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Course Objectives: 

  

 To enlighten the learners in the concept of differential equations and 

multivariablecalculus. 

 To furnish the learners with basic concepts and techniques at plus two level 

to lead theminto advanced level by handling various real-world 

applications. 

Course Outcomes: At the end of the course, the student will be able to 

CO1: Solve the differential equations related to various engineering fields. 

CO2: Identify solution methods for partial differential  equations that model physical 

processes. 

CO3: Interpret the physical meaning of different operators such as gradient, curl and 

divergence. 

CO4: Estimate the work done against a field, circulation and flux using vector calculus. 

  

UNIT I Differential equations of first order and first degree 
  

Linear differential equations – Bernoulli’s equations- Exact equations and equations 

reducibleto exact form. Applications: Newton’s Law of cooling – Law of natural growth 

and decay- Electrical circuits. 

  

UNIT II Linear differential equations of higher order (Constant Coefficients) 
  

Definitions, homogenous and non-homogenous, complimentary function, general solution, 

particular integral, Wronskian, Method of variation of parameters. Simultaneous linear 

equations, Applications to L-C-R Circuit problems and Simple Harmonic motion. 

  

UNIT III Partial Differential Equations 
  

Introduction and formation of Partial Differential Equations by elimination of arbitrary 

constants and arbitrary functions, solutions of first order linear equations using Lagrange’s 

method. Homogeneous Linear Partial differential equations with constant coefficients. 

  

UNIT IV  Vector differentiation 
  

Scalar and vector point functions, vector operator Del, Del applies to scalar point 
  

  

  



functions- Gradient, Directional derivative, del applied to vector point functions- 

Divergence and Curl, vector identities. 

UNIT V Vector integration 
  

Line integral-circulation-work done, surface integral-flux, Green’s theorem in the 

plane (without proof), Stoke’s theorem (without proof), volume integral, 

Divergence theorem (without proof) and applications of these theorems. 
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UNIT-I 

DIFFERENTIAL EQUATIONS OF FIRST ORDER AND FIRST DEGREE 

Definition: An equation involving derivatives of one or more dependent variables with respect to one 

or more independent variables is called a Differential Equation. 

Types of Differential Equations: there are two types of differential equations 

1. Ordinary differential equations 2. Partial differential equations 

Ordinary Differential Equation: A differential equation is said to be ordinary, if the derivatives in 

the equation are ordinary derivatives. 

Ex: 1. xy
dx

dy

dx

dy
cos7

23


















 

      2. yy
dx

dy
x

dx

yd
tan65

2

2

2









  

      3.     0222  dxxyyedyxyx y
 

      4. 

2/1
2

2

2

1























dx

dy

dx

yd
x  

The general form of an ordinary differential equation is 

0,...,,,,
2

2









n

n

dx

yd

dx

yd

dx

dy
yxf  

Partial Differential Equation: A differential equation is said to be partial, if the derivatives in the 

equation have reference to two or more independent variables. 

Ex: 1. 
2

2

22

2

 
1

t

y

cx

y









(One-dimensional wave equation) 

      2. 
t

y

cx

y









 

1
22

2

(One-dimensional heat equation) 

      3. 0 
2

2

2

2











y

u

x

u
(Two-dimensional Laplace’s equation) 

These equations can studied in detail later. 

We now discuss only ordinary differential equations. 

Order of a Differential Equation: The order of the highest order derivative in a differential equation 

is called the order of the differential equation (Or) A differential equation is said to be of order n, if 

the nth order derivative is the highest derivative in that equation. 

Ex: 1.   22 421 xxy
dx

dy
x   

The first order derivative 
dx

dy
is the highest derivative in the above equation. 

∴ The order of above differential equation is 1. 

     2.     xeyx
dx

dy
x

dx

yd
x  112

2

2
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2

2

dx

yd
is the highest derivative in the above equation. 

∴ The order of above differential equation is 2. 

Degree of a Differential Equation: The degree of a differential equation is the highest degree of the 

highest order derivative which occurs in it, after the differential equation has been made free from 

radicals and fractions as far as the derivatives are concerned. 

 Let 
   0,...,,,, ''' nyyyyxf be a differential equation of order n which is free from radicals 

and fractions as far as the derivatives are concerned. If the given differential equation is a polynomial 

in
 ny , then the highest degree of 

 ny is defined as the degree of the differential equation. 

Ex: 1. 

2

1 









dx

dy

dx

dy
xy  

22

1 


















dx

dy

dx

dy
xy  

    0121 2

2

2 







 y

dx

dy
xy

dx

dy
x  

This is a differential equation of order 1. The highest degree of 
dx

dy
is 2. 

Hence the degree of the above differential equation is 2. 

     2. 

3
22

2

2
2

2/3
2

2

2

11



















































dx

dy

dx

yd
a

dx

dy

dx

yd
a  

This is a differential equation of order 2. The highest degree of 
2

2

dx

yd
is 2. 

Hence the degree of the above differential equation is 2. 

Solution of Differential Equation: Any relation between the dependent and independent variables 

not containing their derivatives, which satisfies the given differential equation is called a solution or 

integral of the differential equation. 

 For example, xBxAy sincos  is a solution of 0
2

2

 y
dx

yd
.  

Observe that xBxAy sincos  is a solution of the given differential equation for any real 

constants A and B which are called arbitrary constants. 

General solution: A solution containing the number of independent arbitrary constants which is equal 

to the order of the differential equation is called the general solution or complete solution of the 

equation. 

 For example, 
xx ececy 2

21  is the general solution of 023
2

2

 y
dx

dy

dx

yd
, as it contains 

two independent arbitrary constants. 
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Particular solution: A solution obtained from the general solution of a differential equation by 

giving particular values to the independent arbitrary constants is called a particular solution to the 

given differential equation. 

 For example, some particular solutions of 023
2

2

 y
dx

dy

dx

yd
 are given by 

xxxx eeyeey 22 2,  etc. 

Singular solution: A solution which cannot be obtained from any general solution of a differential 

equation by any choice of the independent arbitrary constants is called a singular solution of the given 

differential equation. 

For example,  2cxy     (1) 

is the general solution of 042

1  yy  (2) 

0y is also a solution of (2). Moreover 0y  cannot be obtained by any choice of c in (1). 

Hence 0y  is a singular solution of (2). 

Formation of differential equation: 

 In general an ordinary differential equation is obtained by eliminating the arbitrary constants 

nccc ,....,, 21 from a relation like   0,....,,,, 21 ncccyx or from a physical problem. 

Consider   0,....,,,, 21 ncccyx    (1) 

Where nccc ,....,, 21 are arbitrary constants. Differentiating (1) successively with respect to x , n times 

and eliminating the n  arbitrary constants nccc ,....,, 21 from the above 1n equations, we obtain the 

differential equation 
   0,...,,,, ''' nyyyyxf . Its general solution is given by the relation (1) itself. 

Examples 

1. By eliminating A and B , form the differential equation of which 
xx BeAey 52  

is a 

solution. 

Solution: Given 
xx BeAey 52  

    (1) 

Differentiating (1) with respect to x successively two times, we get 

xx BeAe
dx

dy
y 52' 52  

    (2) 

xx BeAe
dx

yd
y 52

2

2
'' 254  

    (3) 

Eliminating A and B from (1), (2), and (3), we get 

01030

254

52

11

0

254

52 '''

''

'

''52

'52

52















yyy

y

y

y

yee

yee

yee

xx

xx

xx

 

This is the required differential equation obtained by eliminating the arbitrary constants A and B

from
xx BeAey 52  

. 

2. Find the differential equation corresponding to 
xxx cebeaey 32  where a ,b , c are 

arbitrary constants. 
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Solution: Given 
xxx cebeaey 32      (1) 

Differentiating (1) with respect to x , we get 

xxx cebeae
dx

dy
y 32' 32   

   xxxxx cebecebeae 3232 2  

  xx cebey 32 2 , using (1) 

           Or  
xx cebeyy 32' 2     (2) 

Differentiating (2) with respect to x , we get 

xx cebeyy 32''' 62   

  xxx cecebe 332 222   

   xceyy 3' 22  , using (2) 

           Or  
xceyyy 3''' 223      (3) 

Differentiating (3) with respect to x , we get 

 xx ceceyyy 33'''''' 23623   

 yyyyyy 23323 '''''''''  , using (3) 

06116 ''''''  yyyy  

This is the required differential equation. 

3. Form the differential equation by eliminating the arbitrary constants A and B from the 

equation  xBxAey x sincos  . 

Solution: Given  xBxAey x sincos     (1) 

Differentiating (1) with respect to x , we get 

   xBxAexBxAe
dx

dy
y xx cossinsincos'   

 xBxAey x cossin  , using (1)  (2) 

Again differentiating with respect to x , we get 

   xBxAexBxAe
dx

dy

dx

yd
y xx sincoscossin

2

2
''   









 y

dx

dy
y

dx

dy
, using (1) and (2) 

022
2

2

 y
dx

dy

dx

yd
is the required differential equation. 
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DIFFERENTIAL EQUATIONS OF FIRST ORDER AND OF THE FIRST DEGREE 

Definition: An equation of the form  yxf
dx

dy
,  is called a differential equation of first order and 

of first degree. 

LINEAR DIFFERENTIAL EQUATIONS OF FIRST ORDER 

 An equation of the form    xQyxP
dx

dy
    (1) 

 where P and Q are either constants or functions of x only is called a linear differential 

equation of first order in y . 

Working rule: To solve the linear equation    xQyxP
dx

dy
   

 (i) Write the integrating factor (I.F.)
 

dxxP

e  

 (ii) Solution is given by       cdxxQy    I.F.  I.F.   

Note 1:Given    xQyxP
dx

dy
  , we may directly proceed as above and solve. Sometimes it may 

be convenient to put the differential equation in the form    yQxyP
dy

dx
   and treat x as the 

dependent variable and y as the independent variable. In this case , the general solution is given by  

      cdyyQx    I.F.  I.F.  where 
 

dyyP

eI.F. . 

Note 2: Remember the following results which are useful in evaluating some integrals directly 

 (i)   cetdtet tt  1  (ii)   cetdtet tt  

 1  

EXAMPLES 

1. Solve xy
dx

dy
x log . 

Solution: Given differential equation is xy
dx

dy
x log  

x

x
y

xdx

dy log1
    (1) 

This is of the form    xQyxP
dx

dy
  , where P and Q are functions of x only. 

Here 
x

x
Q

x
P

log
,

1
  

 
xeee x

dx
x

dxxP




 log

1

I.F.        

General Solution is given by       cdxxQy    I.F.  I.F.   

   cdxxcdxx
x

x
xy  log 

log
   

  cxxxy  1log  
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2. Solve   axxy
dx

dy
x  21 . 

Solution: Given differential equation is   axxy
dx

dy
x  21  

22 11 x

ax
y

x

x

dx

dy





    (1) 

This is a linear equation of first order in y . 

Comparing it with    xQyxP
dx

dy
  , we have 

22 1
,

1 x

ax
Q

x

x
P





  

   

2

1log
2

1

1

1

1
I.F.       

2
2

x
eee

xdx
x

x
dxxP








  

General Solution is given by       cdxxQy    I.F.  I.F.   

   











 cdx
x

x
acdx

xx

ax

x
y  

1
 

1

1

11

1
  

2/32222
 

   cdxxx
a

x

y



 

 2/32

2
12

21
 

 
c

xa

x

y













1
2

3

1

21

12/32

2
, where     

  
1

 

1

'






 n

xf
dxxfxf

n
n

 

c
x

a

x

y








22 11
 

21 xcay  is the required general solution. 

3. Solve   22 121 xxxy
dx

dy
x  . 

Solution: Given differential equation is   22 121 xxxy
dx

dy
x   

22
11

2

x

x
y

x

x

dx

dy





    (1) 

This is a linear equation of first order in y . 

Comparing it with    xQyxP
dx

dy
  , we have 

22
1

,
1

2

x

x
Q

x

x
P





  

   
2

1log1

2

1

1
I.F.       

22

x
eee x

dx
x

x
dxxP





   

General Solution is given by       cdxxQy    I.F.  I.F.   

   











 cdx
x

x
cdx

xx

x

x
y  

1
 

1

1

11

1
  

2/32222
 

   cdxxx
x

y



 

 2/32

2
12

2

1

1
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 
c

x

x

y













1
2

3

1

2

1

1

12/32

2
, where     

  
1

 

1

'






 n

xf
dxxfxf

n
n

 

c
xx

y








22
1

1

1
 

 22 11 xcxy  is the required general solution. 

 

4. Solve  .22
2xexy

dx

dy   

Solution: Given   equation is 
2

22 xexy
dx

dy   

   
2

22 xeyx
dx

dy   

This is a linear differential equation
 

Here 
2

2and2 xeQxP   

2

2

2
222

.. x

x
xdxxdxdxP

eeeeeFI   

Its solution is     cdxFIQFIy   ....  

cdxyex  2
2

  cxyex  2
2

 

This is the required solution. 

5. 𝐒𝐨𝐥𝐯𝐞   
𝒅𝒚

𝒅𝒙
+ 𝒚 𝐭𝐚𝐧 𝒙 = 𝒄𝒐𝒔𝟑𝒙. 

Solution:  Given differential equation is
𝑑𝑦

𝑑𝑥
+ 𝑦 tan 𝑥 = 𝑐𝑜𝑠3𝑥 

It is a linear differential equation in 𝑦. 

So Integrating Factor = I. F. = 𝑒∫ tan 𝑥 𝑑𝑥 = 𝑒log 𝑠𝑒𝑐 𝑥 = 𝑠𝑒𝑐 𝑥 

Therefore the general solution of given differential equation is 

                          𝑦(I. F. ) = ∫ 𝑐𝑜𝑠3𝑥 . (I. F. ) 𝑑𝑥 + 𝑐 

                          𝑦 𝑠𝑒𝑐 𝑥 = ∫ 𝑐𝑜𝑠3𝑥 . 𝑠𝑒𝑐 𝑥 𝑑𝑥 + 𝑐 

                                         = ∫ 𝑐𝑜𝑠2𝑥  𝑑𝑥 + 𝑐 =
1

2
∫(1 + 𝑐𝑜𝑠 2𝑥) 𝑑𝑥 + 𝑐 

                                         =
1

2
(𝑥 +

𝑠𝑖𝑛 2𝑥

2
) + 𝑐 

6. Solve (𝟏 + 𝒚𝟐) + (𝒙 − 𝒆𝒕𝒂𝒏−𝟏𝒚)
𝒅𝒚

𝒅𝒙
= 𝟎 . 

Solution: Given differential equation is(1 + 𝑦2) + (𝑥 − 𝑒𝑡𝑎𝑛−1𝑦)
𝑑𝑦

𝑑𝑥
= 0  
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                                       ⇒  
𝑑𝑥

𝑑𝑦
+

1

1 + 𝑦2
𝑥 =

𝑒𝑡𝑎𝑛−1𝑦

1 + 𝑦2
                  (1) 

It is a linear differential equation in 𝑥. 

So Integrating Factor = 𝑒
∫

1

1+𝑦2 𝑑𝑦
= 𝑒𝑡𝑎𝑛−1𝑦 

Therefore the general solution of given differential equation is 

                          𝑥(𝐼. 𝐹. ) = ∫
𝑒𝑡𝑎𝑛−1𝑦

1 + 𝑦2
. (𝐼. 𝐹. ) 𝑑𝑦 + 𝑐 

                          𝑥 𝑒𝑡𝑎𝑛−1𝑦 = ∫
𝑒𝑡𝑎𝑛−1𝑦

1 + 𝑦2
. 𝑒𝑡𝑎𝑛−1𝑦  𝑑𝑦 + 𝑐 

                                         = ∫
1

1 + 𝑦2
𝑒2𝑡𝑎𝑛−1𝑦  𝑑𝑦 + 𝑐 

                                         = ∫ 𝑒2𝑢 𝑑𝑢 + 𝑐, Put𝑡𝑎𝑛−1𝑦 = 𝑢 

                                         =
𝑒2𝑢

2
+ 𝑐 =

1

2
𝑒2𝑡𝑎𝑛−1𝑦 + 𝑐 

Hence the required solution of (1) is 

                          𝑥 𝑒𝑡𝑎𝑛−1𝑦 =
1

2
𝑒2𝑡𝑎𝑛−1𝑦 + 𝑐 

7. Solve    32 11  xxy
dx

dy
xx . 

Solution: Given differential equation is  

 

 

 
It is a first order linear differential equation of the form  

 

 

 

 
Therefore the general solution of (1) is 
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Hence the required solution of (1) is 

 

8. Solve xyx
dx

dy
yx costan3sec 223  . 

Solution: Given differential equation is  

xyx
dx

dy
yx costan3sec 223   

3

2 cos
tan

3
sec        .,.

x

x
y

xdx

dy
yei    (1) 

Put 
dx

du

dx

dy
yuy  2sec then tan  

3

cos3
  (1) 

x

x
u

xdx

du
     (2) 

It is a first order linear differential equation of the form    xQuxP
dx

du
  , we have 

3

cos
,

3

x

x
Q

x
P   

  3log3

3

I.F.       xeee x
dx

x
dxxP




  

Therefore the general solution of (1) is 

      cdxxQu    I.F.  I.F.   

cdxx
x

x
xu      

cos
  3

3

3
 

cdxxxy    cos  tan 3

 

cxyx  sintan3
 

It is the required solution of (1). 

9. Solve .tancos2 xy
dx

dy
x   

Solution: Given equation xy
dx

dy
x tancos2   

   xxyx
dx

dy 22 sectansec   

 This is a linear equation in y . 

Here xxQxP 22 sectan     and      sec   

xdxxdxP

eeeFI tansec2

..     

The solution of given differential equation is 
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    cdxIFQIFy    

cdxexxye xx  
tan2tan sec tan   

  ctecdtetye ttt   1  (Put dtdxxtx  2sec,tan ) 

  cxeye xx  1tantantan
 

  xcexy tan1tan   

which is the required solution. 

10. Solve .sec2 dyyexdydx y  

Solution: Given equation can be written as yex
dy

dx y 2sec  

Here  1P  and    yeQ y 2sec  

ydydyP

eeeFI 
1

..  

Solution is given by  

    cdyIFQIFx    

cdyeexe yyy  
 2sec cy  

2sec   

cyxey  tan , which is the required solution. 

BERNOULLI’S EQUATION 

 A first order and first degree differential equation of the form 

    nyxQyxP
dx

dy
      (1) 

is called Bernoulli’s equation if P and Q are constants or functions of x alone and n is a real 

constant. 

