaJrjb] =—j*(a+b)=a+b

‘.'.m1:a+b‘

Problem 2: Find the density function whose characteristic function is

Dy(w)=e; —oo<w< oo
Solution: Given
e w<0
Px(w) =
e w=>0
fx(x) = L ®x(w)e 7" dw
27
1 [ 7 i
_ / 6jw . e—jwm dw + / e—jw . e—jwz dw]
27
“Ww=—00 w=0
- 0 00
— i / e(l=jz)w dw + / e~ (I+jz)w dw]
27
“Ww=—00 w=0
1 [/ e0=izw\ 0 (—in)w | oo
“ 5| () (=)
27 11— /- 11—z /o0
I I S ( ! )
C2r|1—jz 1+ jx
1o L1
S 2r|l—jx 14z
1 [14jeri—ge| 1] 2
S 2r 12 — (jx)? C2m [ 1422
1 1
fx(@) = al1+a2
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Problem 3: A random variable ‘X’ has a characteristic function given by

B (w) L—|wl;  |w[ <1
xX\WwW) =
0; other wise

Solution:

=
S
!
=
\8

P x(w) e dw

1
1 .
E— i} —jwz g
5 x(w)e w
w=-—1
0 1
L (14 w) e™7%% dw + L (1—w)e ¥ d
= — w) e W+ — —w)e w
21 27
w=-—1 w=0

= % (jj))Q (= 1) + [(jj))Q (e - 1)]

1] eIr + eIT
=—|1-
T 2
T
=—— |l —cosx
T
1 —cosz
fx(@) = —
Problem 4: A characteristic function of a r.v is given by ®x (w) = 0 ; ¥ Find
—j2uw) 2

the mean, mean square and variance of ar.v X.

Solution: n" moment

my = (—j)"dcj:n Cxw|
1. First moment
d 1
=~ dw (1 - j2uw)¥|
(1) )




w=0
_ _fﬁu — j2w) 27!
2
w=0
=+N(1-— 0)*?*1 =N
S.mq = N
2. Second moment
& -y
_ 2
my = (—j) w(l —J2w>
w=0
d N
= ()| -5 = j20)F 7 x (—2) )
_%_1
= (—]N)%(l —32w>
w=0
N .
= =N [(= 5 — 1) —j20) ¥ x (2)]
w=0

- —jQN[(N +2)(1— jzw)—%—ﬂ

3. Variance: 0% = my — mj = N> + 2N — N? = 2N

Problem 5: A r.v ‘X’ is defined by density function

0; x <0
fx(r) =11, 0<x
0; z>1
by (w) = fx(x)e?* da
_1 A1 , .
= € Tr = = —— = — =
jo | T aw g e

=0
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4.1.2 Properties of characteristic function

1. The maximum value of characteristic function is unity

Proof. .
Oy (w) = / fx(x) " da

The max value = Dy (w)]

- 7 fx(x) " dx‘

r=—00
o0

= [xleye™ dx’ e = |cosf + isind)

= / fx(2) dx) =V cos20 +sin?0 = 1

0
2. If fx(x) is symmetric function then ¢y (w) is also symmetric function.
Proof. .
letxr = —y = dxr = —dy
fz=—-0c0o=y=400 and Ifz=00=y=—0
Bxw) = [ fr(-y) 0 (~dy)
Y=00
Yy=—00
Px(w) = Px(—w)
O

3. If X and Y are sum of two independent random variable, then the characteristic

function is P x,y(w) = Px(w) - Py (w)
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Proof.

Oy(w) = fx(x) " da

r=—00

Pxiy(w) = / / fxv(z,y) e 70 dy d

LT=—00 Yy=—00

Independent r.v fyy (z,y) = fx(z) - fy(y)

B / fx(z) " dx - + / fy(y) &Y dy

Tr=—00 T=—00

Pxiy(w) = Px(w) - Py(w)

4. If ® x (w) is characteristic function of X then @,y (w) = /** ®y(aw)

Proof. -
Oy (w) = / fx(x) & dx

T=—00

Duxip(w) = / fx(z) eiwlaztd) g,

T=—00

_ b / Fr(z) @209 g

r=—00

= eI Dy (aw)

Problem: Find the characteristic function of following PDF. (a) Uniform
(b) Exponential (c) Gaussian (d) Rayleigh (e) Binomial (f) Possion
Solution:

(a) Uniform r.v

’ fx(x),
Oy (w) = B[e?X] = /eij fx(z) dx 1

b

1 ) 1 eijb 1 1
_ T o0 [ ] 1 |
b—a/e * b—al jw la l l
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(b) Exponential r.v

Bxl) = B = [ 0 fe(a) do
z=0
i i Jx ()
- / Ut e da \
0 N
- ) i z(jw—a) > e
= a/er(ﬂ"_o‘) dr = « e. ]
Jw —«
0 L
—z(a—jw) o i 1 0
— [6. ] = al0— - ]
jw—a | Jw—«a
B a o« i
 jw—a  a—jw
(c) Gaussian r.v
B (w) = EleX] = / 4 £ (2) de
T : 1 (z=m)?
= / et ——=e" 27 dx
o V2T
—o0
let m = —m =t=dr=odt

o
Ifr=dc0o=t==4x

1
g\ 2T

1 Jjwm Jjwot _2
=— [ e e ce 2 dt

[e.e]

0o
2
. i o
/ejw(m—‘rat) e~ 7T gdt Ix(@) =

o0 -3 -2 -1
o0
ejwm (t—0jew)? 2,2
:\/2_ e 2 e 2 dt
T
—00
) 2 e
e7vmT _ (t—jow)?
_—\/2_ e 2 dt
T
—00

lety=t— jow = dt =dy

. 2 2 00
6me702w _y2
= —_ e 2 dy
V2
—00
———

even function
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o2w?

ejwmf > _ﬁ
Rkl Cal

2
Py (w) =€ 2

Ly (w) =

(d) Rayleigh distribution

By (w) = E[eX] = / Fr(@) €7 da

T=—00
o0

X ;12 jwx
= | e’ e dx
o
0

let£:t2>d$:dt
o

fx=0=1¢=0; fr=0c0=t=
1 T 2
== [ate T 0N gt
aZ/
0

2
+ .
te z v gt

2
t 6—7+jwoct dt

* i e—%—&—jwat
By
—t + Jwa
0 0

2. 00
677+jwat ]

/
/

t2 |
6—7-1—](«)005

—t + jwa

", CI)X(w) = —w2a2
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(e) Binomial Distribution

dx(w) = B[] = / fx(x) " dx

T=—00

()szejwm

(Lo

=(pe+q)"

To prove the above statement, take n = 2;
2 A 2 . 2 .
D= (0) (p )" + (x) (pe™)'q' + (x) (p &)2¢°

= ¢° +2(pe’*)q + (pe’*)?

>

= (p e¥19)? Hence proved

(f) Possion distribution

q)X (w) ij / fX ij dx

B |
i
belv belw)?
L

1! 21
— b |:ebej“:|

—(1—ed®)

7" dx

+ ...

=€

6—(1—ej“’)

w Ox(w)
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4.1.3 Moment Generating Function (MGF):

Let ‘X be the random variable and PDF is fx(z) and the moment generating function
is defined as

Mx(v) = E[e"™] = / fx(z) e dx

Apply Taylor series for e?~
v2X? 03X3 v X" X"
e =1+vX + + +.. 4+ +. 4+ +..
2! 3! rl n!
Apply expectation both sides, then

v X Uz 2 US 3 v I v" n

Ele ]:1+vE[X]+§E[X}+§E[X ]+"'+FE[X]+"'+FE[X 1 +...
vX UQ 2 1)3 3 v n

" Mx(v) =FEle"]| =1+ vE[X]|+ =F[X° |+ =E[X°|+...+ —E[z"]|+ ...

2! 3! n!

Differentiate the above equation with respect to ‘¢’ and then putting t = 0, we get
an Mx (v) oM 2 Mx(v)

dv?
v=

= m2
v=0

dn

. n:_M 7 :1,2,3,...
Mo = - x(v) n

v=0

Problem: Prove that the MGF of random variable ‘X’ having PDF

%; —-l<z<?2
fx(z) = _
0; otherwise
is given by
621)76_1)’ v O
Mx(v) — 3v 7&
1; v=1
Solution:
Mx(v) = E[e“X] = / fx(z)e’ dx
2 =
1
— Zev' d
/ 36 T
r=—1
N 3 UV Jz=-1
B 1 [62” e”}
3l v
2v —v

e —e€

3v
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0
If v = 0; then Mx(v) = g SO differentiate the MX(U)’vzo

_e?(2)—e (-1
3(1)

241

==

1 Hence proved

Problem: Find the MGF, mean, mean squre and variance for given function of

unifom random variable ‘X.

A a<z<b i —e<w<a
(a) fx(z) = _ () fx(x) = _
0; otherwise 0; otherwise

(b) MX(U):/fX(x)e” dx

(a) My(v) = / Fx(x)e™ do X
= / —e" dx
ab 2a
1 -,
= e’ dx 1
b—a =— [ e dx
a 2a
b —a
1 - a
= — e’ dx 1 e
a 2| w
- b - I
— 1 j B W _ o
b—a v, ~ 2% v
_ 1 _ebv — W B 1 —eiav B eav'
b—a I ) T 9
B sin ax
av

Problem: Find moment generating function of ar.v ‘X’ having PDF

x; 0<z<1
fx(@)=R%2—2; 1<z<2
0; elsewhere

Solution:
Mx(v) = /fX(:U)em dx
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x=0 r=1
- e’U.'E evx 1 6’[}33 efl)$ 2
= - 2 1) —(~1 —]
_x v U2i|0+|:( x)v ( )1)2 1
_ ;Z evx + 1 + 621; 61} 6”}
RS v2 o 2 v2 v v?
B e 1 e e
=[-Ftet el
1
=— [1 —2e¥ + 621)}
v
1 — e'q2
My (o) = [~

Problem: The MGF of ar.v ‘X" is given by Mx (v) = 72-.

Find the mean, mean square and variance?

Solution: We know that m,, = “£- My (v)

d 2
1.my = d_qf [2 — v}
_o|(2-v)(0) — (1)(=1)
BCETE
1
et
1 1
=2[3] =3
d> 2
2 mg = dv? [2 — v]
d[ 1
dv | (2 —v)?
_ L, [0-M@)2—v)" (=1)
(Q_U)4 v=0
— 8 —
16 2
3. Variance: 0% =my —mi =3 — 1 =1
Another Method:
Mye) = B = 2 = g = (1= )
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Weknow that (1 —2) ' = 2 =1+a+ 22+ 25+ ...

_x_

e = (1~ 9>1

=

2
2X2 v 112

E[1 X ...}:1 LN

+oX +——+ ot

v2X? v v?

B[]+ EpX]+ B[]+ =145+ +...
2 2

L+ BIX] + TBIXY 4. =142+ T+

From the above equation, equate the co-efficients

1
vE[X]:g:>E[X]:§—>m1
2 2
1

%E[X2]_%:E[X2]=——>m2
v? v? 1
—FEX3=—=EX=-—
G EX =5 = BXT =g —ms

1
Variance:mg—mfzz

Problem: A random variavle ‘X’ has PDF fx(x) = 2%; r=1,23,...
Find MGF, mean, mean square, and variance.

Mx(v) = 7fx(56)6” dx

= % [2 ive”] v=0
:[@—wmw—whwq
(2 —ev)?

v=0
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_26U —%4—%
I (2 —ev)?
[ 20

(2-1)

™= g5

] 2 —evllv=0

_df@E—e)e) - eﬁ(—eﬂ)]

dv i (2 —ev)? .
B d _26” —f}(—l—ﬁ%
T dv - 2-e2? ||
B d [ 2e?
T dv 2—e?]|
_ (2 €")?(2e") — (2¢°)[2(2 — e”)(—e¢")]

(2 —ev)t o
2122 x1) - (2x1)[2(2-1)(-1)]
(2-1)¢

244

= =0

3.Variance: iy = my —mj =6 — 2> =2

.'.m1:2; m2:6; /1,2:2
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4.1.4 Properties of MGF

I. fMGFof r.v ‘X" is Mx(v) thenr.v ‘cX’ is M.x = Mx(cv)

Proof.

My(v) = B[e*] = / Fe(@)e'™ da

Tr=—00

M.x(v) = / Fx(2)e’ dy

T=—00

r=—00

=; Mx(cv)

2. f MGF of r.v ‘X" is Mx(v) thenr.v ‘aX + b is M,x . = e®’ Mx (v)

Proof.

My(v) = B[e*] = / Fe(@)e'™ da

T=—00

Maxp(v) = / fx(x)e”(“”b) dx

O

3. If X and Y are independent r.v’s then the MGF will be the product of two idivid-
ual of MGF. i.e., M)@,.y(l)) = Mx(v) MY (U)

Proof.

Mx(v) = E[e*X] = / fx(z)e"™ dx

T=—00
o0

Mxiy(v) = / / IxY (z,y) @ dy de o fry(z,y) = fx(@) fr(y)

LT=—00 Yy=—00

127



= / fx(x)e™ dx /fY(y)ey”C dy - Independent
T=—0 Yy=—00

My y(v) = Mx(v) My(v)

O
4. If MGF of r.v “ X" is Mx(v) then r.v then Mxta = ev My (2)

Proof. .

Mx(v) = E[e"*] = / fx(z)e’ dx

MX+a = / fX(m)ev(zt‘l) dx

—eb / fx(z)e® dx
va U
=e? Mx(3)
O
4.1.5 Conditional CDF and PDF
Let A and B are two events, conditional probability can be defined as
P(ANnB) P(AB)
P(A|B) = = ;. P(B 0
Here, let event ‘A’ interms of continuous r.v A = —oo < X < oo can be defined as
{X < z} and conditionalprobability P{X < z|B}.
P[X <zB] P[X<znB]
P(X <zx|B) = = = — ;. P(B 0
* The conditional distribution (CDF) can be written as
P|X <zB P X<zxzNnB
Fx(z|B) = P(X <z|B) = [ — }— [ — ] P(B)#0

pP(B)  PB)

P|X < zN B is called probability of joint event. The conditional distribution

function my continuous or discrete.
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* The conditional PDF can be obtained by derivating conditional CDF

Fr(e|B) = - Fx(al B

* Similarly, if the conditional PDF is known then, the conditional CDF is

F(alp) = {25750 [ fxlalB) do

4.1.5.1 Properties of conditional CDF function

1. The value of conditional CDF at X = —oc and X = oo is given by

Fx(z|B) =0 atx=—o00; and Fx(z|B)=1 atz =00

2. Fx(x|B) lies between 0 to 1.

0< Fy(z|B) <1

3. Conditional CDF is continuous and incrementing function. i.e.,
Fx(z|B) = FX(:);+]B)
Proof. Let X is a r.v which takes the vaiable from —oo to oo

Fx(z3|B) > Fx(z1|B); ifey/B > x1/B
Fx(z3|B) = P{—00 < X < x5|B}
= P{—00 < X < x1|B} + P{21|B < X < 24|B}
= P{z,|B} + P{x1|BX < 25|B}
o Fx(x9|B) > P{z1|B}; ifey/B > a1/B

So, F'x (x| B) is a Non-decrementing function.

4. The conditional CDF between x| B and 5| B can be written as

P{x1|B < X < x3|B} = Fx(x3|B) — Fx(x1|B); x3|B > x1|B
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4.1.5.2 Properties of conditional PDF function

1. It is non-negative function; fx(z|B) > 0

2 ffA@mdx:1
3J&mm:jﬁﬂmm

4. P{x1|B < X < u9|B} = [ fx(z|B) dx

x1

Problem: Two boxes contain red, green, and blue as shown in Table. Raandom

variable represents selecting one ball from selected box. Probability selecting boxes

1. fx(x|B;) and Fx(x|By)
2. fx(z|Bsy) and Fx(x|Bs)

3. (¢) fx(z) and Fx(z)

P(B,) = 7 and P(By) = & .
X=xi | Ball color Ball Find
Box1 | Box2 | Total
1=1 Red 5 80 85
=2 Green 35 60 95
1=3 Blue 60 10 70
Total 100 150 | 250

Solution: Let ‘X’ be the discrete r.v which take values

X = x7 = 1 represents selecting Red ball

X = x9 = 2 represents selecting Green ball

X = x3 = 3 represents selecting Blue ball

fx(z]|By) : [x (x| Bs) :

5 80
mxz1wg:g? .mxz1wg:%?
mxzzwg:%? mxzzwg:??
P(X =3|B) = o P(X =3|By) = 1

fx(@|By) = bz — 1)

+ ﬁ(5(3: —-2)+ ﬂ(5(:E —3)

100 100
80 60 10
5 35 60
- - 1)y 22 9y _
Fx(z|By) 100U(yc )+ 1OOU(:U )+ 100U(9c 3)
80 60 10
- 7 1) 9y _
Fx(z|By) 150U(x )+ 15OU(m )+ 150U(x 3)
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fx(x|1B1) fX(x|1B2)
A A

0.6 0.533
A A
0.35 0.4
0.05 T T 0.067
1 , r
T | T 1 T T »” X T T | T I T »” X
0 1 2 3 0 1 2 3
Fx(x1B1) Fx(x|B2)
A A
1
0.933
RS
0.4 .
0.533
0.05 .
T T T T T T T »” X T T T T T T T »” X
0 1 2 3 0 1 2 3
f(2|B) P{X < zN B}
x\T =
P{B}

Given P(B,) = &; P(By) =%
fx(zi=1) = fx(Red = z1) = fx(1) = p(X =1)
— P(X = 1|B)P(B1) + P(X = 1|B,) P(B,)
5 2 80 8
= — X — 4+ — X —
100 10 150 10
= 0437
fx(z; =2) = fx(Green = x5) = fx(2) = p(X =2)
= P(X =2|B,)P(B;) + P(X = 2|B,)P(By)
35 2 60 8
= — X — 4+ — X —
100 10 150 10
=0.39
fx(z; =2) = fx(Blue = 13) = fx(3) = p(X = 3)
= P(X =3|B))P(B,) + P(X = 3|B;)P(By)
60 2 10 8
= — X — 4+ — X —
100 10 150 10
=0.173
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x(x) FXx(x)
A

0.437 0827 T

0.39 0.437 -

(e]
\4
R

o
A
X

4.2 Transformation of a random variable

In many applications (practically) one random variable need to transformed to another

random variable by performing some operation as shown in figure.

X Y = T[X]
—> T[] —>
fx () fr»)

Here, X be the input r.v whose PDF is fx(z) and Y be the output r.v whose PDF is
fy(y). T[] is the operation performed by system to transform X into Y/, i.e., addition,
subtraction, multiplication, square, integration etc.,

Types of transformation:

1. Monotonic Transformations of a continuous r.v

2. Non-Monotonic Transformations of a continuous r.v

3. Monotonic Transformations of a discrete r.v

4. Non-Monotonic Transformations of a discrete r.v

4.2.1 Continuous r.v, Monotonic transformation (increasing/descreasing)

Let ‘X" is a continuous random variable and the transformation is said to be monotonic
if one-to-one transformation between input and output random variable.

The transformation is said to be monotonically increasing if its satisfies the condi-
tion T'[X,] > T'[X,]; if x9 > x as shown in Fig. (a). The transformation is said to be
monotonically decreasing if its satisfies the condition T'[X,] < T[Xi]; if x5 < x; as

shown in Fig.(b).
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Let ‘Y have a particular value ‘y,’ corresponding to the particular value x if ‘X"’

as shown Fig. (a)

Yo = T[xo] = 20 = T *[xo]|  Here T~' is inverse transform of “1".

Now the probability of the event Y < 1, must be equal to probability the event
X < x, because of the one-to-one correspondance between X and Y.

Fy(y) = Fx(z)

[ swyas= [ feta) ao
7 fy(y) dy = T/l[yo}fx(@") dx

By differentiating both sides with respect to ‘yy’

fr (o) = fx (Tﬁl[?/o]> ~aw T Lol
The above integration is is evaluated at particular point. In general,

o) = fx (7)) - 4 77'1y)

. d

sy ) = fx(@) - g

where % is the slope of the transformation, it is positive and negative for mono-
tonically increasing and decreasing respectively. But the PDF should always positive.

Hence the above equation can be written as

L I) = fxle) |

dx

dy

Here, is the inverse slope of the transformation.
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Problem: Consider twor.v’s X and Y, such that Y = 2.X +3. The density function

of r.v ‘X’ is shown in Fig.
(@ —21)(y2 —y1) = (y — y1)(z2 — 21)
(x4+1)(K—-0)=(y—0)(5+1) A
Kr+ K =5y+vy
K(z+1) =6y

Klz+1
=K

(5K

K .
pelay = { oI T E T

0 otherwise

Total probability is unity.
7 fx(z) de =1

5
K ol 1<X<5
¢ farna= She) = BT T = ()
0; otherwise

e
= K= %
(i) fy(y) = fx(x)

Given

=@

dx
dy

y:2x+3:x:T
dy de 1
_:2:>_:_
dx dy 2

limitsifz = -1 =y =1;

and ifr=5=y=13;

i@and@
v3) +1
ij@:%% 72

el 1<y<i13

0; other wise
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fory=1= fy(y)=0; fory=13= fy(y) ==

Total area under the curve:

4.2.2 Continuous r.v, Non-Monotonic transformation

Let us consider non-monotonic transfermation or many-to-one transfarmation in which

input random variable to output random variable as shown in Fig.

Here the relationship between input and output PDF is given by

fo

da:n

e
where ‘
Y

is inverse of slope at all intervals.

4.2.3 Discrete r.v, Monotonic transformation

If “X” is a discrete random variable, whose PDF is fx(x) and CDF is F'x(x), such taht
Y = T[X], whose PDF is fy(y) and CDF is Fy (y) then

ZP 6(x — xy,) ZP 0(Y = Yn)

135



Fx(y) =) P(X = w,) Ul — ) fr(y) =Y P(Y = ya) Uly — )

It is a one-to-one correspondance between X and Y, so that a set {y,} corre-
sponeded to the set {x,,} through the equation Y,, = T[X,,].
.. The probability P[y,] is equal to P[X,,]. Thus,

4.2.4 Discrete r.v, Non-Monotonic transformation

If *X” is discrete r.v and “I” is not monotonic, the above procedure remains valid except
there now exists probability that more than one value ‘z,,” corresponds to a value y,,. In
such case P|y,] will equal to the sum of the probabilities of the various z,, for which
Y, =T[X,].

Problem: Let a discrete r.v ‘X’ has values x = —1,0, 1, and 2 wit probabilities
0.1,0.3,0.4 and 0.2. The r.v ‘X" is transformed to (a) Y = 2X (b)Y =2 — 2 + 9”3—3
then find fy (y) and Fy (y) ?

Solution:
X =u -1] 0 1 2

P(X=ux)]01]03|04]02

fx(x) =0.16(x 4+ 1)+ 0.30(z) + 0.40(z — 1) + 0.26(x — 2)
Fx(z) =01U(x+1)+0.3U(xz) + 04U (z — 1) + 0.2U(z — 2)
fi(x)
A
o0.4
A
AC-3
0.2
O.1
—I1 I (o] 1 2I é > x
Fx(x)
A 1.0
0.8
0.4
O.1
o Tz 5T
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Tranformation Y = 2.X; PY =y, =P(X =u=z,)

r=-1=y=-2f(-2)=PY =-2)=01=P(X = 1)
r=0=y=0/y(0)=P(Y =0) =03 = P(X = 0)
r=1=y=2/y(2)=P(Y =2)=04=P(X =1)
r=1=y=4f4)=PY =4)=02=P(X =2)

Y=y |-2|0]2]4
P(Y =y)|01|03|04|02

fr(y) =0.16(y +2) + 0.36(y) + 0.46(y — 2) + 0.26(y — 4)
=0.

Fy(y) = 0.1U(y +2) + 0.3U(y) + 0.4U (y — 2) + 0.2U(y — 4)
)
A
0.4
A
‘\0.3
0.2
0.1
T T T T | T I | > x
-2 -1 0 1 2 3 4 5
Fy(y)
A 1.0
0.8
0.4
0.1 .
I I 1 T T —>x
2 1 0 1 2 3 4 5
(b) Given Y =2 — 22 + &
1 6-3-1 2
— 1= y=2-]—-—=-2"°"°_2Z2
v y 3 3 3’
r=0=>y=2
1 6-3+1 4
1l y=2—14-=—_°T°"_Z
v y *3 3 3’
8 6-12418 2
— 9y =244 T2 _Z
* Y *3 3 3’

P(Y = y,) = P(X = z,); Ix(@) = fy(y)
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2
fy g) =PY=-)=PX=-1)=01
fr(2)=PY =2)=P(X =0)=03
4 4
fv(5) = P = 5) = P(X = 1) = 04
> 2
fr(5) =Py =3) = P(X =2) =02
2 4 2
frly) = O.1(5<y = 5) +0.35(y — 2) +0.45 <y _ §> n 0'25<y _ 5)
2 4
= 0.30(y = 3) + 049 (y — 5 ) +038(y —2)
2 4
Fy(y) = 0.3U(y - g) 404U <y . g) +0.3U(y — 2)
'
0.4
A
0.3 0.3
! I T T 1 T » x
(0] 2/3 4/3 2
Fx(x)
4 1.0
0.7
0.4
! l T T » x
° 2I/3 4I/3 I2

Problem: A r.v ‘X’ having the values —4, 1,2, 3, 4 having equal probabilities is %
(i) Find and plot fx (), Fix(x), mean and variance.

(i) If Y = 23; Find and plot Fy (y), Fy(y), mean and variance.

Solution: Given X = {—4,1,2,3,4}; P(X)=
e, P(X=—-4)=P(X=1)=P(X =2) = P(X

fx(x) =025(x+4)+0.20(x — 1) + 0.20(x — 2) + 0.26(x — 3) + 0.20(z — 4)
Fx(z) = 0.2U(z +4) + 0.2U(x — 1) + 0.2U (x — 2) + 0.2U(x — 3) + 0.2U (z — 4)
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f(y)

A
0.2 0.2 0.2 0.2 0.2
— 1 T 1 T T 1 L L L I rx
-4 -3 -2 -1 0 1 2 3 4

Fy(y)

A

0.8
0.6
0.4
0.2

i T | T | T | T T | T | T I [ » X
-4 -3 -2 -1 (0] 1 2 3 4

E(X)=m =Y _u; fx(z;)

= —4(0.2) +1(0.2) 4+ 2(0.2) + 3(0.2) + 4(0.2)
=02[—4+14+2+3+4]
=02x06=1.2

E<X2) =My = 2%2 fx ()

= (—4)%(0.2) + (1)%0.2 + (2)?0.2 + (3)%0.2 + (4)%0.2
= 0216+ 144+ 9+ 16]
=0.2x46 =192

variance: 0% = my —m? = 9.2 — (1.2)> = 7.76

r=—-4=y=(-4)°=-64; PY =-64) =02
r=1=y=(1)P%=1 PY =1 =02
r=2=y=(27%=8 PY =8 =02
r=3=y=(3)>=27; P(Y=27)=02



r=4=y=(4)°=64; P(Y =64) =02

fy(y) = 0.26(y 4 64) 4+ 0.26(y — 1) + 0.20(x — 8) + 0.26(y — 27) + 0.25(y — 64)
fy(y) = 02U (y + 64) + 0.2U (y — 1) 4+ 0.2U (z — 8) + 0.2U (y — 27) + 0.2U (y — 64)
f(y)
A
0.2 0.2 0.2 0.2 0.2
I'I'I'I"T'I'I'T rx
-64 -27 -8 -1 0] 1 8 27 64
Fy(y)
A
1.0
0.8
0.6
0.4
0.2
i T | T T T | T T T T I T I T I # X
-64 -27 -8 -1 0 1 8 27 64

EY)=m = Zyz fy (yi)

= (=64)(0.2) + (1)(0.2) + (8)(0.2) + (27)(0.2) + (64)(0.2)
= 0.2[1+8+27]
=0.2% 36 =17.2

E(Y?) =my =Y v fr(v)

= (—64)(0.2) + (1)%(0.2) + (8)%(0.2) + (27)(0.2) + (64)*(0.2)
= 0.2[64° 4+ 1% + 8% 4 27* + 647]
= 0.2 x 8986 = 1797.2

Variance: 0% = my —m? = 1797.2 — 7.2% = 1745.36
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4.3 Methods of defining Conditional events

The conditional distribution of random variable ‘X’ is

Fx(z|B) = P{X < z|B} — (1)

Let the event B in equation (1) be defined as B = X < b where b is some real

number —oo < b < ¢
Fx(z|B) = P{X < z|B}
=P{(X <2)|(X <b)}

CPX <o)n(X <h)}
- P(X <b) - —O®

Fx(x|B) where P(X <b)#0

Two cases to be considered to obtain F'x (z|B)
Case: () forz > b

P{(X < 2)1 (X < b)) = P{X < 1)
since,X > b means (X <b) C X < z. So,
(X <) (X < b)) = {X <o}

substitute in eqn. (2)

PX)

Fx(l‘|B) = m

=1 form2b—>@

Case: (ii) forz < b

Since z < b, means (X < z) C (X < x). So,
(X <0)n (X <b)} = {X <a}

P{(X <2)N (X <b)} = P{X <1}

substitute in eqn. (2), we get

Fy(z|B) = % Fy(z) = P(X < )
Pm@:g% — @

From equation (4) and (3), the conditional distribution function is defined as

Fx(z) . r<b
Fx(z|B) = { &xO —=(5)
1 z>b

The conditional density function is obtained by differentiating equation (5) with
respect to ‘z’, ni.e., fx(z|B) = L [Fx(z|B)] we get
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fretalB) = { Loxors —~®
0 x>0

where L [Fx (b)] = _f fx(x) dz.

4.3.1 Conditioning a continuous random variable

In an experiment that produces a random variable X, there are occasions in which we
can not observe X . Instead , we obtain information about X without learning its precise
value.

EX: The experiment in which you wait for professor to arrive the probability lecture.
Let X denote the arrival time in minutes either before (X < 0) or after (X > 0) the
scheduled lecture time. when you observe that the professor is already two minutes late
but has not arrived, you have learned that X > 2 but you have not learned the precise

value of X.

4.3.1.1 Conditional PDF given an event

Definition: For a random variable ‘X’ with PDF is fy(X) and event B C Sx with
P|[B] > 0, the conditional PDF of ‘X" given B is

Ifx(z).
i rEeB
fxip(e) =4 |
0; otherwise

Problem: Suppose the duration 7" (in minutes) of telephone call is an exponentional

random variable.

fr(t) =

1
3
0; otherwise

For calls that atleast 2 minutes, what is the conditional probability of the call duration?

Solution:In this case, the conditioning event 7' > 2. The probability of the event
P(T>2)= /fT(t) dt = ¢ 3
2

The conditional probability of 7" given T" > 2 1s

fr@) .
fT|T>2(t) _ ) P(T>2) t>2
0; otherwise
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% e 3 t>2
o frrsa(t) = )
0; otherwise
Fr (O frir>2(0)
A A
ERN sT
1 _t
— 3
3¢ %e_%
5 > X o 2 > X

Note: frr-2(t) is a time shifted version of fr(t)
An interpretation of this result is that if the call is in progress after 2 minutes, the
duration of the call is 2 minutes plus an exponentional time equal to the duration of new

call.

4.3.1.2 Conditional expected value given an event

* If {x € B}, the conditional expected value of X is

E[X|B] = /foB(a:) dx
* The conditional expected value of g(x) is

o0

Eg(X)|B) = / o) fx () da

-0
¢ The conditional variance is

Var(X|B) = E[(X —m)2|3] = B[X?|B] _KIB2

* The conditional standard deviation: oxp = /Var(X|B)

Note: Conditional variance and standard deviation are useful because they measure
the spread of the random variable after we learn the conditioning information B. If the
conditional standard deviation o x|z is much smaller than o, then that we learningthe
occurance of B reduces our uncertannity about X because it shrinks the range of typical

values of X.
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CHAPTER 5

Multiple Random Variables

5.1 Vectors (or) Multiple random Variables

In many engineering applications situations arises where it is necessary to make use of
more than one variable, say two r.v or several r.v.

Consider a sample space ‘S’, let X and Y are two r.v on it. Let the specific values
of X and Y are denoted by x and y respectively then any ordered pair of numbers (z, y)
is considered to be a random point in the zy-plane. This random point may be taken
as a specific value of a vector random variable or a random vector. The figure shows
the mapping involved in going from sample space ‘S’ to the xy-plane. Here S; is joint
sample space.

In a more general case where ‘N’ random variables X, X5, X3... X are defined
on a sample space ‘S’. We call the r.vs to be components of an /N-dimensional random

vector (or) /N-dimensional random variable.

5.2 Joint Distribution

Let us consider two events A is a function of ‘z” and B is function of ‘y’ such that
A={X <z}and B={Y <y}

The jointevent AN B = {X < z} and {Y < y} are shown in Fig.

The probability of two events A and B is called CDF or distribution function which

can be written as
Fx(z)=P{X <z}  Fy(y)=P{Y <y}

The probability of joint event {X < x and Y < y}, which is function of X and Y
is called joint CDF (or) PDF is denoted Fxy (x,y) and fxy (zy).

oo

‘X'tv — fx(z)isPDF — Fx(x) = P{—c0 < X <z} = / fx(u) du

U=—00

Y'rv — fy(y)isPDF — Fy(y) = P{—c0c <Y <y} = /OO fx(v) dv
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FxY(z,y) = P{X <z,Y <y} =P{—00 < X <0}

o o0
= / / fxy(u,v) dvdu= Fxy(z,y)
N—— N—_——
u=—00 v=—00  Joint PDF Joint CDF

If we know Fx (x,y) then fx(z) = £ Fx(x) = 525 Fx(z,y)
Similarly if we know Fxy (z,y) then fxy(z,y) = 83—;ny (z,y)

5.2.1 Joint probability density function

Let X and Y are two r.v, joint PDF can be written as fyy(z,y) = P(X = z,Y = y).
Joint PDF can ve obtained by evaluating second derivative of joint distribution function
1.e.,

fxy(z,y) = %FXY@,Z/)

For ‘N’ random variables, the joint PDF can be written as

0 Fx, xyXs... X n (T1,72,23,...TN)
S 1 2 3.<> N bl Y b
fXY(CE7y) - Ox10x20230...x N

5.2.2  Properties of Joint PDF: fxy (z,y)

1. fxv(zx,y) is a non-negative i.e., fxy(z,y) >0

2. 0< fxy(z,y) <1

2 Y2
3. Total probability: [ [ fxy(z,y) dy dx
v=z1 y=y1

Pz < X <z)N(n <Y <)}

= 72 72fXY($7y) dy dzx

T=T1 Y=Y1

= FXY($1, y1) + FXY(I2,y2) - FXY(fEl;yQ) - FXY($27?J1)

5. Marginal PDF and CDF of ‘X’

Ix(z) = / fxv(x,y) dy (or) fx(z) = %FX(@
fr(y) = / [xv(z,y) dz (or) fy(y) = %FX(I)

6. The Joint PDF: fxy (x,y) = 525 Fxy (2, y)
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5.2.3 Properties of Joint CDF: Fxy (z,y)

Fxy(z,y) = P{(—oo < X <z)N (-0 <Y <y)}
—P{X<znY <y}

:] /yfxy(u,v)dvdu

2. Fxy(—o00,—0) = Fxy(—00,y) = Fxy(z,—00) =0
3. Fxy(400,4+00) =1

4. Fxy(+00,y) = Fy(y); Fxy(z,+00) = Fx(x)
5. Fxy(z,y) is a non-decreasing function.

6. Fxy(z,y) is a continuous function.

146

www.andr oi d.previousguestionpapers.com | www. previousquestionpapers.com | https://telegram.me/jntua



Problem 1: Let X and Y be the continuous r.v with Joint PDF is given by

1.
2.
3.

—x .
be™® cosy;

0;

fx(z) =

Find constant ‘0’
Find and plot fx(z) and Fx(z)
Find and plot fy(y) and Fy (y)

Solution:

1.Total probability = 1

]o 70 fxy(z,y) dy dz =1

T=—00 Yy=—00

=

=

™

2

2
/ /be_”“"cosy dy der =1

=0 y=0

2
/be_”” /cosy dy | de =1
=0 i

s
2
=0

2
/ be*x(siny>§dx =1
0
=0
2

0<r<Z2and0<y<7

Else where

4. Find ny(x,y)
S.Find P{0<X<1)N(0<Y <

fr (%) A
b ]
0 2 » X
Fy (x) A 5
14
0 2 » X

2. Marginal PDF fx(x) :

FNE

)}

fx(z) = fxy(z,y) dy
Yy=—00
%
= / be " cosy dy
y=0
=be™® [sin y} 2 = e
0
be ™™ cosy; 0<x<2
Sofx () =
0; Else where
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2. Marginal CDF Fx(z) :

The given intervals

—o0o<x<0 0<zx<2;, x>2
Casel: —0c0 < X <0
Fx(x) =P{-o0o < X <z}
= / fx(u) du
_0
:/Odu:O
Fx(x)=0; —oco<z<0

Caselll: X > 2

Fx(z) = P{—00o < X <z}

CaselI: 0 < X <2

Fx(z) = P{—o0 < X <z}
0 0 x
_ / Wdu + [ fx(w) du
=_ 0 u=0
_ be“du:b[e—}
—+do
u=0
=b [1 — e‘ﬂ
Fx(z)=b[l—e"]; 0<z<2

u=0
e~u]?
A[5]
—+do
=0 1—6’2]
1
:WM
=1
Fx(z)=1;, 0<z<2
0; —oc0o<z<0
Fx(x) = Qb1 —e?]; 0<x<2
1; e
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3. Marginal PDF fy (y) :
Marginal CDF Fy (y) :

fy(y) = fxy(z,y) dx Given intervals are —oco < y < 0; 0 <
T=—00 y<3 y=3
2
:/be_zcosydx Casel: —co< X <0
=0
o  pf_
:bcosy[e } Fy(y) = P{=o0 <Y <y}
—11o x
=b cosy [1 —e? = fx(v) dv
1 _ U=—
zl_eizxcosy[l—ez] 0
= Ccos Y = / Odv=20
@)y =4 Vs S Fy(y)=0; —co<y<0
0; Else where
Casell: 0 <y <2
fra
14

Fy(y)

» Y
= /cosv dv
v=0
. Y
= [smv]o
=siny
>y

o Fx(z) =sing; 0<o<3

Caselll : X > g
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0; —00<y<0
Fy(y) = { siny; 0<y<%
L; y=>3

4. To find Fxy(x,y) : There are three cases
(@A) —co<zr<0and —cc <y <0
M0<z<2and0<y<T
©2<r<ocand § <y < o0

Case(a): —co < x <0and —co <y <0

Fxy(z,y) =P{(-oo < X <z)N(—-00 < X < 1z)}

=0
= / T,y)dvdu =0

=—00 V=—00

‘.‘.ny(Ly):O; —o<zr<0and —c0c <y <0

Case(b):0§x§2and0§y§g

fﬁxy($,y):: Fq:——OO f;)(jg T — )(‘<
0

( )N (=00 <
:W //fXY(x y) dv du

be ™ cosv dv du

u=0v=0
z y
=) e /COSU dv » du
u=0 v=0
—ug .
v [e
=b smv]o [—}
—1lJo

coFxy(xy) = b(l — e_x) siny; 0<zxr<2and0 <

o] 3
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Case(¢c): 2<zr<ocand ; <y < oo

FXY($7y>:
//be ¥ cosy dy dx
=0 v=0
x bl
:b/ex /Cosydy dx
=0 y=0
T [e
=5 [sing] | ]
[smy]o —1,
—b[1-0] [—e2+1]
1
Tl [L‘/ezz}:l
s Exy(r,y) =1 QSxSmanngyéoo
0; r<0andy <0
S Fxy(Ty)=4b(1—e®) sinyg; 0<z<2and0<y<Z
1; r>0andy > 7
5. -
P{(OSXSl)and(OngZ)}
1 % b 6—:(3 1
:/ be ™ cosy dy dx NG [—1 0
- [
1 2 L—
= be™ [sinm} Y dx B 1 1
=0 1—e \/5
/ 1 = 0.5169
= [ be™® [——O} dx
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Problem 2. Find Fxy (z,y), Fix(x) and fx(z), Fy(y) and fy(y)? for given

) 2—x—vy; 0<r<land0<y<1
The Joint PDF fxy (z,y) =
0; Else where
Solution:
x Yy
FXy(x,y)://(Q—u—v)dvdu
u=0 v=0
rae 2
:/ QU—uv—U—]ydu
L 2 1o
u=0
ru 2
:/ [Qy—uy—%}—O] du
u=0 "~
2 2 .
— logu — - _ ¥ ]
[W Yo T
x? T y?
— |2 ____}
[W 2 2
2 2
Fxy(@,y) =20y -0 =55 0<a<land0<y<]
0; —oco<zr<0and —c0c <y <0
S Pxy(z,y) = 21:y—%—%; 0<zr<land0<y <1
1; I1<r<oxandl <y <

2. Marginal EDF fx(z)and fy(y)

fx(x) = / [xy(z,y) dy fr(y) = / Ixy(z,y) dv
Yy=—00 Tr=—00
1 1
:=/@—x—wdy :=/@—$—wdy
y=0 y=0
241 2 1
— oy — gy L — [2 _r ]
=[-w-5] v,
— |2 L1y —P I ] 0
-p-e-)- -
2" —27 Y
31 0<2z<1 Sy 0<y<1
Fx(z)=4" Fy(y) =47
0; Else where 0; Else where
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3. Marginal CDF Fx(z) and Fy (y)

i. Fx(z)=0; —oo<z<0 i. Fy(y)=0; —00o<y<0
T Yy
i, Py (x) = / Fr(u) du ii. Fy(y) = / Fy (v) du
=0 y=0
=0 =0
[3 uzr 3 v37Y
= |-u— — = 20— =
2 2 lo [2 2 }0
3 x? 3 y?
= [r-3) -0 = [v-3] -0
3 2 2
2 2 2 2
iii. Fx(r)=0; <x>0 ii. Fy(y) =0; <y>0
0: <0 0: Yy <0
Fx(z)=q3z-2; 0<z<1 Fy(y)=43y—-%; 0<y<1
1; T > 0; y=>0

Problem 3: Find the Joint PDF of two r.v X and Y, where CDF is given by

(1—e ) (1—e¥); x>0;y>0
0; y >0

FXY<x)y) =

Also find P{1 < X <2,1 <Y <2}.

Solution:

Ixy(z,y) = 8xayFXY<x> y)

= (%(1 —e™) 8%(1 —e)
—|0—¢® (—Qx)} [0—6 v (—2?/)]

doeye ™ eV 22>0,y>0
fxv(z,y)
, y=>0
P{1<X<21<Y <2}
2 2
_//4xyew26_y2dydx
z=1y=0
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= 0.12219
Problem 4. The Joint CDF of two random variables X and Y is given by

c2e+y); 0<z<1L0<y<2
lﬁYY(x7y>::
0; Else where

(i) Find the value of ‘C"? (i1) Marginal CDF of ‘X’ and ‘Y.

Solution:

1.Total probability = 1

o0 oo

/ / fxy(z,y) dy de =1

T=—00 Yy=—00

1 2
:>/c/ c(2x 4+ y)dy de =1
z=0 y=0

1 o\ 2
=>/c(2:vy+y—> der =1
2/
z=0

= /c[4x+2—(0+0)]dx:1

=0
1
=c <4x—2—|—2x) =1

2 0

=c (é+2 =1
2
1
:c_z
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2. Marginal PDF, CDF:

&
+
N —

1
T+ z

o fx (@) 5

(a) —oo < & < 0;
b 0<z <1

Fx(l') =0

0<z<1

z>1

2. Marginal PDF, CDF:

fr(y) = / Fxy(z,y) dz
x:l—oo
= /c(2x+y) dx
=0
1 (22 !
“1\2 ),
1
=1 [1+y]
R
4
1
fr(y) = %
Fy(y) =?
(@) —co <y <0; Fy(y)=0
®0<y<1; Fy(y) =7

0; T
sy (y) =
1; T

Problem 5. The Joint CDF of two random variables X and Y is given by

Fxy(z,y) = {U(x)U(y) [1 —e
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(i) Find fxy (z,y) (i) P{0.5 < X < 1.5}
(i) P{X <1NY <2} (iv) P{-05< X <02,1<y<2}

Solution: Given

f(a:+y)2] )

2
l—e2 —e3 +e 2 r>0,y>0

0; otherwise




= -1 |:€712;5 — 67%}
— [0.472 — 0.778]
= 0.306

- P(0.5 < X < 1.5) = 0.306

(z+

12
1 y
(c)P(XSl,YSQ)://Ze_ 2)dydx

=0 y=0

— 0.632 [e—
— [0.606 — 1]
— 0.632[0.393]
— 0.248
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I
e
—_
Nej
—_

Ot
1
| a
=] wls
_

[\o}

= 0.1577

L P(05< X <21<Y <3)=01577]

(e)]. P(~05< X < 02,1 <Y < 3)=0.036

Problem 6. The Joint PDF of two random variables X and Y is given by

a2z +y?); 0<r<22<y<3
FXY(x7y> =
0; otherwise

(1) Find value of ‘a’? (i) P{X <1,Y >3}
Ans: (i) a = 13—6 (i1) %
Problem 7. The Joint PDF of two random variables X and Y is given by

cxy e~ @) > 0,y >0
FXY(xa y) = .
0; otherwise

(i) Find value of ‘c’? (ii)Marginal distribution function of X and Y

(iii) Show that X and Y are independent  (iv) P{X < 1,Y <1}

Ans: (Ve=4 (i) fx(z) =2z e, Fx(z)=1—¢"

(iii) Independent. fx(z)fy(y) = fxy(z,y) (iv) P{X <1,Y <1} =0.3995

5.3 Statistical Independence

Two events A and B are said to be statistically independent if
P(ANB)=P(AB)=P(A) - P(B)

Letevent A={X <z} ={-0c0< X<z}, B={Y <y} ={-00<Y <y}
R.v X and Y are independent if,
Pl—oo< X<z N -0<Y<y}=P{-00o< X<z} P{-o0o<Y <y}

Sy (z,y) = Fx(x) - Fy (y)
Ixy(x,y) = fx(z) - fyr(y)

Problem 8. Let fxy (z,y) = xe *1%%) U(z)U(y). Check for independent?
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Solution: The Condition is

fxy(z,y) = fx(x) - fy(y) (5.1

fx(z) = /fxy(m,y) dy

y=0
o0

ze~ "W (2)U (y)dy

y=0

From equation (5.1) = ze (%) U(z2)U(y) # ze~*U(x) - _(1[]4582

So, X and Y are not independent.

z Y

Problem 9. fxy(z,y) = e 1e 3U(z)U(y). Check independent X and Y.

Solution:

1. V.
fx(x :E/e%gdy :1—12/646ng
y:O =0
(=), © (6 ),
= : 1
12 -3/, 12 1
x Y
e 4 e 3
12 ) 12
_67% _e*%
4 3

Sofxy(z,y) = fx(x) - fy(y) So, X and Y are independent.

Problem 10. Check independent X and Y for given PDF.

r+y; 0<zr<2 and0<y<1

fXY(x7 y) = X
0; otherwise
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Solution:

fﬂ@=i/@+wdy

fx(@) fr(y) = (@ + 5)(1+y)2

2

(z+y) dy

0
+ :z:y)

fr(v)

T
2

=2(1+vy)

1,2

2

|

cofxv(x,y) # fx(x) - fy(y) So, X and Y are not independent.

Problem 11. Check independent X and Y,

_ z2+92

rye  z

0;

fxy(x,y) =

[e.e]
[
=0

_2?
re 2

Solution:

fx(z) =

Y

2y

2
e 2e 2 dy

4o

let%:t:>2ydy:dt;

o0

e

<
oS

0

y=0=>1t=0;, y=oc0=>t=00
:$6_2/6_tdt

t=0

z2
= xre 2

find P{X < 1,Y < 1} for given PDF.

r>2, andy >0

otherwise
o0
12 y2
)= [ayeFet d
x=0
2 a:2 o0
— y@ 2 (I‘ (& 2 >
0

72
letE:t:>2xdx:dt;

r=0=1t=0;, z=00=1t=00
2

:ye_yz’/e_tdt
t=0
y2

:ye_T

cofxv(z,y) = fx(x) - fy(y) So, X and Y are independent.

1

/

0

PIX<1Y<1}=

/memwx
0

://:Bye_z 5 dy dx
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5.4 Conditional Distribution and Density Functions

The conditional distribution function of a random variable ‘X’ given that same event
‘B’ is defined as

P{X <znN B}
F B)=P{X <xz/B} = = : P(B) #=
x(#/B) = PX </B} = ==p = P(B) #=0
This is called conditional CDF for point conditioning.
. A
Similarlly fx(z/B) = L Fx(x/B) - P(B/A) = 32

Let event ‘B’ is defined as B = {X < b}. i.e., (—oo < X < b). Now

Ao/ <) - p{ STy A= (X< 0)

This is called conditional CDF for interval conditioning.

Ix(z); x>0,

fr(w/x < 0) =
/ fx(z)dr = Fx (x/(x < b))

The above conditional r.v of single random variable ‘X’ can be extended into mul-

tiple random variable. i.e., two random variable X and Y.
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Problem 12.

e (Zt+y)

If fXY<x>y) =

0; otherwise

1. Find fx(x), fy(y)
2. Find Fx(z), Fy (y)

3. P(X <1)

similarly fy(y) =e™
3.

P(X <x)= 7 7 fxv(z,y) dy dx

T=—00 Yy=—00

1 0o

P(X <1)= / / e~ @) dy da

T=—00 T=—00

1
e (x+y)

- / [ —1 Eody
Ty

= / e dr
-[5],

=1—e!

9020,920:

4, P(X <1NY < 3)
5. P{(X <1)/(Y <3)}
6. P{IX>1NY<2)/(X<3)}

7. P{X>1nNY<2)/(Y>3)}

(i) —00< X <0; Fx(x)=0
1) 0 < X < o0;
Fx(x) = / fo(u) du = /e_“ du
U=—00 u=0
e "1z re’ " 1
=5, = 5] - =
=1—¢e"
l—e™ x>0,
Fx(z) =
0; r <0
l—e™ y2>0
Fy(y) =
0; y<0
Other method:
P(X < x) / fx(x

1

P(X <1)= / e dx

e 71
_[—1}0
=1—¢!
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o oo

4. P(X<1INY <3)= / / fxy(z,y) dy dz

13
= / /6_(’”+y) dy dx
2=0y=0
(=)0
5. P(Y <3)= [ fr(y) dy

P{ng _P{(X <a)n(X <)}

X <b P{X < b}
P Sy PX <DN(Y <3)}
{Y 3}_ P{Yy <3}
_ 0= -
(=)
=1—¢t

(X>1)Nn(Y <2) el —e™
(6) P{ X <3 } 1—e3

(7) P{(X222(§<2)}:e2—1
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5.5 Discrete random variable

1.
ny(x,y):P{X<xnﬂY<ym}:P( :xn,Y:ym)
Z Z fXY xny - ym) U(JT - xn) U(y - ym)
2. )
fxy(z,y) = 8x8yFXY($’y)
= Z Z FXY(mn:ym> 5(-77 - xn) (5<y - ym)
3.
Fx<l’) Iny(JZ’,OO) :P{X S.TnﬂY < OO}
= Z fXY(xnaym) U(ZL’ - wn) U(y - OO)
= > fxv(ay) Ul — )
4,
Fy(y) = Fxy(oo,y) = Z fxy(@,y) Uy — ym)
5.
o d
= > Fxy(a,9) Uly —ym) = - Fx(2)
6.