Case 1: If 1n then the equation (1) can be written as 

  0  yQP
dx

dy
    (2) 

Here the variables are separable. The general solution is 

  0   dxQP
y

dy
 

Case 2:If 1n , multiplying (1) with 
ny 

, we get  

   xQyxP
dx

dy
y nn   1

     (3)  

Now, putting  
nyz  1

  and     
dx

dy
yn

dx

dz n 1  in equation (3), we get 

    xQzxP
dx

dz

n



 

1

1
   

        xQnzxPn
dx

dz
 1 1     (4)   

  This is a first order linear differential equation in z. 

   
 dx 1

..         
xPn

eFI
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Hence the general solution of (3) is 

       cdxFIxQnFIz    .. 1..  

   
   

   
cdxexQnez

xPnxPn








 






  

   1
dx 1dx 1

                                (4) 

Substituting 
nyz  1

 in (4), we get the general solution of (1). 

Examples 

1. Solve  .63 yxy
dx

dy
x   

Solution:  Given equation is
63 yxy

dx

dy
x   

(1)                               62 yx
x

y

dx

dy
  

It is of the form  
nQyPy

dx

dy
  we have 

 
62 and,

1
yyxQ

x
P n 

 

Multiplying on both sides of (1) by 
6y , we get

 

  
       62666 yxy

x

y
y

dx

dy
y    

256 1
xy

xdx

dy
y  

   (2) 

dx

dy
y

dx

du
yu 65 5 then Put    

dx

dy
y

dx

du 6

5

1      (3) 

Using (3) in (2), we get 

 5
5

      
1

5

1 22 xu
xdx

du
xu

xdx

du
   (4) 

It is a linear differential equation in u. 

Here 
25and

5
xQ

x
P 


  

5

5loglog5

1
5

5
1

..
5

x
xeeeeeFI xx

dx
x

dx
xdxP







 








 


 

Its solution is     cdxFIQFIu   .. ..  

   cdx
x

cdx
x

x
x

u   35

2

5

1
5

1
5

1
 

C
x

c
x







2

13

2

5

13
5

 

Since 
5 yu then the general solution of (1) is
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 5
3

5255
 

2

51

2

51
xc

x

y
c

xxy
  

 This is the required solution. 

 

2. Solve   .132  xyyx
dx

dy
 

Solution: Given equation is   132  xyyx
dx

dy

 

32 yxxy
dy

dx
    (1) 

 This is a Bernoulli’s equation in ‘ x ’ 

Multiplying (1) with 
2x , we get 

32222 yxxxyx
dy

dx
x   

312 yyx
dy

dx
x  

        (2)  

  then Put 221

dy

dx
x

dy

du

dy

dx
x

dy

du
xu    (3) 

Using (3) in (2), we get 

             33 yuy
dx

du
yuy

dy

du
           (4) 

It is a linear differential equation in u. 

Here 
3and yQyP   

2

2

..

y
dyydyP

eeeFI   

Its solution is     cdyFIQFIu   ....  

  cdyeycdyeyue

yyy

  23232

222

 









  dtdyyt

y
cdtetcdyeyy t

y

  then 
2

Put      2
2

22

2

 

  ctecdtet tt   122  

c
y

eeu

yy









 1

2
2 

2

22

22

 

x
xuceyee

x

yyy
1

 Since    2
1 12222

222

 

 

  cey
x

cyee
x

yyy









 22222

222

2
1

or          2
1

 

  This is the required solution. 
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3. Solve xyxy
dx

dy
sec tan 2 . 

Solution: Given equation is  xyxy
dx

dy
sec tan 2   (1) 

Multiplying on both sides of (1) by 
2y   we get 

xxy
dx

dy
y sectan 12  

  (2) 

Put uy 1
, then 

dx

du

dx

dy
y  2

    (3) 

Using (3) in (2), we get 

 xxu
dx

du
sectan  or xxu

dx

du
sectan   (4) 

This is a linear differential equation in u .   

  xeeeFI xdx xdxP

 cos..  coslog tan




  

Therefore the general solution of (4) is 

    cdxFIQFIu   ....   

cxcdxcdxxxxu    cos seccos  

or cxx
y

cos
1

 since 
y

yu
11  

  

this is the required general solution of (1). 

4. Solve   xyxy
dx

dy
x 132 sin1  . 

Solution:  Given equation is    xyxy
dx

dy
x 132 sin1   

Dividing throughout by  21 x , 
2

1
3

2 1

sin

1 x

x
yy

x

x

dx

dy









  (1) 

Multiplying on both sides of (1) by 
3y   we get 

2

1
2

2

3

1

sin

1 x

x
y

x

x

dx

dy
y










   (2) 

Put uy 2
, then 

dx

du

dx

dy
y

dx

du

dx

dy
y

2

1
2 33  

  (3) 

Using (3) in (2), we get 

 
2

1

2 1

sin

12

1

x

x
u

x

x

dx

du









or
2

1

2 1

sin2

1

2

x

x
u

x

x

dx

du









 (4) 

This is a linear differential equation in u .   

  21log
 

1

2

1..
22

xeeeFI x
dx

x

x
dxP




 



  

Therefore the general solution of (4) is 

    cdxFIQFIu   ....   
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    cdxxcdxx
x

x
xu 


 




 sin2 1 
1

sin
21 12

2

1
2

 

    cxxxxu   212 1sin21 , integration by parts 

since
2

2 1

y
yu  

we get the general solution of (1) is 

  cxxx
y

x


  21

2

2

1sin2
1

 

5. Solve 
xx yexy

dx

dy
e  22 . 

Solution:  Given equation is  
xx yexy

dx

dy
e  22  

Dividing throughout by
xe , 

22 yxey
dx

dy x   (1) 

This is Bernoulli’s equation. Multiplying on both sides of (1) by 
2y   we get 

xxey
dx

dy
y   212

   (2) 

Put uy  1
, then 

dx

du

dx

dy
y 2

  (3) 

Using (3) in (2), we get 

 
xxeu

dx

du  2    (4) 

This is a linear differential equation in u .   

xdxdxP

eeeFI ..   

Therefore the general solution of (4) is 

    cdxFIQFIu   ....   

cxcdxxcdxexeeu xxx  
 2 2  2  

since
y

yu
11  

we get the general solution of (1) is 

cx
y

ex

 2
 

DIFFERENTIAL EQUATIONS REDUCIBLE TO LINEAR EQUATION BY SUBSTITUTION 

1. Solve 
32 tan 2sec xyx

dx

dy
y  . 

Solution: Given equation is 
32 tan 2sec xyx

dx

dy
y    (1) 

Put uy tan so that 
dx

du

dx

dy
y 2sec  

Substituting these values in (1), we get 

3 2 xux
dx

du
    (2) 
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This is a linear equation in u . Here xP 2 and 
3xQ   

2 2

.. xdxxdxP

eeeFI    

Therefore the general solution of (2) is 

    cdxFIQFIu   ....  

  cexcdxexeu xxx  
222

1
2

1
 23

(Put tx 2
so that dtxdx

2

1
 ) 

Substituting yu tan , we get the general solution of (1) is 

  cexye xx 
22

1
2

1
tan 2

 

2. Solve yxyx
dx

dy 23 cos2sin   . 

Solution: Given equation is  yxyx
dx

dy 23 cos2sin     (1) 

This can be written as 
3

22 cos

cos 2sin 
 

cos

1
x

y

yy
x

dx

dy

y
  

32 tan 2sec xyx
dx

dy
y    (2) 

Put uy tan so that 
dx

du

dx

dy
y 2sec  

Substituting these values in (2), we get 

3 2 xux
dx

du
    (3) 

This is a linear equation in u . Here xP 2 and 
3xQ   

2 2

.. xdxxdxP

eeeFI    

Therefore the general solution of (3) is 

    cdxFIQFIu   ....  

  cexcdxexeu xxx  
222

1
2

1
 23

(Put tx 2
so that dtxdx

2

1
 ) 

Substituting yu tan , we get the general solution of (2) is 

  cexye xx 
22

1
2

1
tan 2

 

3. Solve  322 1sin
1

2
cos 2 


 xy

xdx

dy
yy . 

Solution: Given equation is   322 1sin
1

2
cos 2 


 xy

xdx

dy
yy   (1) 

Put 
dx

du

dx

dy
yyuy  22 cos 2 then sin  

Substituting these values in (1), we get 

 31 
1

2



 xu

xdx

du
     (2) 
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This is a linear equation in u . Here  
1

2




x
P and  31 xQ  

 

 2
1log2

 
1

2

1

1
..





 



x
eeeFI x

dx
x

dxP
  

Therefore the general solution of (2) is       cdxFIQFIu   ....  

 
 

 
  cdxxcdx

x
x

x
u 





 1

1

1
1

1

1
 

2

3

2
 

 
   

 2
42

2
1

2

1
or             

2

1

1

1
 








xc

x
uc

x

x
u  

Substituting 
2sin yu  , we get the general solution of (1) is 

 
 2

4

2 1
2

1
sin 


 xc

x
y  

EXACT DIFFERENTIAL EQUATIONS 

 The differential of a function  yxf ,  is denoted by df and is given by  

dy
y

f
dx

x

f
df









      (1) 

 Consider     0,,  dyyxNdxyxM     (2) 

Suppose  yxM
x

f
,




     (3) 

and  yxN
y

f
,




      (4) 

Using equations (3) and (4), then the equation (1) becomes 

     0, 








 dyyxNdxyxMdy

y

f
dx

x

f
df  

 i.e., 0df   

On integration,   cyxf , , arbitrary constant. 

Therefore the expression of (2), 0 dyNdxM is said to be an exact differential equation if there 

exists a function  yxf , such that 
y

f
N

x

f
M









  and . 

Ex: 1. 02 2  dyxxydx  

      2. 0 xdyydx  

Condition for Exactness 

 If  yxM , and  yxN , are two real valued functions which have continuous partial 

derivatives, then a necessary and sufficient condition for the differential equation 0 dyNdxM

to be exact is 
x

N

y

M









. 

Working rule to solve an Exact Differential Equation 

Step 1: Let the differential equation be of the form     0,,  dyyxNdxyxM . 
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Check the condition for exactness 
x

N

y

M









, if exact proceed to step 2.  

Step 2: The solution of the given equation is cdyNdxM     

 In the first integral treating y  as constant and in second integral take only those terms in N 

which do not contain x . 

(OR) the solution the given equation is 

 

  cdyNxdxM
y

  in   oft independen terms 
constant 

 

EXAMPLES 

1. Solve     0 dxghyaxdyfbyhx . 

Solution: Given differential equation is  

    0 dxghyaxdyfbyhx    (1) 

This is of the form 0 dyNdxM , where 

fbyhxNghyaxM   and  

Now h
x

N
h

y

M










     ,  

x

N

y

M









  

Hence the given differential equation is exact. 

The general solution is given by 

 

  cdyNxdxM
y

  in   oft independen terms 
constant 

 

 
 

  cdyfbydxghyax
y

 
constant 

  

cfy
y

bgxhyx
x

a 
22

22

 

cbyfygxhyxax  22 222  

This is the required general solution of (1). 

2. Solve     01212  dyxydxyx . 

Solution: Given differential equation is  

    01212  dyxydxyx    (1) 

This is of the form 0 dyNdxM , where 

12 and 12  xyNyxM  

Now 1     ,1 









x

N

y

M
 

x

N

y

M









  

Hence the given differential equation is exact. 

The general solution is given by 

 

  cdyNxdxM
y

  in   oft independen terms 
constant 
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 
 

  cdyydxyx
y

  12 12
constant 

 

cyyxyxx  22
 

cyyxxyx  22
 

This is the required general solution of (1). 

3. Solve   011 // 







 dy

y

x
edxe yxyx

. 

Solution:   Given differential equation is  

 

It is of the form  , we have 

and  

 

 

(1) is an Exact differential equation.  

So the general solution of (1) is 

 

 

 

4. Solve   0 sin cos1  dyxedxxe yy
. 

Solution: Given differential equation is  

  0 sin cos1  dyxedxxe yy
   (1) 

This is of the form 0 dyNdxM , where 

  xeNxeM yy sin  and cos1   

Now xe
x

N
xe

y

M yy cos     ,cos 








 

x

N

y

M









  

Hence the given differential equation is exact. 

The general solution is given by 
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 

  cdyNxdxM
y

  in   oft independen terms 
constant 

 

 
 

  cdydxxe
y

y   0 cos1
constant 

 

  cdxxe y   0 cos1  

  cxe y  sin1  

This is the required general solution of (1). 

5. Solve    dyxyxdxxyy  2 2 22  . 

Solution: Given differential equation is  

   dyxyxdxxyy  2 2 22    

    0 2 2 22  dyxxydxxyy    (1) 

This is of the form 0 dyNdxM , where 

22 2  and    2 xxyNxyyM   

Now xy
x

N
xy

y

M
22     ,22 









 

x

N

y

M









  

Hence the given differential equation is exact. 

The general solution is given by 

 

  cdyNxdxM
y

  in   oft independen terms 
constant 

 

 
 

  cdydxxyy
y

  0 2
constant 

2
 

cyxxy  22
 

This is the required general solution of (1). 

EQUATIONS REDUCIBLE TO EXACT EQUATIONS 

Integrating Factor: 

Let 0 dyNdxM be not an exact differential equation.  

If 0 dyNdxM can be made exact by multiplying it with a suitable factor   0, yxu called an 

integrating factor.   

Example: Let 𝑦𝑑𝑥 − 𝑥𝑑𝑦 = 0              (1) 

Here 𝑀 = 𝑦, 𝑁 = −𝑥 

Then
𝜕𝑀

𝜕𝑦
= 1 and

𝜕𝑁

𝜕𝑥
= −1 

𝑖. 𝑒.,
𝜕𝑀

𝜕𝑦
≠

𝜕𝑁

𝜕𝑥
 

So that (1) is not an exact differential equation. 

Multiplying (1) with 1/𝑥2, we get 

𝑦

𝑥2
𝑑𝑥 −

1

𝑥
𝑑𝑦 = 0          (2) 
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Here 𝑀 =
𝑦

𝑥2
, 𝑁 = −

1

𝑥
 

Since
𝜕𝑀

𝜕𝑦
=

1

𝑥2
=

𝜕𝑁

𝜕𝑥
 

So (2) is an exact differential equation. 

Hence 1/𝑥2 is an integrating factor of  𝑦𝑑𝑥 − 𝑥𝑑𝑦 = 0. 

Note: Also since  
2y

xdyydx

y

x
d











, 

xy

xdyydx

y

x
d











log ,  

22

1tan
yx

xdyydx

y

x
d












 
 

The functions 
222

1
 ,

1
 ,

1

yxxyy 
 are also integrating factors of𝑦𝑑𝑥 − 𝑥𝑑𝑦 = 0. 

From the above example we observe that a differential equation can have more than one 

integrating factor. 

Methods to find integrating factor of 𝑴𝒅𝒙 + 𝑵𝒅𝒚 = 𝟎 

Method 1: with some experience integrating factors can be found by inspection. For this purpose the 

student should keep in mind the following differentials. 

1.     dxydyxxyd     2.   dyydxx
yx

d 






 

2

22

   

3.   
2x

dxydyx

x

y
d











   4. 

2y

dyxdxy

y

x
d












   

 

5. 
xy

dxydyx

x

y
d



















log   6. 

xy

dyxdxy

y

x
d
























log  

7. 
22

1tan
yx

dxydyx

x

y
d





















  8. 

22

1tan
yx

dyxdxy

y

x
d


























 

9.   
xy

dyxdxy
xyd


log   10.     

22

22 2
log

yx

ydyxdx
yxd




  

Examples 

1. Solve   022  dxyxadxydyx  

Solution: Given equation is   022  dxyxadxydyx  

 0
22





dxa

yx

dxydyx
 

Integrating cdxa
yx

ydxxdy





 22

 

cax
x

y








1tan  

Which is the required solution. 

2. Solve 
22 yx

dxydyx
dyydxx




  

Solution: Given equation is 
22 yx

dxydyx
dyydxx




  
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 























  

x

y
d

yx
d 1

22

tan
2

 

Integrating c
x

y
d

yx
d 
























  


1

22

tan
2

 

c
x

yyx












 1

22

tan
2

  

 c
x

y
yx 2tan2 122 








 

 

which is the required solution. 

3. Solve  dxyxaxdyydx 22 
 

Solution: Given equation is    dxyxaxdyydx 22   

 adx
yx

xdyydx





22

 

adx
y

x
d 





















 1tan  

Integrating, we get cax
y

x








1tan ,  which is the required solution. 

4. Solve dxxyydxxdy 2  

Solution: Given equation is dxxyydxxdy 2  

0  
22








y

ydxxdy
xdxxdx

y

ydxxdy
 

0  0 
2














y

x
dxdx

y

xdyydx
xdx  

Integrating, we get c
y

xx


2

2

 

This is the required solution. 

5. Solve  
 

0
2




y

dyedxexyy xx

. 

Solution: Given equation is 
 

0
2




y

dyedxexyy xx

 

 
0  0

22

2








y

dyedxye
xdx

y

dyedxyexy xxxx

 

0 









y

e
dxdx

x
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Integrating, we get c
y

ex x


2

2

 

Method 2: If 0 NdyMdx is a homogeneous differential equation and 0 NyMx then 

NyMx 

1
is an integrating factor of 0 NdyMdx . 

EXAMPLES 

1. Solve  𝒙𝟐𝒚 𝒅𝒙 − (𝒙𝟑 + 𝒚𝟑)𝒅𝒚 = 𝟎.  

Solution: Given differential equation is  

𝑥2𝑦 𝑑𝑥 − (𝑥3 + 𝑦3)𝑑𝑦 = 0               (1) 

This is of the form  𝑀 𝑑𝑥 + 𝑁 𝑑𝑦 = 0, we have 

𝑀 = 𝑥2𝑦 and 𝑁 = 𝑥3 + 𝑦3 

Then
𝜕𝑀

𝜕𝑦
= 𝑥2and

𝜕𝑁

𝜕𝑥
= 3𝑥2 

𝑖. 𝑒.,
𝜕𝑀

𝜕𝑦
≠  

𝜕𝑁

𝜕𝑥
 

So that (1) is not an exact differential equation. 