= Zn Fxy(xz,y) Ulx — z,) = %FX(@

n=—oo

Problem 13. The joint space for two random variable X and Y, and corresponding
probabilities are shown in table.
(@) | (LD | 2D | (33) 3. Fy(y) and fy (y)

P(z,y)| 02 | 03 | 0.5
Find and plot:

4 Find P{O< X <1N0<Y <3}

5. Find P00 < X <2N0<Y <2
1. Fxy(z,y) and fxy(z,y) 0=X= V<2

6. Find P{0 <X <2N0<Y «2
2. Fy(z) and fx(x) ind PO < X' < = !
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Solution:

Fxy(z,y) Z Z fxy(X =20, Y = yp) Ul — ) U(y — Yim)

n=—00 Mm=—0o0

FXY .CE 3/ ZZfXY xna *ym) U<x_$n> U<y_ym)

=PLHU@z-1)Uy—-1)+P2,1)U(x—2)U(y—1)
+P(3,3) U(x —3) U(y — 3)
Fxy(r,y)=02U(x—-1)U(y—1)+03U(x—2)U(y —1)+05U(z —3) Uy — 3)

S Fxy(x,y) =020 —-1)U(y—1)+03U(x—2)U(y—1)+05U(x—3) U(y — 3)
Sofxv(r,y) =020 —1)0(y—1)+035(x—2)5(y— 1)+ 0.5z —3) 5y — 3)

frv(xy) Y FXY(:»J’) y

2. Marginal PDF and CDF: fy(x) and Fx(x)

Fxy(x,00) = Fx(z)
—0.2U(x—1) U(co — 1) +0.3U(x —2) U(oo — 1) + 0.5 U(z — 3) Uco — 3)
—020U(x—1)+03U(z—2)+0.5 Uz — 3)

s Fyxy(2) =020z —1)+03U(z —2) + 0.5 Uz — 3)

Cofxy(x) = %Fx(x) =026x—1)4+03d(x—2)+0.50(z—3)

3. Marginal PDF and CDF: fy (y) and Fy (y)

Fxy(00,y) = Fy(y)
=02U(c0c—1)U(y—1)+03U(c0—2)U(y—1)4+0.5U(c0c—3) U(y — 3)
—020U(y—1)+03U(y—1)+0.5U(y — 3)

. Fxy(y)=05U(y—1)+0.5 Uy — 3)
d

Sofxyly) = d—yFy(y) =056y —1)+0.5y—3)
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4P{I0<X<INOLY <3} =P(1,1)=0.2
5.P{0< X <2n0<Y <2} =P(1,1)+ P(2,1) =05
6.P{0<X<2N0<Y <2}=P(1,1) =02

fx (%) fr()
0 0.6
0.5 05 0.5
0.4 0.3 I 0.4 [ N
0.2 I
0.2 T 0.2
2 3 0 1 2 3 d
Fx (x) Fy(y)
A
1.0 — ,i 1.0 — Il_O
0.8 — . 0.8 — :
0.6 - 0.6 — !
0.5 0.5 !
[r—1 pr—
0.4 — ' 0.4 — 1
0z 224 0z —
X
1 2 3 > 1 2 3 >y

Problem 14. The joint space for two random variable X and Y, and corresponding
probabilities are shown in table.
(@y) ||| G| @4 | 3. F(y) and fy(y)

P(zp,yn) | 0.05 | 0.35 | 045 | 0.15
Find and plot:

4. Find P{0.5 < X < 1.5}

5. Find PAX <2NnY <2
1. Fxy(z,y) and fxy(z,y) X< <2

6. Find P{l1 < X <2 Y <2
2. Fy(z) and fx(z) ind P{ s2Y =2}
Solution:

FXY $ y ZZfXY xna _ym) U<:U_$n) U<y_ym)

=PL,)U@-1)Uly—1)+P2,2)U(x—-2)U(y—1)
+P(3,3) Uz —3) Uy — 3) + P(4,4) U(x — 4) Uy — 4)
Fxy(z,y) =0.05U(x—1) Uy —1) +0.35U(z — 2) U(y — 2)
+045U(x —3) U(y —3)+0.15U(x — 4) U(y — 4)

S Fxy(y) =005U0(—-1)U(y—1)+035U(x—2) Uy — 2)
+045U(x —=3)U(y—3)+015U(x—4) U(y — 4)
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2
s Ixy(zy) = 8fayFXY(l'7Z/) =0.056(x—1)d6(y —1) +0.356(z —2) 6(y — 2)

+0.458(x —3) 6(y —3) +0.15 §(z — 4) U(y — 4)

frr(%y) Fyy(x,y) y
A A
0.15 {1
4 0.45 ) Afre :," ---------- ':' --------- e L
B3 ':' -------------------------- 7 . '-' S . i’ -------- [ :—ZZQZEQ?ZZ;Z“;
0.35 Y04 ! !
SN i S i
0.05° Jo0s S
f oA S S FA— f A,
1 2 3 4 »X 1 2 3 4 »X

2. Marginal PDF and CDF: fx(x) and Fx(x)

Fxy(xz,00) = Fx(z)

=0.05U(x—1)U(co—1)+0.35U(x — 2) U(co — 2)
+045U(z —3) U(co —3)+0.15U(z — 4) U(co — 4)

= 0.05 Uz — 1) + 0.35 Uz — 2) + 0.45 U(z — 3) + 0.15 U(z — 4)

s Fx(z) =0.05U(z — 1)+ 0.35 Uz — 2) + 0.45 U(z — 3) + 0.15 U(x — 4)
d

o fx(x) = %Fx(l’) =0.050(z —1)+0.350(z — 2)

+ +0.45 §(x — 3) + 0.15 §(z — 4)
3. Marginal PDF and CDF: fy (y) and Fy (y)

Fxy(00,y) = Fy(y)
= 0.05 Uco — 1) Uy — 1) +0.35 U(co — 2) Uly — 2)

+0.45 U(co — 3) Uy — 3) + 0.15 U(co — 4) U(y — 4)
= 0.05 Uy — 1) +0.35 Uy — 2) + 0.45 U(y — 3) + 0.15 U(y — 4)

C Fy(y) = 0.05 Uy — 1) + 0.35 Uy — 2) + 0.45 U(y — 3) + 0.15 U(y — 4)
) = %FX(@ —0.050(y — 1) + 035 5(y — 2)

+0.45 6(y —3) +0.15 6(y — 4)

4. P{0.5 < X <15} = P(1,1) = 0.05
5. P{X<2nY <2} =P(2,1)+ P(2,2) + P(2,3) =0+0.35 + 0 = 0.35
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6. P{1<X <2Y <2 =P(1,1)+ P(1,2) = 0.05+ 0 = 0.05

fx (%) fr
0.6 0.6 —|
0.45 0.45
0.4 0.35 0.4 0.35
0.2 0+05 I 0T15 0.2 0.05 I ()T15
» X s
0 1 2 3 0 1 2 3 > y
Fy (x) Fy (y)
A A
1.0 - & 1.0 - &
0.85 0.85
0.8 - — 0.8 - —
0.6 - : 0.6 -
0.4 — .&: 0.4 - I&:
0.2 + 0.05" 0.2 — 0.05"
— x .
1 2 3 4 > 1 2 3 4. >y

Problem 15. The joint space for two random variable X and Y, and corresponding

probabilities are shown in table.

é ) ) 3 Find and plot:
1102 (017 02 1. Joint and marginal distribution function
210157021015 2. Joint and marginal density function

Solution: Given data is

P(1,1)=02, P(2,1)=01, P(3,1)=02,
P(1,2) =0.15, P(2,2)=02, P(3,2)=0.15

FXY ZL‘ y Z Z l'myn :L‘—(L’n) U(y_ym)

n=—o0 m=—0oo

Fxy(z,y) ZZP Ty Yn) U@ — 20) U(Y — Ym)

=P(L,)U(x-1)U(y—1)+P(1,2) Uz — 1) U(y — 2)
+P2,1)U(x—2)U(y—1)+ P(2,2) Uz —2) Uy — 2)
+PB, U@ -3)U(y—1)+ P(3,2) Uz —3) Uy — 2)
Fyy(z,y) =02U(x - 1) U(y—1)+0.15U(x — 1) U(y — 2)
+01U@x—2)U(ly—1)+02U(x—2) Uy —2)
+02U(x—3)U(y—1)+0.15U(z — 3) U(y — 2)
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82
Ixy(z,y) = &cayFXXY(x’ Y)

=026x—1)0(y—1)+0.156(x—1) d(y — 2)
+0.10(x—2)0(y—1)+0.2x—2)d(y—2)
+0.20(x—3)0(y—1)+0.15(x — 3) é(y — 2)

frr(xy) Fyy(x,y) 4
A A
015 027 01§ 01Y
o o 1 _________ - Ny e
0.2 01/ 0‘2' 0 i ﬂ,g'l;m!nnnmm
i

2. Marginal Distribution PDF and CDF: fx(z) and Fx(z)

Fx(z) = Fxy(z,00)
=02U(x—1)U(co—=1)+015U(x — 1) U(co — 2)
+01U(x—2) Uloo— 1) + 0.2 Uz — 2) Uloo — 2)
102Uz —3) U(oo — 1) +0.15 U(x — 3) U(oo — 2)
Fx(z)=02U(z—1)+0.15U(z — 1)
+01U(z—-2)+02U(z —2))
+0.2U(z —3)+0.15 Uz — 3)
—0.35U(x — 1) +0.3U(x —2) +0.35 U(z — 3)

L Fx(2)=035U(x —1)+03U(z —2) +0.35 Uz — 3)

) = %Fx(l«) 035 6(z —1) + 0.3 6(z — 2) + 0.35 0 — 3)

3. Marginal Distribution PDF and CDF: fy (y) and Fy (y)
The marginal distribution function of r.v Y is Fy-(y) and it is obtained by subtituting

x =ooin Fyy(z,y).

Fy(y) = Fxy(y,00)

—0.2U(co — 1) Uy — 1) +0.15 U(co — 1) Uy — 2)
+01U(c0—2)U(y—1) +02U(c0—2) U(y —2)
+02U(co—3) Uy — 1) +0.15 U(co — 3) U(y — 2)

Fy(y)=02U(y—1)+0.15U(y — 2)
+01U(y—1)+02U(y —2))
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+02U(y—1)+015U(y — 2)
= 05Uy —1)+05 Uy —2)

S Fy(y)=05U(y—1)+05U(y —2)

) = LB ) = 056y — 1)+ 0.5 6(y — 2)

dy
fx (x) frO)
0.6 0.6
0.5 0.5
0.4 035 5 035 0.4
X
o 1 2 3 > 0 1 2z 3 >y
Fx (x) Fy (»)
A A
1.0 —_ 1.0 — —_—
0.8 — : 0.8 — :
0.65 ! '
0.6 . 0.6 — '
. 0.5 '
' P—
0.4 — 0.35" 0.4 — :
—
0.2 — 0.2 - '
x L]
0 1 2 3 ) 0 1 2 3 ) y

Problem 16. Discrete r.v X and Y have a joint distribution function

Fxy(r,y) =01U(xz+4) U(y—1)+015U(z+3) U(y +5)
+017U(x+1)U(y—3)+0.05U(x) U(y — 1)
+018U(x—-2)U(y+2)+023U(x—3)U(y — 4)
+0.12U(zx —4) U(y + 3)

1. Sketch and plot Fxy (z,v) fxy(z,y)

2. Find and plot Marginal PDF and CDF

3. P{-1<X<4n-3<Y <3}

4. P{X <1,Y <2}
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5.6 Conditional Distribution and density for discrete r.v

Let X and Y are discrete random variable with values z;, ¢+ = 1,2,3,..., N and
yj, 7 =1,2,3,..., M respectively and probabilities are P(X;) and P(Y;) respectively.
The probability of joint occurance of x; and y; is denoted by P(x;, y;).

N M
fx(z) = ;P(Sﬂz)(s(ﬂf —x);  fr(y) = ;P<yi)5(y — ;)
Ixy(z,y) = Zl le(xiayj)(S(x — i) 0(y — yj)

=1 j=
Conditional distribution function,

N

> P, ye)U(z — )

Fx(zly =y) = =

p(yr)

> Pl yr)o(z — x;)
[x(@ly = yx) = =

p(Yk)
3~ Plar.y)U (s — 1)
Fy(ylr = ) = = o)
ip(%yjﬁ(y ~ )
fr(yle = z) = =

p(xr)

Problem 17. Let P(z1,y1) = %»P(%;yl) = 13—57P(9027?J2) = %7 P(z1,y3) = %,
P(xs,ys) = <. Find fx(z|Y = y3)?

3

> P(x4,y3)0(x — ;)

fx(@ly =y3) = p(ys)

P(ys) = P(x1,y3) + P(22,y3)
4 5) 9 3

515 15 5

P(x1,y3)0(x — x1) + P(x2,y3)0(z — x2) + P(x3,y3)d(x — x3)

€T = =
fX( |y yS) P(yg)
_ £0(x —x1) + 20(x — x2) + 0 6(x — x3)
;
5 4 5 D
=3 X 1—5(5(:1:'—:51)—1—5 X ﬁd(l'—l'g)
4 D
Fx(aly = ys) = Go(z — 21) + 50(x — z2)
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fxr(x,Y) y fi(xlY=y3) y

A A
i S/ 4, 5
J ¥ ¥ Jo¥ oy
15',' '.'
2-f------- L : """ i?‘ """"""""" 2- ------------'r' ----------------------------
15/ 15',' ','
Jo KX Joiii
1 2 3 ’x 1' 2 3 ’x

Problem 18. The following table represents the Joint distribution of the discrete r.v
XandY.

% 1123 Find and plot:
T 11
1|—=1]1=1]0 .
216 3. Find P{X < 2,Y =3}
210 |=| <
1113 4. P{y <2}
3 - — -
1814115 5. P{X +Y <4}
1. Find Fx(zly = 2) P{X <2)Y <3}
P{X < 3}
2. Find Fy (y|lx = 3)
Solution:
1. Fx(zly =2)
 P{X<zny=2}
Py =2}
3
> Plaiy=2)U(x — z;)
=1
ply = 2)

P(1,2)U(x — 1) + P(2,2)U(x — 2) + P(3,2)U(z — 3)
P(1,2) + P(2,2) + P(3,2)
_ 0+:U(x—2)+1U(z—3)

1
9

+
D V=2 + 2 Ule—3)
14 14

O U=
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2. Fx(ylz = 3)

S Ple = 3,5)U(y — uy)

_P{X=3nY <y} =

- P{z =3} p(r =3)

CPEB DUy -1)+P(3,2)U(y —2) + P(3,3)U(y — 3)
- PB.1)+ P(3,2) + P(3,3)
04+iUWW-2)+ & Uly—3)

N s+5

=S U(y-2)+ £ Uly-3)
3qugzyz$:P@@+P@3pj%+iz%

1
4. P{X+Y <4} =P(1,1)+ P(1,2) + P(2,1) = —+ 0+ =

5.

1

12 6

4

P{Y <2} = P(1,1) + P(1,2) + P(2,1) + P(2,2) + P(3,1) + P(3,2)

1
—+0
12+ +

6.

P{X<2nY <3}

Ll ]
6 9 5

P(1,1)+ P(1,2) +

P{X <3} B

P(1,1) + P(1,2) + P(1,3) +
1
ﬁ+%+0+%
+0+55+s+5+13
13

) 24

= l\DlH
w

(

—~
wlw‘wl
SR
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5.7 Sum of two independent random variables

Let ‘W’ be a random variable equal to the sum of two independent random variables X
and Y.
W=X+Y

The probability of W < w can be written as

fww)=P{W <w}=P{X+Y <w}=Pl-oo<W <w} = / fw (u)du

» X
fur(w) = / / Fx(@) fr(y) dy de
= / /fX(:U) fy(y) de dy . Independent
:»:/ / fx(@) fr(y)dy da <or>=:/ / fx(@) fr(y)dy du

Take integral and differentiate wrt to ‘z”  Take integral and differentiate wrt to ‘y’

/ fx(a) do = [fx(@)] " /_ fr(w) dy = )]
~ fuw ) — ] — fw - a) — fbe]
= fx(w—y) = fy(w—x)

L fwlw) = / Fr () fx(w —y)dy (or) = / Fx(@) fy(w — 2)dz

Yy=—00 T=—00

= fx(z) ® fy(y) = fx(z) ® fr(y)
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fw(w) = fx(0) * fr)]

This expression is recognised as a convolutional integral.
.. The density function of the sum of two statistically independent random variable is

convolution of their individual density function.

Problem 19: Find the sum of two independent r.v W = X + Y, whose PDF are

1
fX(ZE):a[U(x)—U(x—a)]; x>0
fy(y)—%[U(y)—U( —b)} y >0, where0) <a<b
v U)
A A
L 1
»x > ¥
U(x - a) Uy — b)
A A
11 1
a »x > >» Y
Afy () = 2 [U(x)- U(x-a)] A = 5 V)= U -b)]
1
: :
a » x 5 » Y

We know that, the density function of sum of two independent r.v is the convolution

of their individual density function i.e.,

7 fx(2) fy(z — ) dx

T=—00

fz2(2) = fx (@) * fy(y) =

Here. range zisOtoa+band 0 < a <b
Case (ii): at z = a

Case (i):atz=0

7 fx(z) fy(a—1z)de

[e.9]

fa(z) = / Fx(@) fy () da

T=—00

=0

1
= / —d:v—/—dx

1 a a

- gl 5=3
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fr(x) fr(x)
A A

1 1
_b 0] a >x 0 a ;x
X X
fr(=x) fr(-x+a)
A A
1 b
b
-b 0 a »x -b+a 0 a »>x
fz(2) . f7(2)
= A - A
fz(2) = fx() - fy(—x) .
=0 =
-b 0 a > 0 a »x
) (ii)

Case (iii): at z = b

Case (iv):atz=a+b

fo(z) = / fx(@) fy(b— ) de

o faz) = / fx(@) fr((a+b) - ) do
— /i d.ZC r=—00
- ab B
J _
= alli=5=3
T T T
fr®) e
A A
1 1
0 a }x 0 a }'x
fr (=x+b) fr(=x+ (atb))
A “1
1 b
b
0 a b »>x 0 a b bta > x
— fz(2) — fz(2)
- \ - A
- f2(2)=0
0 a b »x ) » x
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1
4 O a » x
£ 0<w<a
ab’ — — P
L fr ()
b G>W= A convolution
fx(z)=qe¢b=2 b<w<a+b >
0; w>a T + » v
0; —o00o<w<0 fz(2) _
1
b m
O a b a+b » Z
)
Problem 20: Two independent r.v X and Y have PDF is
e " U(x); >0 1, 0<y>1
fx(x) = . fr(y) = ,
0; other wise 0;  other wise
Calculate the fz(z) when Z = X + Y.
Solution: fy (y) can be written as fy(y) = U(y) — U(y — 1)
foe) =[xl —a) do
= / xre * U(x)[U(z—x) —U(z—z— 1)} dx
= / xe " U(x)U(z — ) doe — / e " U(x)U(z—x—1) dx
consider integral @
/ ze P U(z) U(z — x) do
= / xe " dx
r=—0

[ 5- [r5, = fo [ [0
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- [ 5-51-(-)

=1—-e*(1+42)

consider integral @

o0

/ ve " U(x) Uz -z — 1) da

r=—00

roe” e Tqyz-1
:_x-_l—/l-_—l]o ./uv—u/v—/du/v

() =10-2)
=1—e*(14+2)—{1—z 0}
—1—e*(14+2)—14z2e D

1

=—e*(14+2)+ze"e
'.fz(z):e_z[—l—z+ze

Problem 21: If X and Y are two r.v which are gaussian, if ar.v ‘Z’ is defined as
W =X +Y.Find fiy(w).

We know that Gaussian r.v density function

1 _ (Z—m)Q ]_ z? . .
fx(z) = = ~2 ~ Normalized Gaussion r.v

[
)
q

¥
|
9N

Let X and Y be two normalized Gaussianr.v 0% = o3 =1, mx = m, = 0 then
2

22

fx(e) = e % Foy) = e %
furw) = fx(@) * fr(y) = / fx(@) fy(w — 2) da
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o0

1 102202
_ e 5 (z¥+w? 2 —2wz) dr

2
- o)

- QL / e BT ) gy

m
B 2i / e B 2w gy

m

m
letp:xﬂ—ijdp:\/idxjdx:—dp

V2

Ifr =—00=p=o00 Ifr=00=p=

|
8 Sl

2 o0

D= fwlw) =5 [ %
= _— [ 2
Wit 2 /2
p=—00 )
o p2 o p2
let / e 2 dp=2 / e 2 dp *.* Gaussian is even function
p=—00 0
P
5 = z=>p=V2
@dp:dz:dz:ﬁ\/zdp:dz: ! dz
2 V2%
r |
=2 e dz
V2\/z
> T > [
:—/e_zz 2dz:—/e Zyma T gy
2 2
0 0
> T . 12
=— [ e %z2" dz:21“[—}:— T
-/ 2] = AY"
0
[ 2
/ e 2 dp:—Q\/7_r
p=—00
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Substitute equation @ in equation @

-1 2
Jw(w) = e% N Eﬁ
1 1 w2
- E \/27re
1 w2
S fw(w) = NG e 7

Conclusion: The addition, subtraction, multiplication and differentiation etc., of Gaus-

sian random variable with different mean and variance.

fx () 7
xT : 0 v
Y (y) 7o
y — 0 !
fu (w) oG
w I: 0 v
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5.8 Central limit theorem

The central limit theoram say that the probability density function of the sum of a large
number of random variables approaches gaussian random variable.

Proof: (1) Equal distribution (2) Unequal distribution (not discussed)

(1) Equal distribution:
Let ‘N’ number of independent random variables X, X5, X3... Xy with mean values

. X Xe . X wi : 2 2 2 2
X1, Xo, X3... X; with variance o, 0%, 0y, - - - Oy, -

Let all random variable are same or equal.

Xi=Xo=X3=...=Xy=X —>sameryv

X, =Xo,=X3=...= Xy = X — same mean
03(1 = 0§(3 = 03(3 =...= og(N = 0% — same variance
Let Z = —— , This is taken to find PDF of sum of r.v.

Oy

Sum of random variables

Y=X1+Xo0+X5+..+ Xy =NX
Y=X 1+ X0+ X5+.. +Xy=NX

oY =o%, +ox, +ox, +...+ox, =Nok
NX-NX

Cox VN

We know that the characteristic function,

7 —

o0

dy(w) = B[] = / fx(z) ™" dx

T=—00

Find characteristic function of 7,

o0

by (w)=FE -ejwz] = / fz(2) €% dz

Z=—00

[ . NX-NX i
=F ejw< ox VN )
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Apply logarithm both sides and exponentiation of all r.v are equal

In (CI)Z(w)> ~In {E

_jw< X_Y) N
=In Fle \VNox
N w( X7Y>
:—ln{E ¢ \VNax }—>@
n
We know that egﬁ:l—i—x—ké—?—i—é—?jt...
Consider,
w X=X w(X — X 2(X - X)°
Elé <W°X> =F 1+]w( )+j2w( ~ ) +.....
\/NO'X 2Nox
~ 2
Jw — w 2
=1+ FlX-X| - EFlX-X|"+
A BIX-X] - 5y BIX - X]
~ 2
Jw w
=1+ 0 ———- 4+
VN ox [} QN% 9/}?{
w>
:1+W+ ...... —|— B
Eliminate Higll,er order terms
jw X7Y> w2
In< E (m"x ~In|{1l—-—
We know that In(1—2) = —{Z+2*+ 2%+ ...}
O
o T T
From equation @ =
w? w?
1<<I> )—N{———— ....... }
n{®z(w) ON ~ 4N?
2 =0
:_%—Zw]%/ — ... - Nislarge orLim N — oo
2
In <<I>Z(w)> S
2
',<I>Z(w):e_wT

This is Gaussion PDF with unit variance and zero mean.

Application of central limit theorem: The bell shaped gaussian r.v help us in so
many situations, the central limit theorem makes it possible to perform quick, accurate

calculations, otherwise extremely complex and time consuming. In these calculations,
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the r.v of interest is a sum of other r.vs and we calculate the probabillities of event by

referring to the Gaussian r.v.

Problem: Consider a communication system that transmits a data packets of 1024
bits.Each bit can be in error with probability of 10~2. Find the (approximate) probability
that more than 30 of the 1024 bits are in error.

Solution:

Let ‘X’ is a random vaiable, such that

X; = 1; if the i'"" error

X,; = 0; if not error

Given Data packet = 1024 bits.
P(X;=1) =102
P(X;=0)=1-1072

1024
The number of errors in the packet: V = > X;

i=1
Find P(V > 30) =7, which means more than 30 errors.

1024

N
P(V > 30) 2(10240 (1072)™ (1= 1072)1027m) o 37 Ny phg™

This calculation is time consuming. So, we apply central limit theorem, we can

solve problem approximately

X;=102x1+(1-10"%) x0=10"
X2=102x124+(1-10"2) x 02 =102
o? = X? = (X;)? = 0.0099

1024
Based on central limmit theorem V' = Z X, 1s approximately Gaussian with

mean of NP =V = 1024 x 1072 = 10 24
Variance Npq = 0%, = 1024 x 0.0099 = 10.1376

P(X > 1) = Q(‘”;XX)
30 —10.34
— (6.20611)

=1.925 x 10710
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Sum of several random variables:
Let ‘N’ number of random variables X,;; n=1,2,3,... N.
Whose PDF is fx, (z,); n=1,2,3,...N.

Sum of N random variable Yy can be written as

The probability density function of Yy is convolution of individual probability den-

sity function. Thus,

fyw (Un) = fx, (1) * fory (2) * g (23) % .. % fxy(TN)
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Problem: A random sample of size 100 is taken from a population whose mean is
60 and the variance is 400. Using central limit theorem , find the probability with which

the mean of the sample will not differ from 60 by more than 4.

Problem: The life time of a certain band of an electrc bulb may be considered as a
RV with mean 1200h and SD 250h.using central limit theorem,find the probability that
the life time of 60 bulbs exceeds 1250h.

Problem: If V;, « = 1,2,3,4,....,20 are independent noise voltages received in
an adder and V is the sum of the voltages received, find the probability that the total
incoming voltage V' exceeds 105, using the central limit theorem. Assume that each of

the random variables Vi is uniformly distributed over (0, 10).

Problem: The life time of a particular variety of an electric bulb may be considered
as a random variable with mean 1200h and SD 250h.Using central limit theorem, find
the probability that the average life time of 60 bulbs exceeds 1250hours

Problem: If X, X,, ... X,, are Uniform variates with mean = 2.5 and variance =
3/4, use the central limit theorem to estimate P(108 < Sn < 12.6),where S, =
X1+ Xo+ .. X, and n = 48.

Problem: If X, X,,...X,, are Poisson variates with parameter A = 2, use the cen-
tral limit theorem to estimate P(120 < Sn < 160), where S, = X; + X5 + ...X,, and
n ="75.