But (1) is homogeneous differential equation and  

𝑀𝑥 + 𝑁𝑦 = 𝑥3𝑦 + (−𝑥3 − 𝑦3)𝑦 = −𝑦4 ≠ 0 

∴     I. F. =
1

𝑀𝑥 + 𝑁𝑦
= −

1

𝑦4
 

Multiplying (1) with  −
1

𝑦4 , we get 

          −
𝑥2

𝑦3
𝑑𝑥 + (

𝑥3 + 𝑦3

𝑦4
) 𝑑𝑦 = 0 

          −
𝑥2

𝑦3
𝑑𝑥 + (

𝑥3

𝑦4
+

1

𝑦
) 𝑑𝑦 = 0            (2) 

Again it is of the form 𝑀1 𝑑𝑥 + 𝑁1 𝑑𝑦 = 0, we have 

𝑀1 = −
𝑥2

𝑦3
and𝑁1 =

𝑥3

𝑦4
+

1

𝑦
 

Then
𝜕𝑀1

𝜕𝑦
=

3𝑥2

𝑦4
and

𝜕𝑁1

𝜕𝑥
=

3𝑥2

𝑦4
 

𝑖. 𝑒.,
𝜕𝑀1

𝜕𝑦
=  

𝜕𝑁1

𝜕𝑥
 

So that (2) is an exact differential equation. 

Therefore the general solution of (2) is 

∫ 𝑀1

𝑦=𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

 𝑑𝑥 + ∫(𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 𝑁1 𝑛𝑜𝑡 𝑐𝑜𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑥) 𝑑𝑦 = 𝑐 

⇒ ∫ (−
𝑥2

𝑦3
)

𝑦=𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

 𝑑𝑥 + ∫
1

𝑦
𝑑𝑦 = 𝑐  ⇒   −

1

𝑦3
∫ 𝑥2  𝑑𝑥 + ∫

1

𝑦
𝑑𝑦 = 𝑐 

⇒   −
1

𝑦3
(

𝑥3

3
) + 𝑙𝑜𝑔 𝑦 = 𝑐  ⇒  −

𝑥3

3𝑦3
+ 𝑙𝑜𝑔 𝑦 = 𝑐 

It is the required general solution of (1). 
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2. Solve 𝒚𝟐𝒅𝒙 + (𝒙𝟐 − 𝒙𝒚 − 𝒚𝟐)𝒅𝒚 = 𝟎. 

Solution: Given differential equation is  

𝑦2𝑑𝑥 + (𝑥2 − 𝑥𝑦 − 𝑦2)𝑑𝑦 = 0               (1) 

This is of the form 𝑀 𝑑𝑥 + 𝑁 𝑑𝑦 = 0, we have 

𝑀 = 𝑦2and 𝑁 = 𝑥2 − 𝑥𝑦 − 𝑦2 

Then
𝜕𝑀

𝜕𝑦
= 2𝑦 and

𝜕𝑁

𝜕𝑥
= 2𝑥 − 𝑦 

𝑖. 𝑒.,
𝜕𝑀

𝜕𝑦
≠  

𝜕𝑁

𝜕𝑥
 

So that (1) is not an exact differential equation. 

But (1) is homogeneous differential equation and  

𝑀𝑥 + 𝑁𝑦 = 𝑦2𝑥 + (𝑥2 − 𝑥𝑦 − 𝑦2)𝑦 = 𝑦(𝑥2 − 𝑦2) ≠ 0 

∴     I. F. =
1

𝑀𝑥 + 𝑁𝑦
=

1

𝑦(𝑥2 − 𝑦2)
 

Multiplying (1) with  
1

𝑦(𝑥2−𝑦2)
, we get 

𝑦2

𝑦(𝑥2 − 𝑦2)
𝑑𝑥 + [

𝑥2 − 𝑥𝑦 − 𝑦2

𝑦(𝑥2 − 𝑦2)
] 𝑑𝑦 = 0 

𝑦

𝑥2 − 𝑦2
𝑑𝑥 + (

1

𝑦
−

𝑥

𝑥2 − 𝑦2
) 𝑑𝑦 = 0            (2) 

Again it is of the form 𝑀1 𝑑𝑥 + 𝑁1 𝑑𝑦 = 0, we have 

𝑀1 =
𝑦

𝑥2 − 𝑦2
 and    𝑁1 =

1

𝑦
−

𝑥

𝑥2 − 𝑦2
 

Then
𝜕𝑀1

𝜕𝑦
=

(𝑥2 − 𝑦2). 1 − 𝑦. (0 − 2𝑦)

(𝑥2 − 𝑦2)2
=

𝑥2 + 𝑦2

(𝑥2 − 𝑦2)2
 

and
𝜕𝑁1

𝜕𝑥
= −

(𝑥2 − 𝑦2). 1 − 𝑥. (0 − 2𝑥)

(𝑥2 − 𝑦2)2
=

𝑥2 + 𝑦2

(𝑥2 − 𝑦2)2
 

𝑖. 𝑒.,
𝜕𝑀1

𝜕𝑦
=  

𝜕𝑁1

𝜕𝑥
 

So that (2) is an exact differential equation. 

Therefore the general solution of (2) is 

∫ 𝑀1

𝑦=𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

 𝑑𝑥 + ∫(terms of𝑁1not cotaining 𝑥) 𝑑𝑦 = 𝑐 

⇒ ∫
𝑦

𝑥2 − 𝑦2

𝑦=𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

 𝑑𝑥 + ∫
1

𝑦
𝑑𝑦 = 𝑐   

⇒  
1

2
𝑙𝑜𝑔 (

𝑥 − 𝑦

𝑥 + 𝑦
) + 𝑙𝑜𝑔 𝑦 = 𝑐   

It is the required general solution of (1). 

𝟑. 𝐒𝐨𝐥𝐯𝐞 𝒚 − 𝒙
𝒅𝒚

𝒅𝒙
= 𝒙 + 𝒚

𝒅𝒚

𝒅𝒙
 . 

Solution: Given differential equation is  

𝑦 − 𝑥
𝑑𝑦

𝑑𝑥
= 𝑥 + 𝑦

𝑑𝑦

𝑑𝑥
 

𝑖. 𝑒., (𝑥 − 𝑦)𝑑𝑥 + (𝑥 + 𝑦)𝑑𝑦 = 0               (1) 

This is of the form 𝑀 𝑑𝑥 + 𝑁 𝑑𝑦 = 0, we have 
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𝑀 = 𝑥 − 𝑦 and 𝑁 = 𝑥 + 𝑦 

Then
𝜕𝑀

𝜕𝑦
= −1 and

𝜕𝑁

𝜕𝑥
= 1 

𝑖. 𝑒.,
𝜕𝑀

𝜕𝑦
≠  

𝜕𝑁

𝜕𝑥
 

So that (1) is not an exact differential equation. 

But (1) is a homogeneous differential equation and  

𝑀𝑥 + 𝑁𝑦 = (𝑥 − 𝑦)𝑥 + (𝑥 + 𝑦)𝑦 = 𝑥2 + 𝑦2 ≠ 0 

∴     I. F. =
1

𝑀𝑥 + 𝑁𝑦
=

1

𝑥2 + 𝑦2
 

Multiplying (1) with  
1

𝑥2+𝑦2, we get 

(
𝑥 − 𝑦

𝑥2 + 𝑦2
) 𝑑𝑥 + (

𝑥 + 𝑦

𝑥2 + 𝑦2
) 𝑑𝑦 = 0                  (2) 

Again it is of the form 𝑀1 𝑑𝑥 + 𝑁1 𝑑𝑦 = 0, we have 

𝑀1 =
𝑥 − 𝑦

𝑥2 + 𝑦2
 and    𝑁1 =

𝑥 + 𝑦

𝑥2 + 𝑦2
 

Then
𝜕𝑀1

𝜕𝑦
=

(𝑥2 + 𝑦2). (−1) − (𝑥 − 𝑦). (0 + 2𝑦)

(𝑥2 + 𝑦2)2
=

𝑦2 − 𝑥2 − 2𝑥𝑦

(𝑥2 + 𝑦2)2
 

and  
𝜕𝑁1

𝜕𝑥
=

(𝑥2 + 𝑦2). 1 − (𝑥 + 𝑦). (0 + 2𝑥)

(𝑥2 + 𝑦2)2
=

𝑦2 − 𝑥2 − 2𝑥𝑦

(𝑥2 + 𝑦2)2
 

𝑖. 𝑒.,
𝜕𝑀1

𝜕𝑦
=  

𝜕𝑁1

𝜕𝑥
 

So that (2) is an exact differential equation. 

Therefore the general solution of (2) is 

∫ 𝑀1

𝑦=𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

 𝑑𝑥 + ∫(𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 𝑁1 𝑛𝑜𝑡 𝑐𝑜𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑥) 𝑑𝑦 = 𝑐 

⇒ ∫
𝑥 − 𝑦

𝑥2 + 𝑦2

𝑦=𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

 𝑑𝑥 + ∫(0) 𝑑𝑦 = 𝑐   

⇒ ∫
𝑥

𝑥2 + 𝑦2

𝑦=𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

 𝑑𝑥 − ∫
𝑦

𝑥2 + 𝑦2

𝑦=𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

 𝑑𝑥 + 0 = 𝑐 

⇒  
1

2
𝑙𝑜𝑔(𝑥2 + 𝑦2) − 𝑡𝑎𝑛−1 (

𝑥

𝑦
) = 𝑐   

It is the required general solution of (1). 

𝟒. 𝐒𝐨𝐥𝐯𝐞 𝒙𝒚 𝒅𝒙 − (𝒙𝟐 + 𝒚𝟐)𝒅𝒚 = 𝟎 . 

Solution: Given differential equation is  

𝑥𝑦 𝑑𝑥 − (𝑥2 + 𝑦2)𝑑𝑦 = 0                  (1) 

This is of the form  𝑀 𝑑𝑥 + 𝑁 𝑑𝑦 = 0, we have 

𝑀 = 𝑥𝑦 and 𝑁 = −𝑥2 − 𝑦2 

Then
𝜕𝑀

𝜕𝑦
= 𝑥   and   

𝜕𝑁

𝜕𝑥
= −2𝑥 

𝑖. 𝑒.,
𝜕𝑀

𝜕𝑦
≠  

𝜕𝑁

𝜕𝑥
 

So that (1) is not an exact differential equation. 
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But (1) is a homogeneous differential equation and  

𝑀𝑥 + 𝑁𝑦 = (𝑥𝑦)𝑥 + (−𝑥2 − 𝑦2)𝑦 = −𝑦3 ≠ 0 

∴     I. F. =
1

𝑀𝑥 + 𝑁𝑦
= −

1

𝑦3
 

Multiplying (1) with  
−1

𝑦3 , we get 

(
𝑥𝑦

−𝑦3
) 𝑑𝑥 − (

𝑥2 + 𝑦2

−𝑦3
) 𝑑𝑦 = 0 

𝑥

−𝑦2
𝑑𝑥 + (

𝑥2

𝑦3
+

1

𝑦
) 𝑑𝑦 = 0                               (2) 

Again it is of the form 𝑀1 𝑑𝑥 + 𝑁1 𝑑𝑦 = 0, we have 

𝑀1 =
𝑥

−𝑦2
   and    𝑁1 =

𝑥2

𝑦3
+

1

𝑦
 

Then
𝜕𝑀1

𝜕𝑦
=

2𝑥

𝑦3
and  

𝜕𝑁1

𝜕𝑥
=

2𝑥

𝑦3
 

𝑖. 𝑒.,
𝜕𝑀1

𝜕𝑦
=  

𝜕𝑁1

𝜕𝑥
 

So that (2) is an exact differential equation. 

Therefore the general solution of (2) is 

∫ 𝑀1

𝑦=𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

 𝑑𝑥 + ∫(𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 𝑁1 𝑛𝑜𝑡 𝑐𝑜𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑥) 𝑑𝑦 = 𝑐 

⇒ ∫ (
𝑥

−𝑦2
)

𝑦=𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

 𝑑𝑥 + ∫ (
1

𝑦
) 𝑑𝑦 = 𝑐   

⇒
1

𝑦2
∫ 𝑥  𝑑𝑥 + 𝑙𝑜𝑔 𝑦 = 𝑐 

⇒  
𝑥

𝑦2
+ 𝑙𝑜𝑔 𝑦 = 𝑐   

It is the required general solution of (1). 

5. Solve     .023 2232  dyxyyxdxyxy  

Solution: Given equation is     023 2232  dyxyyxdxyxy  

Here 
323 yxyM    222 xyyxN   

We have 
236 yxy

y

M





 

24 yxy
x

N





 


x

N

y

M









. Hence it is not exact.  It is a homogeneous equation 

NyMx
FI




1
..

22

1

yx
  

Multiplying with I.F. we get 

   
0

23
22

22

22

32







dy
yx

xyyx
dx

yx

yxy
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0
123

2


















 dy

xy
dx

x

y

x
         (2) 

This is an exact equation, its solution is 

0
123

2


















  dy

xy
dx

x

y

x
 

 cy
x

yx 






 
 log2

1
log3  

cy
x

y
x  log2log3 , which is the required solution. 

6. Find an integrating factor so that  
𝒅𝒚

𝒅𝒙
=

𝒚

𝒙
+

𝒙𝟐+𝒚𝟐

𝒙𝟐 . 

Solution: Given differential equation is  

𝑑𝑦

𝑑𝑥
=

𝑦

𝑥
+

𝑥2 + 𝑦2

𝑥2
    ⇒   

𝑑𝑦

𝑑𝑥
=

𝑥𝑦 + 𝑥2 + 𝑦2

𝑥2
 

(𝑥𝑦 + 𝑥2 + 𝑦2)𝑑𝑥 − 𝑥2𝑑𝑦 = 0 

It is of the form 𝑀 𝑑𝑥 + 𝑁 𝑑𝑦 = 0 and it is a homogeneous differential equation. 

So integrating factor =
1

𝑀𝑥 + 𝑁𝑦
=

1

(𝑥𝑦 + 𝑥2 + 𝑦2)𝑥 − 𝑥2𝑦
=

1

𝑥(𝑥2 + 𝑦2)
 

Method 3: If the differential equation 0 NdyMdx is of the form 

    0  21  dyyxfxdxyxfy , then I.F.=
NyMx 

1
 provided 0 NyMx  . 

1. Solve 𝒚(𝒙𝟐𝒚𝟐 + 𝟐) 𝒅𝒙 + 𝒙(𝟐 − 𝟐𝒙𝟐𝒚𝟐)𝒅𝒚 = 𝟎. 

Solution: Given differential equation is  

𝑦(𝑥2𝑦2 + 2) 𝑑𝑥 + 𝑥(2 − 2𝑥2𝑦2)𝑑𝑦 = 0               (1) 

This is of the form  𝑀 𝑑𝑥 + 𝑁 𝑑𝑦 = 0, we have 

𝑀 = 𝑦(𝑥2𝑦2 + 2)and 𝑁 = 𝑥(2 − 2𝑥2𝑦2) 

Then
𝜕𝑀

𝜕𝑦
= 3𝑥2𝑦2 + 2 and

𝜕𝑁

𝜕𝑥
= 2 − 6𝑥2𝑦2 

𝑖. 𝑒.,
𝜕𝑀

𝜕𝑦
≠  

𝜕𝑁

𝜕𝑥
 

So that (1) is not an exact differential equation. 

But (1) is of the form      0  21  dyyxfxdxyxfy  and  

𝑀𝑥 − 𝑁𝑦 = 𝑦(𝑥2𝑦2 + 2)𝑥 − 𝑥(2 − 2𝑥2𝑦2)𝑦 = 3𝑥3𝑦3 ≠ 0 

∴     I. F. =
1

𝑀𝑥 − 𝑁𝑦
=

1

3𝑥3𝑦3
 

Multiplying (1) with 
1

3𝑥3𝑦3, we get 

𝑦(𝑥2𝑦2 + 2)

3𝑥3𝑦3
 𝑑𝑥 +

𝑥(2 − 2𝑥2𝑦2)

3𝑥3𝑦3
𝑑𝑦 = 0 
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(
1

3𝑥
+

2

3𝑥3𝑦2
) 𝑑𝑥 + (

2

3𝑥2𝑦3
−

2

3𝑦
) 𝑑𝑦 = 0            (2) 

Again it is of the form 𝑀1 𝑑𝑥 + 𝑁1 𝑑𝑦 = 0, we have 

𝑀1 =
1

3𝑥
+

2

3𝑥3𝑦2
and𝑁1 =

2

3𝑥2𝑦3
−

2

3𝑦
 

Then
𝜕𝑀1

𝜕𝑦
=

−4

3𝑥3𝑦3
and

𝜕𝑁1

𝜕𝑥
=

−4

3𝑥3𝑦3
 

𝑖. 𝑒.,
𝜕𝑀1

𝜕𝑦
=  

𝜕𝑁1

𝜕𝑥
 

So that (2) is an exact differential equation. 

Therefore the general solution of (2) is 

∫ 𝑀1

𝑦=𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

 𝑑𝑥 + ∫(𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 𝑁1 𝑛𝑜𝑡 𝑐𝑜𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑥) 𝑑𝑦 = 𝑐 

⇒ ∫ (
1

3𝑥
+

2

3𝑥3𝑦2
)

𝑦=𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

 𝑑𝑥 + ∫ (−
2

3𝑦
) 𝑑𝑦 = 𝑐   

⇒  
1

3
∫

1

𝑥
𝑑𝑥 +

2

3𝑦2
∫

1

𝑥3
 𝑑𝑥 −

2

3
∫

1

𝑦
𝑑𝑦 = 𝑐 

⇒
1

3
log 𝑥 +

2

3𝑦2
(−

1

2𝑥2
) −

2

3
log 𝑦 = 𝑐   

⇒  
1

3
log 𝑥 −

1

3𝑥2𝑦2
−

2

3
log 𝑦 = 𝑐 

It is the required general solution of (1). 

2. Solve 𝒚(𝒙𝒚 𝒔𝒊𝒏 𝒙𝒚 + 𝒄𝒐𝒔 𝒙𝒚)𝒅𝒙 + 𝒙(𝒙𝒚 𝒔𝒊𝒏 𝒙𝒚 − 𝒄𝒐𝒔 𝒙𝒚)𝒅𝒚 = 𝟎. 

Solution: Given differential equation is  

𝑦(𝑥𝑦 𝑠𝑖𝑛 𝑥𝑦 + 𝑐𝑜𝑠 𝑥𝑦)𝑑𝑥 + 𝑥(𝑥𝑦 𝑠𝑖𝑛 𝑥𝑦 − 𝑐𝑜𝑠 𝑥𝑦)𝑑𝑦 = 0               (1) 

This is of the form 𝑀 𝑑𝑥 + 𝑁 𝑑𝑦 = 0, we have 

𝑀 = 𝑦(𝑥𝑦 𝑠𝑖𝑛 𝑥𝑦 + 𝑐𝑜𝑠 𝑥𝑦)and 𝑁 = 𝑥(𝑥𝑦 𝑠𝑖𝑛 𝑥𝑦 − 𝑐𝑜𝑠 𝑥𝑦) 

Then
𝜕𝑀

𝜕𝑦
= (𝑥2𝑦2 + 1)𝑐𝑜𝑠 𝑥𝑦 + 𝑥𝑦 𝑠𝑖𝑛 𝑥𝑦 

and
𝜕𝑁

𝜕𝑥
= (𝑥2𝑦2 − 1)𝑐𝑜𝑠 𝑥𝑦 + 3𝑥𝑦 𝑠𝑖𝑛 𝑥𝑦 

𝑖. 𝑒.,
𝜕𝑀

𝜕𝑦
≠  

𝜕𝑁

𝜕𝑥
 

So that (1) is not an exact differential equation. 