Problem: Describe Binomial B(n,p) distribution and obtain the moment gener-
ating function. Hence compute (1). The first four moments and (2). The recursion

relation for the central moments.
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CHAPTER 6

Operations on the Multiple Random Variables

6.1 Joint Moment about the origin

Let ‘X’ and ‘Y’ are two random variables, the Joint moment is defined as

[e.9] o0

M, = B[ X" YF] = / / 2"y* fxy(2,y) dy dx

T=—00 Yy=—00

Here order of joint moment is “n + k”.

1. If £ = 0 then we will get only moment of r.v ‘X"

Mpo = E[Xn} = / / " fxy(z,y) dy do = / a" fx(z) dx
T=—00 Yy=—00 T=—00
2. If n = 0 then we will get only moment of r.v ‘Y
=BV = [ [ oy dd= [ o )
T=—00 Yy=—00 Yy=—00

3. If n = 0and £ = 0 then

Mmoo = F XOYO—/ /fxyl'y dy dx =1

T=—00 Yy=—00
It is area of joint PDF i.e., equal to 1.
4. Ifn=1and k = 0 (or) n = 0 and k = 1, then we will get 1°* order moments.

* The given m; 1s an Expectation of r.v ‘X’

mip = E[X'Y°] = / /xfxyxy dy dx = E[X]

T=—00 Yy=—00
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* The given my; is an Expectation of r.v ‘Y’

o0

mo = E[X°Y'] = / 7 fxy(z,y) dy dx = E[Y]

T=—00 y=—00

S5.fn=1andk=1(or)n=2and k = 0 (or) n = 0 and k£ = 2, then we will get

second order moments.

(1).

(11).

(iii).

Casel:n=1land k=1

my = E[XY] = / / xy fxv(z,y) dy dr = Rxy

T=—00 Yy=—00
The second order moments m,; = F[XY] is called the correlation of X and

Y, denoted by Rxy

If X and Y are independent then fxy = fx(x) - fy(y)

mi = Rxy = E[XY] = E[X]- E[Y] = / z fx(z)dz - / yfy(y)dy

If Rxy = 0then X and Y are orthogonal

If Rxy # E[X]E[Y] then X and Y are Uncorrelated.

* If X’ and ‘Y’ are independent then they are said to be uncorrelated.
This is not true in general.

* If Rxy = 0then X and Y are uncorrelated, they are called “orthogonal”.

Case 2: n = 2 and k£ = 0, then we will get mean-square value of random

variable ‘X.
o oo

my = E[X?Y"] = B[X? = / / 2? fxy(z,y) dy dv

T=—00 Yy=—00
Case 3: n = 0 and k£ = 2, then we will get mean-square value of random

variable ‘Y.

ma = EXY =BV = [ [ 4 forlo) dydo

T=—00 Yy=—00

NOTE:
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e If X and Y are independent fxy(x,y) = fx(x)fy(y)
Similarly, Rxy = E[XY]| = E[X]E[Y]

 IfX and Y are not independent then E[XY| # E[X|E[Y]

 If X and Y are mutually exclusive (or) orthogonal then F[XY] = Rxy =0

6.2 Joint Central Moment (or) JointMoment about the Mean

The Joint cental moment of random variable X and Y is j,,, can be written as

i = B[ (X = Xy / /a:— "y = TV v (o.y) dy do

T=—00 Yy=—00

1. If n = 0 and £ = 0O then

oo = E[(X ~ XY - ?)“} = B[]

/ / = X)(y =Y)  fxv(z,y) dy dx

T=—00 y=—00

/Oo 7 fxy(z,y) dy dx

T=—00 Yy=—00

.". Moo 1s area under the curve

2. i. If n =0and k # 0 then

o0 [e.9]

Lok = E[(Y — 7)’“} = / / (z — X)°y = V) fxy(z,y) dy da

T=—00 Yy=—00

7 7 (y—Y) fxy(z,y) dy dz

T=—00 Yy=—00

ii. If n # 0 and k = 0 then

poo = B[ (X - / /m— "y =) fxv (@,9) dy do

T=—00 Yy=—00

/ / — X)" fxy(,y) dy dx

T=—00 Yy=—00
3. i. If n =0and k = 1 then
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o1 = E[(Y —7)} = 7 7 (y = Y) fxv(2,y) dy do =0

T=—00 Yy=—00

S EY -Y|=EY]-EY]=Y-Y =0

ii. If n =1and k = 0 then

(e 9] o0

H10 = E[(X - Y)} = / / (z = X) fxy(2,y) dy dz =0

T=—00 Yy=—00

S EX - X]=E[X]-EX]=X-X=0
e [fn=1and k = 1 then

j1y = E[(X XY - ?)} — Oxy

_ 7 7 (x = X)(y = V) fv(@,y) dy da

T=—00 Yy=—00

(11 1s second order central moment and it is called “Co-Variance” and is

denoted by C'xy.
Cxy = p = E[(X - 7)(Y - 7)]
— B[XY - XY - XY +X7Y]
= E[XY] - E[XY] - E[XY]|+E[XY]

| Cxy = pi1 = Rxy — X Y = RXY] — E[X]E[Y]

— If X and Y are independent and uncorrelated then
E[XY] = E[X]E[Y] = XY, and the Cxy = 0
— If X and Y are orthogonal r.vs then Cxy = —E[X]E[Y]

— If X and Y are orthogonal either X or Y has zero mean then C'yy = 0

i. If n =0 and k£ = 2 then we will get variance ‘Y”’

por = B|(Y = V)] = 7 7 (v = V) fxy(2.y) dy da

- / (v — V) fry(@,y) dy

y=—00
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ii. If n =2and k£ = 0 then we will get variance ‘X’

H20 = E[(X _7)2] - 7 /OO (x = X) fxy(z,y) dy dz

T=—00 y=—00

— [ @ faray) do
Var(X) = pigg = Moy — m3y = mg — mj

2 2
Var(Y) = po2 = moa — mgy = mg — mj

5. The normalized co-variance or normalized second order moment or correlation
between X and Y is defined as

H11 Cxy . E[<X —7)(3/ —7)}

Vv 120 o2 0x Oy 0x Oy

‘p’ is called corellation co-efficient of X and Y and it varies from —1 to +1.
L -1<p<l]

NOTE: The terminology, while widely used, is some what confusing, since orthog-

onal means zero correlation while uncorrelated means zero co-variance.

Problem: 1 Find all statistical parameters for given Joint PDF
Ty
fXY(Iay):?§ 0<X <2 0<Y <3
Solution: Given Joint PDF

P 0<X <2 0<Y <3
fxy(x,y) =
0; otherwise

The Joint moment m,,, = E[X" Y*| = [ [ 2"y fxy(z,y) dy dx

T=—00 Yy=—00

1. If n = 1 and £ = 0 then the mean value of r.v ‘X is
mo=EXY) =B = [ [ e dydo
T=—00 Yy=—00

x-%dydm‘

I
g\w
g\w

190



2
Z‘2 y23
= [ = L] 4
/9 [2}0 v
=0
2 2
= x—[?}dl‘
9 L2
z=0
1 ra?q2
-5 15,
1 8 4
= — X — = —
2 3 3
4

2. If n = 0 and £ = 1 then the mean value of r.v ‘Y’ is

mor = BEIXY] = E[Y] = 7 7 yfxv(z,y) dy dx

T=—00 Yy=—00

LEY]=mg =2

3. |E[X|E[Y] = % x2="

4. If n = 1 and k = 1 then correlation

my = E[X'Y'] = Rxy = / / zy fxy(r,y) dy dx
T=—00 Yy=—00
3

2
://y-%dydx

=0 y=0
2

2 3
- (S5
=0
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rd

- |5 lzle
B ?]025
.'.mllzRXng

*xIf my; = Rxy = E[XY]| = E[X]E[Y] then X and Y are independent. Here,
Rxy = E[X]E[Y] is satisfied. So, X and Y are independent.

5. If n = 2 and k = 0 then correlation

my = B[X?Y"] = B[X?] = / / 2* fxy (x,y) dy dx

T=—00 Yy=—00

2 3
://xg-%dydx
z=0y=0

2 3 2

3

:/ac_[y_} dx

9 L21Jo
=0

2 3 g

X
= [ = [Z]d
/9[2} v
z=0

lrz*ti2 1 16
20410 2 4

oMoy = E[XQ] =2

6. If n = 0 and £ = 2 then correlation

[e.9] o0

mey = E[X°Y?] = E[Y?] = / / v fxy(z,y) dy dv
T=—00 y=—00
3

2
://yz-%dyda:

=0 y=0

Il
—
Ol R
NS
(@) w

.

g

=0

2 81

s
:/5{1] e
=0
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oMoy = E[YZ] = g

7. 0% =my—m? = E[X? — (E[X]>2 =2- (=

3 9 9
29 9—-8 1
8. 02 =my —m?=E[Y?] — (E[Y]) — 2 =20
2 2 2
9. Correlation:
00 3 9
Ty Try=13 =«
_ dy= [ 2a :_[_]:_
= [ powod= [ Lay-S[2] -3
y=—00 y=0
5 0<x<2
fx(x) =
0; otherwise
00 3 9 4
Ty yres12 _y 2y
r= [ soteyae= [ Pa=YT) =k
Yy=—00 y=0
o 0<y<3
fry)=1" .
0; otherwise

Ix(@)- fy(y) = g ) %y = % = fxy(z,y)

Hence fxy(z,y) = fx(z)fy(y)

10. Cxy = co-variance = fi1; = Ryy — X Y = g - %(2) =0

.. Cxy = 0 then X and Y are independent.

C
11. Normalized co-variance: p = fun Ty 0

vV Ho2 120 0x Oy

Problem 2: If mean and variance of random variable ‘X’ is 3 and 2 respectively.
Find all statistical parameters of Y = —6.X + 22
Solution: Given Y = —6X + 22
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‘We know that

O'_%(:mg—m%
:>2:m2—(3)2

SoMeo = E[X2] = Mmyy = 11

1. Mean value of Y:

E[Y] =Y =mg = E[-6X + 22]
= —6E[X] + E[22]
=-—6x3+22=4

2. Mean square value of Y':

E[Y?] = mgy = E[(—6X + 22)?]
= F[36X? + 484 — 264X
= 36E[X?] + 484 — 264E[X]
=36 x 11+ 484 — 264 x 3
= 396 + 484 — 792
= 88

3. Correlation:

Rxy =my = E[XY] = E[X(—6X + 22)]
= E[-6X* + 22X
= —6E[X? + 22E[X]
=—6x11+22x3
=0

.. X and Y are orthogonal and not independent.

(or)

Rxy = E[X|E[Y] E[XY] = E[X]E[Y]
0+#£3x4 0#£3x4
0 £ 12 0#12

So, X and Y are uncorrelated So, X and Y are independent
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4. Variance of Y

Ho2 = M2 — m%l
=88 — (4)?
=88 —16
=72

Problem 3: Three statistical independent r.vs X7, X5, X3 have mean values

X, =3, X, =6, X; = —2. Find the mean values of the following functions.

1. g(X1, Xo, X3) = X1 + 3Xo + 4X,

2. g(X1, X, X3) = X1 X0 X

3. g(X1, Xoy X3) = —2X1 X5 — 3X1Xs + 4X2X;

4. g(X1, X, X3) = X1 + Xo + Xy

Solution:

1. E [g(Xl, X, XS)} — B[X)] + 3E[X,] + 4E[X4]
=3+3x6+4x(-2)=13

2. E[g(Xl,XQ,Xg)} — E[X\]E[Xs] E[X4]
=3 x x(—2)=-36

3. B|g(X1, X2, Xs)| = —2E[X]E[Xo] - 3E[X1] E[X] + 4B[ X2 B[y

=—-2x3X6+3x3x2+4x6x(-2)
= —36 4+ 18 — 48 = —66

3. B|g(X1, Xa, Xs)| = B[X\] + E[X] + E[X;]
=3+46-2=7
6.3 Properties of Co-Variance

1. Co-variance between X and Y is Cxy = Rxy — X X

Proof.

Cxy = E[(X - 7)<Y - ?)}
=EXY - XY - XY +X Y]
= E[XY]-YEX]|-XE[Y]+XY
=EXY]-XY-XY+XY



al
=l

= E[XY] -

2. If X and Y are independent then C'xy = 0

Proof.

Oxy = E[XY] - X
= E[XY] - E[X]E[Y]
= FE[X]|E]Y]| — E[X]E[Y] "~ X and Y are independent
=0

~I

3. Prove Var(X +Y) =Var(X) 4+ Var(Y) + Cxy
and Var(X —Y) =Var(X)+ Var(Y) — 2Cxy
(i) Var(X) = 0% = B[X? - (E[X])”

Var(X +Y) = E[(X + Y)ﬂ (E X + Y])2 X TY =E[X +Y]

2

=E[X°+Y?*+2XY] - (X +Y E[X+Y]=E[X]+E[Y]

\_/\_/

=E[X*+Y?+2XY] - E X+Y
— B[X2+Y2+2XY]— ( )

— E[X’] + E[Y?] + 2E[XY] - [(E[X])2 + (ElY])* +2B[X]E]Y]|

= [B1x? - (BIX))*] + |BlY?) - (BIY])*] + 2|BlXY] - EIX]B[Y]]
— Var(X) + Var(Y) + 2Cxy

S Var(X+Y)=Var(X)+ Var(Y) + 2Cxy
S Var(X4+Y)=Var(X)+ Var(Y); If X andY are independent

(it) Var(Y) = oy = E[Y?] - (E[Y])

Var(X —Y) = E[(X Y 2} (E[X Y]>2 XY =E[X Y]

— E[X24+ Y2 2XY]— (
— B[X2+Y?-2XY]— (

= E[X?>+Y?-2XY] -
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= BE[X? + E[YY22E[XY] — [(E[X])2 + (EY))® - 2E[X]E[Y]]
= E[X2] + EY22E[XY] — (E[X])* — (EY])® + 2E[X]E[Y]

= [Blx?) — (BIX))*] + [ED?) - (BIY])*] - 2[ElXY] - E[X]E]Y]]
— Var(X) + Var(Y) — 2Cxy

S Var(X =Y)=Var(X)+ Var(Y) —2Cxy
S Var(X —=Y)=Var(X)+ Var(Y); If X andY are independent

4. COV(aX,bY) =ab COV(X,Y) where a and b are constants.

COV(X,Y) = Cxy = pu1 = E[(X - 7)(3/ - ?)}

COV(aX,bY) = E [(aX —aX)(bY — by)}

- E[ (X — X)b(Y — Y)]
—abB|(X - X)(¥ - V)]
= ab COV(X,Y)

5. COV(X 4+ a,Y +b) = COV(X,Y) where a and b are constants.

COV(X,Y) = Cxy = s = E[(X = X)(¥ = V)]
COV(X +a,Y +b) = B[(X +a-X+a)(Y +b— Y +D)]
— B|(X +a— X —a)(Y +H-7 ~})

—El(Xx - X)(Y —?)}

— COV(X,Y)

6. COV(X+Y,Z)=COV(X,Z)+ COV(Y, Z) where a and b are constants.

COV(X,Y) =Cxy = pn = E[(X - X)(Y _?)}
COV(X +Y,Z) :E'(X+Y—X+Y)(Z—7)]
:E'(X+Y—Y—?)(Z—7)]

~ B|(X -X)(Z - 2)| + E|(Y -V)(2 - 2)]

= COV (X, Z) + COV(Y, 2)
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6.3.1 Theorems

Theorem 1: Expectation of sum of weighted random variables is equal to sum of

weighted expectation or mean values.

Proof. Let a function with ‘N’ random variables X7, X5, X3,... Xy
their weights are a1, s, s, . .. ay; where ‘o’ is constant.

Let Y be the sum of weighted random variables.

Y = Oéle —|—Oé2X2 —|—OK3X3 + ... +O-/NXN
N
= Z «; X; , Wwhere «; is constant, Now
i=1

E[Y] == E[Oéle —+ OéQXQ —+ Oé3X3 + ...+ OéNXN}
E[Oéle] + E[O{QXQ} + E[O&ng] + ...+ E[OéNXN]
= O[lE[Xl] + OCQE[XQ} + (IgE[Xg] + ...+ O./NE[XN] E[kX} = k?E[X]

N N
1=1 i=1

N N
Z aiXi] = Z aiyi
i=1

i=1

]

Theorem 2: Variance of sum of weighted random variables is equal to weighted

sum of Variance of random variable (weights a?).

N
Proof. Let a random variable X = oy X| + ao Xy + a3 X3+ ... + ayXn = > o X;
=1

N —
Expectation E[X] = E[Oéle -+ 042X2 + Oéng + ...+ OéNXN] =F Z OélXZ] =X
=1

Var(X) = o% = E[(X — X)?]

N r/ N N 2
Var Z OéiXi =F (Z Oéin' — Z Oélz> ]
=1 L Nz:l =1 i
L z;l
— B Y a¥(X - zy]
L =1
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N
= Z o? Var(X;)
i=1

N N
s Var < Z &iXi> = Z o? Var(X;)
i=1 i=1

HW 1: Two r.v X and Y has the following Joint PDF

fxy(z,y) =
Ans:
fx(@) =35 —=
fr(y) = % -y
E[X] = 5
ElY]=3

2—x—y;

I

Moy =

Moz =

1
mi = Rxy =5

= =

4

0<X<land0 <Y <1

otherwise

— =1
Cxy = 144
11
H20 = 75

_u
ILLOQ - 72

HW 2: Two r.v X and Y has the following Joint PDF

fxv(x,y) =

Ans
C=3 fx@)=%
frly) =55
PIx] -
Ely] =

c(2x 4+ y);

0<X<2and0<Y <3

otherwise
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Problem 4: Find the Joint CDF and all statistical parameters of r.v. X and Y.

Whose Joint CDF is shown in the table.

(zi,yi) | LO) | (0,0) | (0,2) | (1,-2) | (1,1) | (1,3)
P(X,Y) | 01 [ 02|01 ] 03 |02/ 01

Solution: Joint PDF

Fxv(z,y) Z Z =5, Y = y;) 0z — ;) 0y — yy)

1=—00 j=—00

fxy (z,y) Z Z =3, Y = ;) 0(x — 23) 6(y — v;)

fxy(z,y) = 0.10(z 4+ 1)d(y) + 0.26(x)d(y) + 0.16(x)d(y — 2)
+0.30(x — 1)d(y +2) +0.26(x — 1)o(y — 1) + 0.16(z — 1)d(y — 3)

Fxy(z,y) =01U(x + 1)U(y) + 0.2U(x)U(y) + 0.1U (x)U (y — 2)
4 0.3U(x — DUy +2) + 0.2U(x — DU(y — 1) + 0.1U(x — 1)U(y — 3)

Fx(z) = Fxy(z,0)
= 0.1U(z + 1) + 0.2U(x) + 0.1U () 4 0.3U (z — 1)
+0.2U(z — 1) + 01U (z — 1)
Fx(xz) =01U(x+ 1) +0.3U(x) + 0.6U (z — 1)

d
fx(z) = e

Fx(z) =0.16(x + 1) + 0.36(x) + 0.66(x — 1)
Fy(y) = Fxy(00,y)
=0.1U(y) + 0.2U(y) + 0.1U(y — 2) + 0.3U (y + 2)
+0.20U(y —1) 4 0.1U(y — 3)
Fy(y) = 0.3U(y +2) + 0.3U(y) + 0.2U(y — 1) + 0.1U(y — 2) + 0.1U (y — 3)
fy(y) =0.30(y +2) +0.36(y) + 0.20(y — 1) + 0.16(y — 2) + 0.16(y — 3)

filX) hw
A

0.6

0.3 0.3

-
4

lO
N

o

I

o

-

N

8
1>
v
<
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[e.9]

my = E[X] = Z z; fx(x;)

1=—00

= Z z; fx(;)

i=—1
=(—=1x0.1)+ (0 x0.3) + (1 x 0.6)
=—-04+4+06=0.5

o0

mao = E[X? = 3 a? f(ay)

1=—00

= @ fx(w)

i=—1
= (=1)*>x 0.1+ (0* x 0.3) + (1> x 0.6)
=01+06=0.7

o0

mo1 = E[Y] = Z yi Iy (y:)

j=—o00

= Z Yi fv (i)

j=—2

=(-2x03)+(0%x0.3)+(1x0.2)+(2x0.1)+ (3x0.1)
=—-06+02+02+03=0.1

me2 = E[Y? = > 7 fy ()

j=—o0

= Z yzz fY(yi)

j=-2

= (=22 x 0.3+ (0 x 0.3) + (12 x 0.2) + (2% x 0.1) + (3% x 0.1)
=4x03+0+02+4x01+9x0.1
=12+02+04+09=27

03( =Mmg — m%
=0.7-0.5°
=0.45 = ox = 0.6708
oL =my —m?
=27-0.12
=269 = oy = 1.64
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mu = BXY] = ) ) aw;fxv(@i,y;) = Rxy

1=—00 j=—00

1 3
Rxy = Y Y miyfxv(wi,y;)

i=—1j=—2
—0+0+0+(—2)x03+1x02+3x0.1
= —0.6+02+03=-0.1

Cxy =Rxy - XY
= —0.1-(0.5%0.1)
= —0.15

Cxy —0.15
ox oy  0.6708 x 1.64

= —0.1365

6.4 Joint Characteristic function

Let X and Y are two random variables with Joint PDF fxy (z,y). The Joint character-

istic function can ve written as

o0

Dy (wy, ws) = E[ej“X+jwy] = / / fxy (z, y)ej“’“j“’ydwg dw

T=—00 y=—00
Take Fourier Transform both sides, then

] 0o oo | |
Ixv(z,y) = (2n)? / / O xy (Wi, we)e Y dwy dwy

T=—00 y=—00

The Joint moment

ok dn—i—k
My = (—J)"" ———Dxy (w1, w
k= (—J) A dest xy (w1, wa)
w1=wo=0
6.4.1 Properties of Joint characteristic function
1. Marginal characteristic function

Px(wr) = Pxy(wi,w2) 0 = Oyy(w1)

wo=
Py (wy) = Pxy (Wi, w2) 0 = Oyy (w2)

w1=

2. Maximum value of @ xy (wy,ws) = 1
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3. Oyy(wy,ws) = Dy, Dy,; if X and Y are independent.
4. dxy(0,0) = 1; P xy (—wi, —ws) = Py (Wi, wa); ’q)XY(WlaWZ)‘ <1

Problem 5: Find all statistical parameters of r.v X and Y, whose Joint character-
istic function is given by ® xy (w1, ws) = e~ 29183

Solution: The Joint moment

. dn+k
n+ % D xy (wi,ws)

Mpk = (—J) m

w1=w2=0

1) when n = 1,k = 0 then

mig = (—j)'*° ™ P xy (Wi, ws)
dwi dw) ’
w1=w2=0
. d —2w2—8w2>
— (—7)— 1 2
( ])dwl <e
w1=w2=0
d 2
— (s —Swg_ —2w7
(i) e e
w1=w2=0
— j) e—Swg e—Qw% (—4&)1)
w1=w2=0

(_
(=) e [0]
0

comep = E[X] =X =0

2) whenn = 0,k = 1 then

d0+1

0 7,1
dws dw;

mo1 = (—j)0+l (I)XY(WlaWZ)

w1=w2=0

_ ()L (6—2w§—8w§>

dCUQ

w1=w2=0

2
—8ws3

d
—e

(s —2w%
_( j)e d(.OQ

w1=wo=0
(—j) e %1 e (—16w)
() 24 [o]
0

w1=w2=0

3) whenn = 0,k = 2 then
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mos = (<)% 2,
02 J dwg dw% Xy \W1, W2
w1=w2=0
d2 2 2
— (_1)_<€—2w2—8w2>
dw3
w1=wo=0
2 d2 2
— _1 —2wi " —8ws;
(=1)e dw3 .
w1 =wo=
= (=1) e 21 ie’g“’% (—16w2) d(uw) =udv+vdu
dCUQ w1=w2=0

d
— (_ —2w? . —8w3
=(—1)e 1 ( 16)dw2 (wz e 2)

— 16 ¢4 [6_8‘”5(1) + wo 6_8“’%(—16@)]

w1=wo=0

w1=w2=0

— 16" " + 0] = 16

4) when n = 2, k = 0 then

240 d2+o
Moo = (—J) do® di? (I)XY(WhWQ)
2 1
w1=w2=0
d2 2 2
— (_1)_(6—2w1—8w2>
dw?
w1 =ws=0
d? 2
— (_1) 6—8w%_6—2w1
d(JJ% w1=ws=0
d 2
= (=1) e 38 — 2% (—4 cdw) =udv+vd
(—1e dwle (—4wr) o (uwv) =u dv +v du
d 2
— _1 780.7% _4_( 720.11)
(=1) e ( >dw1 wi e s

=4 ¢85 [6_8“5(1) + wy 6_2“’%(—4w1)]

w1=w2=0

:4€0|:60+Oi| =4

S5)whenn =1,k = 1 then

141 d1+1
my; = Rxy = (_]) dw% dw% (I)XY<W17W2)
w1=wo=0
d2 2 2
— (-1 ( 72w178w2>
< )dwl dw2 c e
d 2\ d 2
0 () ()
( )dw1 € dCUQ ¢
w1=w2=0

= [6_2“’% (—4w1)] [e_sw%(—l&ug)}

w1=w2=0
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— (~1)(0)(0) = 0

‘ my1 = Rxy = 0; So, X and Y are orthogonal.

6) Var(X) =0% = E[X)] - (X)?=4-0=4
NVar(Y) =02 =E[Y?) - (Y)?=16-0=16

8)Cxy =Rxy — XY =0—-0=0; So, X and Y are independent

CXY . 0 .
oy oy 4x16

9p=

6.5 MGF of the sum of independent random variables

Moment generating functions (MGF) are particularly useful for analyzing sum of inde-
pendent r.vs, because if X and Y are independent, the MGF of W = X + Y is

Dy (w) = E[e™ %] = E[e®*]E[e”Y] = x(S5) Py (9)

Problem: 6 If X and Y are independent r.v with PMF is

(
02, z=1
0.5, y=-1
06, z=2
Px(z) = Px(z) =405, y=1
0.2, =3
0, y = otherwise
0, x = otherwise

Find MGF of W = X +Y ? Whatis E[W3] and Py (w) =7
Solution: If W = X + Y then
Dy (w) = E[e%* %] = E[e*X]|E[e®] = ®x(5)®y(5)

x(s) = 0.2¢° 4 0.6e* + 0.3e>*
Oy (s) = 0.5e° + 0.5¢°
Oy (w) = [0.268 +0.66% + 0.3638] [0.56*5 + 0.568]

=0.1+0.3¢® + 0.2¢% +0.3¢> + 0.1e**
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)
0.17 w = (
0.1, w=0
0.3, w=1
03, w=1,3
Py(w) =102, w=2 (or ) Py (w) =
02, w=2
0.3, w=
0.1, w=4
\0.1, w = .
d3
EW?] = d—SgcbW( w) = 0.3(1)%% 4+ 0.2(2%)e* + 0.3(3%)e* + 0.1(4%)e’ = 16.4

6.6 Characteristic function of sum of random variables

Let ‘N’ number of statistically independent r.vs X, Xo, X3,... Xy with Joint PDF

Ix1.X0.Xs,.. Xy (Z1, 2, 3, . .. ) then trhe characteristic function is

¢X1+X2+X3+4..XN (wlg Wo,Ws, ... (,L)N) = U ¢X’L(wz)

Proof. Forar.v ‘X’ with PDF is fx(z) then characteristic function (CF) is

Dy (w) = E[e™¥] = /fX )& da

T=—00

For ‘N’ number of statistically independent r.vs PDF function is

fxl,Xz,Xg,...XN(fEbﬂUQ, I3y - - -JUN) = fxl(ﬂﬁ) : fXQ(l"Q) : fxg(ﬂfs) ce fXN(l"N)

The characteristic function of sum of r.vs

Py wg.oy) / / / ful Jsgy...mN)eJ“mej“’Qm L eIONEN e day L dey

X1+X2+“.+XN X1,X9,.
T1=—00 T2=—00 TN=—00

oo
/ fx, (1) ejwlxldxl / Ixo( .§C2>€jw2x2dl’2 . / fXN(xg)ej”NxN

T1=—00 To=—00 TN=—00

= dx, (wl)q)XQ (wZ) S (I)XN (wN>

= H D xi(w;)

N
(Cdl,(JJQ,UJ3, .. .WN) = HCDX’L(U)z)

=1

) ®X1+X2+X3+--~XN
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6.7 Joint PDF of N-Gaussian random variables

Let ‘N’ number of Gaussian random variables with their PDF, mean, variance are

rv. — PDF Mean Variance
X1 — fx(m) Xy 0%,
Xy —  fx(m) X» 7%,
X3 —  [fxy(x3) X; 03(3
Xy — fXN (I‘N) X_N O'g(N

The Joint PDF of ‘N’ Gaussian r.v can be written as
Joint PDF:

1
2

‘[CX]A Exp{ — %[m — X" [Cx]™ [ —Y]} (6.1)

(2m)%

fX1X2...XN (1‘17 L2, . . -xN)

where we define matrices is Co-variance matrix: [C X} Ny N and [:c — m Nx1

The elements of co-variance matrix of ‘N’ r.v are given by

Cx.x; = E[(XZ - X)(X; —73)} = U?Q = O'g(j; ifi=j
= poxox; (i
. . ~ - . Cxy
s COxy = E[(X = X)(Y = Y)] -
Ox0y
CX1X1 CXlXQ CX1X3 CXIXN
[ Cx} _ Cxoxi Cxoxs Cxoxg Cxoxy ~ Cux,
NxN
_CXNX1 CXNX2 CXNX3 CXNXN_ Ny N
X1 — Y1
_ T — 72
==X, -
Nx1
_J:N o XN- Nx1

Note: [-] — Matrix transpose;

Fir N = 2, from equation (6.1)

[-]7! — Matrix inverse;
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1 _
fxixo (1, 22) = TExp{ - E[x — X]

where
CXle CX1X2 O-gfl pUX10X2
CX - |:CXi|2 2 - - 2
x CVX2X1 OX2X2 952 POX,10X, Ox, 9%9
. a -1 1 d _b
We know that matrix A = then A =
c d ad — be c a
- 1 0-%(2 —POX10X,
[CX] ~ 732 39 _ 9 9 2 9
7x,9x, = P" 0x,9%, —pPOx,0x, 0x,
. 1 (7%(2 —POX,0X,
(1- 02)(0§<10§<2) —pOx,0x, (Tg(l
1 ___ P
_ (1=p?)ox, (1-p?ox,0x,
=1 ) X
(1_p2)UX10X2 (1—P2)‘7§(2
H ! 1 (—p)?
ox] | = —
X (1=p??o%,0%, (1—p*)? ok 0%,
_ -7
(1- p2)2(ff§(10§<2
B 1
(1—p*ok,0%,
‘ 13 { 1 1% 1 ;
= = (6.3)
[CX} (1= p?)o%,0%, ox,0x,\/1 — p2
_ T — Yl _JT _ _
R T e e I CER AN o]
2 2 2x1
(6.4)
Substitute equation (6.3) and (6.4) in equation (6.8), then
Froxa(on, ) T 2 A [C o RO
Ty, To) = T S _ _
X1Xo 1,42 2WUX10X2M p 9 (xl 1) (l’2 2) 1x2

(1_p2)g§(1 (1*P2)0'X10'X2
p(x2—Xo) z9—Xo
1-p2)ox, 0 1—02) o2

(=pPoxyox, ~ (1=p?)o%, |, |

Z1 _Xil _ P(ffz *X72)
" }
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1

2rox,0x,0/1 — p?

X Exp{ — % {(fl—XlV _ 2@ =X)(@2=Xa) (x2—X2)2] }

fX1X2 (.’171, x2) =

(1_P2)U§(1 (1_92)0)(1 0Xq (1—P2)¢7§<2

6.7.1 Properties

1. Maximum value occurs at x; = X; and 3 = X5 1.,

1

2rox,0x,0/1 — p?

fX1X2 (581, .’1)2) =

2. If p = 0 then independent.

1 -3 {@13)“)2 + <”“’2_2X2)2]
T, Lp) = —— € X 7Xy
fX1X2( 1 2) 27T0'X10'X2
1 -1 [(9610—2)(1)2] 1 1 [(3020—2)(2)2]
= "¢ X1 e Xa

\/%le . \/%UXQ
= fx,(71) - fx,(22)

S fxaxe (@, 22) = fx, (21) - fx,(22)

The graph for the above expression is

1 - 4

///3/ P(xy,22)
o 0.15
2 0.1
vz 51072

0
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LA F AT~
o e e o
- <7 <z <
ERAR AR
2

3. The locus point between X; and X5 is shown in Fig.(a)

The locus point is a elipse between X; and Xs. If p = 0,and ox, = oy, then
PDF is

. - [(m—)ﬁﬁg(m—)@)?
fxix,(w1,22) = s— e X
2m oy
and the locus between X; and X is a circle as shown in Fig. (b)

If p = +1 and ox, = 0x, then the circle will be rotated of § = +7 to get inde-

pendent random variables.

.

,')6 }Xl >)(1
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4. The expression for ¢ can be written as

1 2
0 =—tan"! —2PUX1 0)2(2
2 UX1 - UXQ
Note:
* p = 0 then independent

* p = 41 is also independent but depends on ¢ values they are are independent.

Problem: Two random variables given by 1. Find co-variance Y7 and Y5.
Y] = Xicosf + Xsysinf and
Y, = —X;sinf + X5 cosf

2. For what value of 6, the random vari-

ables Y; and Y5 are uncorrelated.

Solution:
Y

Let Y; and Y, are the means of r.vs Y; and Y5 respec-
tively and 0 is called angle of rotations and X; and | |
X, are Gaussian random variables.

Mean value of Y; is Y; = X cos + X, sinf
Mean value of Y5 is Yo = — X sin 6 + X, cos 6

» X

X1 cos @

(1.)The Co-variance between Y; and Y5 can be written as
Criv, = B|(Yi = T1)(Y2 — )|
=F -(Xl cos ) 4+ Xy sin ) — (X cos f + Xy sin 0) x

(=X sinf + Xy cosf) — (—X; sinf + X, cos «9)]

— E[(X1cos + Xysinf — X; cos — X, sin ) x
(_—Xl sin@ + X, cos 6 + X, sinf — X, cos 9)}
= E[(COSH[XI — X1] +sin0[X, — X)) x
(sinf]—X; + Xi] + cos [ X, — E])}
= E[COS2 O(X, — X1) (X — X3) +cosfsin0(X; — X;)(X; — X1)
+sin® 0(— Xy + Xo)(X; — X1) + cosfsin (X, — Xo)( Xy — E)]
= E[COS2 O(X, — X1)(Xy — X3) — cosfsin (X, — X;)?
—sin® (X, — X1) (X2 — X3) + cos @ sin (X, — E)Q}

= E[(Xl - X7) (X5 — E)} cos® ) — E[(Xl —71)2] cos fsin 0
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— E[(Xl - X1)(Xy — 72)} sin? 0 + E[(XQ — 72)2] cos@sinf
= Cx,x, cos” 0 — 0%, cosOsinf — Cx, x, sin” § + 0%, cosfsin 6

2sin 6 0
sin 20

2

=pox,0x, cos20+ <a§(2 — 03(1)

sin 20
CY1Y2 = p0ox,0x, COS 20 + (0%(2 — 0%(1)—

2

(2.) Y; and Y, are uncorrelated if C'x, x, = 0, independent

sin 20
(Jg(l — a§(2> = pox,0x, cos20

2
sin20  2pox,0x,
cos20 0% —o%,

2p 0x,0x
tan 20 = 2—122
O-Xl - 0‘){2

1 [ 2po0x,0x

1

20 = tan ——— _1 o
0%, — 0%,

1 2
p= Lianr (27005
2 oy, — 0%,

p = *£1 and independent then at # =7 is uncorrelated

Problem: Two Gaussian r.vs X; and X, have variance 0%, = 9; 0%, = 4
: : . . ™
respectively. It is known that a coordinate rotation by an angle § = — results new r.vs

Y and Y5 such that they are independent. What is the p value?
Solution:
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6.8 Linear Transformation of Gaussian random variable

Let X, X5, X3,... Xy are Gaussian random variables, then their Joint PDF is

1
2

’[CX]_I 1 7T -1 ~
F e @1, o) = - Bap{ = S[e = X" [Cx] 7 o - X
(2) > 2
C'X1X1 CXng C(X1X3 <o C1X1XN
Cx,x, Cxvixa Cxoxs ... Cx,
where C'y — OXin _ Xo X X2 X X2 X3 XoXn
_CXNX1 CXNX2 CXNX3 cee CXNXN_ NxN
Ty — Y1
— Ty — Y2
-xl=
_xN N XN_ Nx1

The linear transformation of X, X5,... Xy are the new r.vs Y7, Y5, ... Yy are

Yi=anXi+apXe+ ... +ainXy
Yé = CL21X1 + CL22X2 + ...+ CLQNXN

Yn =ani Xy +aneXo+ ... +ayny Xy

1
2

6]

Jvivovn (U1, Y2, - YN) = WEQTP{ - %[?J - Y]T [CY]_l ly — ?]}

where [Cy} = [T] [C’X} [T]T

(C'x = Co-variance Matrix of X and 7 = Transformation matrix

Matrix representation

Y, 13 a2 ... QN X1
Y, Q21 Q22 ... Q2N Xo
Y, a a .a X
| TN ] | N1 N2 NN | Nxn L N | N1
N J/

vV
T'=Transformation matrix
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Problem : A Gaussian random variable X; and X, for which X; = 2,
0%, =9 Xy=-1, 0%, =4;and Cx,x, = —3 are transformed to new r.v Y; and
Y5 according to Y1 = — X + X,, Yo = —2X; — 3X,
Find (a) X7.X3, px,x, (D) 0%;.0%,. privs, B E[Ya], Y2, V7
(©) fxix,(T1,72), friva (Y1, 92)

Solution: Given data

X, =E[X)]=2 Xy = E[X,] =1
0%, = El(z1 — X1)?| =9 0%, = El(r2 — X2)*| = 4
0x, = 3 0x, = 2
Yi:—Xl‘i‘Xg B:—2X1—3X2
_ _ _ Oxyxy -3 _
OX1X2 - CX2X1 =-3 PX1Xy = ﬁ — 3%x2 — =0.5

1
PX1Xy = _5 =—0.5

(a) we know that 0% = my — m3 = X2 — (X)?

XE=od, + (TP =9+ (27 =13

XT= oy + (G =2+ (-1 =5 ST

(b) Y = 03 + (Y1)?

Y -1 1||X
Y, -2 =3| | Y,
we know that
Cxixi Cxix, o3 Cx, x, 9 -3
CX2X1 CX2X2 CX2X1 0‘3(2 -3 4

Ifi=j; Cxx, =0k =0% and Ifi#j; Cxx, =pox,ox,

we know that linear transformation of Gaussian r.v co-variance matrix
Cy = [T][Cx][T]"

032/1 CY1Y2 T
Cy =Cyy, = = [T][Cx][T] (6.5)
C'Y2Y1 Oy,
-1 1 9 -3 -1 -2
Cy =



7(1)

o1+ (o))

(1247 24—21
90— 6 18+ 18

1193
3 36

By comparing this matrix to equation (6.5)

—9(—2) +

—12(—2) + 7(—3)
(—6)(=3)
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0'32/1 = 19; 0'12/2 = 19; Oylyz = Cy2y1 =3
Pviv, = :;yzf = = = 01147 [ vy, = 0.1147]
Yi=-X1+ X5 Yo = -2X; - 3X5
EV] = —E[Xi] + E[X;] EY;] = —2E[X,] — 3E[X))]
=2+ (-1) = —2(2) - 3(-1)
=3 =1
BV = -3 E[Y;] = -1
Y2=02 + (V)2 =19+ (=3)* =28
Y=o}, + (¥2)? =36+ (—1)> = 37 SYZ=28; Y7 =37
(f)
lox)]’ Lo
Frixy(@r,s) = ———Bap{ = Sl2 = X" [Cx)7 [0 - X1
s 2
Cv — Ci1 Cho . 0§<1 Ci2 . 9 -3
= - -
021 022 021 02(2 —2 4

o1 e



4 1
4 1 4 1 1 1
PREIN A :(_ _>_<_ _>:o.o3703
[Cx] [t 27 % 3 9 x 9
9 3
1
2
(O] =0.19245

[ — X]"[Cx] 'z - X]

T -

¥ 4 1 '
.T—Xl 7 9 I‘l—Xl
e X,
T — Az 9 3| [T2— A2

4 1 ¥~

— ] 57 9 xl—Xl

=z — X1 13— Xy _

Il1 1
5 3] T2 X2

= [(xl —2)2% + (w1 — 2) (w2 + 1) + (x1 — 2) (22 + 1)§ + (22 + 1)25]

4 2 1
= ﬁ(xl - 2%+ §($1 —2)(r2 + 1) + §(x2 +1)?

1
2

[Cx]
2m

_ 0.19245E$p{ B l[i(xl —2)2 4 §<x1 —2)(za+ 1) + %@2 + 1)2] }

fX1X2(CU1,332) =

2T

0.19245 -1 [%(zl72)2+§(xlfz)(m2+1)+§(x2+1)2}

fX1X2<*T17x2) - o €

Another Method:
1

2nox,0x,0/1 — p?

1T e B .
ot i =X1)? 2p(z1—Xi)(z2—X2) (x2—X2)
X Exp{ 9 [(1p2)g§{1 (1-p?)ox,0x, + (IPQ)U%] }

fX1X2 (1’1, x2> =

1
Pl ts) = g T

1 2 2
_ (z1—2) 2(—0.5)(x1—2)(z2+1) (z2+1)
X Emp{ 21057 [ 12 - D)(eat]) (oot } }

1 1 , )
= x Bxpd — — [(m—m (21-2)(w2t]) | (w2t]) ]
10.3927 =P { 151 s +t7 %6 t 73
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1 | ) ]
= I € )] (£1—2)(za+1) | (wa+1)
Pxxa(m@2) = [ragsr Exp{ o5 |52 + et | }

(g) Linear transformation of Joint PDF

=

[Cy]il ’ — T -1 —
B Bm] - Sy -V (6] - 71}

where Cy = [T][Cx][T]"

fY1Y2 (yh y2) =

-1 1 -1 -2 , 9 -3
T= T)" = and given Cx =
-2 =3 1 -3 -3 4
o -1 1 9 =3 [-1 -2 19 3
Y_ =
-2 3| |-3 4 1 -3 3 36
SRR | 36 3| _ |8 &
19 %36 -3 %3 —
X 3-8 19| |E 2
1
—1| _ _ _ .
e = [(& <) - (& &) -
3 1 1
o172 = -
’[ v V675 25.98
1oy

P, ) = - Bap{ ~ Ly T (o] [y - 71}

- _T -
— T -1 — y1— Y y1— Y

-7 w-v= |7 2 e |

_y2_Y2 Y2 — Yo

- T

y1+3 % 6__7?3 y1+3

_y2+1 % % Yo + 1

36 —3
o5 o5 | |3

=3 el
- G Yo+ 1

Y1+ 3

= [ B3+ @) @Eont D)+ )] |
Y2

|01+ 37 — ()02 + D01 +3) = ()0 + 3)(v+ 1)+ Fy (o + 17
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36

= &7e —(y1 +3)* - i(y1 +3) (2 + 1) + E(y2 + 1)

675 675

S Bt 1) + (ot 1)

) = Bz { 3 }
Frva(W1,12) = 550 AR e 675

Problem: Two random variables X and Y have mean value X = 1 and Y = 1;
Variance 0% = 4,0% = 2 and correlation coefficient pxy = 0.2. Define two random
variable V = —X — Y, W =2X + Y. Find (a) correlation of V and W (i.e., Ryw)
(b) Correlation coefficient pyyy,

Solution:
X=1 Y =1, o3 =4, ox =2 pxy = 0.2
——X-Y, W=2X+Y
(a) ,
Ryw = E[VW] ox = E[X?] — (E[X])
= E|(-X -Y)(2X +Y) EX* =0% - (BIX)’=44+12=5
2
— 2F[X?Y - 2E[XY] - E[y?Y] E[?]=o0y - (E[Y]) =2+1*=3
= —2(5) — 2(1.5656) — 3 EXY]=Cxy +XY
= —16.1312 = pxyoxoy + XY
. Ryw = —16.1312] = (0.2)V4v2 4 1(1) = 1.5656
(b)
Cyvw
pvw =
oyow
oy = B[(V - V)]

[(X—X) (Y —T7)? 2(X—X)(Y—?)”

= Ug{ + UY Cxy " Cxy = pxy 0x0y = 0.2v/4v/2 = 0.5656
=442+ 2(0.56568)
= 7.1313

Sopy = V71313 = 2.6704

(W =W

E
E{[(2X+Y) mr}
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:E{MX—Y%HY—WT}
—E{[4xX -+ (¥ -V +4(X - X)(Y - 7|}

= 40'5( + 032/ +4Cxy Cxy = pxy 0x0y = 0.2\/4_1\/5 = 0.5656
= 4(4) 4+ 2 + 4(0.56568)
= 20.2624

Copw = V20.2624 = 4.5013

Ryw = Cyw +V W
V=-X-Y=-X-X=-1-1=-2
W=2X+Y=2X+X=2(1)+1=3

Cvw = Ryw — %

= —16.1312 — (=2)(3) = —10.1312
<. Cyw = —10.1312]

Cvw  —10.1312
ovow  2.6704 x 4.5013

PVwW = = —0.84284

[pyw = —0.84284]

6.9 Transformation of multiple random variables

Let X, Xo,... Xy are ‘N’ input random variable and transformed to Y7, Y5, ... Yy i.e.,
Y, :E[Xl,Xz....XN]; i=12,...N

Xi:@fl[XI,XQ....XN}; i=12,...N

the relation between PDFs

Iive. va (W1, Y25 - UN) = Fxixo.xy (Z1, 22, .. 2N) - ‘J‘

00X, 00X, 0X, 0X1

oY1 Y5> Y3 T 194N
90Xy Xy  OXo 90X dr
Jacobian ‘ J ’ =M o % O Note: fy(y) = fx(z) T
, , , . Y

oy, ova 0va T Ovw

Problem: Two random variables X; and X, are defined by X; = 0, X, = 1,

Yf = 2, X_22 = 4 and Ry, x, = —2. The two new random variables Y; and Y, are
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Vi = 2X + X5, Y = =X, — 3X,. Find V1, Y2, Y2, Y2, Ry, 0%,, 0%, and

leYz (yh yz)?
Solution: Given data

E:E[Xl]zo EZE[Xﬂ:_l
E[X}) = X7 =2 E[X} = X3 =14

Rx,x, = F[X1 X3 = -2

Y1 =2X;+ X, Yo = —-X; - 3X,

(i) Y; = E[Y] [
= E[(2X1 + X»)?]
= E[2X, + X,] = BAX? 4+ X2 44X, X,)]
= 2E[Xy] + E[X))] = 4F[X}] + E[X3] + 4B[X, X5
=2(0) + (=1 = 4(2) + 4+ 4(-2)
=1 =1
(i) Ya = E[Ys] e
= E[(—X; — 3X,)’]
= B[—X; — 3X)] = E[X7 +9X; + 6X, Xy
= —F[X,] - 3E[X,)] = B[X?] + 9E[X2] + 6E[X, X,
(0) = 3(=1) =2+ 9(4) + 6(—2)
=3 =32

(v) Ryiy, = EY1Y2] = EM]E[YS] = (=1)(3) = =3

(vi) Given
Y; 2 1 X
Y, -1 =3 [Xs
- 4-1
X4 2 1 Yi
X5 -1 -3 Y,
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3 s
3 3] [P
3 1 1 2
XlzgylﬂLng; ng—ng—ng
3 1 3 1 3 3
E X, = =-FY; —FEY;| ==(—1 -3)=——4+-=-=0
X\] = SBIVi] + £ B[] = S(-1) + £(3) =~ + 2
1 2 1 2 1 6
EX;|=—ElY]]|—=-FEY;]=—(-1)—=3) == —=-=-1
%] =~ BYi] - B[] = —3(-1) - 23) = £ — ¢
(vi) 0%, = E[X7] = (E[Xi])?=2-0=2
(vii) 0%, = BIX3] = (E[Xa])? =4 — (—=1)* =
(UZ”) fY1Y2 (yla y2) =7
fY1Y2(y17y2) = fX1X2(I1vm2)‘J‘
Sl s T T P -
X2 9X» 1 2 5 5 5 5 25 25 5
oY, oY, 5 5

1 3y, Yo Vi 2
fY1Y2(yl7y2) = <_5) fX1X2 (?‘f‘g, —E—?>
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CHAPTER 7

Random Process

7.1 Random Process Concept

The concept of a random process is based on enlarging the random variable concept
to include time. The random variable is function of sample coins or sample space and
the random process is both sample space and time then it is called random process or
stochastic process and it is defined as X (¢, s).

The random process X (¢, s) has family of specific values x(¢, s). A random process
is sort form can be represented as X (¢), it has family of specific values x(t).

Random process can be represented in three methods.
1. Both time ‘¢’ and sample space‘S” are variable.
2. Time ‘¢’ is fixed and sample space ‘S’is variable.

3. Time ‘¢’ is fixed and sample space ‘S’is fixed.

Sample Space

S

t, . tL=t+7T

Fig. 7.1 Example: Random process
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Exampe: Let us consider an experiment of measuring the temperature of a room
with different or collection of room temperature using thermometer. Each thermometer
is a random variable which can take on any value from the sample space ‘S’. Also at
different times the reading of thermometers may be different. Thus the room temperature
is a function of a both the sample space and time. In this example, the concept of random
variable can extended by taking into consideration of time dimension. Here we assign a
time function z(t, s) to every outcome ‘s’. There will be a family of all such functions.
The family X (¢, S) is known as “random process” or “stochastic process”. In place of
x(t,s) and X (t,.S), the sort form notation x(t) and X (¢) are often used.

The Fig. 7.1 shows random process, ‘S’ is sample space with sample S, .55, S3.
Sample S; is corresponds to thermometerl readings i.e., z1(¢). Sy and S3 are corre-
sponds to thermometer2 and thermometer3 readings respectively.

To determine the statistics of the room temperature, say mean value two methods

are used.

7.1.1 Time ‘t’ is fixed
The random variable corresponding to random process can be obtained by fixing time
T =1y,ts,t3,...1x The random variable X, is obtained at fixing time ¢ = ¢, then

X(t) = X1 = {A1, Ay, A3} similarly(= X (t1))

t=t1

The random variable X5 is obtained at fixing time ¢ = {5, then

X(1) = Xy = {By, By, B3} similarly(= X (t))

t=to

then the PDF of a random variable X; and X, can be obtained by calculating probability
of a random variable.

Let fx,(z1) and fx,(z2) are represents the PDF’s of random variable X; and Xo.
The CDF’s can be obtained by integrating or adding the PDF’s Fx, (z1) and Fly,(x2)
are represents the CDF’s of random variable’s X; and X5.

.. The statistical parameters of random process is mean value or expectation or

statistical average or ensemble average £ Xj].

Bl - | T (o) da

k=00
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7.1.2 Time averages or entire time scale

The mean vale may be calculated over the entire time scale or time averages.

2

,mﬁW:<m®>:hm%[xﬁW

T—o00

N

This is called “Time average”. Similarly mean values of x5(¢) and x3(t) can be calcu-
lated.
.. Total Time average A[X (t)] = < a1(t) > = Alxi(t), xo(t), 25(t).

Correlation of random process:

The random process X (t) is expected value of random variable X; and X5 is

E[X(t1). X (t2)] = Rx,x,(t1,t2)
— BIX(t).X(t+7)

= RXng

Time averaging Correlation:

T—o0

Alzy(t).z2(t + 7)) = lim %/000 x1(t).xo(t + 7)dt

= Ry, x,(7)

7.2 Classifications of Random Process

1. Non-Deterministic process

i. Continuous random process
ii. Discrete random process
iii. Continuous random sequence or Continuous sequence random process

iv. Discrete random sequence or Discrete sequence random process
2. Deterministic random process
3. Stationary random process

i. First order Stationary random process
ii. Second order Stationary random process

iii. N'* order Stationary random process
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1v. Strict sense stationary random process (SSS)

v. Wide sense stationary random process (WSS)
. Non-Stationary random process

. Ergodic random process

. Non-Deterministic process: If the future values of any sample function can
not be predicted exactly from observed past values, the process is called “Non-

Deterministic process”.

i. Continuous random process: If the future values are not predicted in ad-
vance and values are continuously varying with respect to time then it is
called “continuous random process”. Examples are

— Temperature measured using thermometer.