But (1) is of the form      0  21  dyyxfxdxyxfy  and  

   𝑀𝑥 − 𝑁𝑦 = 𝑦(𝑥𝑦 𝑠𝑖𝑛 𝑥𝑦 + 𝑐𝑜𝑠 𝑥𝑦)𝑥 − 𝑥(𝑥𝑦 𝑠𝑖𝑛 𝑥𝑦 − 𝑐𝑜𝑠 𝑥𝑦)𝑦 

= 2𝑥𝑦 𝑐𝑜𝑠 𝑥𝑦 ≠ 0 

∴     I. F. =
1

𝑀𝑥 − 𝑁𝑦
=

1

2𝑥𝑦 𝑐𝑜𝑠 𝑥𝑦
 

Multiplying (1) with 
1

2𝑥𝑦 𝑐𝑜𝑠 𝑥𝑦
, we get 

𝑦(𝑥𝑦 𝑠𝑖𝑛 𝑥𝑦 + 𝑐𝑜𝑠 𝑥𝑦)

2𝑥𝑦 𝑐𝑜𝑠 𝑥𝑦
 𝑑𝑥 +

𝑥(𝑥𝑦 𝑠𝑖𝑛 𝑥𝑦 − 𝑐𝑜𝑠 𝑥𝑦)

2𝑥𝑦 𝑐𝑜𝑠 𝑥𝑦
𝑑𝑦 = 0 
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(
𝑦

2

𝑠𝑖𝑛 𝑥𝑦

𝑐𝑜𝑠 𝑥𝑦
+

1

2𝑥
) 𝑑𝑥 + (

𝑥

2

𝑠𝑖𝑛 𝑥𝑦

𝑐𝑜𝑠 𝑥𝑦
−

1

2𝑦
) 𝑑𝑦 = 0 

(
𝑦

2
 𝑡𝑎𝑛 𝑥𝑦 +

1

2𝑥
) 𝑑𝑥 + (

𝑥

2
 𝑡𝑎𝑛 𝑥𝑦 −

1

2𝑦
) 𝑑𝑦 = 0                   (2) 

Again it is of the form 𝑀1 𝑑𝑥 + 𝑁1 𝑑𝑦 = 0, we have 

𝑀1 =
𝑦

2
 𝑡𝑎𝑛 𝑥𝑦 +

1

2𝑥
and𝑁1 =

𝑥

2
 𝑡𝑎𝑛 𝑥𝑦 −

1

2𝑦
 

Then
𝜕𝑀1

𝜕𝑦
=

1

2
(𝑡𝑎𝑛 𝑥𝑦 + 𝑥𝑦 𝑠𝑒𝑐2𝑥𝑦)and

𝜕𝑁1

𝜕𝑥
=

1

2
(𝑡𝑎𝑛 𝑥𝑦 + 𝑥𝑦 𝑠𝑒𝑐2𝑥𝑦) 

𝑖. 𝑒.,
𝜕𝑀1

𝜕𝑦
=  

𝜕𝑁1

𝜕𝑥
 

So that (2) is an exact differential equation. 

Therefore the general solution of (2) is 

∫ 𝑀1

𝑦=𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

 𝑑𝑥 + ∫(𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 𝑁1 𝑛𝑜𝑡 𝑐𝑜𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑥) 𝑑𝑦 = 𝑐 

⇒ ∫ (
𝑦

2
 𝑡𝑎𝑛 𝑥𝑦 +

1

2𝑥
)

𝑦=𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

 𝑑𝑥 + ∫ (−
1

2𝑦
) 𝑑𝑦 = 𝑐   

⇒
𝑦

2
∫ 𝑡𝑎𝑛 𝑥𝑦 𝑑𝑥 +

1

2
∫

1

𝑥
 𝑑𝑥 −

1

2
∫

1

𝑦
𝑑𝑦 = 𝑐 

⇒
𝑦

2

log(𝑠𝑒𝑐 𝑥𝑦)

𝑦
+

1

2
𝑙𝑜𝑔 𝑥 −

1

2
𝑙𝑜𝑔 𝑦 = 𝑐   

⇒  
1

2
log (

𝑥

𝑦
𝑠𝑒𝑐 𝑥𝑦) = 𝑐 

⇒
𝑥

𝑦
𝑠𝑒𝑐 𝑥𝑦 = 𝑒2𝑐 = 𝑐1 

It is the required general solution of (1). 

3. Solve  𝒚(𝟏 + 𝒙𝒚 )𝒅𝒙 + 𝒙(𝟏 − 𝒙𝒚)𝒅𝒚 = 𝟎. 

Solution: Given differential equation is  

𝑦(1 + 𝑥𝑦 )𝑑𝑥 + 𝑥(1 − 𝑥𝑦)𝑑𝑦 = 0               (1) 

This is of the form 𝑀 𝑑𝑥 + 𝑁 𝑑𝑦 = 0, we have 

𝑀 = 𝑦(1 + 𝑥𝑦)and 𝑁 = 𝑥(1 − 𝑥𝑦) 

Then
𝜕𝑀

𝜕𝑦
= 1 + 2𝑥𝑦   and  

𝜕𝑁

𝜕𝑥
= 1 − 2𝑥𝑦 

𝑖. 𝑒.,
𝜕𝑀

𝜕𝑦
≠  

𝜕𝑁

𝜕𝑥
 

So that (1) is not an exact differential equation. 

But (1) is of the form      0  21  dyyxfxdxyxfy  and  

   𝑀𝑥 − 𝑁𝑦 = 𝑦(1 + 𝑥𝑦)𝑥 − 𝑥(1 − 𝑥𝑦)𝑦 

= 2𝑥2𝑦2  ≠ 0 

∴     I. F. =
1

𝑀𝑥 − 𝑁𝑦
=

1

2𝑥2𝑦2
 

Multiplying (1) with 
1

2𝑥2𝑦2, we get 
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𝑦(1 + 𝑥𝑦)

2𝑥2𝑦2
 𝑑𝑥 +

𝑥(1 − 𝑥𝑦)

2𝑥2𝑦2
𝑑𝑦 = 0 

(
1

2𝑥2𝑦
+

1

2𝑥
) 𝑑𝑥 + (

1

2𝑥𝑦2
−

1

2𝑦
) 𝑑𝑦 = 0                (2) 

Again it is of the form 𝑀1 𝑑𝑥 + 𝑁1 𝑑𝑦 = 0, we have 

𝑀1 =
1

2𝑥2𝑦
+

1

2𝑥
and𝑁1 =

1

2𝑥𝑦2
−

1

2𝑦
 

Then
𝜕𝑀1

𝜕𝑦
= −

1

2𝑥2𝑦2
and

𝜕𝑁1

𝜕𝑥
= −

1

2𝑥2𝑦2
 

𝑖. 𝑒.,
𝜕𝑀1

𝜕𝑦
=  

𝜕𝑁1

𝜕𝑥
 

So that (2) is an exact differential equation. 

Therefore the general solution of (2) is 

∫ 𝑀1

𝑦=𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

 𝑑𝑥 + ∫(𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 𝑁1 𝑛𝑜𝑡 𝑐𝑜𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑥) 𝑑𝑦 = 𝑐 

⇒ ∫ (
1

2𝑥2𝑦
+

1

2𝑥
)

𝑦=𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

 𝑑𝑥 + ∫ (−
1

2𝑦
) 𝑑𝑦 = 𝑐   

⇒
1

2𝑦
∫

1

𝑥2
 𝑑𝑥 +

1

2
∫

1

𝑥
 𝑑𝑥 −

1

2
∫

1

𝑦
𝑑𝑦 = 𝑐 

⇒
1

2𝑦
(−

1

𝑥
) +

1

2
𝑙𝑜𝑔 𝑥 −

1

2
𝑙𝑜𝑔 𝑦 = 𝑐   

⇒ −
1

2𝑥𝑦
+ 

1

2
log (

𝑥

𝑦
) = 𝑐      or

1

2
log (

𝑥

𝑦
) −

1

2𝑥𝑦
 = 𝑐 

It is the required general solution of (1). 

4. Solve 𝒚(𝒙𝒚 + 𝟐𝒙𝟐𝒚𝟐)𝒅𝒙 + 𝒙(𝒙𝒚 − 𝒙𝟐𝒚𝟐)𝒅𝒚 = 𝟎. 

Solution: Given differential equation is  

𝑦(𝑥𝑦 + 2𝑥2𝑦2)𝑑𝑥 + 𝑥(𝑥𝑦 − 𝑥2𝑦2)𝑑𝑦 = 0               (1) 

This is of the form 𝑀 𝑑𝑥 + 𝑁 𝑑𝑦 = 0, we have 

𝑀 = 𝑦(𝑥𝑦 + 2𝑥2𝑦2)and 𝑁 = 𝑥(𝑥𝑦 − 𝑥2𝑦2) 

Then
𝜕𝑀

𝜕𝑦
= 2𝑥𝑦 + 6𝑥2𝑦2and  

𝜕𝑁

𝜕𝑥
= 2𝑥𝑦 − 3𝑥2𝑦2 

𝑖. 𝑒.,
𝜕𝑀

𝜕𝑦
≠  

𝜕𝑁

𝜕𝑥
 

So that (1) is not an exact differential equation. 

But (1) is of the form      0  21  dyyxfxdxyxfy  and  

   𝑀𝑥 − 𝑁𝑦 = 𝑦(𝑥𝑦 + 2𝑥2𝑦2)𝑥 − 𝑥(𝑥𝑦 − 𝑥2𝑦2)𝑦 

= 3𝑥3𝑦3  ≠ 0 

∴     I. F. =
1

𝑀𝑥 − 𝑁𝑦
=

1

3𝑥3𝑦3
 

Multiplying (1) with 
1

3𝑥3𝑦3, we get 

𝑦(𝑥𝑦 + 2𝑥2𝑦2)

3𝑥3𝑦3
 𝑑𝑥 +

𝑥(𝑥𝑦 − 𝑥2𝑦2)

3𝑥3𝑦3
𝑑𝑦 = 0 
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(
1

3𝑥2𝑦
+

2

3

1

𝑥
) 𝑑𝑥 + (

1

3𝑥𝑦2
−

1

3𝑦
) 𝑑𝑦 = 0                (2) 

Again it is of the form  𝑀1 𝑑𝑥 + 𝑁1 𝑑𝑦 = 0, we have 

𝑀1 =
1

3𝑥2𝑦
+

2

3

1

𝑥
and𝑁1 =

1

3𝑥𝑦2
−

1

3𝑦
 

Then
𝜕𝑀1

𝜕𝑦
= −

1

3𝑥2𝑦2
and

𝜕𝑁1

𝜕𝑥
= −

1

3𝑥2𝑦2
 

𝑖. 𝑒.,
𝜕𝑀1

𝜕𝑦
=  

𝜕𝑁1

𝜕𝑥
 

So that (2) is an exact differential equation. 

Therefore the general solution of (2) is 

∫ 𝑀1

𝑦=𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

 𝑑𝑥 + ∫(𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 𝑁1 𝑛𝑜𝑡 𝑐𝑜𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑥) 𝑑𝑦 = 𝑐 

⇒ ∫ (
1

3𝑥2𝑦
+

2

3

1

𝑥
)

𝑦=𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

 𝑑𝑥 + ∫ (−
1

3𝑦
) 𝑑𝑦 = 𝑐   

⇒
1

3𝑦
∫

1

𝑥2
 𝑑𝑥 +

2

3
∫

1

𝑥
 𝑑𝑥 −

1

3
∫

1

𝑦
𝑑𝑦 = 𝑐 

⇒
1

3𝑦
(−

1

𝑥
) +

2

3
𝑙𝑜𝑔 𝑥 −

1

3
𝑙𝑜𝑔 𝑦 = 𝑐   

⇒ −
1

3𝑥𝑦
+ 

1

3
log (

𝑥2

𝑦
) = 𝑐      or

1

3
log (

𝑥2

𝑦
) −

1

3𝑥𝑦
 = 𝑐 

It is the required general solution of (1). 

Method 4: If there exists a continuous single valued function  xf  such that 

 xf
x

N

y

M

N

















1
, then 

  dxxf
e  is an integrating factor of 𝑀 𝑑𝑥 + 𝑁 𝑑𝑦 = 0. 

1. Solve   2𝒙𝒚 𝒅𝒚 − (𝒙𝟐 + 𝒚𝟐 + 𝟏)𝒅𝒙 = 𝟎 . 

Solution: Given differential equation is  

2𝑥𝑦 𝑑𝑦 − (𝑥2 + 𝑦2 + 1)𝑑𝑥 = 0                  (1) 

This is of the form  𝑀 𝑑𝑥 + 𝑁 𝑑𝑦 = 0, we have 

𝑀 = −𝑥2 − 𝑦2 − 1 and 𝑁 = 2𝑥𝑦  

Then
𝜕𝑀

𝜕𝑦
= −2𝑦   and   

𝜕𝑁

𝜕𝑥
= 2𝑦 

𝑖. 𝑒.,
𝜕𝑀

𝜕𝑦
≠  

𝜕𝑁

𝜕𝑥
 

So that (1) is not an exact differential equation. 

But (1) is a homogeneous differential equation and  

1

𝑁
(

𝜕𝑀

𝜕𝑦
−

𝜕𝑁

𝜕𝑥
) =

1

2𝑥𝑦
[−2𝑦 − 2𝑦] = −

2

𝑥
= 𝑓(𝑥) 

∴     I. F. = 𝑒∫ 𝑓(𝑥) 𝑑𝑥 = 𝑒∫(−
2

𝑥
)𝑑𝑥 = 𝑒−2 𝑙𝑜𝑔 𝑥 =

1

𝑥2
 

Multiplying (1) with  
1

𝑥2, we get 
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(
2𝑥𝑦

𝑥2
) 𝑑𝑦 − (

𝑥2 + 𝑦2 + 1

𝑥2
) 𝑑𝑥 = 0 

2𝑦

𝑥
𝑑𝑦 − (1 +

1

𝑥2
+

𝑦2

𝑥2
) 𝑑𝑥 = 0                       (2) 

Again it is of the form 𝑀1 𝑑𝑥 + 𝑁1 𝑑𝑦 = 0, we have 

𝑀1 = − (1 +
1

𝑥2
+

𝑦2

𝑥2
)    and    𝑁1 =

2𝑦

𝑥
 

Then
𝜕𝑀1

𝜕𝑦
= −

2𝑦

𝑥2
and  

𝜕𝑁1

𝜕𝑥
= −

2𝑦

𝑥2
 

𝑖. 𝑒.,
𝜕𝑀1

𝜕𝑦
=  

𝜕𝑁1

𝜕𝑥
 

So that (2) is an exact differential equation. 

Therefore the general solution of (2) is 

∫ 𝑀1

𝑦=𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

 𝑑𝑥 + ∫(𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 𝑁1 𝑛𝑜𝑡 𝑐𝑜𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑥) 𝑑𝑦 = 𝑐 

⇒ − ∫ (1 +
1

𝑥2
+

𝑦2

𝑥2
)

𝑦=𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

 𝑑𝑥 + ∫ (0) 𝑑𝑦 = 𝑐   

⇒ − (𝑥 −
1

𝑥
−

𝑦2

𝑥
) = 𝑐 

⇒  1 + 𝑦2 − 𝑥2 = 𝑐𝑥   

It is the required general solution of (1). 

2. Solve   (𝒙𝟐 + 𝒚𝟐 + 𝟐𝒙) 𝒅𝒙 + 𝟐𝒚 𝒅𝒚 = 𝟎 . 

Solution: Given differential equation is  

(𝑥2 + 𝑦2 + 2𝑥) 𝑑𝑥 + 2𝑦 𝑑𝑦 = 0                  (1) 

This is of the form  𝑀 𝑑𝑥 + 𝑁 𝑑𝑦 = 0, we have 

𝑀 = 𝑥2 + 𝑦2 + 2𝑥  and 𝑁 = 2𝑦  

Then
𝜕𝑀

𝜕𝑦
= 2𝑦   and   

𝜕𝑁

𝜕𝑥
= 0 

𝑖. 𝑒.,
𝜕𝑀

𝜕𝑦
≠  

𝜕𝑁

𝜕𝑥
 

So that (1) is not an exact differential equation. 

But (1) is a homogeneous differential equation and  

1

𝑁
(

𝜕𝑀

𝜕𝑦
−

𝜕𝑁

𝜕𝑥
) =

1

2𝑦
[2𝑦 − 0] = 1 = 𝑓(𝑥) 

∴     I. F. = 𝑒∫ 𝑓(𝑥) 𝑑𝑥 = 𝑒∫ 1.𝑑𝑥 = 𝑒𝑥  

Multiplying (1) with  𝑒𝑥 , we get 

𝑒𝑥(𝑥2 + 𝑦2 + 2𝑥) 𝑑𝑥 + 2𝑦𝑒𝑥  𝑑𝑦 = 0               (2) 

Again it is of the form 𝑀1 𝑑𝑥 + 𝑁1 𝑑𝑦 = 0, we have 

𝑀1 = 𝑒𝑥(𝑥2 + 𝑦2 + 2𝑥)   and    𝑁1 = 2𝑦𝑒𝑥  

Then
𝜕𝑀1

𝜕𝑦
= 2𝑦𝑒𝑥and  

𝜕𝑁1

𝜕𝑥
= 2𝑦𝑒𝑥 

𝑖. 𝑒.,
𝜕𝑀1

𝜕𝑦
=  

𝜕𝑁1

𝜕𝑥
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So that (2) is an exact differential equation. 

Therefore the general solution of (2) is 

∫ 𝑀1

𝑦=𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

 𝑑𝑥 + ∫(𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 𝑁1 𝑛𝑜𝑡 𝑐𝑜𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑥) 𝑑𝑦 = 𝑐 

⇒ ∫ 𝑒𝑥(𝑥2 + 𝑦2 + 2𝑥)

𝑦=𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

 𝑑𝑥 + ∫ (0) 𝑑𝑦 = 𝑐   

⇒ ∫ 𝑒𝑥(𝑥2 + 2𝑥) 𝑑𝑥 + 𝑦2 ∫ 𝑒𝑥  𝑑𝑥 = 𝑐 

⇒  𝑒𝑥𝑥2 + 𝑒𝑥𝑦2 = 𝑐 ⇒ 𝑒𝑥(𝑥2 + 𝑦2) = 𝑐   

3. Solve   .022 23  xydydxyx  

Solution:  Given  equation is   022 23  xydydxyx  

Here 
23 2yxM    xyN 2  

We have y
y

M
4




  y

x

N
2




 


x

N

y

M









. Hence the equation is not exact 

But   xf
xxy

y

xy

yy

x

N

y

M

N


























 3

2

6

2

241
 

  3loglog3

3
3

.. 









xeeeeFI xx
dx

x
dxxf

 

Multiplying the equation with 
3

1

x
 we get 

 
0

22
33

23




dy
x

xy

x

dxyx
 

0
22

1
23

2









 dy

x

y
dx

x

y
.  It is an exact equation 

It solution is   cdydx
x

y

tconsy









 



0
2

1
tan

3

2

 

c
x

yx 





2
2

2
2


2

2

2

cx
x

y
x  , which is the required solution. 

Method 5: If there exists a continuous single valued function  yg  such that 

 yg
y

M

x

N

M

















1
, then 

  dyyg
e  is an integrating factor of 𝑀 𝑑𝑥 + 𝑁 𝑑𝑦 = 0. 

1. Solve     .0422 434  dyxyxydxyy  

Solution: Given equation is      0422 434  dyxyxydxyy   (1) 

Here xyxyNyyM 42;2 434    



Dr.K.V.Nageswara Reddy, AITS(Autonomous), Kadapa Page 33 
 

We have 4;24 33 








y

x

N
y

y

M
  

x

N

y

M









.  Hence it is not exact 

But 
 2

36

2

2441
3

3

4

33




























yy

y

yy

yy

y

M

x

N

M
  

 
 

 yg
yyy

y










3

2

23
3

3

 

I.F.
 

3

loglog3

1
3

3
13

y
eeeee yy

dy
y

dy
ydyyg













  

Equation (1) multiplied by I.F., we get 

   
0

422
3

43

3

4







dy
y

xyxy
dx

y

yy
 

 0
4

2
2

32


















 dy

y

x
yxdx

y
y                       (2) 

(2) is an exact differential equation. So its solution is 

cdyydx
y

y
tconsy









 



 2
2

tan

2
  

c
y

x
y

yx 
2

2
2 2

2
  

 cyx
y

y 







 2

2

2
 

this is the required solution. 

2. Solve   .02  dyxydxyy  

Solution: Given equation is    02  dyxydxyy  

Here 
2yyM    xyN   

We have   y
y

M
21




  y

x

N





 


x

N

y

M









.  Hence it is not exact 

But  
 

 yy

yy

yy

yy

y

M

x

N

M 


























1

21211
2

 

 
 
 

 yg
yyy

y

yy

y















1

1

1

1

1
 

 

y
yeeeeFI yy

dy
ydyyg 1

.. 1loglog

1
1




 



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Multiplying the equation with  
y

1
 we get 

 
0

2




dy
x

xy
dx

y

yy
              (2) 

It is an exact equation. So its solution is 

  cyxxcdydxy
tconsy

 


 .01
tan

 

which is the required solution. 

3. Solve     .023 2322222  dyyxyxyxdxxxy  

Solution: Given equation is     023 2322222  dyyxyxyxdxxxy  

Here 
22 xxyM    

2322 223 yxyxhyxN   

We have   xy
y

M
2




      2222 6266223 xxyxyxxyxy

x

N





 


x

N

y

M









.  Hence it is not exact 

But  
 
 

 yg
xyx

xyx

xxy

xyxxyxy

y

M

x

N

M




























6

626261
2

2

22

22

 

  ydydyyg

eeeFI 66

..   

Multiplying the equation with  
ye6
 we get 

    023 232226226  dyyxyxyxedxxxye yy
           (2) 

It is an exact equation, its solution is 

  cdyyexexye y

tconsy

yy  


26

tan

2626 6  

c
eyeeyx

e
x

ye
yyy

yy 









216

2

36

2

632

66623
6

2
26

, using integration by parts 

c
eyeyex

e
yx

e
yyy

yy 
10818632

6663
6

22
6

 

c
yyxyx

e y 









108

1

18632

2322
6

, which is required the solution. 
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Newton’s law of Cooling 

Statement: The rate of change of temperature of a body is proportional to the difference of the 

temperature of the body and its surrounding medium. 

 Let 𝜃 be the temperature of the body at time 𝑡 and 𝜃0 be the temperature of its surrounding 

medium (usually air). By the Newton’ law of cooling, we have 

𝑑𝜃

𝑑𝑡
 𝛼 𝜃 − 𝜃0or

𝑑𝜃

𝑑𝑡
= −𝑘 (𝜃 − 𝜃0), where 𝑘 is a positive constant 

Examples 

1. A body is originally at 80
0
C and cools down to 60

0
C in 20 minutes. If the temperature of the 

air is 40
0
C, find the temperature of the body after 40 minutes. 

Solution: Let  be the temperature of the body at time t . 

By Newton’s law of cooling, we have 

 0


 k
dt

d
, where 0 is the temperature of the air 

   given be 40 since  ,40 0  


k
dt

d
 

dtk
d

 
40

or    



(variables separable)   (1) 

Integrating on both sides, we get 

 


dtk
d

 
40


 

  ckt log40log   , c  is an integrating constant 

kt
c








 


40
log

 kte
c





40

 

ktce 40 ktce 40    (2) 

Given that when 
00 60 ,20 when and 80 ,0   tt  

Substituting this in (2), we get 40c and 
kce 204060   

  2  
2

1
   4020 202020   kkk eee  

2log
20

1
  2log20  kk  

 (2) becomes
t

e











2log

20

1

4040      (3) 

When  ,30t ?  

402log
20

1

4040(3)










 e , from (3) 










  4

1
log

2log2 40404040 ee  

C50
4

1
4040 0








  
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2. If  the temperature of a body is changing from 100
0
C to 70

0
C in 15 minutes, find the time 

when the temperature will be 50
0
C, if the temperature of the air is 30

0
C. 

Solution: Let  be the temperature of the body at time t . 

By Newton’s law of cooling, we have 

 0


 k
dt

d
, where 0 is the temperature of the air 

   given be 30 since  ,30 0  


k
dt

d
 

dtk
d

 
30

or    



(variables separable)   (1) 

Integrating on both sides, we get 

 


dtk
d

 
30


 

  ckt log30log   , c  is an integrating constant 

kt
c








 


30
log

 kte
c





30

 

ktce 30 ktce 30    (2) 

Given that when 
00 70 ,15 when and 100 ,0   tt  

Substituting this in (2), we get 70c and 
kce 153070   

4

7
  

7

4
   7040 151515   kkk eee  




















4

7
log

15

1
  

4

7
log15 kk  

 (2) becomes
t

e



















4

7
log

15

1

7030      (3) 

When  ,400 ?t  

t

e



















4

7
log

15

1

703040)3(  

tt

ee




































4

7
log

15

1

4

7
log

15

1

7

1
7010  

te
t




































4

7
log

15

1
7log  7

4

7
log

15

1

 

48.315

4

7
log

7log
15 









 t  

16.52 t Minutes 

 

3. If the air is maintained at   and the temperature of the body drops from  to  in 

10 minutes. What will be its temperature after 30 minutes. 

Solution:Let  be the temperature of the body at time t . 

By Newton’s law of cooling, we have 
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 0


 k
dt

d
, where 0 is the temperature of the air 

dtk
d

 or    
0





(variables separable) 

Integrating on both sides, we get 

 


dtk
d

 
0


 

  ckt loglog 0   , c  is an integrating constant 

kt
c








 
 0log

 kte
c




 0
 

ktce 0 ktce 0    (1) 

Given C150

0   so that (1) becomes 

ktce15      (2) 

Given that when 
00 40 ,10 when and 70 ,0   tt  

Substituting this in (2), we get 55c and 
ke 20551540   

    
55

25
   5525 1010   kk ee      (3) 

When  ,30t ?  

 (2) 
ke 305515   

 
3

310

55

25
55155515 








  ke  

C201653.20 0  

4. A body kept in air with temperature 25
0
 C cools from 140

0
C to 80

0
C in 20 minutes, find the 

time when the body cools down to  35
0
C. 

Solution: Let  be the temperature of the body at time t . 

By Newton’s law of cooling, we have 

 0


 k
dt

d
, where 0 is the temperature of the air 

   given be 25 since  ,25 0  


k
dt

d
 

dtk
d

 
25

or    



(variables separable)   (1) 

Integrating on both sides, we get 

 


dtk
d

 
25


 

  ckt log25log   , c  is an integrating constant 

kt
c








 


25
log

 kte
c





25

 

ktce 25 ktce 25    (2) 
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Given that when 
00 80 ,20 when and 140 ,0   tt  

Substituting this in (2), we get 115c and 
kce 202580   

55

115
  

115

55
   11555 202020   kkk eee  




















55

115
log

20

1
  

55

115
log20 kk  

 (2) becomes
t

e



















55

115
log

20

1

11525      (3) 

When  ,C350 ?t  

t

e



















55

115
log

20

1

1152535)3(  

tt

ee




































55

115
log

20

1

55

115
log

20

1

115

10
11510  

te
t













































55

115
log

20

1

10

115
log  

10

115 55

115
log

20

1

 

31.320

55

115
log

10

115
log

20 



















 t  

2.66 t Minutes 

Law of Natural Growth or Decay 

 Let  tx be the amount of a substance at time t and let the substance be getting converted 

chemically. A law of chemical conversion states that the rate of change of amount  tx  of a 

chemically changing substance is proportional to the amount of the substance available at that time, 

i.e., x
dt

dx
  . 

 If as t increases, x increases, we can take  0   kkx
dt

dx
 and if x decreases as t increases 

we can take  0   kkx
dt

dx
. 

 

Examples 

1. The number 𝑁 of bacteria in culture grew at a rate proportional to 𝑁. The value of N was 

initially 100 and increased to 332 in one hour. What was the value of 𝑁 after 𝟏
𝟏

𝟐
hours. 

Solution: According to law of natural growth, we have 

𝑑𝑁

𝑑𝑡
 𝛼 𝑁     𝑖. 𝑒.,

𝑑𝑁

𝑑𝑡
= 𝑘𝑁             (1) 

Separating the variables, we get
𝑑𝑁

𝑁
= 𝑘 𝑑𝑡 
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Integrating, log 𝑁 = 𝑘𝑡 + log 𝑐 ⇒
𝑁

𝑐
= 𝑒𝑘𝑡 ⇒ 𝑁 = 𝑐𝑒𝑘𝑡        (2) 

When 𝑡 = 0, we have 𝑁 = 100 so that 𝑐 = 100 

∴ (2) ⇒    𝑁 = 100𝑒𝑘𝑡                                  (3) 

When 𝑡 = 1 hour,  𝑁 = 332  so that  from (3), we have                   

332 = 100𝑒𝑘                                 (4) 

When 𝑡 = 1
1

2
hours =

3

2
 hours,  𝑁 = 100𝑒3𝑘/2 

                             ⇒  𝑁 = 100(𝑒𝑘)
3/2

= 100 (
332

100
)

3/2

, from (4) 

∴   𝑁 = 604.5 = 605 

2. In a certain chemical reaction the rate of conversion of a substance at time t is proportional to 

the quantity of the substance still untransformed at that instant. At the end of one hour 60 

grams remain and at the end of four hours 21 grams. How many grams of the first substance 

was there initially? 

Solution: According to law of natural decay, we have 

𝑑𝑦

𝑑𝑡
 𝛼 𝑦     𝑖. 𝑒.,

𝑑𝑦

𝑑𝑡
= −𝑘𝑦             (1) 

Separating the variables, we get
𝑑𝑦

𝑦
= −𝑘 𝑑𝑡 

Integrating, log 𝑦 = −𝑘𝑡 + log 𝑐 ⇒
𝑦

𝑐
= 𝑒−𝑘𝑡 ⇒ 𝑦 = 𝑐𝑒−𝑘𝑡        (2) 

Let 𝑦 = 𝑦0at 𝑡 = 0, then 𝑦 = 𝑦0𝑒−𝑘𝑡                (3) 

When 𝑡 = 1 hour, 𝑦 = 60 grams 

∴ (3) ⇒    60 = 𝑦0𝑒−𝑘 𝑜𝑟 𝑒−𝑘 = 60/𝑦0(4) 

When 𝑡 = 4 hours,  𝑦 = 21 grams, so that  from (3), we have                   

21 = 𝑦0𝑒−4𝑘                                  (5) 

Using (4) in (5), we get 

                  21 = 𝑦0(60/𝑦0)4 ⇒ 𝑦0
3 =

604

21
 

                  ∴ 𝑦0 = (
604

21
)

1/3

= 85.13 grams 

3. In a chemical reaction a given substance is being converted into another at a rate 

proportional to the amount of substance unconverted. If 

th










5

1
of the original amount has been 

transformed in 4 minutes, how much time will be required to transform one half. 

Solution: Let x grams be the amount of the remaining substance after ‘ t ’ minutes. 

  The differential equation is 
ktcexkkx

dt

dx  0,  (1) 

Let the original amount of substance be ‘ m ’ grams. 
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Given when mcmxt  (1)   ,,0  

andwhen 
5

4

5
,4

mm
mxt   

5

4
     

5

4
(1) 44   kk eme

m
 

 4log5log
4

1
          

5

4
log4 








 kk   (2) 

We have to find t when 
2

m
x   

2log     
2

(1)   ktme
m kt

 

minutes 1342.12
4log5log

2log 4
t             2log

1





k
t  

4. A bacterial culture, growing exponentially, increases from 200 to 500 grams in the period 

from 6 a.m. to 9 a.m. how many grams will be present at noon. 

Solution: Let N be the number of bacteria in a culture at any time 0t . 

Then according law of natural growth 
ktceN    (1) 

Where c is a constant and k , the rate constant. 

Given that 200N grams when 0t  

200)1(  c  

Thus we have 
ktceN 200     (2) 

But when 3t  hours (from 6 a.m. to 9 a.m.), 500N grams 

Using these in (2) we get 

5.2
2

5
    200500 33  kk ece  

    3054.052log
3

1
  5.2log3  .kk  

Hence the number of bacteria in the culture at any instant of time 0t is given by 

 tceN 3054.0200 . 

To know N when 6t hours  (from 6 a.m. to 12 noon) 

  8.1249200 63054.0  ceN grams 
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ELECTRICAL CIRCUITS 

We will consider circuits made up of 

(i) voltage source which may be a battery or a generator 

(ii) Resistance, Inductance and Capacitance 

The formation of differential equation for an electric circuit depends upon the following laws. 

Let i be the current and q the charge in the condenser plate at any time t . Then  

(i) dtiq
dt

dq
i  or        

(ii) Voltage drop across resistance 
dt

dq
RRiR   

(iii) Voltage drop across inductance 
2

2

dt

qd
L

dt

di
LL   

(iv) Voltage drop across capacitance 
C

q
C   

Kirchoff’s law: 

1. Voltage law: The algebraic sum of the voltage drops in each part of any closed electrical circuit is 

equal to the resultant electromotive force (e.m.f.) in that circuit. 

2. Current law: At a junction or node, current coming is equal to current going. 

Examples 

1. If a voltage of t5cos20 is applied to a series circuit consisting of 10 ohm resistor and 2 henry 

inductor, determine the current at any time t . 

Solution: Let i be the current flowing in the circuit containing resistance R and inductance L in 

series, with voltage source E at any time t . 

Given henry 2 ohm, 10 ,5cos20  LRtE  

By voltage law, we have 

Ei
L

R

dt

di
ERi

dt

di
L         

ti
dt

di
5cos20

2

10
  

ti
dt

di
5cos205     (1) 

This is a linear differential equation is of the form QPi
dt

di
 , where tQP 5cos20,5   

Now 
tdtdtP

eeeFI 55

..   

The general solution of (1) is 

    cdtQi   I.F.I.F.   

cdtetei tt  
55 5cos20   

  ctt
e t




 5sin55cos5
2525

20
5

 

  ctte t  5sin5cos2 5
 

  tcetti 55sin5cos2      (2) 
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At 0t , 2200  cci  

Thus (2) becomes,   tetti 525sin5cos2   

2. A circuit has in series on electromotive force given by  tE 40sin100 V a resistor of 10Ω 

and an inductor of 0.5H. if the initial current is 0, find the current at time 0t . 

Solution: Let i denote the current in amperes at time t  

The total electric magnetic force if  tE 40sin100  

Then by the laws of electric circuits, we have  

the voltage drop across the resistor iRi 10  

 voltage drop across the inductor
dt

di

dt

di
L

2

1
  

Applying Kirchoff’s law, we have  

 ti
dt

di
40sin10010

2

1
  

 ti
dt

di
40sin20020     (1) 

This is a linear differential equation is of the form QPi
dt

di
 , where  tQP 40sin200,20   

Now 
tdtdtP

eeeFI 2020

..   

The general solution of (1) is 

    cdtQi   I.F.I.F.   

  cdtetei tt  
2020 40sin200  

  ctt
e t




 40cos4040sin20
4020

200
22

20

 

  ctte t  40cos240sin2 20
 

  tcetti 2040cos240sin2    (2) 

At 0t , 4400  cci  

Thus (2) becomes,   tetti 20440cos240sin2   
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Unit-II 

LINEAR DIFFERENTIAL EQUATIONS OF SECOND AND HIGHER ORDER 

Linear Differential Equation with constant coefficients: 

Definition: An equation of the form  xQya
dx

dy
a

dx

yd
a

dx

yd
a

dx

yd
nnn

n

n

n

n

n

 







12

2

21

1

1 ...  

Where naaa ,...,, 21 are real constants and  xQ is a continuous function of x is called an ordinary 

linear equation of order n with constant coefficients. We now state a theorem without proof. 

Theorem: If 
21  and yy are two solutions of the equation 

 xQya
dx

dy
a

dx

yd
a

dx

yd
a

dx

yd
nnn

n

n

n

n

n

 







12

2

21

1

1 ...   (1) 

then
2211 ycycy  is also its solution, where 

21  and cc are constants. 

 The general solution of a
thn order contains n arbitrary constants. If nyyy ,...,, 21 are n

independent solutions of (1) then nn ycycycy 12211 ... is the most general solution of (1). Let 

us denote this with u . 

 If vy   is any particular solution of (1) then vuy   is the most general solution of (1). 