— Thermal noise generated by resistor.

X(t)
A

e N AN
N

Fig. 7.2

ii. Discrete random process: If X (¢) is discrete with respect to time ‘¢’ then
random process is called “Discrete random process”. It has only two set of
values. Ex: Logic ‘1’ and ‘0’ generated by personal computer.

A X(t)
5V
>
t
-5V I

Fig. 7.3
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iii. Continuous sequence random process: A random process for which X (¢)
is continuous but time has only discrete values is called a “continuous se-
quence random process”. This can be obtained by sampling continues ran-
dom process.

X()

A

>
»
t

Fig. 7.4
iv. Discrete sequence random process: A random process for which X (¢) and

‘t” are discrete is called a “discrete sequence random process”. This can be

obtained by sampling discrete random process.

A X(t)

5V— l r
I |
|

Sl
o LI

Fig. 7.5

0001
mwomo

2. Deterministic random process: If the future values of any sample function can
be predicted exactly from observed past values, the process is called “Determin-

istic process”.

* Example: X (t) = Acos(wot + 6) = Acos(27 fot + 0)

Here A, fy, or wy and 6 are random variable.

3. Stationary random process: If the statistical parameters of a random process
are constant with respect to time then it is called s‘“stationary random process”.
This means the random process X (¢) and X (¢ + 7) posses the same statistical

properties for any value of 7 (i.e., not affected by a shift in the time).
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Fig. 7.6

The physical meaning of stationary is that a time translation of a sample func-
tion results in another sample function of the random process having the same
probability.

i. First order Stationary random process: If the first order PDF and expectation
constant doesn’t change with respect to time, then the random process is
called “first order Stationary random process”. Ex:

- fx,(x1) is constant. i.e., does not with respect to time.
- E[X,] is constant.

ii. Second order Stationary random process: If the second order PDF and ex-
pectation constant doesn’t change with respect to time, then the random
process is called “2"¢ order Stationary random process”. Ex:

- fx,x,. xxn (%1, 2. .. xy) is constant. i.e., does not with respect to time.
- E[X(t1)X(t2) ... X(tn)] is constant.

iii. N** order Stationary random process: If the N*" order PDF and expectation
constant doesn’t change with respect to time, then the it is called “N*" order
Stationary random process”. Ex:

- [x,x, (%1, x2) is constant. i.e., does not with respect to time.
— E[X(t1)X(t; + 7)] is constant.
iv. Strict sense stationary random process (SSS): If all statistical parameters

and PDF’s are does not change with respect to time then it is called strict

sense stationary random process.
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v. Wide sense stationary random process (WSS): If expectation or mean is
constant and correlation is function of 7 = 9 — ¢; then it is called wide

sense stationary random process.
- E[X(t)] is constant.
- E[X(t)X(t +7)] = Rxx(7) is constant. or
- E[X(t1)X(t2)] = E[X(t1)X (t1 + 7)] is constant.

4. Non-Stationary random process: If any statistical parameters is changes with

respect to time then it is called “non-stationary random process”.

5. Ergodic random process: If statistical averages are equal to time averages then
it is called “ergodic random process”.

* Mean Ergodic r.p: E[X (t)] = A[X(¢)]
* Correlation Ergodic r.p: E[X ()X (t + 7)) = A[X(t) X (t + 7)]

e Variance Ergodic r.p: E[(X ()X (t +7))%] = A[(X ()X (t + 7))?]

Problem 1: A random process X (t) = Acos(wot + 0) is stationary if A and wy are
constants and ¢ is a uniformly distributed variable on the interval (0, 27). Show that it
is WSS r.p.

Solution: Given X (t) = A cos(wot + ¢); where A and wy are constants and

0 — (0,2m); fo(0) = 5-. The 0 is uniformly distributed between 0 to 2. The
distribution shown in Fig. 7.12.

fofo)

1/2T1

Fig. 7.7

If mean value and auto correlation function of r.p is a function of time, ‘¢’ then it is

not stationary.
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1. Expectation or mean value:

mmnam>/”@mwe
:/ A cos(wpt + 0). —d9

Cos(wot + 0)do
" or

A
= g[Sin(th + (9)]3”
AL :
= —[sin(wot + 27) — sinwyt]
= g[sin wot — sin wot]
=0
- EB[X(t)] = X(t) = 0. It is constant.
2. Correlation:

Rxx(r) = EIX(t)X(t +7)]

) z(t) X (t+ 1) fo(0)do

™

2m
J.
2 1
= / A cos(wot + ). A cos(wo(t +7) + (9)2—d9
6=0
A2

2 cos(wot + ). cos(wot + woT + 0)db
0

T
A2
= - cos(wot + 0 + wot + woT + ) + cos(wot + 0 — wot — wor — 6)db
m
A2
= cos(2wot + 260 + woT) + cos(wyT)db
T Jo=0
A% rsin(2wot + 20 + woT) 727 A2 2m
= 2 J, + Grleosteon ],
~ A—Q[cos(on)] [9] 2 N A_2 [sin(Qwot + 471 + woT) — sin(2wot + wOT)]
4m 0 A7 2
A? A? rsin(2wot + woT) — sin(2wot + weT)
g N |
. cos(woT)[2m — 0] + pm 5

2
= 7608@)07' +0

A2
= —— COSwWoT

2

A? . . . .
S Rxx(1) = 5 cos woT. This solution does not contain variable ‘¢’.

So, both E[X (t)] and E[X (t)X (¢t + 7)] are constant, then it is WSS.
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Problem 2: A random process X (t) = A cos(wpt + ) is not stationary if A and wy are
constants and @ is a uniformly distributed variable on the interval (0, 7). Show that it is
not WSS r.p.

Solution: Given X (t) = A cos(wot + #); where A and wy are constants and

0 — (0,7); fo(0) = % The 6 is uniformly distributed between 0 to 7. The dis-

tribution shown in Fig. 7.8.

fifo)

1/T1

Fig. 7.8

If mean value and auto correlation function of r.p is a function of time, ‘¢’ then it is

not stationary.

1. Expectation or mean value:

ELX (0] = X0) = | " a(t)f(0)d6

=0

T 1
/ Acos(wot + 0).—db
0 ™

=0

2
= / cos(wot + 0)df
o

=0

_sin(wot + 9)} i
I 0

sin(wot 4+ m) — sin wot]

SIS NN e [ S

oy
N

— sin wpt — sin wot}

= sin wot

N

L EIX()] =
It is not constant. i.e., varying with ‘¢’. So, it is not stationary r.p.

sin wpt.
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2. Correlation:
E[X(t)X(t+ 1) = Rxx(7)

:/97r z(t)X(t+7)fo(0)db

=0

= / A cos(wot + 0). A cos(wo(t + 7) + 9)1d9
p m

=0

A% [T
=S5 | cos(2wpt +20 +woT) + cos(wpT)df
0=0
A? rsin((2wot + 26 T A? T
A sin((2wot + —1—0)07)] + = cos(wor) [9}
2m L 2 0o 27 0
B A2 'Sin((Qth + 27 + wOT) — Sin((Qth + on)] n A2
- o2 L 2 27
A2 rsin((2wpt — sin((2wot A®
-2 sin((2wot + woT) — sin((2wo +WOT>] + —— cos(woT)
2m L 2 2T
A2
=0+ T cos(woT)
2
A2
=5 cos(woT)

2
S Rxx(1) = - cos(woT).

This solution does not contain variable ‘¢’. So it is constant.

o E[X(t)] is ‘¢’ varying function and E[X (¢)X (¢ 4+ 7)] is constant. So, it is not
WSS r.p.

Problem 3: A random process X () = A cos(wpt + ) where 6 and wy are constants
and Amplitude (A) is a random variable from —a to a (i.e, uniformly distributed). Find
Expectation and Auto correlation?

Solution: Given X (¢) = Acos(wot + 6#); where 6 and w, are constants and A —
(—a,a); fa(A) = 5-. The amplitude A is uniformly distributed between —a to a. The

distribution shown in Fig. 7.9.

fa(A)
A

1/2a
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1. Expectation or mean value E[X (t)] :

BIX(@) = X(0) = [ C et fa(A)dA

A=—a
“ 1

= /A_a A cos(wot + 9).%dA
_ cos(wot + 6) /“ AdA

2a A——a
_ cos(wot + 0) [A_q a

2a 2 1-q
_cos(wot + 0) [a_2 B (—_(1)2}

2a 2 2
=0

.. E[X(t)] = 0. It is constant. So, it is stationary r.p.

2. Auto Correlation (Ry x(7):

RX)((T) = E[X(t)X(t+T)]

= E[Acos(wot + 0).A cos(wot + woT + 6)]
A2
=F [7 ( cos(woT) + cos(2wot + 260 + on))]

COS WoT

2wot + 20
_ o BlAY + cos(2wy —i—2 —i—wOT)E[AQ]
_ [coswoT + cos(2;uot + 20 4+ woT) « B[A?)
_ [coswoT + cos(2wot + 20 + woT) 7 " /“ AQ.idA
L 2 A=—a 2a,
_[coswoT + cos(2wot 4 260 4 woT) T y 1 [A?’} a
- L 2 J 20 L 3 1-q
 [eoswoT + cos(2wot + 20 + woT) " 1 [2@3]
L 2 17 2l 3
02

=5 [cos woT + cos(2wot + 20 + on)]

Problem 4: A random process X (t) = A cos(wot + 6) where 6 and A are constants and
frequency wy is a uniform random variable from 0 to 100 rad/sec. Find Expectation
and Auto correlation?

Solution: Given X (t) = Acos(wot + #); where A and ¢ are constants and wy —
(0,100); fa(A) = 155- The amplitude wy is uniformly distributed between 0 to 100.
The distribution shown in Fig. 7.10.
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1/100

» O

0 100
rad/sec

Fig. 7.10

1. Expectation or mean value E[X (t)] :

L E[X()] =

100¢

100

E[X(t)] = / £(t) o (c00) vt

0=0

100 1
= A t+6).—d
/woo cos(wot + 6) 100 wo

A 100
= 100 - cos(wot + 0)dwy
A [sin(wot + 9)} 100
100 t

AT :
= 1007 [sm(lOOt +0) + sm(@)}

0

sin(100¢ + 6) + sin(Q)] . It is consists parameter ‘t’. So, it is

not stationary r.p.

2. Auto Correlation (Rx x(7)):

Ryxx(1) = EX()X(t +7)]
= E[Acos(wot + 0).A cos(wot + woT + 0)]

A2

- F [7 ( cos(woT) + cos(2wot + 26 + WOT)H

A2_
T2l
A2_

2

AZ_

2
A2

2L

Elcos(wor)] + E[cos(2wot + 20 + wOT)]]
100 1 1 100

/ coS on.mdwo + 100 - cos(2wot + woT + 2«9)dwg}
1 (Sin w07'> 100 N 1 [sin(Qwot + woT + 20)} 100 }

L100 T 0 100 2+ 71

wo=0

wo=0

rsin 1007 N sin(200£ + 1007 +20)  sin(26) }
1007 200t + 1007 200t + 1007

Problem 5: A random process X (¢) = K where K is uniformly distribution from —1

to 1. Find Expectation and correlation of r.p?
Solution: Given X (t) = K; where K isr.v. and K — (—1,1); fx(K) = 3. The am-
plitude K is uniformly distributed between —1 to 1. The distribution shown in Fig. 7.11.
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£x(K)
A

1/2
<« 5 >
Fig. 7.11
1. Expectation or mean value E[X (t)] :
1
X)) = [ a)fx(K)dK
K=-1
! 1 1pA211 111 1
el SR SME Y0 Constant
/K:—l 2 ol2 i T 2l2 7 2 onstan

2. Correlation (Rxx(7)):

Rxx(r) = BEIX(1)X(t +7)]

= / r(t)x(t+7)fx(K)dK

K=—1
1 1 1 K31
/K_l( I )(Qd 2[ 3 ]71
1r1 1 1
=3 [§ + 5] =3 Constant.

Both E[X (t)] and Rxx(7) are constant. So, it is WSS r.p.

Problem 6: A random process X (t) = aX + b where X is constant and « is uniformly
distributed from —2 to 2. Find Expectation and correlation of r.p?

Solution: Given X (¢) = aX + b; where X is constant and a is ar.v. and a — (-2, 2);
fx(a) = 1. The variable a is uniformly distributed between —2 to 2. The distribution
shown in Fig. ??.
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7.3 Correlation function
Correlation finds the similarities between two random variables in the random process.

7.3.1 Auto-correlation function

Let X (t) be the random process which contain X (1) and X (¢5) are random variables.

Auto correlation function is defined as

Rxx(t1,t2) = E[X(t1) X (t2)]
Rxx(t,t+7)=E[X(t)X(t+7)]
Rxx(7) = E[X(1)X(t + )]

7.3.2 Properties of Auto-correlation

1. Mean square or total power of random process can be obtained at 7 = 0. 1.e.,
E[X?(t)] = Rxx(0)

Proof. Ryxx(7)= E[X(t)X(t+ 7)]

If r=0;
Rxx(0) = E[X(t)X(1)]
= E[X?(t)]
_xz
]
2. Auto-correlation function is even function Rx x(7) = Rxx(—7)
Proof. Ryxx (1) = E[X(t)X(t+ 7)]
Lett = —7;
Rxx(—7) = E[X(t)X(t — 7)]
letu=t—7T=t=u+r71
Rxx(—7)=E[X(u+7)X(u)]
= RXX (T)
]

3. Auto-correlation function has maximum value at origin. |Rx x(7)| < Rxx(0)
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Proof. Consider positive quantity,

[(X(tl) + X(tg))2: >0

E[(X(tl) X ()2 >0

E [Xz(tl) X2 (t) + 2X(t1)X(t2): >0
Rxx(0) + Rxx(0) + 2Rxx|[(t1,t2)] > 0 " (Property(1) to =1t +7)

Rxx(0)+ Rxx(t) >0
RXX(T) RXX(O)

IN

4. If X (t) is is independent, then

lim RX)((T) =0

|7]—00

or If X (¢) is ergodic, zero mean and has no periodic component, then

lim RX)((T) =0
|7]—00

5. If X (t) is periodic then Rxx (7) will be a periodic with a same period.

6. If a random process with a zero mean has DC component ‘A’; Y (t) = A+ X(t)
then Ryy(T) = A2 + RX)((T)

Proof.
Y(t)

Ryy (T)

A+ X(t)
EY(@#)Y(t+71)]

E[(A+ X)) (A+ X(t+71))]

E|A* + AX(t+7)+ AX (1) —i—X(t)X(t—l—T)}

B[A?] + AERX=T)[ " + ABRXSO] + E[X ()X (t + 7))
AQ

+ Rxx(T) " (mean = 0)

—~

]

7. If the random process Z(t) is a sum of two random process X () and Y (¢) that is
Z(t) = X(t) + Y(t) then Rzz<7'> = RX)((T) + ny(T) + Ryx(T) + Ryy<7'>.
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Proof.
Z(t)

Rzz(T)

X() +Y(t)

E[Z(t)Z(t + 7))

E [(X(t) v Y(t)) (X(t FT)+Y(t+ 7'))]

E [X(t)X(t F A XOYE+T) Y OX(E+T) YOV (¢ + T)]
R

XX(T) + ny<7') + Ry)((T) + Ryy(T)

8. RxX(7) can not have an arbitrary shape.
9. The auto-correlation of a r.p X (¢) is a finite every function.

10. If E[X ()] = X # 0 and X (¢) is ergodic with no periodic components then

lim RXX(T) = 72

|7|—o0

Notes:

Mean of X (t) = DC component
» E[X?(t)] = Total Power
* (E[X(t)])* = DC Power

e Variance (0%) = AC Power

Standard deviation (0x) = rms value

Problem 1: Auto correlation function Rxx(7) = 25 +

4
; 18 a stationary ergodic
B 1 Y
process with no periodic components then find mean value and variance?
Solution:

1. Mean square value F[X?(t)] : From Property (1)
E[X?*(t)] = Rxx(0) =25+ —— =29

2. Square of Mean value :(E[X (¢)])*

_ 9 4
lim R =X = lim 25
|T|1£>noo XX( ) |T\1£>noo + 1 + T2
. 0
= lim 254+~ =925+ — =25



X =45

3. Variance: 0% = my — m? = E[X?| — (E[X])?*=29 -5 =4

. . . 472 4100
Problem 2: The auto correlation function of a WSS r.p is given by Rx x(7) = i
T
Find mean and variance?
Solution:
— 4(0) + 100 100
1. Mean Square Value: X2 = E[X?(t)] = Rxx(0) = (0) + = =25
044 4
_ 4419 _
2. Mean Value:(X)? = lim,_,o Ry x)(7) = lim;| 00 o =4 X =42
ﬁ

3. Variance: 0% = E[X?(t)] — (E[X])*=25—-4=21

Problem 3: Assume that an Ergodic random process X (¢) has an auto correlation func-

tion Ryx () = 18 + [1 + dcos(127)].

6 + t2
a) Find | X|

b) Does this process have periodic components?
¢) What is the average power in X ()

Solution:

a)
E[X()]* = (X)*= lim Rxx(7)

T—00

= m 8+ -0

[1 + 4COS(127‘)}

= lim 18 +

2
R
rosoo + (L +1)?

6

7—2

Y [1+4 127]
B —— COS

0+ (01 1)2

— 1840 =18

X = +V18

1+4 005(127')}

— 18+

b) No.
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Pxx = E[XQ(t)] = RXX(O)

2
v [1 + 4005(127’)]

T—00 6

2
6+t2[1+€080}
18 + 10 the total tt = Oand 0S
= —_— -~ the total power att{ = Oan = 0
6 + t2 ' P ’ ’
10 118 59
=18+ — = — = —Wait
+ 6 6 3 atts.

Problem 4: Assume that X (¢) is a WSS random process with an auto correlation
function Ryx(7) = e ®7l. Determine the second moment of the random variable
X(8) — X(5).

Solution: We know that E[X (t)X (t + 7)] = Rxx(7); Rxx(0) = E[X?(¢)]

The second central moment of the r.v X is given by E[X?(t)].

B(X(8) = X(5))?| = E[X*(8)] + E[X*(5)] — 2E[X*(8)X?(5)]
= BE[X%(8)] + E[X?*(5)] — 2E[X?(5)X?(5 + 3)]
=1+4+1—2Rxx(0) E[X?(t)] = Rxx(0)=¢’ =1
=2(1 — e %)

Problem 5: The autocorrelation of a independent random process is given by Ry x (1) =
e~?"l. Find the auto correlation of a random process Y () = X (t) cos(wt + 6), where
0 is a random variable which is uniformly distributed with in 0 to 27.

Solution: Given that X (¢) is independent

i e 17<0
Given Rxx(7) =
e, 1>0

The auto correlation of a function Y'(¢) is
Ryy(r) = E[Y ()Y (¢ +7)]
— E|X(#) cos(wt + )X (t + 7) cos(w(t + 7) + 9)]

=F :X(t)X(t + 7').%.2 cos(wt + ) cos(wt + wT) + 0)]

=F :X(t)X(t - 7')] %E [2 cos(wt 4 0) cos(wt + wt) + 9)]
_ RX)((T)

E [ cos(2wt + 20 + wT) + Cos(un')]

Ryy (1) = [E[cos(?wt + 20 + w7)| + E[cos wT]}
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2w

Elcos(2wt + 20 + wT)| = / cos(2wt + 20 + wT)db

6=0

B sin(2wt + 20 4+ wT)

L 2

1 _sin(2wt +wr)  sin(2wl + wT)
L 2 2

=0

1 27
Elcoswr| = / coswr.1.df
0

27 Joo

1 2
= —cosz/ 1.d6
2 0

s -0

1 27
= — COSWT [0]
27 0

1
= — coswT[2m — 0] = — coswT[27|
2m 2m

= COSWT

The above two values of E[cos(2wt+260+wT)] and E[cos wT]; substitute in Ryy (7).

S Ryy (1) = RX;((T) [0 + cos wT}
. RX)((T)
= coswr
€7a|7-|
c.Ryy (1) = CoS WT

Problem 6: Let X (t) = A cos(wt + 6), where the pdf of ¢’ is

1
—: —n<0<n7
Given fp(0) = { 27
0;  Else where

Show that X (¢) is a stationary random process and find total power?
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7.4 Cross Correlation

The correlation between two random variables which are obtain from two different
random process is called cross correlation.
Let two random process X () and Y (¢) with random variable X (¢;) and Y (¢5). The

cross correlation can be defined as

Rxy (t1,t2) = E[X(t1)Y (t2)]
Rxy(t,t+7) = E[X(t)Y(t
ny(T) = E[X(t

7.4.1 Properties:

1. If X (t) and Y (¢) are orthogonal process then Rxy (7) = 0

2. If X(t) and Y (¢) are independent and WSS random process, then,

Ryy(r) = E[X|E[Y]=XY

3. If two random process X (¢) and Y (¢) have zero mean and independent, then

lim ny(T) =0

T—00

4. The cross correlation function is even function i.e., Rxy (7) = Rxy(—7)

Proof.
Rxy (1) = E[X({#)Y(t+ 7)]

LetT = —71
Rxy(=7) = E[X@®)Y (¢t — 7)]
Lett —7T=u—t=u+71
Rxy(=7) = E[X(u+ 7)Y (u)]
= ny(T)

5. The maximum value is obtained at origin | Rxy| = \/Rxx(0) Ryy (0)

X)) | Y |,

VRxx(0)  /Ryy(0)] —
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Proof. Let




xw  vi+n |
FE + >0

VRxx(0)  +/Ryy(0) _
2| X0 Y%+ﬂ XOY({t+7) |,

Rxx(0)  Ryy(0 \/RXX (0) Ry (0) |

X2(1) Y2(t+7) x<>@+ﬂ'
P aao | TE Ry 0) *QE\ﬂuX &W@)ZO

Rxx(0) Ryy(0) Rxy(7)
RX)(<0) + RYY(()) +2 \/RXX RYY 0) Z O
Ry (7) - <1
|V Rxx(0)Ryy(0) | —

. Rxy (1) < v/Rxx(0)Ryy(0)

7.5 Covariance Function

‘We know that co-variance of two random variables X and Y are
CXY = U111 = E[(I —Y)(y —7)] == RXY —Y? == E[XY] —X?

7.5.1 Auto covariance

Let X (t) be arandom process with random variable obtained at ¢; and ¢, the covariance

can be defined as

Cxxa(7) = B| (X (1) = X(0)) (X (t2) = X () | = O, 2)

::E(X@) Xu»(xa+7) u+7g]
= B|X()X(t+7) = XOX(E+7) - XOX(t+7) + X(0) X(E+7)]
EX(t)X(t+7)] - X(t+ ) [ (t)]—mE[X(HT)HX()X( t+7)

) - X(t+7)
— EX®)X(t+7)] - X)X — X(BX(tF7) + X (=¥t F7)

Cx,x,(T) = Rxx(7) — X(t) X(t +7)

If X (¢) is WSS then Cx,x,(T) = Rxx(1) — X (t)
In general Cxx(7) = Rxx(7) — 72(25)
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7.5.2 Properties:
1. If X (¢1) and X (t2) are orthogonal, then E[X (t1)X (t2)] =0 — Rxx(0) =0
<2
OX)((T) =-X (t)
2. IfX (t;) and X (t5) are independent then, Cx x(7) =0

3. If r = 0and Cxx(7) = 0 then

Cxx(0) = Rxx(0) — X (1)
= E[X*(1)] - X"(t)
CX)((O) = O'g(

7.5.3 Cross covariance

Let X (t) and Y (¢) are two random process. The covariance between two random vari-
ables X (t;) and X (t3) which are obtained from X (¢) and Y (¢) random process. The

cross covariance can be written as
ny(T) = E[X(t)Y(t

ny(T) = RX (7’)
Cxy(i) = Rxx(i) — X

|-XV

F<|\_/

_l’_
X

2
7.6 The Time Averages of Random Process

Let X (t) be the random process, the averages can be written as

¢ Mean time:

ALX(8)] = Jim - /_T Xt (or)

¢ Time correlation

Rxx(r) = A[X ()X (t +7)]
.17
— :Ill—I}c}oﬁ . X(t)X(t—i-T)dt

7.6.1 The statistical averages of random process

1. Statistical mean: E[X (¢t) = [ X(¢).PDF

2. Statistical correlation: Rxx(7) = E[X(t)X(t +7)] = [ X(t)X (¢t + 7).PDF
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3. Ergodic random process: If statistical averages is equal to time averages then it is

called Ergodic r.p.

4. Mean Ergodic random process: If only statistical mean is equal to time mean then
it is called Mean Ergodic r.p.

5. Correlation Ergodic random process: If only statistical correlation is equal to time

correlation then it is called Correlation Ergodic r.p.

Problem 1: A random process X (t) = Acos(wot + 0) is stationary if A and wy are
constants and 6 is a uniformly distributed variable on the interval (0,27). Prove that
X (t) is Ergodic random process.

Solution: Given X (t) = A cos(wot + #); where A and wy are constants and

0 — (0,2m); fo(0) = 5-. The 0 is uniformly distributed between 0 to 2. The
distribution shown in Fig. 7.12.

fo(o)

1/2T1

Fig. 7.12

If mean value and auto correlation function of r.p is a function of time, ‘¢’ then it is

not stationary.

1. Expectation or mean value:

ELX(0] =X = [ " 2(t)£,(0)d6

0

1
/ A cos(wot + 0).—db
6=0 2

A
—/ cos(wot + 6)db
21 Jo=o
A
= —W[sm(wot + 6)]2"
= 2—[sin(w0t + 27) — sin wyt]
7r
= 2—[sin wot — sin wyt]
T

=0

- E[X(t)] = X(t) = 0. It is constant.
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2. Correlation:
RX)((T) = E[X(t)X(t ‘I— T)]

- /9 _7; 2()X (t+7) fo(6)d6

1
= A cos(wot + ). A cos(wo(t + 7) + 0)—db
=0 2m
AQ 27
CAm Joy
A2 2m
AT Joo
A2 2m
dm Joo

A% rsin(2wot + 20 + woT) 727 A2 27
=l 5 |, + Grleosteon[p],
A? 2r A% rsin(2wot + 4T + woT) — sin(2wot + woT)
= grleosteon o]+ 2 3 )
A? A? rsin(2wot + woT) — sin(2wot + woT)
=1 cos(woT)[2m — 0] + = [ 5 }

2
=5 coswoT + 0

AZ

= — COSWQT
2

2 cos(wot + 0). cos(wot + woT + 0)do
cos(wot + 0 + wot + woT + ) + cos(wot + 0 — wot — wor — 6)db

cos(2wot + 260 + woT) + cos(woT)dl

2
S Rxx(T) = - cos wyT. This solution does not contain variable ‘¢’.

So, both E[X ()] and E[X (¢)X (¢t + 7)] are constant, then it is WSS.
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CHAPTER 8

Spectral Characteristics

8.1 Spectral Representation

In previous sections studied the characteristics of random process in time domain. The
characteristics of random process can be represented in frequency domain also and the
function obtained in frequency domain is called the spectrum of random signal and
measured in ‘volts/Hertz’.

Let X (¢) be a random process as shown in Fig.

The random process X (¢) and Xr(t) be defined as that portion of X () between
—Tto+T1.e.,

X(t); -T<t<t

Xr(t) =
0; otherwise

Fourier transforms are very useful in spectral in spectral representation of the ran-
dom signals. For example, consider a random signal x(¢), the Fourier transform of ()

is X (w) is given by

X(w) = F[z(t)] = / z(t)e 7 dt

t=—00

This function X (w) is considered to the voltage density specturam of x(¢).; But, the
problem is that X (w) may not exist for many functions of a random process. Therefore,
the spectral representation of random process utilizing a voltage density spectrum is not
feasible always.

In such situation, we go for the power density spectrum of a random process which is
defined as the function which results when the power in the random process is described

as a function of frequency.

8.2 Power Spectral Density (PSD)

Let X (t) be a random process (r.p) as shown in Fig.
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The random process X (¢) between —7 to +7" can be written as

X (1) X(t); -T<t<T
T =
0; elsewhere

The Fourier Transform of X7 (¢) can be written as

FX()] = Xr(w) = / Xr(t)e ¥ dt

t=—00

T
- / Xr(t)e 7 dt
t=—T

T
= / X (t)e “t dt
t=—T

The energy and power of a random process:

1. Time domain

T T
e Energy E= [ X*(t)dt= [ Xz(t)dt
t=—T t=—T
T T
* Power P = Tlglgo %t_fT X2(t) dt = Tlg{)lo %t_fT X2(t) dt

2. Frequency domain

* Energy £ = % jo |X2(w)} dw = % }O ‘X%(w)| dw
e Power P = h
T

L
2T 5T X 3x

w=—00 w=—0o

The average power of random process can be written as

X oo 70 | X2 (w) {dw— 11 X ok 70 }XT(w)

‘2 dw

Pxx = 1520% / E[X?(t)] dt
Th_r)go% X iﬂ / E[X}(w)] dw
= — lim E[X%(w)}
2m 70 ) 2T
A[B(X2(1)] dt ms [ ERA] 4 — alppe)]



1 7 L B[R]

CheTa ) Tr
1 oo
= — / Sx X (w) dw
2m

where Sy X (w) is called Power Spectral Density (PSD) or Power Density Spectrum
(PDS) and given by

8.2.1 Wiener Kinchin Relation

The Wiener Kinchin relation says that Power Spectral Density (PSD) and Auto-correlation

function from the Fourier Transform pair.

Sxx(w) = / Rxx (T)e ™ dr

T=—00

e - Ryx (1) <5 Sxx(w)
RXX(T) = % / SXX(CU>€+ij dow

Proof. Let X (¢) be the random process with PSD of

_ E[‘XT(W) ]
Ser(e) = i — -

1 .
= lim —TE[XT(w)XT(w)}

1 7 ) 7 )
= lim — E{ / X(tl)ejwtl dtl . / X(tz)eijwtl dtz}

T—o0 27T

‘ 2

t1=—00 to=—00

Where X (¢;) and X (¢5) are two random variables obtained from random process
X(t)ast =t and t =ty

Sxx(w) = lim — / / B[X(t)X (t2)] e 721 dt, dt,

lettlzT,t2:t1+T:>T:t2+t1

248



T+t

SXX(W)I%E};Oﬁ / / t+7’)} e YT dt dr
—T r=T—t
T 1 T
. : - L o JwT
= / jlgrolo 5T / E[XOX(t+7)] dt| -e dr
T==T t=—T
T
= / A[RXX(T)] e_j‘” dT
T=-T

When the random process X (¢) is atleast Wide Sense Stationary random process

(WSS rp), we can write

A[RX)((T)] = Rxx(T)

o0

Sxx(w) = / Rxx(7) e 7“7 dr
Ser@)= [ Rxx(r) e dr = FlRy(r)]
Ryx(r) = o- 7 Sxx(w) &7 dw = F~ [Syx ()]
[
8.2.2 Properties of Power Spectral Density (PSD)
1. Power spectral density is non-negative function.
Proof.
S) = i, o8 | o |
Using the above equation we can say that PSD is a non-negative function. ]
2. Power spectral density is a real valued function.
Proof.
o o]
Using the above equation we can say that PSD is a real valued function. O]
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3. Power spectal density is even function

Proof. -
Sxx(—w) = / Rxx(r)e T dr (8.1)
Letw=—w
SXX(—(.U) = / RX)((T)GJerT dr
= / RXX (T) €_jw(_7) dr
=—00 even

Auto-correlation function is even function Rx x(7) = Rxx(—7)

SXX(—CU) = / RX)((—T) efjo.m- CZT (82)

From equation (8.1) and (8.2)

SX)((—CU) = SXX(W)

]

4. The total area of the auto-correlation function is equal to DC component (or)

average value of a random process.

Proof. From Wiener Kinchin relation

e e}

Sxx(w) = / Rxx(r)e %" dr

T=—00

The DC or average value of random process can be obtained by subtituting w = 0
in PSD

[e.e]

Syx(0) = / Ryx(r) dr

T=—00

]

5. The total power or mean square value of random process is equal to the total area
of PSD.
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Proof. From Wiener Kinchin relation

Rxx (1) = fracl2n / Sxx(7)e?T dw

W=—00

The total power of random process can be obtained by substituting 7 = 0
Rxx(t)=FE [X(t)X(t + T)}

If 7 = 0 then Ry x(0) = E[X?(¢)]

1 o0
. Rxx(7) = Gy / Sxx(w) dw
L]
NOTE:
* Total power
1 o0
Rax(0) = o= [ Sxx(h) df = ELX*(0)

* DC power or Average power (power at zero freq)

o0

Sxx(0) = / Rxx(7) dr

T=—00

. The PSD of derivation of the random process %X (t) is w? times the PSD of the

random process.

Syx(w) = w? Sxyx(w); . — denotes derivative

1

Proof.

1
SX)(((.O) = lim —F

T—oo 2T ‘XT <w)

T
XT(w) = / XT(t)e_th dt
t=—T

) = Xrw) = [ Xae (~jo) de
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Sxx(w) = w® Sxx(w)

]

Problem 1: Find the PSD of Auto-correlation function Rxx(7) = %2 coswoT and
plot both Auto-correlation (ACF) and PSD.
Solution:
Rxx(r) = A?Q COS WoT
A? [eiwoT 4 g=jwoT
e

— I_piwor L 1= g—jwoT

4 4

The PSD is a Fourier transform of Autocorrelation function.

Sxx(w) = F [Rxx(7)]
A2 A2
— |2 piwor | 22 —jwor
4 (& + 4 e
2 2

A , A )
— JwoT —JwoT
= P+ Fle]

2 2
= AZ X 216 (w — wo) + AZ X 21 (w + wp)
AQ
=5 [6(w — wo) + 6w + wo)]
A2
CoSxx(w) = - [0(w — wo) + d(w + wp)]
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1; w=20 Let X (w) = §(w — wy)

d(w) =
G w0 o(t) = F [X(w)]
1 T . _ 1 X Jwt d
P (W) = o / 5(w)el™ du =5 | X dw
T —0o0
1 _ L ]O5(w — wp)e?! dw
P = F ) 2
2w —c0
1
6(w) = %F [1] From sampling property of the impulse
27T(5<w) — F[l] function
If w=uwy 1 [5(w _ wo)] - i [ejwt]
. 2T w=wq
20 (w — wp) = F[e]‘“m] 1
_ I
Ifw= —Wo 1 .
) — —F[ewot}
21 (w + wp) = F[e‘jwm} 27

F e = 210 (w — wo)

Problem: 2 Find the PSD of Autocorrelation function

Rx(r) A[l—l—‘—;ﬂq; “T<rt<T
xx\T) =
0; otherwise

Solution: Given

alt+z] —T<r<0
All-7

Rxx(r)=qAll-%]; o<r<7
0; otherwise
Method-1:
Using ramp function ()
A 2A A
Ryx(r) = = (7 + 1) = = r(7) + o r(r = 1)

First derivative of Rx x(7) with respect to ‘7’

d A 2A A

Second derivative of Rx x(7) with respect to ‘7’

d? A 24 A
ERXX(TQ) =S 0(r+T) === 8(1) + = 6(r = T) (8.3)
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We know that £ Ry x (72) = (jw)? Sxx (w)

Now, using differentiation and shifting property,
d

If 2(t) +» X (w) then Em(t) © jw X(w);

j—;x(t) + (jw)? X (w) and

z(t —tg) > X(w) e vt

From equation (8.3), apply Fourier transform on both sides

. A 2A A
(jw)zsxx( ) = a F[5(T+T):| -7 F[(S(T)] + T F[é(T — T)}
A . 2 A
—2 JwT —]wT
WiSxxWw) =7 TtTr°
_2A [l pet
T 2
2A
=7 [coswT — 1]
2A
Sxx(w) == T [1 — coswT]
_4A . qwT L _1—00529
—CL)2—TSH17 ,SIHQ—T
sin2§
= AT\ e -
2
sin% ?
= AT o7
2
— ATsinc? wi
sinc ( 5 )
Sxx(w)=AT sian( )
Method-2:
T
SX)((W) = F[RX)((T)} = / Rxx<7)6_jw7— dT
T=-—T

0
= / A 1+ ej”TdT

T==T T

A (1 _ %) eI dr

= I \,ﬂ

A (1 — %) et dr + [ A (1 — %) e YT dr

o

T=

A <1 — %) [ej‘” + e T dr

| S|
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(“%) [ 2 - ar

coswT dT — 2A cos wT dT

J‘:\ﬂ
NI

T

T ) ) T
oA [smwT} % {7‘ sin wT _/1 . SlIlLdT:|
T w W],
sin wr 2A sin wTt COS WT T
e +7
T w w2 |,
_ 9y sinwT _% T sian+cosz B O—f—i
w T w w2 2
sinwT sinwT 2A coswT 2A 1
=2A —2A _— 4+ — .=
w w T w? + T w?
2A
=T [1 — coswT]
4A T 1-— 20
2 wT
sin® <L
_ 2
= AT —7o
2
2
oWl
sin -
2
= AT i
2

.| Sxx(w) = AT sinc? <§>

Problem: 3 The autocorrelation function of the random telegraph process is given
by Rxx(7) = e 27, Find the power spectral density (PSD) ? Solution: Given

RXX (7_) — e—2a|7’|

et —o0<7<0
RX)((T) = )
e T 0<1T<
17 |
Sxx(w) = o / Rxx(r)e ™" dr
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[e.o]

Sxx(f) = / Rxx(T)e_jzwa dT

0 (%)
= / 20T ¢TI dr 4 / e20T ¢ TI2MT (7
T=—00 7=0
0 00
_ / (027 g 4 / p(~20-2m )T g
T=—00 =0
e(2a—j2rf)r 10 o(—2a—j2mf)r 7%
- [2&—3’27#}_00 [—Qa—jzwf]o
1
" 2a —j27rf[1 —0+ = —jonf 0-1
1

% —j2rf  2atjonf
20+ 2] + 200 — 2 f
(202 = (520 f)?

B 4o

a2 —4r2f2

! ! ! | |
2 1
P E

I
2
T

BRI
qlw -

Problem: 4 The power spectral density of a WSS white noise whose frequency

components are limited to —1W < f < W is shown in the Fig.

Sxx (F)
A
7 (a) Find average power of X (¢)?
(b) Find auto-correlation of X (¢)?
<5 0 W/
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(b) Auto correlationfor this process is

Solution: 0o |
(a) Average power Rxx(1) = / Sxx(f)e? ™ af
f=—00
v w
E[XQ(t)] = / Sxx<f> df _ / Q€j27rf7' df
2
:;/II//V f:7W
= / 1 df _n eizmfr W
2 2 27 | _w
f;—W . n ej27rWT o ejZﬂ'WT
=5 Mlow =327 T2 { J2nWr ]
(/A
pu— W _
U Y- sin(27W)
3 B sin(2nrW'r)
E[X (t)} =nW =1 —27TW7'

sin mx .
= sincx

Rxx(7) = nWsinc(2W )
Problem: 5 For the random process X (t) = Asin(wot+0), where A and wy are real
constants and 6 is a random variable distributed uniformly in the interval 0 < 6 < 7.

Find the average power Py x in X (¢)?

fo (6)
A
2/m= %
0 /2 » 6
Solution:
First Approach:
1= 20
E[X?(t)] = E[A?sin®(wot + 0)] o sin® 6 = %
A2 A2
=F [7 - cos(2wot + 26)]
A2 2
-5 -5 cos(2wot + 26) - - df
6=0
A% A% Tsin(2wot 4 26) 2
2 o7 2 9—0
A2 A2
=5 "5 [sin(2wot + 7) — sin 2wyt]
s
A2 A2
=5 "5 {[sin(2wot) cos ™ — cos(2wpt) sin 7| — sin 2wot }
T
A2 A2
=5 2—[— sin 2wgt — sin 2wt]
s
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A% A2
= — 4+ — sin 2wyt
2 T
Since E[X?(t)] is time dependent. So, X (t) is not WSS random process. Finally we

perform time averages is

T
1
Pxx = lim — E[X?(t)]dt
o= Jim o [ EXC()
t=-—T
T
= 1li ! A2+A2'2 t| dt
T e 2T 2 T e
t=—T
AQ
T2
A2
S Pxx = 7
Second Approach:

/ Xp(t)e 3+ dt

t=—00
T

= / Asin(wot + 0) e 7" dt

t=—T
T

Jjwot+0 _ —jwot+0 )
/ ¢ ‘ ceTIVh dt

T T
- é el? / el wo—w)t gp é L / e J(wotw)t 1y
2) 2j
t=—T t==T
e
2j Jlwo—w) e o 2J —jlwo +w) |1
- A ej@ |:6j(w0w)T . .ej(wow)T:|
J(wo —w) 27
L [e—iwotw)T _ ci(wotw)T
+———e 7 { : }
J(wo + w) 27
AT sin(wy —w)T  ATe 7’ sin(wy + w)T
Jj (wo — w)T j (wo + w)T

Xp(w) = AT {eje sin(wp —w)T" _;psin(wp + w)T}

wo—)T " (ot w)T
) |:€j9 sin(wg — w)T - sin(wp + w)T]
(wop —w)T (wo +w)T
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_jesin(wo —w)T  psin(wy +w)T'
(wo —w)T (wo +w)T

A2
.. Average power Pyx = -

By comparing both two methods, the direct method (second method) is tedious.
So, very easy to compute first method.

Problem: 6 For the stationary ergodic random process having the auto correlation
function as shown in Fig,. Find (a) E[X (t)] (b) E[X?(t)] (c) 0% of Rxx(T)
Solution:

(a) (E[X(t)])* = lim Ryxx() =20

T—00

S EIX(1)] = V20
(b) E[X?*(t)] = Rxx(0) = 50

() 0% = E[X2%(t)] — (E[X(t)])* = 50 — 20 = 30

Problem: 7 Assume that an ergodic random process X () has an auto-correlation

function Rxx(7) = 18 + GJF% [1 4+ 4 cos(127)]. Find X (¢) and what is average power
of X (t)?

(b) Average power:

Solution: (a) Square of Mean value:
Pxx = E[X?(t)] = Rxx(7 =0)

2
2 E—
[E[X(t)]} = Jim Ryx(r) =18+ 51+ 4cos(127)]
T—00 o
- 2
= lim 18+ i [1+ 4 cos(127)] =18+ 610 [1-+4(1)]
L (X(1)? =18 _18+1%)_%

— | X (1) = +V18

29
= | Pxx = ? Watts

QL; <0<
Problem: 8 Let X (t) = Acos(wot + ), fo(0) =< "
0; elsewhere
and Y (t) = B cos(wot); where fp(b) = \/%76_%; —00 < b < 0.



Find
o3 0% Cxy (1)

RXX (7') Ryy (7’)
Solution:

E[X(t)] = E[A cos(wot + 0)]
= AE[coswyt sin 8 + sin wyt cos 0]

= AcoswytE[sin 0] + Asin wyt E[cos 0]

[ [
= A coswyt / — sinf df + Asin wgt / — cosf df
27 2
O=—m O0=—m

n A T
= 5 cos wot [ cosB],___+ 5, Sin wot | —sinf],_
= 5 cos wot [ cos T — cos(—)] — % sinwot [ sin T — sin(—)]
A A
= %coswot[l — 1} — %Smwot[o — O]

=0

E[X?(t)] = E[A? cos*(wot + 0)]
1 + cos 2(wpt + 6)]

e
2

. [1] A2
= A°FE 5 + 7E [cos 2(wot + 6)]

Rxx(r) = EIX(t)X(t +7)]
= Lett=ty; t+71 =1ty
= B[X(t1) X (t2)]
= E [Acos(woty + 0) - Acos(wota + 6)]
= A?E [cos(woty + 0) - cos(woty + 0)]
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= AE [cos(woty — wota) + cos(woty + woto + 20)]

A2 A2 =0
= 7E [cos(wot1 — wote)] + — E [co T wots + 26)]

A2
= 7E [COS wo(t1 - tg)]

A2

7E [cos(woT)] ‘0’ is a random variable

A2
. Rxx(7) = 5 cos(woT)

5.
Cxx (1) = B[(X(t) = X)) (X(t+7) — X(t+7)]
= RX)((T) — [W}Q

2

=5 cos(woT) — 0

2
S COxx (1) = 5 cos(woT)

AQ

E[Y ()] = E[B cos wpt] Herer.vis ‘B’ }
' I g = .
= coswyt E[B] given Fip(b) = —=e™ = By comparing
6. their mean value E[B] = 0 and variance
= coswyt X 0 2
2 =

- EY({1)] =0 = 0% = E[B — (E[B])’ = E[BY =1

E[Y?(t)] = E [B? coswgt]
= coswitF [BQ]

= coswit

8.
o} = B[Y*(t)] - (E[Y(#)])’
= coswit — 0

= COoS wgt

Ryy(r) = E[Y ()Y (t + 7)]
= E[B coswyt B cos(wot + 7)]
= coswyt B[ B?]
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= cos wyt

10.
Cyy(7) = Ryy(7) — (7)2
= coswot — 0
= coswyt
11.
Rxy (1) = E[Acos(woty + 0) B cos(wots + 6)]
= E[Acos(woty + 0)|E[B cos(wyty + +0)]
=0
12.

ny(T) = RXy<T> — (77) =0

Rxy(t) = X X thus X(¢) and Y (¢) are uncorrelated.
Two process X (t) and Y (¢) are called orthogonal then E[X (1) X (t2)] =0

8.3 Types of random process
Two types:
* Baseband random process

* Bandpass random process

8.3.1 Baseband random process

If the power spectral density Sxx(w) of a random process X (t)have zero frequency
components then it is called baseband random process. The frequency plot of baseband

random process will be shown in Fig. Here 3dB bandwith can be written as

Sxx(w)

i) -w o w
<«—BW—>

f wQSXX(w)dw

wW=—00

T SXX(w)dw

W=—00

W,.ms = rms bandwidth =
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8.3.2 Bandpass random process

If the power spectral density Sx x(w) of a random process X (¢) does not have zero
frequency components then it is called bandpass random process. The frequency plot

of baseband random process will be shown in Fig.

Sxﬁm)

-y Wo

<“—BW——» <“—BW—>»

4 T (w —w_O)QSXX(w)dw

W,.ms = rms bandwidth = =
f SXX (w)dw
f wSx x (w)dw
where @y = “=2
f SXX (w)dw
w=0

Question 1: What is the bandwidth of the power density spectrum?

Assume X (¢) is a lowpass random process,i.e its spectral components are clustered
near w = 0 and have decreasing magnitude at higher frequencies.Except for the fact that
the area of Sy x(w) is not necessarily unity,Sx x (w) has characteristics similar to prob-
ability density function(PDF).Indeed,by dividing Sx x (w) by its area,a new function is
formed with area of unity that is analogous to a density function.

Standard deviation is a measure of the spread in a density function.The analogous
quantity for the normalized power spectrum is a measure of its spread that we call rms
bandwidth ,which we denoted by W,.,,.s.

Now since Sxx(w) is an even function for a real process, its “mean value” is zero
and its standard deviation is the square root of the its second moment, thus upon nor-

malization, the rms bandwidth is given by

0o Sxx(w)
f w?Sx x(w)dw
f Sxx(w)dw

w=—0Q

W,.ms = rms bandwidth =

- d
w <

<«—BW—>

It is also called Baseband random process.
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Problem 9: The PSD of a baseband random process X (t) is Sxx(w) = W
1+ %
Find rms BW?

Solution:

[ w*Sxx(w)dw
Wr2ms - w:_sz
f Sxx(w)dw

wW=—00

Numerator part:

oo

/ w?Sx x (w)dw

7 2
:/ w ><22 do
o 1 (9]
7 2
PR
3 2
_ / 2 X 4w d
44 w?

W=—00

o0

2
w
=2x8 d,
<8 [

w=0

putw = 2tanf = dw = 2sec* § df

oo

4tan® 4
=1 — . 2sec’H
6/4+4tan29 bec
w=0
T 4 tan? 6
:16><2/—-secz’67
J A(1 +ter20)
:32/sin2600826d9
w=0
3 1 r Cm n o, m+1l n+1
_325[5,—5} _/sm 0 cos QdH—B[T, 5 ]
0
reyr(-1=% r r
(1) ['(m+n)
IO I
r'(1)
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:32xlw r(1

=nl
5 1) +n) =nl'(n)
1 1 r(a-1
:32x§ﬁx2ﬁ P(—§>:(—12):—2F(
2
= 327
/ w2 Sxx(w)dw = 327
Denominator part:
r [ 2x4
/ SXX((JJ) dw = / m dw
1 o0
=38 {5 tan ! w} L
-9
L2 2
=A4r
f W2SXx(W)dw
9 w=—00 327
Wrms = o = 4 = 8
s
f Sxx(w)dw

— | Wyms = V8

I

Problem 10: Assume random process PSD Sy X (w) =

0;
Find the rms bandwidth?
Sxx (w)
A
1
< B 0 B » ()
Solution: Given
1; —-B<w<B
SxX<(,u) =
0; otherwise
[ w*Sxx(w)dw
W2 _ wW=—00
f SXX ((,LJ)dw
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_ w=—00 _ w=—B
J ) dw f 1 dw
wj: e
5, e
[W} ?B 2B

— |.". rms bandwidth = W,,,,, = E
V3

lwtwo| < £
Problem 11: Assume random process PSD Sx X (w) =

0; elsewhere
Find the rms bandwidth?
Sxx (w)
w < - — - o — , —>w
(o) +E 0 wo_i wO_E w9 —wo +5
Solution:
4 f (w — Fo)QSxx<W)dw f wSXX(w)dw
W= — s ; where Wy = “’:fo
f SXx(w)d(JJ f SX)((W)dw
Ww=—00 w=0
(1)
0 wo+§
wot+ 2 B
/Sxx(uJ)da)— / 1-dw= [ L}OJFE :w0+§_ {wo_il - B
2
0 wo— B

(ii)

7wsxx(w)= / w1 dw= l%

€
S
+
vl
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(111)

..w—o_w:é)o :BgozB
f Sxx(w)dw
w=0
(iv)
4 f (w - w_O)QSXX(w)dw
W2 _ W=—00
f SXX(w)dw

" (1) and (i7)

(8.4)

By taking numerator term wy = B and Sxx(w) =1

[e.9]

| @m0 Sxxw)s

wW=—00

(a+b)? - (a—

b)? = 6a’b + 2b°;

(a+b)?—(a—0b)?=4ab

1 B B\? 2B
_5{600354‘2(5) }‘FW%‘T—WO

B3 402 B
25{6(,0[2)54-?}4-&]33— 5
BS
=wiB+ — +wiB — 2w} B

12
B3
= 248 + i) — 238
BS
T 12

From the equation (8.4) and solution of (7) then
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4 . B3 B2
rms B 3

B
— |.". W,ms = rms bandwidth = —

V3

* Both, the ideal low pass and band pass process, rms bandwidth is equal i.e.

B
> 73-
This is the only the case if the factor is present 4 in bandwidth of band-pass
random process.