The part ‘u ’ is called the “Complementary Function” (C.F.) and the part ‘ v ’ is called the “Particular 

Integral” (P.I.) of (1). The complete solution of (1) is given by 

.... IPFCy   

Operator D : 

 Let us denote 
n

n

dx

d

dx

d

dx

d

dx

d
,....,,,

3

3

2

2

with 
nDDDD ,...,,, 32

so that 

n

n
n

dx

yd
yD

dx

yd
yD

dx

yd
yD

dx

dy
Dy   ,..., , ,

3

3
3

2

2
2

 

Now equation (1) can be written in symbolic form as 

   xQyaDaDaDaD nn

nnn  



1

2

2

1

1 ...  

   xQyDfei    .,.  

Where   nn

nnn aDaDaDaDDf  



1

2

2

1

1 ...  is a polynomial in D . The symbol 

D  stands for the operation of differentiation. 

To find the General solution (Complementary Function) of   0yDf  

 The algebraic equation   0ymf , 0... 1

2

2

1

1  



nn

nnn amamamam  where 

naaa ,...,, 21  are real constants, is called the auxiliary equation (A.E.) of   0yDf . Since the A.E., 

  0mf is a polynomial equation of degree n , it will have n  roots, say nmmm ,...,, 21 . 

S.No. Roots of A.E. 

  0mf  

C.F. (Complementary Function) 

1 
nmmm ,...,, 21 , i.e., all 

roots are real and 

distinct 

xm

n

xmxm nececec  ...21

21  

2 
nmmmm ,...,,, 311 (i.e.,   xm

n

xmxm nececexcc  ...31

321  
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two roots are real and 
equal and remaining are 

all real and different) 

3 
nmmmmm ,...,,,, 4111  

(i.e., three roots are real 

and equal and 
remaining are all real 

and different) 

  xm

n

xmxm nececexcxcc  ...41

4

2

321  

4 Two roots of A.E. are 

complex say   i

 i and  and the 

remaining roots are real 
and different. 

  xm

n

xmx nececxcxce  ... sin cos 3

321

 
 

5 A pair of conjugate 

complex roots   i

are repeated twice and 

the remaining roots are 

real and different. 

     xm

n

xmx nececxxccxxcce  ... sin cos 5

54321

 
 

6 A pair of conjugate 

complex roots   i

are repeated thrice and 
the remaining roots are 

real and different. 

    xxcxccxxcxcce x  sin cos 2

654

2

321

    

xm

n

xm necec  ...7

7  

 

Note: If    is a real irrational root of    0mf ,    is also a root of the equation. The 

part of the complementary function corresponding to these roots can also be put in the form 

 xcxce x  sinh cosh 21

    

Examples 

1. Solve 0 ,02

2

2

 aya
dx

yd
. 

Solution: Given Differential equation is 02

2

2

 ya
dx

yd
  (1) 

Its operator form is   022  yaD  

  0.,. yDfei , where   22 aDDf   

Now the auxiliary equation of (1) is   0mf  

amam      022
 

 The roots are real and different 

   The general solution of (1) is 
axax ececy  21  

where 21  and cc are arbitrary constants. 

2. Solve  05.05.1
2

2

 y
dx

dy

dx

yd
. 
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Solution: Given Differential equation is 05.05.1
2

2

 y
dx

dy

dx

yd
 (1) 

Its operator form is   05.05.12  yDD  

  0.,. yDfei , where   5.05.12  DDDf  

Now the auxiliary equation of (1) is   0mf  

 05.05.12  mm  

 0132     2  mm  

    0121      mm  

 
2

1
,1      m  

 The roots are real and different 

   The general solution of (1) is  

2
21

x

x ececy


  , where 21  and cc are arbitrary constants. 

3. Solve  015239
2

2

3

3

 y
dx

dy

dx

yd

dx

yd
. 

Solution: Given Differential equation is 015239
2

2

3

3

 y
dx

dy

dx

yd

dx

yd
 (1) 

Its operator form is   015239 23  yDDD  

  0.,. yDfei , where   15239 23  DDDDf  

Now the auxiliary equation of (1) is   0mf  

 015239 23  mmm  

     0531      mmm  

 5 ,3 ,1      m  

 The roots are real and different 

   The general solution of (1) is  
xxx ecececy 5

3

3

21   , where 321  and  , ccc are arbitrary constants. 

4. Solve  032
2

2

3

3


dt

dx

dt

xd

dt

xd
. 

Solution: Given Differential equation is 032
2

2

3

3


dt

dx

dt

xd

dt

xd
  (1) 

Its operator form is   032 23  xDDD  

  0.,. yDfei , where   DDDDf 32 23   

Now the auxiliary equation of (1) is   0mf  

 032 23  mmm  

    013      mmm  

 1 ,3 ,0      m  

 The roots are real and different 
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   The general solution of (1) is  
tt ececcx  3

3

21  , where 321  and  , ccc are arbitrary constants. 

5. Solve  023
3

3

 y
dx

dy

dx

yd
. 

Solution: Given Differential equation is 023
3

3

 y
dx

dy

dx

yd
  (1) 

Its operator form is   0233  yDD  

  0.,. yDfei , where   233  DDDf  

Now the auxiliary equation of (1) is   0mf  

 0233  mm  

    021     2  mmm  

     0211      mmm  

 2 ,1 ,1      m  

 Sine two roots of   0mf are equal 

   The general solution of (1) is  

  xx ecexccy 2

321

  , where 321  and  , ccc are arbitrary constants. 

6. Solve    04432 234  yDDDD . 

Solution: Given Differential equation is   04432 234  yDDDD   (1) 

  0.,. yDfei , where   4432 234  DDDDDf  

Now the auxiliary equation of (1) is   0mf  

 04432 234  mmmm  

    0431     23  mmm  

     04411     2  mmmm  

      02211      mmmm  

2 , 2 ,1 ,1      m  

   The general solution of (1) is  

    xx exccexccy 2

4321  
 , where 4321  and  , , cccc are arbitrary constants. 

7. Solve  0
2

2

 y
dx

dy

dx

yd
. 

Solution: Given Differential equation is 0
2

2

 y
dx

dy

dx

yd
 (1) 

Its operator form is   012  yDD  

  0.,. yDfei , where   12  DDDf  

Now the auxiliary equation of (1) is   0mf  

 012  mm  
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2

3

2

1

2

31
 

2

411
     i

i
m 








  

 The roots are complex. 

   The general solution of (1) is  


















2

 3
sin

2

 3
cos 21

2
x

c
x

cey

x

 , where 
21  and cc are arbitrary constants. 

8. Solve   0168 24  yDD . 

Solution: Given Differential equation is   0168 24  yDD   (1) 

  0.,. yDfei , where   168 24  DDDf  

Now the auxiliary equation of (1) is   0mf  

 0168 24  mm  

   04     
22  m  

     022     
22
 imim  

iiiim 2 , 2 ,2 ,2       

   The general solution of (1) is  

    xxccxxccy 2sin2cos 4321   

where 4321  and  , , cccc are arbitrary constants. 

9. Solve   08143  yDD . 

Solution: Given Differential equation is   08143  yDD   (1) 

  0.,. yDfei , where   8143  DDDf  

Now the auxiliary equation of (1) is   0mf  

 08143  mm  

    0244     2  mmm  

22 and 4      mm  

   The general solution of (1) is  

 xcxceecy xx  2sinh 2cosh 32

24

1  
 

where 321  and  , ccc are arbitrary constants. 

10. Solve     140 ,40 ,096 ''''  yyyyy . 

Solution: Solution: Given Differential equation is 096 '''  yyy  (1) 

Its operator form is   0962  yDD  

  0.,. yDfei , where   962  DDDf  

Now the auxiliary equation of (1) is   0mf  

 0962  mm  

   03
2
 m  

3 ,3      m  
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   The general solution of (1) is  

  xexccy 3

21

      (2) 

where
21  and cc are arbitrary constants. 

 Differentiating (2) with respect to ‘ x ’, we get 

   xx ecexccy 3

2

3

21

' 3      (3) 

Given   40 y , then from (2), we have 41 c   (4) 

and   140' y , then from (3), we have 
21314 cc   

21214314 12  cc   (5) 

Using (4) and (5) in (2), we get the required solution of (1) is 

    xx exexy 33 4224    

11. Solve     10 ,40 ,02 ''''  yyyyy . 

Solution: Solution: Given Differential equation is 02'''  yyy  (1) 

Its operator form is   022  yDD  

  0.,. yDfei , where   22  DDDf  

Now the auxiliary equation of (1) is   0mf  

 022  mm  

    021  mm  

2 ,1      m  

   The general solution of (1) is  
xx ececy 2

21

      (2) 

where 21  and cc are arbitrary constants. 

 Differentiating (2) with respect to ‘ x ’, we get 
xx ececy 2

21

' 2       (3) 

Given   40 y , then from (2), we have   421  cc   (4) 

and   10' y , then from (3), we have 12 21  cc   (5) 

solve (4) and (5), we get 1 ,3 21  cc   

Using these values in (2), we get the required solution of (1) is 
xx eey 23   

12. Solve  (𝑫𝟑 − 𝟏)𝒚 = 𝟎. 

Solution: Given differential equation is 

(𝐷3 − 1)𝑦 = 0     𝑖. 𝑒. , [𝑓(𝐷)]𝑦 = 0            (1) 

Where 𝑓(𝐷) = 𝐷3 − 1 

Now the auxiliary equation of the given D.E. is 

𝑓(𝐷) = 0             𝑖. 𝑒., 𝐷3 − 1 = 0 

(𝐷 − 1)(𝐷2 + 𝐷 + 1) = 0 

𝑖. 𝑒., 𝐷 − 1 = 0 and𝐷2 + 𝐷 + 1 = 0 

            𝐷 = 1 and 𝐷 =
−1 ± √1 − 4

2
=

−1 ± 𝑖√3

2
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Therefore the general solution of (1) is 

            𝑦 = 𝑐1𝑒𝑥 + 𝑒−𝑥/2 (𝑐2 𝑐𝑜𝑠 
√3

2
𝑥 + 𝑐3 𝑠𝑖𝑛 

√3

2
𝑥) 

13. Roots of the auxiliary equation for  (𝑳𝑫𝟐 + 𝑹𝑫 +
𝟏

𝒄
) 𝒒 = 𝑬 𝒔𝒊𝒏 𝒑𝒕. 

Solution: Given differential equation is  

(𝐿𝐷2 + 𝑅𝐷 +
1

𝑐
) 𝑞 = 𝐸 𝑠𝑖𝑛 𝑝𝑡    𝑖. 𝑒. ,   [𝑓(𝐷)]𝑞 = 𝐸 𝑠𝑖𝑛 𝑝𝑡            (1) 

                where   𝑓(𝐷) = 𝐿𝐷2 + 𝑅𝐷 +
1

𝑐
 

Now the auxiliary equation is 

𝑓(𝐷) = 0 

                      𝐿𝐷2 + 𝑅𝐷 +
1

𝑐
= 0 

                 ∴ The roots are   𝐷 =
−𝑅 ± √𝑅2 −

4𝐿

𝑐

2𝐿
 

Inverse operator: 

 The operator 
D

D
1

or  1
is called inverse of the differential operator D . 

Definition: If Q is any function of x then Q
D

QD
1

or  1
is called the integral of Q . 

We write QDQ
D

 
1

 

Ex:
3

3sin
 3cos3cos

1 x
dxxx

D
   , Since x

x
D 3cos

3

3sin









 

Definition: If  Df is differential operator defined earlier. Let  xQ  be any function of x ,  

then we write  
 

          xQxDfxxQ
Df

  or  
1

  

Ex:
3023

1 4
4

2

x
x e

e
DD




 

Since   x
xxxx

e
eeee

DD 4
4444

2

30

2

30

12

30

16

30
23   

Ex: xx
D

3sin3cos
2

1



 is incorrect, Since    xxxD 3sin23cos33sin2   

Theorem:If  xQ  is any function of x  and  is a constant, then the particular value of 

 xQ
D 

1
 is equal to   dxexQe xx  

  . 

    dxexQexQ
D

ei xx 








 
1

 of P.I.  .,.  

    dxexQexQ
D

xx 


 

1
 of P.I.  Also 



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Reason: Let      xQyDyxQ
D







1
 

It is a first order linear differential equation, so its particular solution is given by 

    dxexQeydxexQye xxxx  

   or    

Definition: If 
  DD

1
,

1
are two inverse operators, then we define 

  
 

 
 













xQ

DD
xQ

DD 

111
 

where  ,  are constants and Q  is a function of x . 

  
 

 
      dxedxexQeedxexQe

D
xQ

DD
ei xxxxxx 





  





  
11

  .,.  

Examples 

1. Find 
21

x
D

. 

Solution: Now
3

1 3
22 x
dxxx

D
   

2. Find x
D

cos
1

3
. 

Solution: Now    x
D

dxx
D

x
DD

x
D

sin
1

 cos
1

cos
11

cos
1

2223









   

 

   x
D

dxx
D

x
DD

cos
1

 sin
1

sin
11









   

xdxx sin cos    

3. Find the particular value of x
D 1

1


. 

Solution: Now   1
1

1






 xexeedxxeex
D

xxxxx
 

4. Find the particular value of 
  

xe
DD

2

32

1


. 

Solution: Now
     














xx e
DD

e
DD

22

3

1

2

1

32

1
 

Since   xxxxxxx eeedxeeee
D

233232

3

1






  


 

  xxxxxxx xedxedxeeee
D

e
DD

2222222

2

1

3

1

2

1













 

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Note: The above method to find particular integral (P.I.) is a general method and it will be more 

useful when  xQ  is of the form axaxaxax  cosec ,sec ,cot ,tan . 

General solution of    xQyDf  : 

 We know that if pyy  is a particular solution of    xQyDf  containing no arbitrary 

constants and cyy   is the general solution of   0yDf then pc yyy   is the general solution 

of    xQyDf  . 

 We have previously discussed the methods to find the general solution of   0yDf . 

 Now we will discuss methods to find P.I. of    xQyDf  . 

Particular Integral of    xQyDf  : 

Given equation is    xQyDf    (1) 

Operating (1) by 
 Df

1
, we get

 
  

 
 xQ

Df
yDf

Df

11
  

 
 xQ

Df
y

1
  

Clearly (1) is satisfied, if we take 
 

 xQ
Df

y
1

  

Thus particular integral 
 

 xQ
Df

1
P.I.   

Note 1: To find the P.I. of    xQyDf  , we find the value of 
 

 xQ
Df

1
. 

Note 2: P.I. of    xQyDf   contains no arbitrary constants. 

Note 3: P.I. of    xQyDf   when 
 Df

1
is expressed as partial fractions. 

Let       nDDDDf   ...21 , then 

P.I.
 

 
    

 xQ
DDD

xQ
Df n 


...

11

21

 

 xQ
D

A

D

A

D

A

n

n





















1

2

2

1

1 ... , resolving into partial fractions 

      dxexQeAdxexQeAdxexQeA
xx

n

xxxx nn  

  ...2211

21  

Examples 

1. Solve   xxeyDD 42 65  . 

Solution: Given differential equation is   xxeyDD 42 65    

   xQyDfei .,.   (1)  

where   652  DDDf  and   xxexQ 4  

Now the auxiliary equation of (1) is   0mf  

 0652  mm  
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    032  mm  

3 ,2      m  

 
xx

c ececFCy 3

2

2

1..         (2) 

Now 
 

  x

p xe
DD

xQ
Df

IPy 4

2 65

11
..


  

  
xx xe

DD
xe

DD

44

2

1

3

1

32

1
















 , using partial fractions 

xx xe
D

xe
D

44

2

1

3

1





  


  dxexeedxexee xxxxxx 242343

 

  dxxeedxxee xxxx 223
 

  









42

22
23

xx
xxxx ee

xeexee , integration by parts 

4

324 


x
e x

 

  The general solution (1) is  

 32
4

1
    43

2

2

1  xeececyyy xxx

pc  

2.Solve   axyaD sec22  . 

Solution: Given differential equation is   axyaD sec22    

   xQyDfei .,.   (1)  

where   22 aDDf   and   axxQ sec  

Now the auxiliary equation of (1) is   0mf  

 022  am  

 iam   

 axcaxcFCyc sincos..    21     (2) 

Now 
 

  ax
aD

xQ
Df

IPyp sec
11

..
22 

  

  
ax

iaDiaD
sec

1


 ax

iaDiaDai
sec

11

2

1













 , using partial fractions 














 ax

iaD
ax

iaDai
sec

1
sec

1

2

1
   (3) 

Now 





 dx
ax

axiax
edxeaxeax

iaD

iaxiaxiax

cos

sincos
 secsec

1
 

  







  ax

a

i
xedxaxie iaxiax coslogtan1   (4) 
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Similarly, 











 ax
a

i
xeax

iaD

iax coslogsec
1

   (5) 

Using (4) and (5) in (3), we get 


























  ax

a

i
xeax

a

i
xe

ai
y iaxiax

p coslogcoslog
2

1
  

ax
ee

ai

ee

a

x iaxiaxiaxiax

coslog
2

1

2
 

2 






 







 




 

 axax
a

ax
a

x
coslogcos

1
sin

2
     (6) 

  The general solution (1) is  

 axax
a

ax
a

x
axcaxcyyy pc coslogcos

1
sinsincos    

221   

3.Solve   axyaD tan22  . 

Solution: Given differential equation is   axyaD tan22    

   xQyDfei .,.   (1)  

where   22 aDDf   and   axxQ tan  

Now the auxiliary equation of (1) is   0mf  

 022  am  

 iam   

 axcaxcFCyc sincos..    21     (2) 

Now 
 

  ax
aD

xQ
Df

IPyp tan
11

..
22 

  

  
ax

iaDiaD
tan

1


 ax

iaDiaDai
tan

11

2

1













 , using partial fractions 














 ax

iaD
ax

iaDai
tan

1
tan

1

2

1
   (3) 

Now   


 dx
ax

ax
axiaxedxeaxeax

iaD

iaxiaxiax  
cos

sin
sincos tantan

1
 

 






 
 dx

ax

ax
iaxeiax

cos

cos1
sin

2

 

 






 
 dx

ax

ax
iaxeiax

cos

cos1
sin

2

 

   dxaxidxaxidxaxeiax  cos secsin  

  







 ax

a

i
axax

a

i

a

ax
eiax sintanseclog

cos
 

    axaxiaxiax
a

eiax

tanseclogsincos   



Dr.K.V.Nageswara Reddy, AITS(Autonomous) Page 12 
 

  axaxie
a

e iax
iax

tanseclog  
 

 axaxe
a

i

a

iax tanseclog
1

    (4) 

Replace i  by i  in (3), we get 

 axaxe
a

i

a
ax

iaD

iax tanseclog
1

tan
1





   (5) 

Using (4) and (5) in (3), we get 

   

























  axaxe

a

i

a
axaxe

a

i

aai
y iaxiax

p tanseclog
1

tanseclog
1

2

1
  

 axax
ee

a

iaxiax

tanseclog
2

 
1

2








 




 

 axaxax
a

tanseclog cos 
1

2
     (6) 

  The general solution (1) is  

 axaxax
a

axcaxcyyy pc tanseclog cos 
1

sincos    
221   

4. Solve   xeeyDD  342
. 

Solution: Given differential equation is   xeeyDD  342
  

   xQyDfei .,.   (1)  

where   342  DDDf  and  
xeexQ   

Now the auxiliary equation of (1) is   0mf  

 0342  mm  

    031  mm  

3 ,1      m  

 
xx

c ececFCy 3

21..          (2) 

Now 
 

  x

p xe
DD

xQ
Df

IPy 4

2 34

11
..