8.4 Cross correlation and cross PSD

Let two random process X (¢) and Y (¢), the sample function of random processcan be
written as

X(t); -T<t<T
Xr(t) =

0; elsewhere

Y(t) = y(t); -T<t<T

0; elsewhere

The Fourier Transform of X7(t) can be written as

The Fourier Transform of Y7 () can be written as

o0

PIX(1)] = Yo(w) = / Yo(t)e 5t dt

T

== / YT(t)Q_jwt dt

t=—T
T

S Yr(w) = / Y (t)e ¥ dt

t=—T
The cross-power between X (t) and Y (¢) in interval (=7, 7") can be written as
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Xi(w Y
PXY_/XT (t)Yy(t) 27r/ Xp(w)Vr(w) d

t=—o0 wWw=—00

The total cross-power can be written as

1 [ X()Yr(w)
b g [ o= L[ SO,
t=—o00 w=—00
The total average cross power can be written as
. Lo o[BG (@)Y(w)]
o Pxy = lglgoﬁ / E[Xr(t)Yr(t)] dt = jlglgo% / T dw
t=—o0 wW=—00
1 o0
where Sy is cross PSD can be written as
B X5 (w)Y;
Sxy(w) = hm (X7 (w)Yr(w)] dw
T—00 2T

8.4.1 Wiener Kinchin Relation

The Wiener Kinchin relation says that Cross Power Spectral Density (PSD) Sxy (w)

and Cross-correlation function Rxy (7) from the Fourier Transform pair.
o0

Sxy(w) = / Rxy(1)e™ T dr

T=—00

oo ny(7'> i) Sxy(w)

1

Rxy(7) = o

/ Sxy (w)e+jw dw

W=—00

Proof. Let X () be the random process with PSD of

T

Sxy( ) = Tl‘g%o ﬁ E{ / XT 63‘“ dt - / YT(t)B_th dt}

=-T

Where X7(t) is obtained from random random process X (¢) as ¢t = t; and Y (¢) is
obtained t = t, = t; + 7 then

T

Sxy(w) = lim —E{ / Xp(t)e dty / Yr(ta)e 0 dtz}

t1=—T to=—T
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T T
1 ity
= 711_1}’010 ﬁ / / E{XT(tl)YT(t2>}€ jw(ta—t) dtg dtl

t1=—T to=—-T
let t; :T7t2 =l +T7T=>7T=1—1
T T+t

1 :
R T —jwr
t=—T 1=T—t
T T
1 )
— : i —jwT
= / 71520 5T / Rxy(7)e dt| dr
T==T t=—T
T
_ / ARy (1) 77 dr
T=-T

The random process X (t) and Y (¢) are WSS random process, then

Sxy(w) = / ny<7') eijWT dr = F[ny(T)}
Rxy (1) = % / Sxy(w) &7 dw = F~"[Sxy (w)]

8.4.2 Properties of Cross Power Spectral Density (PSD)

1. Power spectal density is even function, Sxy (w) = Sxy(—w)

Proof. ~
Sxy(—W) = / ny(’/')e_j‘m- dT
Letw = —w
SXy(—W) = / ny(7'>6+ij dT
= / Rxy (1) e %7 dr
-
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Cross-correlation function is even function Rxy (7) = Rxy (—7)

oo

Sxy(—W) = / ny(—T)eijw(iT) dr (86)

T=—00

From equation (8.5) and (8.6)

Sxy(—W) = Sxy(w)

[
2. The real part of cross PSD is even and imaginary part is odd function.
Proof. -
Sxy(W) = / ny(T)e_jWT dT
= / Rxy(T) [coswT — jsinwT] dr
Re [Sxy(w)] = / Rxy(T)coswt dT = even function
Im[Sxy(w)] = — / Rxy(7)sinwt dr = odd function
[
3. If X(t) and Y (¢) are orthogonal randomprocess then cross PSD is zero.
Proof. -
Sxy(w) = / Rxy(1)e 9T dr
R =L X()X(¢ =0
XY(T) [ ( ) ( + T)] IfX (¢) and Y () are orthogonal.
Sxy(w) =0
[

4. 1f X (t) and Y (t) are uncorrelated and WSS r.p then Sxy = 27X Y §(w)
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Proof. From Wiener Kinchin relation

RX)((T)eiij dr

\8

Sxx<w) =

T=—00

8.5 White Noise

A white noise in which all frequency components from f = —oo to f = oo are present
in equal measure i.e., whose PSD remains constant for all frequencies and is indepen-

dent of frequency, which is called “white noise”. It is shown in figure.
SN(f) =5 —oo < f < oo Nj is constant

.". The white noise process is zero mean WSS process with PSD is constant (flat)
for all frequencies. It is strictly speaking if we take inverse fourier transform of a flat

function does not exist for all frequencies f.

FHSn(f)} = Ruww(f) = F~ {%} = % 5(7)
But from definition,
Ruw(r) = o [ Swipdw= [ Sular

If 7 = 0, we will get mean square value, so,
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Rt == [ 2o
w=—00

So, this mean square value (power) of white process is infinite. However it is not
possible to have a random process with infinite power, white noise does not exist in
the physical world. It is mathematical model can be used a close approximation toreal
world process.

Gaussian white noise often called white Gaussian noise, for any two (or several)
random variables from the process independent and long as they are not same random

variable, and uncorrelated their mean is zero.

8.6 Signal to Noise Ratio (SNR)

The SNR is defined as )
_ Signal power

SNR =
Noise power

Here SNR is a ratio of powers and not of voltages. We may express SNR is in

decibels rather than just a ratio.

Signal power
SNR).s =101 —_
( Jas 810 Noise power

x(t) h(t) y()
Si System So
N; N,

Here,

S;— input signal power S,— input signal power
N;— input signal power N,— input signal power

G— system gain

The output signal powerSy, = G.5;
and output noise powerNg = GN; + N,

where N, — is additional noise power in the system.

Input SNR E _ Input sig'nal power i
N /. Inputnoise power N,

Output SNR ( % ) _ Output signal power  GS;

,  Output noise power ~ GN; + N,
The output (SNR);¢ < Input (SNR)
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(5/N)o
(S/N)i

V-

For any circuit, contain some noise producing active/ passive elements in it. These
SNR at the output will always be less than the SNR at the input, i.e., there is a deterio-
ration of SNR. Thus an amplifier does not improve SNR, it only degrades it.

Noise figure:

F = Noise figure =
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CHAPTER 9

LTI Systemswith Random Inputs

9.1 Introduction

In application of random process, the input-output relation through linear system can

be described as follows.

X(0) h(t) Y(8) = X(©*h(®)
E— LTI System —>
X(w) H(w) Y(w)=X(w).H(v)

Here X(t) is a random process and h(t) (deterministic function) is the impulse
response of the linear system (Filter or another linear system).
9.1.1 Input-Output relation

1. Time domain: The output is the time domain is convolution of the input random

process X (¢) and impulse response h(t) i.e.,

y(t) = X(t) * h(t) = / X(T)h(t —7) dr = / h(T)X(t —7) dr

Q: Can you evaluate this convolution integral?
A: In general, we can not evaluate this convolution integral, because X (¢) is

random process and there is no mathematical expression for X ().

2. Frequency domain: The output in the frequency domain is the product of the input
Fourier transform of the impulse response X (¢) is X (f) and the fourier transform

of the impulse response h(t) is H(f).

X(f)= [ X(t)e??™* dt = FT of the the inputr.p X (¢) isar.p

H(f)= [ h(t)e7*"" dt = FT of the the deterministic impulse response

V() =X(NHH() or  Y(w)=X(w)H(w)
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Q: Can you evaluate the Fourier transform of input random porocess x(t), X (f)?
A: In genertal NO. Since, the X (¢) is random in general and has no mathematical

expression.

Q: How can we describe the behavior of the random process and the output ran-
dom process through a linear system?

A: Case 1: Using auto-correlation function of random process X (t), Rxx (7).
assume a WSS (constant mean and Rxx (7) function is deterministic and only a

function of ‘7.
Rxx (1) = E[X(t)X(t+ 7)]

The auto-correlation tell us how the random process is varying. It is a slow vary-

ing/fast varying process.
Rxx (1)

Slow varying r.p

Fast varying r.p

Case 2: Using power spectral density.

RX)((T) <—— SX)((U.))

NOTE: The inout and output of the linear system as shown below in time and

frequency domain assuming the random process X (t) is WSS.

Random Function Random Function
X(t) h(t) Y (t) = X(£)*h(t)
— LTI System >
Ryx (t Ryy (T

® o) ®
None Random None Random
Deterministic Function Deterministic Function

9.1.2 Response of LTI system in time domain

1. Response of LTI system for mean value
Let X (¢) is a random process with mean F[X (¢)] and the response of the system
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for mean value can be written as

y(E) = X (1) % h(t) = / W)X (= 7) dr
Take expectation on both sides,
EY(t) = E / WX (E— 1) dr § = / WAE{X(t—7)} dr

If X (t) be the WSS process, E[X (t)] = E[X(t + T)]

The mean value of Y'(¢) is the multiplication of mean value of X (¢) and the area

under the impulse response.

. Response of LTI system for mean-square value
Let the output of LTI system,

y(t) = X(t) * h(t) = ) / W(r)X(t—7) dr
The mean-square value can be written as_
EY?*t)]=F 7 h(T)X(t —7)dr 2
B 7 W)X (t —7) dr - 7 h(r)X(t —7) dr
B ]O h(r)X(t — 1) dry - 7 h(m) X (t — ) dry

o0

/ / X(t—7) X(t = m)|h(m)h(r) dry dry

T1=—00 T2=—00

= / / Rxx(m — m)h(1)h(r2) d dr

T]=—00 Tg=—00

Letry =mo=17
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o0 o0

E[Y?(t)] = / / Rxx(0)h(r)h(r) dr dr

T=—00 T=—00

3. Response of LTI system for auto-correlation function (ACF)
Let the output function Y (t) = [ h(1)X(t —7) dr

T=—00

The auto-correlation of X (¢) and Y (¢) is

Ryy (1) = E[Y ()Y (t +7)]

:E{ 70 h(m)X(t —m)dm - 7 h(m9) X (t — 72) dTQ}

N J/ J/

Y (t+7)

Y(t)
_ / / E[X(t— 1) X(t+7 — 7)] h(r)h(rs) dr1 drs

T1=—00 Ta=—00

= 7 7 Rxx(T + 11 — 1) h(11)h(1) dri dry

T1=—00 T2=—00

S Ryy (1) = Rxx(7) % h(—7) x h(7)

Other method:
Ryy(r) = E{ / h(T)X(t — ) dr - / h(t +71)X(t) dT}

_ / / BIX()X(t — )] h(r)h(t + 7) dr dr

T=—00 T=—00

o0 o0

- Ryy(7) = / / Rx (Fh(F)h(t + 7) dr dr

T=—00 T=—00

4. Cross-correlation function of input and output
The cross-correlation of X (¢) and Y' () is

ny(7'> = E[X(t)Y(t + T)]

o

:E{X(t) / h(Tl)X(t—l-T—Tl)dTl}

T1=—00

=E[XtX({t+7—m)]h(m) dny
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= Rxx (Tt — m)h(n) dn
ny(T) = RX)((T) * h(T)

9.1.3 Response of LTI system in frequency domain

1. Response of LTI systen for PSD

X(t) h(t) Y (t) = X(£)*h(t)

—> LTI System —>

Ryx () H(w) Ryy (1)

Sxx(w) Syy(w)
The output PSD Syy (Cd) =F [Ryy(T)} = / Ryy(T)€_jWT dr (91)
ACF Ryy(w) = E[Y ()Y (t +7)] 9.2)

Y(t) = X(t) «h(t) = / h(ay) X (t — ) doy
Y(t+T):X(t+T)*h(t+T): / h(CQ)X(t—i-T-C@)dO@

From equation (9.2)

Ryy(T) = E{ / h(&l)X(t — al) dal . / h(ag)X(t +7 - 042) dOZQ}
= / h(oy) doy - / h(cwg) dag - E[X (t — o) X ([t + 7] — a2)]

letT'=t—ay; THT=1+7T— 09
TH+r7—T={t+7)—a—(t—a1) =T+ a1 —az

oo o0

Ryy (1) = / h(ay) day - / h(az) do - Rxx (T + oy — )

a]=—00 Qap=—00

From equation (9.1)

oo

Syy(w) = / Ryy(T)e 7“7 dr

T=—00
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[e.9] o0 o0

- / / h(eu) day - / h(ag) dos - Rxx (T + ay — ap)e 7 dr

T=—00 lap=—00 ag=—00

leta=7+a; —ay

= / h(Oél) dal . / h(a2> da2 . / RXX (a)efjw(&*aﬂraz) dOé
Q1 =—00 Q2=—00 T=—00

- / h(an) da - / h(c) dag - / RXX(a)e*jw(a) do
Q1 =—00 Q2=—00 a=—00

= H(-w) - H(w) - Sxx(w)
= |H(cu)|2 - Sxx(w)

Syy(w) = SX)(((,U) . ‘H(w)

’ 2

Alternate Method:
From response of LTI system for ACF
Ryy(r) = Rxx(t) * h(=7) = h(7)
1 \ R
Syy(w) = Sxxw) - H*w) - H(w)

| 2

CSyy (w) = SXX(“)‘H(T)

2. Power calculation at input and output of LTI system

Total power of the input

Pox = ERC(0) = Rxx(0) = [ Sxx(f)
f=—
Total power of the output
Pyy = E[Y2(t)] = Ry (0) = / Svv(f) df = / Sxx(HHP)[* df
f=—o0 o0

Problem 1: Let X (¢) be the random process with PSD Sx x(w) is shown in Fig.

Find the output power of a LTI system whose frequency response is

Lol <w.
H(w) =
0; otherwise

Solution: (i) Average power in-terms of angular frequency
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00 We

1 1 i
Pyy—% / SX)((LL)) d(JJ—% / §dw

w=—00 w=—we

Loomp e L n
%X§[w}7%:%x§[2wc]
TWe

Watts/rad/sec or V?/rad/sec
7r

(i1) Average power in-terms of linear frequency

oo fC
Pv= [ setndr= [ Baf
f=c0 ==t
VTRV
- 2 [f]—fc - 2 [2.][‘0}

=nf. Watts/Hz or V?/Hz

Problem 2: Let X (¢) be the random process with PSD Sx x(w) is shown in Fig.

Find the output power of a LTI system whose frequency response is

L;

we—B) <w| < (w.+ B
N L BN OS2
0; otherwise

Solution: (i) Average power in-terms of angular frequency

1 [e.e]
Pyy = o / Sxx(w) dw

W=—00

(o8-8

m
= QEB Watts/rad/sec or V?/rad/sec
m

(i1) Average power in-terms of linear frequency

o)

Pyy:% / Sxx(f) df

f=—
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(r+2)-(n-%)

=nB Watts/Hz or V?/Hz

3

T 49 1 w?
applied to a network for which h(t) = t? Exp(—Tt). The network response is denoted

by Y ().

Problem 3: A random noise X () having power spectrum S x (w) is

1. Find the average power of X ()
2. Find the power spectrum of Y (t)

3. Find the average power of Y (¥)

Solution:
1 o
PYYZZ— / Sxx(w) dw
T
1 7 3
T or 49+ ™
3 o lta 1 (w) o0
= —_— —_— n J—
27T 7 7 w=—00
s[5 (-3)]
= — X — —_ -
2 7 L2 2
_ 3 X 1 X
o 7 T
—iWatts
14

3
oo Pxx = ﬁ Watts

(ii) Given h(t) = t2Exp(—Tt)

o0

H(w) = F[h(t)] = / 2 Eap(—Tt) - e dt
xr
letx = (7 W)t t= ;
etx = (7T+ jw)t = .
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dx
7T+ jw

ifr=00=1=o0; r=—00=>1=—00

do = (T+ jw) dt = dt =

T x? dx
CHw) = | e
< H(wW) / (7T+ jw)? ¢ T+ jw

1 —x i —x,n—
:(74-7)3 / e "x? dx / e “ax" ' dz =T'(n)

1 I
:m / e "2 da o T'(n)=nl'(n—-1)

1
— mf(?ﬁ) T'(n+1)=nl(n) =n!

1
o
(7+ jw)?

2
o H(w) = m

x 2!

2
(7 + jw)?
4
(149 +w2)3)2
4
(49 +w?)?

o -|

- Syy(w) = Sxx(w) - )H(w)

3 4

T 49t w? (49 + w?)?
12

(49 +w?)t

12

SYY(W) = m

(iii)

PYY(W):% 7 Sxx(w)

W=—00
o0

1 / 2
Con (49 + w?)4

W=—00
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letw = Ttanf — dw = Tsec’H

letw = —00 = 6 = tan ' (—o0) = —g;
w:oo:>6:tan’1(oo):g
1 12
Py = — | — = . 7sec?0df
Y on / (1 + tan%6)4 7sec
1 [ 12 )
= — — 6 do
27 / (sec? 0)* 7sec

12 x 7 1
= de
2T / secb 6

2

12 2
:XQ—H/COSGQCZ9:>®
T

3

w=0
We know that
/cosnedgz nol a8 1Ty even
0 Tbgl Z_:g §’ ‘0’ odd
w/2
_1 o _
00860d9:6 6-3 6-5
0
53 1w
=153
12x7 5 3 1w
P _12x7 05 3 1 x
®=> vy (W) o PR
Tx5x3 105
2 x4 8 3 5 atts

Pyy = 13.125 Watts

Problem: 4 A random voltage modeled by a white noise process X (¢) which power

spectral density 7 ia an input to RC network shown in Fig. Find

1. Output PSD Syy (w)
2. Auto-correlation function Ryvy (T)
3. Average output power [Y2(¢)]

Solution: The frequency response of the system is given by
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"R+ -1 " 1+ jwRC
(a)

Syy ’H ’ Sxx(w)
B 1 Mo
T 124 w2R2(C? 2

(b) Taking inverse Fourier transform both sides

(c) Average output power

No
E[Y?*(t)] = Ryy(0) =
. [fl <100
Problem 5: A WSS r.p X (¢) with PSD Sxx(f is
otherwise
the input an RC filter with the frequency response H(f) = The filter output

1007r+ 1007 +52nf°
is the stochastic process Y (¢). What is the

(@) E[X?(t)] () Sxy(f) (© Syx(f) @ Syy(f) () E[Y?*(t)]

Solution:
(a) We know that
RXX /SXX e”” dw = /SXX GJQWfT df
IfT=0  Rxx(0)=E[X?(t)] = / Sxx(f)e’ df

Mean square value
E[X2(1)) = / Sxx(f) df

100
- / 1074 df = 1074 [ f} = 1074(200) = 0.02
—100

- B[X?(t)] = 0.02
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(b) Sxv (f) = H(f)Sxx(f)

1074H(f); [f] <100
0; otherwise
L. <100
SSxy(f) = 10074527 f Ifl < |
0; otherwise

(©) Syx(f) = Sky(f) and we know that Ry x(7) = R+ (—7)

: 1074H*(f); | f] < 100
Syx(f) = Sxy(f) = |
0; otherwise
10-4 .
- Syx(f) = { 00m—72wf |f| < 100
0; otherwise
10-4 .
- Syx(f) = { O |f| < 100
0; otherwise
(e)
B 0] = [ Se(h)dr
) 100 Lot
10472 4 472 f2
—100
100
_ 2 / df
10872 3
107 14 (&)
2 , f 100 / dx .
= tan Z 1
10872 50 0 22 4 g2 0
2 —
= 10872 [tan™"(2) — tan™"(0)]
2
= 1052 X 63.4349
= 12.584 x 108

S EB[Y2(t)] = 12.584 x 10°

Problem 6: Let X (¢) is a WSS Gaussian r.p with mean X ()

correlation function Ryx(7) = 10

o(7).
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random process X (¢) is run through a filter combination as shown below, where the

first filter frequency response

X 3
H1<f) = |f| -

0; otherwise

and second filter has frequency response Hy(f) = e~/
(a) Find the power E[Y?2(¢)] in Y (¢)
(b) Find the power E[Z2(t)] in Z(t)

Solution: Given Rx x (1) = 104(7)
We know that Rx x(7) = Sxx(f)

Sxx(f) =10
(a)
1; 3
Hi(f) = i< .
0; otherwise
Y(f) = |H1(f>|2SXX(f)
10; 3
Sy (f) = |fl <
0; otherwise
00 3
- Pry = YV2(10) = / Syv(f) df = /10 df — 60 Watts/H =
—o0 -3

H. 2 4 2
®) Q(f) =e¥ = ‘]32(f)\2 =e ¥ ~ e*%

2
Because square of Gaussian r.v will become Gaussian r.v. So, |Hs(f)]* = o5 (ap-

proximation)

“ Prz = EZ2(0)] = | [Ha(DPSvr() df

f2
e”7T; |fl<3

Szz(f) = .
0; otherwise
“Paz = BIZ0) = [ Szalh) &
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3
= 10\/%[ \/12_%(3_}(22 df
= 10V27[2 — 2Q(3)]
=10 x 2v27[1 — Q(3)]
=10 x 2v/27[1 — 0.1350 x 1072
= 10 x 2v/27 x 0.99865
— 50.06

9.2 Equvalent Noise Bandwidth

We know that the system output power

o0 o0

Rev(n) = 5 [ Sex@lH@P & do= [ Sxx(DIHOP 257 03

— 50 —00

The power of the output process

oo

1
Pyy = Ryy(()) = — SXX(W)|H(W)‘2 dw (94)
2m

— 00

The equation (9.4) is often used in practical applications. But we need simplified
calculation method to compute the noise power at the output of a filter.

Let H(w) is the lowpass system transfer function and the spectrum of the input
process equals to % for all w, with Ny a posite, real constant (such spectrum is called a
white noise spectrum).

By using equation(9.4),

1[N ,
= — _ d
Pyy o / 9 |H (w)|* dw

W=—00

. H(O), ‘W‘ S WN
Let define ideal LPF H;(w) =
0; w| > wy
where Wy is a positive constant chosen such that the noise power at the output of

the ideal filter is equal to the noise power at the output of the original (practical) filter.

1 [Ny e 1 [ Ng
o [ i@ do = - [ SUHO) o 9.5)

If | H(w)|? to be an even function of w, then
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:f H@)P dw

Wy = (9.6)

|H (w)?

where Wy is called the equivalent noise bandwidth of the filter with the transfer
function H(w).

In the above Fig., the solid curve represents the practical characteristic and the
dashed line the ideal filter rectangular one.

The equivalent noise bandwidth is such that in this picture the dashed area is equal-
sthe shared area.

From equation (9.4) and (9.5), the output power of the filter can be written as

N,
Pyy = 2 [H(O)]* Wy 9.7)

Thus, it can be shown for the special case of white noise input that the integral of
equation (9.4) is reduced to a product and the filter can be characterized by means of a

single number W)y as far as the noise filtering behavior is concerned.

9.3 Thermal Noise

* Thermal noise is produced by thye random motion of electrons is a medium.

* The intensity of this motion increases with increasing temparature and is zero

only at a temparature of absolute zero.

* If the voltage accross a resistor is examined using a sensitive oscilloscope, a ran-

dom pattern will be displayed on the screen. The PSD of this r.p is

G(f) =

where A and B are constant depend on temperature and other physical constants.

* For the frequencies below the knee of the curve, G(f) is almost constant. If we
operate in this frequency range, wewe can consider thermal noise to be white

noise.

* In fact, thermalnoise appears to be approximately white upto extremely high fre-
quencies, i.e., 101 Hz. For frequencies with in this range, the mean square value

of the voltage across the resistor (R[0]) has benn shown to equal.

v? = R(0) = AKTRB
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where K — Boltzmens constant = 1.38 x 107% J/K
T— Temperature in ° K

R— resistance value

B— observation bandwidth

.". The hight of PSD over this constant region is 2KT'RR.

Q: What is the power generated by a resistor, that is if a resistor is connected to
a additional circuit? How much noise power is generated in additional circuit?
A: From basic circuit theory, the circuit depends on the impedance of the exter-
nal circuit, and the power transferred is a maximum when the load impedance
matches the generater impedence. This yields the maximum available power,

which (using a voltage divider relationship) is

2

Maximum available power | N = X—R = KTB
KT

with corresponding PSD of | G (f) = -

.. Gn(f) is the PSD of the available noise power from a resistor.

If we have a system with number of noise generating devices with in it, we often
refers to the system noise temperature, 7, in Kelvins. This is temperature of a

single noise source that would produce the same total noise power at the output.

If the input to the system contains noise, the system then adds its own noise to

produce larger output noise.

The system noise figure is the ratio of noise power at the output to that at the
input. It is usually expressed in decibels.

EX: If the noise figure is 3 dB indicates that the system is adding an amount of
noise is equal to that which appears at the input. So, the output noise power is

twice that of the input.

For thermal noise,

most communication system will operate below 100 M H z

Noise of the communication system < 100 M Hz and it consists finite

power. For example,

Voice freq: 300 — 3400 Hz ~0to4 KHz
sampling freq : 8 K H 2 each 8-bits

Speech rate per sample: 64 Kbps

AM freq: 550 — 1600 K Hz = broad casting
FM radio: 88 — 108 M H=z
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9.4

Narrow Band Noise

* Most communication system deals with band pass filters. Therefore while noise

94.1

appearing at the input to the system will be shaped into band limited noise by the
filtering operation. If the bandwidth of the noise is relatively small compared to

the center frequency. We refer to this as narrow band noise.

We have no problem deriving the PSD and ACF of this noise, and these quan-
tities are sufficient to analyze the effect of linear system. However, by dealing
with multipliers and the frequency analysis approach is not sufficient, since non-
linear operations are present. In such cases, it proves useful to have trigonometric

expressions for the noise signals. The form of this expressions is

n(t) = x(t) cos 2w fot — y(t) sin s fot (9.8)

where ng is noise waveform and f; is center frequency the band occupied by

noise.

The sine and cosine vary by 90 degrees, x(¢) and y(t¢) are known as the quadrature

components of the noise.

From equation (9.8), we derive from exponential notation
n(t) = Re{r(t)e* ot}

where 7(t) is a complex function with a low frequency band limited fourier trans-
form. Re is the real part of the expression in the brackets that folls it, and the
exponential function has the effect of shifting the frequencies of r(¢) by fy. By
Euler’s identity,

r(t) = =(t) + jy(1) (9.9)
s.on(t) = Ref{[x(t) + jy(t)](cos 2 fot + j sin 27 fot) }
n(t) = x(t) cos(2m fot) — y(t) sin(27 fot) (9.10)

The equation (9.8) and (9.10) are equal. But equation (9.8) is not simple way to

do by using “Hilbert transforms”.

Hilbert Transforms

The Hilbert tranform of a function of time is obtained by shifting all frequency

components by —90°.
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* The Hilbert transform operation can be represented by a linear system, with H( f)

as shown in Fig.

* The phase function of a real system must be odd. The system function is given
by
H(f) = —jsgn(f)

* The impulse response of this system is inverse tranform of H(f). This is given
by

* The Hilbert tranform of S(¢) is given byconvolution of S(t) with h(t). Let us

denote the transform by S, then

'.gz—l/—S(T) dr
™ t—T1

If we take the Hilbert transform of Hilbert transform, the effect in frequency
domain is to multiply the transform of the signal by |H?(f)|. But H?(f) = —1,
so we retain to the original signal which is change of sign. This indicates that
the inverse Hilbert transform equation is the same as the transform relation-ship,

except with a minus sign.

S(t) = —% / 582 dr

Q: Find the Hilbert transform of the following time signals
(a) S(t) = cos(2m fot + 0)
(b) S(t) = =227 cos 2007t

(c) S(t) = 227t §in 2007t

t
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