  

  
xx ee e

DD
e

DD 

















3

1

1

1

2

1

31

1
, using partial fractions 
















xx ee e
D

e
D 3

1

1

1

2

1
    (3) 

Now  dtdxetedteedxeeee
D

xxtxxexe xx


 

 Put  ,
1

1
 

xextx eeee        (4) 

and  dtdxetedtetedxeeee
D

xxtxxexe xx


 

 Put  ,
3

1 2333
 

   2222 2323   xxextx eeeettee
x

  (5) 
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Using (4) and (5) in (3), we get 

 xxxxe

p eeeeey
x 32 22

2

1    

 xxe eee
x 32         (6) 

  The general solution (1) is  

 xxexx

pc eeeececyyy
x 323

21       

RULES FOR FINDING PARTICULAR INTEGRAL IN SOME SPECIAL CASES 

Method 1: P.I. of    xQyDf  when   axexQ  , where ‘ a ’ is constant. 

Case I:Let   axeyDf  , then 

   
  0 if ,

1
 af

af

e
e

Df
y

ax
ax

p  

Case II: If   0af , then  aD  is a factor of  Df . If ‘a ’ is a root repeated k times for 

  0af , then      DaDDf
k
  where   0a , then we have 

            !

1111

k

x
e

aaD

e

a
e

DaD
e

Df

k
ax

k

ax
ax

k

ax








  

Hence 
   

    0 and 0 if ,
!

1
 aaf

k

x

a

e
e

Df
y

kax
ax

p 


 

Note: In order to find the P.I. of axax coshor  sinh express them as 
2

axax ee 
 and 

2

axax ee 
 

respectively. 

Examples 

1. Solve 
xey

dx

dy

dx

yd 2

2

2

34  . 

Solution: Given differential equation is 

xey
dx

dy

dx

yd 2

2

2

34   

    xeyDDei 22 34.,.    

   xQyDfei .,.   (1)  

where   342  DDDf  and   xexQ 2  

Now the auxiliary equation of (1) is   0mf  

 0342  mm  

    031  mm  

 3 ,1  m  

 
xx

c ececFCy 3

21..         (2) 

Now 
 

  x

p e
DD

xQ
Df

IPy 2

2 34

11
..


  
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  32422

2




xe
, put 2D since   02 f  

16

2xe
      (3) 

  The general solution of (1) is 

16

2
3

21

x
xx

pc

e
ececyyy    

 where
21  and cc are constants. 

2. Solve   xeyDD 52 23  . 

Solution: Given differential equation is 

  xeyDD 52 23    

   xQyDfei .,.   (1)  

where   232  DDDf  and   xexQ 5  

Now the auxiliary equation of (1) is   0mf  

 0232  mm  

    021  mm  

 2 ,1 m  

 
xx

c ececFCy 2

21..         (2) 

Now 
 

  x

p e
DD

xQ
Df

IPy 5

2 23

11
..


  

  25352

5




xe
, put 5D since   05 f  

12

5xe
      (3) 

  The general solution of (1) is 

12

5
2

21

x
xx

pc

e
ececyyy   

 where 21  and cc are constants. 

3. Solve   xeyDD 22 134  . 

Solution: Given differential equation is 

  xeyDD 22 134    

   xQyDfei .,.   (1)  

where   1342  DDDf  and   xexQ 2  

Now the auxiliary equation of (1) is   0mf  

 01342  mm  

2

64
 

2

52164 i
m





  
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 32 im   

  xcxceFCy x

c 3sin3cos..    21

2    (2) 

Now 
 

  x

p e
DD

xQ
Df

IPy 2

2 134

11
..


  

  132422

2




xe
, put 2D since   02 f  

9

2xe
      (3) 

  The general solution of (1) is 

 
9

3sin3cos
2

21

2
x

x

pc

e
xcxceyyy   

 where
21  and cc are constants. 

4. Solve   xeyD 42 16  . 

Solution: Given differential equation is 

  xeyD 42 16    

   xQyDfei .,.   (1)  

where   162  DDf  and   xexQ 4  

Now the auxiliary equation of (1) is   0mf  

 0162  m  

 4im   

 xcxcFCyc 4sin4cos..    21    (2) 

Now 
 

  x

p e
D

xQ
Df

IPy 4

2 16

11
.. 


  

  164
2

4




 xe
, put 4D since   04 f  

32

4xe

      (3) 

  The general solution of (1) is 

32
4sin4cos

4

21

x

pc

e
xcxcyyy



  

 where 21  and cc are constants. 

5. Solve   54652  xeyDD . 

Solution: Given differential equation is 

  54652  xeyDD   

   xQyDfei .,.   (1)  

where   652  DDDf  and   54  xexQ  

Now the auxiliary equation of (1) is   0mf  
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 0652  mm  

 3 ,2 m  

 
xx

c ececFCy 3

2

2

1..         (2) 

Now 
 

   54
65

11
..

2



 x

p e
DD

xQ
Df

IPy  

 xx e
DD

e
DD

0

22 65

1
5

65

1
4





  

 
 

 

  6050
5

6151
4

2

0

2 





xx ee
 

 
6

5
2  xe      (3) 

  The general solution of (1) is 

6

5
23

2

2

1  xxx

pc eececyyy  

 where 21  and cc are constants. 

6. Solve   xeyDDD 223 485  . 

Solution: Given differential equation is 

  xeyDDD 223 485    

    xQyDfei .,.   (1)  

where   485 23  DDDDf  and   xexQ 2  

Now the auxiliary equation of (1) is   0mf  

 0485 23  mmm  

    021
2
 mm  

 2 ,2 ,1 m  

   xx

c exccecFCy 2

321..         (2) 

Now 
 

 
  

x

p e
DD

xQ
Df

IPy 2

2
21

11
..


  

Here   02 f . Let   1 DD , then   01122   

   
xx

p e
x

e
D

y 2
2

2

2
!22

1

12

1
   


     (3) 

  The general solution of (1) is 

  xxx

pc e
x

exccecyyy 2
2

2

321
!2

  

 where 321  and , ccc are constants. 

 

7. Solve   xyDD cosh232  . 

Solution: Given differential equation is 
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  xyDD cosh232    

   xQyDfei .,.   (1)  

where   232  DDDf  and   xxQ cosh  

Now the auxiliary equation of (1) is   0mf  

 0232  mm  

 2 ,1 m  

 
xx

c ececFCy 2

21..         (2) 

Now 
 

  x
DD

xQ
Df

IPyp cosh
23

11
..

2 
  

   






 






221

1 xx ee

DD
 

 
      













 xx e

DD
e

DD 21

1

21

1

2

1
 

 
      













 xx ee

D 2111

1

211

1

2

1
 

 







 xx exe

6

1

2

1
   (3) 

  The general solution of (1) is 









 xxxx

pc exeececyyy
6

1

2

12

21  

 where 21  and cc are constants. 

8. Solve    xeyDD x sinh212 22
 

. 

Solution: Given differential equation is 

   xeyDD x sinh212 22
 

  

   xQyDfei .,.   (1)  

where     212  DDDf  and   xexQ x sinh22  
 

Now the auxiliary equation of (1) is   0mf  

   012
2
 mm  

 2 1, ,1 m  

   xx

c ecexccFCy 2

321..        (2) 

Now 
 

 
  

 xe
DD

xQ
Df

IPy x

p sinh2
12

11
.. 2

2



 

 

     
x

DD
e

DD

x sinh2
12

1

12

1
2

2

2





 
 

     
 xxx ee

DD
e

D

 






2

2

2
12

1

122

1
 



Dr.K.V.Nageswara Reddy, AITS(Autonomous) Page 18 
 

     
xxx ee

D
xe 







22

2

1121

1

121

1

9

1
 

xxx ee
x

xe  
4

1

69

1 2
2

   (3) 

  The general solution of (1) is 

  xxxxx

pc ee
x

xeecexccyyy  
4

1

69

1 2
22

321  

 where 321  and , ccc are constants. 

9. Solve the differential equation    23 11  xeyD . 

Solution: Given differential equation is 

   23 11  xeyD   

   xQyDfei .,.   (1)  

where   13  DDf  and    21 xexQ  

Now the auxiliary equation of (1) is   0mf  

013  m  

   011 2  mmm  

 
2

31
 and 1

i
mm


  

 













  xcxceecFCy xx

c
2

3
sin

2

3
cos..    32

2/

1  (2) 

Now 
 

 
 

 2
3

1
1

11
.. 


 x

p e
D

xQ
Df

IPy  

  
 12

11

1 2

2



 xx ee

DDD
 

        
xxx e

DDD
e

DDD
e

DDD

0

22

2

2 11

1

11

2

11

1








  

        
xxx ee

D
e 0

22

2

2 10010

1

1111

2

12212

1








  

1
3

2

7

2

 x
x

xe
e

   (3) 

  The general solution of (1) is 

1
3

2

72

3
sin

2

3
cos

2

32

2/

1 













  x

x
xx

pc xe
e

xcxceecyyy  

 where 321  and , ccc are constants. 

10. Solve the differential equation    323 143 xeyDD  . 

Solution: Given differential equation is 



Dr.K.V.Nageswara Reddy, AITS(Autonomous) Page 19 
 

   323 143 xeyDD    

   xQyDfei .,.   (1)  

where   43 23  DDDf  and    31 xexQ   

Now the auxiliary equation of (1) is   0mf  

043 23  mm  

   0441 2  mmm  

   021
2
 mm  

 2 2, ,1 m  

   xx

c exccecFCy 2

321..     
  (2) 

Now 
 

 
 

 3
23

1
43

11
.. x

p e
DD

xQ
Df

IPy 


  

  
 xxx eee

DDD

 


 331
441

1 23

2
 

  441

3

43

3

4343

1
223

2

23

3

23 













DDD

e

DD

e

DD

e

DD

xxx

 

                41411

3

4232

3

43334030

1
223

2

23

3

23














D

eee xxx

 

316

3

44

1 23 xxx xeee 






 

  (3) 

  The general solution of (1) is 

 
316

3

44

1 23
2

321

xxx
xx

pc

xeee
exccecyyy


 


  

 where 321  and , ccc are constants. 

11. Find particular integral of   (𝑫𝟐 + 𝟏)𝒚 = 𝒄𝒐𝒔𝒉 𝟐𝒙. 

Solution: Given differential equation is 

(𝐷2 + 1)𝑦 = 𝑐𝑜𝑠ℎ 2𝑥 

          Now      P. I. =
1

𝐷2 + 1
𝑐𝑜𝑠ℎ 2𝑥 =

1

𝐷2 + 1
(

𝑒2𝑥 + 𝑒−2𝑥

2
) 

                                =
1

2
[

1

𝐷2 + 1
𝑒2𝑥 +

1

𝐷2 + 1
𝑒−2𝑥] 

                                =
1

2
[

1

22 + 1
𝑒2𝑥 +

1

(−2)2 + 1
𝑒−2𝑥] , since

1

𝑓(𝐷)
𝑒𝑎𝑥 =

𝑒𝑎𝑥

𝑓(𝑎)
 , if 𝑓(𝑎) ≠ 0 

                                =
1

5
(

𝑒2𝑥 + 𝑒−2𝑥

2
) =

1

5
 𝑐𝑜𝑠ℎ 2𝑥 

 

12. Find the particular integral of   (𝑫𝟐 + 𝒂𝟐)𝒚 = 𝒄𝒐𝒔 𝒂𝒙. 

Solution: Given differential equation is    
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(𝐷2 + 𝑎2)𝑦 = 𝑐𝑜𝑠 𝑎𝑥 

[𝑓(𝐷)]𝑦 = 𝑄(𝑥)                                               (1)  

where        𝑓(𝐷) = 𝐷2 + 𝑎2and𝑄(𝑥) = 𝑐𝑜𝑠 𝑎𝑥 

Now      P. I. =
1

𝑓(𝐷)
𝑄(𝑥) =

1

𝐷2 + 𝑎2
𝑐𝑜𝑠 𝑎𝑥            (2) 

Since
1

𝐷2 + 𝑎2
𝑒𝑖𝑎𝑥 =

1

(𝐷 + 𝑖𝑎)(𝐷 − 𝑖𝑎)
𝑒𝑖𝑎𝑥 =

1

(𝐷 − 𝑖𝑎)
[

1

𝐷 + 𝑖𝑎
𝑒𝑖𝑎𝑥] 

                                         =
1

(𝐷 − 𝑖𝑎)
[

1

2𝑖𝑎
𝑒𝑖𝑎𝑥],            

1

𝑓(𝐷)
𝑒𝑎𝑥 =

𝑒𝑎𝑥

𝑓(𝑎)
if 𝑓(𝑎) ≠ 0 

                                        =
𝑥

2𝑖𝑎
𝑒𝑖𝑎𝑥 ,   

1

𝐷 − 𝑎
𝑒𝑎𝑥 = 𝑥 𝑒𝑎𝑥  

=
𝑥

2𝑖𝑎
(𝑐𝑜𝑠 𝑎𝑥 + 𝑖 𝑠𝑖𝑛 𝑎𝑥) 

𝑖. 𝑒.,
1

𝐷2 + 𝑎2
(𝑐𝑜𝑠 𝑎𝑥 + 𝑖 𝑠𝑖𝑛 𝑎𝑥) = −𝑖

𝑥

2𝑎
𝑐𝑜𝑠 𝑎𝑥 +

𝑥

2𝑎
𝑠𝑖𝑛 𝑎𝑥 

Equating real and imaginary parts, we get 

1

𝐷2 + 𝑎2
𝑐𝑜𝑠 𝑎𝑥 =

𝑥

2𝑎
𝑠𝑖𝑛 𝑎𝑥 

1

𝐷2 + 𝑎2
𝑠𝑖𝑛 𝑎𝑥 = −

𝑥

2𝑎
𝑠𝑖𝑛 𝑎𝑥 

Method 2: P.I. of    xQyDf  when   axaxxQ cosor  sin , where ‘ a ’ is constant. 

Case I:
     

  0 if ,
sin

sin
1

sin
1 2

22



 a

a

ax
ax

D
ax

Df



 

Similarly, 
     

  0 if ,
cos

cos
1

cos
1 2

22



 a

a

ax
ax

D
ax

Df



 

Case II: Let   02 a . Then 
22 aD   is a factor of  2D  and hence it is a factor of

 Df . 

Let      222  DgaDDf  , where   02  ag . It can be shown that 

 ax
a

x
ax

aD
ax

a

x
ax

aD
sin

2
cos

1
     ,cos

2
sin

1
2222







 

Examples 

1. Solve   xyDD 3sin232  . 

Solution: Given differential equation is 

  xyDD 3sin232    

   xQyDfei .,.   (1)  

where   232  DDDf  and   xxQ 3sin  

Now the auxiliary equation of (1) is   0mf  

 0232  mm  

 2 ,1  m  

 
xx

c ececFCy 2

21..          (2) 
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Now 
 

  x
DD

xQ
Df

IPy p 3sin
23

11
..

2 
  

x
D

3sin
239

1


  93Put 22 D  

 x
D

D
x

D
3sin

499

73
3sin

73

1
2 





  

 
x

D
3sin

4999

73




  93Put 22 D  









 xx

dx

d
3sin73sin3

130

1
 

  xx 3sin73cos9
130

1
   (3) 

  The general solution of (1) is 

 xxececyyy xx

pc 3sin73cos9
130

12

21  
 

 where 21  and cc are constants. 

2. Solve   xyDD 3cos232  . 

Solution: Given differential equation is 

  xyDD 3cos232    

   xQyDfei .,.   (1)  

where   232  DDDf  and   xxQ 3cos  

Now the auxiliary equation of (1) is   0mf  

 0232  mm  

 2 ,1m  

 
xx

c ececFCy 2

21..         (2) 

Now 
 

  x
DD

xQ
Df

IPy p 3cos
23

11
..

2 
  

x
D

3cos
239

1


  93Put 22 D  

 x
D

D
x

D
x

D
3cos

499

73
3cos

73

1
3cos

73

1
2 










  

 
x

D
3cos

4999

73




  93Put 22 D  









 xx

dx

d
3cos73cos3

130

1
 

  xx 3cos73sin9
130

1
   (3) 

  The general solution of (1) is 
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 xxececyyy xx

pc 3cos73sin9
130

12

21   

 where
21  and cc are constants. 

3. Solve   xyD 22 cos24  . 

Solution: Given differential equation is 

  xyD 22 cos24    

   xQyDfei .,.    (1)  

where   42  DDf  and   xxQ 2cos2  

Now the auxiliary equation of (1) is   0mf  

 042  m  

 2 ,2 m  

 
xx

c ececFCy 2

2

2

1..     
    (2) 

Now 
 

   x
D

x
D

xQ
Df

IPy p 2cos1
4

1
cos2

4

11
..

2

2

2






  

x
DD

e x

2cos
4

1

4 22

0





   (3) 

Since 
404 2

0

2

0






xx e

D

e
 ,   0Put D  

4

1

40

0





xe

 

and xx
D

2cos
44

1
2cos

4

1
2 




 42Put 22 D  

 x2cos
8

1
  

xy p 2cos
8

1

4

1
     (3)       (4) 

  The general solution of (1) is 

xececyyy xx

pc 2cos
8

1

4

12

2

2

1  
 

 where 21  and cc are constants. 

4. Solve   xxeyD x 2cos2sin42  . 

Solution: Given differential equation is 

  xxeyD x 2cos2sin42    

   xQyDfei .,.    (1)  

where   42  DDf  and   xxexQ x 2cos2sin   

Now the auxiliary equation of (1) is   0mf  

 042  m  

 2im   
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 xcxcFCyc 2sin2cos..    21     (2) 

Now 
 

   xxe
D

xQ
Df

IPy x

p 2cos2sin
4

11
..

2



  

x
D

x
DD

e x

2cos
4

1
2sin

4

1

4 222 






   (3) 

Since 
414 22 




xx e

D

e
 ,   1Put D  

541

xx ee



  

 
x

x
x

x
x

D
2cos

4
2cos

22
2sin

4

1
2




 

  










 ax

a

x
ax

aD
af cos

2
sin

1
 using ,0 failure of Case

22

2
 

and
 

x
x

x
x

x
D

2sin
4

2sin
22

2cos
4

1
2




 

  










 ax

a

x
ax

aD
af sin

2
cos

1
 using ,0 failure of Case

22

2
 

x
x

x
xe

y
x

p 2sin
4

2cos
45

     (3)       (4) 

  The general solution of (1) is 

x
x

x
xe

xcxcyyy
x

pc 2sin
4

2cos
45

2sin2cos 21   

 where 21  and cc are constants. 

5. Solve   xxyD 2sin sin12  . 

Solution: Given differential equation is 

  xxyD 2sin sin12    

   xQyDfei .,.    (1)  

where   12  DDf  and   xxxQ 2sin sin  

Now the auxiliary equation of (1) is   0mf  

 012  m  

 im   

 xcxcFCyc sincos..    21     (2) 

Now 
 

  xx
D

xQ
Df

IPy p 2sin sin
1

11
..

2 
  

 xx
D

3coscos
1

1

2

1
2




  














 x

D
x

D
3cos

1

1
cos

1

1

2

1
22

  (3) 
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since
 

x
x

x
x

x
D

sin
2

sin
12

cos
1

1
2




 

  










 ax

a

x
ax

aD
af sin

2
cos

1
 using ,0 failure of Case

22

2
 

and 
19

3cos
3cos

1

1
2 




x
x

D
,  93Put 22 D  

8

3cos x
  

x
x

x
x

y p 3cos
16

sin
4

     (3)       (4) 

  The general solution of (1) is 

x
x

x
x

xcxcyyy pc 3cos
16

sin
4

sincos 21   

 where 21  and cc are constants. 

6. Solve  (𝑫𝟐 − 𝟒𝑫)𝒚 = 𝒆𝒙 + 𝒔𝒊𝒏 𝟑𝒙 𝒄𝒐𝒔 𝟐𝒙. 

Solution: Given differential equation is  

(𝐷2 − 4𝐷)𝑦 = 𝑒𝑥 + 𝑠𝑖𝑛 3𝑥 𝑐𝑜𝑠 2𝑥                       (1) 

𝑖. 𝑒., [𝑓(𝐷)]𝑦 = 𝑄(𝑥) 

where 𝑓(𝐷) = 𝐷2 − 4𝐷, and 𝑄(𝑥) = 𝑒𝑥 + 𝑠𝑖𝑛 3𝑥 𝑐𝑜𝑠 2𝑥 

Now the auxiliary equation is 𝑓(𝑚) = 0, 𝑖. 𝑒., 𝑚2 − 4𝑚=0 

𝑖. 𝑒., 𝑚 = 0, 4 

The roots are real and different. 

∴    𝐶. 𝐹. = 𝑐1 + 𝑐2𝑒4𝑥                    (2) 

Now    𝑃. 𝐼. =
1

𝑓(𝐷)
𝑄(𝑥) =

1

𝑓(𝐷)
[𝑒𝑥 + 𝑠𝑖𝑛 3𝑥 𝑐𝑜𝑠 2𝑥] 

                     =
1

𝐷2 − 4𝐷
𝑒𝑥 +

1

2

1

𝐷2 − 4𝐷
2𝑠𝑖𝑛 3𝑥 𝑐𝑜𝑠 2𝑥 

                     = −
𝑒𝑥

3
+

1

2

1

𝐷2 − 4𝐷
(𝑠𝑖𝑛 5𝑥 + 𝑠𝑖𝑛 𝑥) 

                     = −
𝑒𝑥

3
+

1

2

1

𝐷2 − 4𝐷
𝑠𝑖𝑛 5𝑥 +

1

2

1

𝐷2 − 4𝐷
𝑠𝑖𝑛 𝑥                (3) 

Since
1

𝐷2 − 4𝐷
𝑠𝑖𝑛 5𝑥 =

1

−25 − 4𝐷
𝑠𝑖𝑛 5𝑥 = −

25 − 4𝐷

(25 + 4𝐷)(25 − 4𝐷)
𝑠𝑖𝑛 5𝑥 

                                             = −
25 − 4𝐷

625 − 16𝐷2
𝑠𝑖𝑛 5𝑥 =

4𝐷 − 25

1025
𝑠𝑖𝑛 5𝑥 

                                             =
1

1025
(20 𝑐𝑜𝑠 5𝑥 − 25 𝑠𝑖𝑛 5𝑥) 

                                             =
1

205
(4 𝑐𝑜𝑠 5𝑥 − 5 𝑠𝑖𝑛 5𝑥)                  (4) 

and
1

𝐷2 − 4𝐷
𝑠𝑖𝑛 𝑥 =

1

−1 − 4𝐷
𝑠𝑖𝑛 𝑥 = −

1 − 4𝐷

(1 + 4𝐷)(1 − 4𝐷)
𝑠𝑖𝑛 𝑥 

                                             = −
1 − 4𝐷

1 − 16𝐷2
𝑠𝑖𝑛 𝑥 =

4𝐷 − 1

17
𝑠𝑖𝑛 𝑥 

                                             =
1

17
(4 𝑐𝑜𝑠 𝑥 −  𝑠𝑖𝑛 𝑥)                         (5) 

Substituting (4) and (5) in (3), we get 
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                     𝑃. 𝐼. = −
𝑒𝑥

3
+

1

410
(4 𝑐𝑜𝑠 5𝑥 − 5 𝑠𝑖𝑛 5𝑥) +

1

34
(4 𝑐𝑜𝑠 𝑥 −  𝑠𝑖𝑛 𝑥)     (6) 

Therefore the general solution of (1) is 

𝑦 = 𝐶. 𝐹. +𝑃. 𝐼. 

                        𝑦 = 𝑐1 + 𝑐2𝑒4𝑥 −
𝑒𝑥

3
+

1

410
(4 𝑐𝑜𝑠 5𝑥 − 5 𝑠𝑖𝑛 5𝑥) +

1

34
(4 𝑐𝑜𝑠 𝑥 −  𝑠𝑖𝑛 𝑥) 

Method 3: P.I. of       kxxQxQyDf   when where k is a positive integer: 

 Let   kxyDf  , operating by 
 Df

1
, we get 

 
kx

Df
y

1
  

 
kx

Df

1
P.I.         

To evaluate P.I., reduce 
 Df

1
 to the form 

 D1

1
 by taking out the lowest degree term 

from  Df . Now write 
 Df

1
 as    1

1


 D  and expand it in ascending powers of D using 

Binomial theorem upto the term containing 
kD . Then operate 

kx with the terms of the expansion of 

   1
1


 D . 

If  Df  is resolvable into factors then split up 
 Df

1
 into partial fractions and proceed. 

We frequently use the following rules: 

  ...11
1

1
  )( 321





DDDD

D
i  

  ...11
1

1
  )( 321





DDDD

D
ii  

 
  ...43211

1

1
  )( 322

2





DDDD

D
iii  

 
  ...43211

1

1
  )( 322

2





DDDD

D
iv  

 
  ...106311

1

1
  )( 323

3





DDDD

D
v  

 
  ...106311

1

1
  )( 323

3





DDDD

D
vi  

Examples 

1. Solve   32 1 xyDD  . 

Solution: Given differential equation is 

  32 1 xyDD    

   xQyDfei .,.    (1)  

where   12  DDDf  and   3xxQ   

Now the auxiliary equation of (1) is   0mf  
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 012  mm  

2

3 1 i
m


  

 







  xcxceFCy x

c
2

3
sin

2

3
cos..    21

2/
 (2) 

Now 
 

  3

2 1

11
.. x

DD
xQ

Df
IPy p


  

   3121 xDD


  

       332222 ...1 xDDDDDD   

  331 xDD , since     0.....3534  xDxD  

    63 233333  xxxDxDx   (3) 

  The general solution of (1) is 

63
2

3
sin

2

3
cos 23

21

2/ 







  xxxcxceyyy x

pc  

 where 21  and cc are constants. 

2. Solve   323 2 xyDDD  . 

Solution: Given differential equation is 

  323 2 xyDDD    

   xQyDfei .,.    (1)  

where   DDDDf  23 2  and   3xxQ   

Now the auxiliary equation of (1) is   0mf  

 02 23  mmm  

  01
2
 mm  

1,1,0 m  

   x

c excccFCy  321..       (2) 

Now 
 

 
 

3

2

3

23
1

1

2

11
.. x

DD
x

DDD
xQ

Df
IPy p





  

    41

1

1

1 4

2

3

2

x

D
dxx

D 



   

  42
1

4

1
xD


  

  4432 ...54321
4

1
xDDDD   

 12096368
4

1 234  xxxx   (3) 

  The general solution of (1) is 
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   12096368
4

1 234

321   xxxxexcccyyy x

pc  

 where
21  and cc are constants. 

3. Solve    2322 23204 xxyDD  . 

Solution: Given differential equation is 

   2322 23204 xxyDD    

   xQyDfei .,.    (1)  

where    422  DDDf  and    23 2320 xxxQ   

Now the auxiliary equation of (1) is   0mf  

   0422  mm  

2 ,0,0 im   

 xcxcxccFCyc 2sin2cos..    4321    (2) 

Now 
 

 
 

 23

22
2320

4

11
.. xx

DD
xQ

Df
IPy p 


  

   23

1
2

2

23

2
2

2320
4

1
4

1
2320

4
14

1
xx

D

D
xx

D
D

























 

 23
642

2
2320...

64164
1

4

1
xx

DDD

D









  

 23
42

2
2...

64164

11

4

320
xx

DD

D









  

   
















 46

16

1
2

4

1

620
80 23

35

xxx
xx

 

20304020
3

40
4 2345  xxxxx  (3) 

  The general solution of (1) is 

20304020
3

40
42sin2cos 2345

4321  xxxxxxcxcxccyyy pc  

 where 4321  and  , , cccc are constants. 

4. Solve   xxxeyDDD x 2sin2 2223  . 

Solution: Given differential equation is 

  xxxeyDDD x 2sin2 2223    

   xQyDfei .,.    (1)  

where   DDDDf  23 2  and   xxxexQ x 2sin22   

Now the auxiliary equation of (1) is   0mf  

  012  02 223  mmmmmm  
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  01
2
 mm 1 ,1,0  m  

   x

c excccFCy  321..       (2) 

Now 
 

   xxxe
DDD

xQ
Df

IPy x

p 2sin
2

11
.. 22

23



  

DDD

x

DDD

xx

DDD

e x












2323

2

23

2

2

2sin

22
 

         DD

x

DDD

xxe x












424

2sin

212222 2

2

23

2

 

    
83

2sin
21

1

18

212
2






D

x
xxDD

D

e x

 

       
649

2sin83
...221

1

18 2

2222
2






D

xD
xxDDDD

D

e x

 

     
  6449

2sin83
421

1

18

222
2






xD
xxDDD

D

e x

 

    
100

2sin83
321

1

18

22
2 xD

xxDD
D

e x 
  

         
100

2sin82cos23
23122

1

18

2
2 xx

xxx
D

e x 
  

 
100

2sin82cos6
43

1

18

2
2 xx

xx
D

e x 
  

100

2sin42cos3
4

2

3

318

232 xx
x

xxe x 
   (3) 

  The general solution of (1) is 

 
100

2sin42cos3
4

2

3

318

232

321

xx
x

xxe
excccyyy

x
x

pc


 

 

 where 321  and  , ccc are constants. 

Method 4:P.I. of       VexQxQyDf xa  when  where a is constant and V  is a function of x : 

 We will use this method to find P.I. whenV is 
kxaxax or  cosor  sin or a polynomial of 

degree k . 

 In this case, 
 

 
 

V
aDf

eVe
Df

axax




11
P.I.        

Working Rule: To find P.I. for Veax
, take out 

axe to the left of  Df  and replace every D with 

aD  so that  Df  becomes  aDf   and now operate 
 aDf 

1
 with V alone by the previous 

methods. 

Examples 

1. Solve  (𝑫𝟑 + 𝟐𝑫𝟐 − 𝟑𝑫)𝒚 = 𝒙𝒆𝟑𝒙. 

 Solution: Given differential equation is  
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(𝐷3 + 2𝐷2 − 3𝐷)𝑦 = 𝑥𝑒3𝑥                             (1) 

𝑖. 𝑒., [𝑓(𝐷)]𝑦 = 𝑥𝑒3𝑥  

where𝑓(𝐷) = 𝐷3 + 2𝐷2 − 3𝐷 

Now the auxiliary equation is 𝑓(𝑚) = 0,  

𝑖. 𝑒., 𝑚3 + 2𝑚2 − 3𝑚=0 

𝑖. 𝑒., 𝑚(𝑚 − 1)(𝑚 + 3) = 0 

𝑖. 𝑒., 𝑚 = 0, 1, −3 

The roots are real and different. 

∴    𝐶. 𝐹. = 𝑐1 + 𝑐2𝑒𝑥 + 𝑐3𝑒−3𝑥                          (2) 

Now    𝑃. 𝐼. =
1

𝑓(𝐷)
[𝑥𝑒3𝑥] =

1

𝐷3 + 2𝐷2 − 3𝐷
[𝑥𝑒3𝑥] 

                     = 𝑒3𝑥
1

(𝐷 + 3)3 + 2(𝐷 + 3)2 − 3(𝐷 + 3)
𝑥 ,   

since
1

𝑓(𝐷)
[𝑒𝑎𝑥𝑉(𝑥)] = 𝑒𝑎𝑥

1

𝑓(𝐷 + 𝑎)
𝑉(𝑥) 

                     = 𝑒3𝑥
1

𝐷3 + 11𝐷2 + 36𝐷 + 36
𝑥          

                     =
𝑒3𝑥

36
[1 +

𝐷3 + 11𝐷2 + 36𝐷

36
] 𝑥  

                     =
𝑒3𝑥

36
[𝑥 +

36

36
] =

𝑒3𝑥

36
[𝑥 + 1] 

Therefore the general solution of (1) is 

                𝑦 = 𝐶. 𝐹. +𝑃. 𝐼. = 𝑐1 + 𝑐2𝑒𝑥 + 𝑐3𝑒−3𝑥 +
𝑒3𝑥

36
(𝑥 + 1) 

2. Solve    xeyDD x  167 22
. 

Solution: Given differential equation is 

   xeyDD x  167 22
  

   xQyDfei .,.    (1)  

where   672  DDDf  and    xexQ x  12
 

Now the auxiliary equation of (1) is   0mf  

 0672  mm  

    061  mm  

6 ,1m  

 
xx

c ececFCy 6

21..         (2) 

Now 
 

   xe
DD

xQ
Df

IPy x

p 


 1
67

11
.. 2

2
 

   
 

 
 

 
V

aDf
eVe

Df
x

DD
e axaxx







11
since ,1

6272

1
2

2
 

   x
DD

e
x

DD
e

x
x 








 






 1

4

3
1

1

4
1

43

1
2

2

2

2
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 x
DDe x








 







1
4

3
1

4

1
22

 

 x
DDe x















 1...

4

3
1

4

22

 

   













 x

DD
x

e x

1
4

3
1

4

22

 

   14
164

3
1

4

22












 x

e
x

e xx

  (3) 

  The general solution of (1) is 

 14
16

2
6

21  x
e

ececyyy
x

xx

pc  

 where 21  and cc are constants. 

3. Solve   xxeyDD x 2sin23 32  . 

Solution: Given differential equation is 

  xxeyDD x 2sin23 32    

   xQyDfei .,.    (1)  

where   232  DDDf  and   xxexQ x 2sin3   

Now the auxiliary equation of (1) is   0mf  

 0232  mm  

    021  mm  

2 ,1m  

 
xx

c ececFCy 2

21..         (2) 

Now 
 

   xxe
DD

xQ
Df

IPy x

p 2sin
23

11
.. 3

2



  

x
DD

xe
DD

x 2sin
23

1

23

1
2

3

2 



  

   
x

D
x

DD
e x 2sin

234

1

2333

1
2

3





  

 
 

     
  0 if,

sin
sin

1
 and 

11
since 2

22






 af

af

ax
ax

Df
V

aDf
eVe

Df

axax
 

x
D

x
DD

e x 2sin
23

1

23

1
2

3





  

x
D

D
x

DDe x

2sin
49

23

2

3
1

2 2

1
23












 




 

 
x

D
x

DDe x

2sin
449

23
...

2

3
1

2

23
















  



Dr.K.V.Nageswara Reddy, AITS(Autonomous) Page 31 
 

x
D

x
e x

2sin
40

23

2

3

2

3 









  

 xxx
e x

2sin22cos6
40

1

2

3

2

3









  

 xxx
e x

2sin2cos3
20

1

2

3

2

3









   (3) 

  The general solution of (1) is 

 xxx
e

ececyyy
x

xx

pc 2sin2cos3
20

1

2

3

2

3
2

21 







  

 where
21  and cc are constants. 

4. Solve   xexeyD xx sin1 32  
. 

Solution: Given differential equation is 

  xexeyD xx sin1 32  
  

   xQyDfei .,.    (1)  

where   12  DDf  and   xexexQ xx sin3  
 

Now the auxiliary equation of (1) is   0mf  

 012  m  

22 1 im   

im   

 xcxcFCyc sincos..    21      (2) 

Now 
 

   xexe
D

xQ
Df

IPy xx

p sin
1

11
.. 3

2



 

 

xe
D

x
DD

e x
x

sin
1

1

1

1

1 2

3

22 










 

 
 

 
x

D
exD

e x
x

sin
11

1
1

11
2

312

2










 

  x
DD

exDD
e x

x

sin
22

1
...1

2 2

342






 

  x
D

exx
e x

x

sin
221

1
6

2

3






 

  x
D

exx
e x

x

sin
12

1
6

2

3






 

  x
D

D
exx

e x
x

sin
14

12
6

2 2

3








 

 
 

x
D

exx
e x

x

sin
114

12
6

2

3








 

   xx
e

xx
e xx

sincos2
5

6
2

3 


  (3) 
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  The general solution of (1) is 

   xx
e

xx
e

xcxcyyy
xx

pc sincos2
5

6
2

sincos 3

21 


 

 where
21  and cc are constants. 

Method 5: P.I. of    xQyDf   when   mxxQ m  V, being a positive integer and V is any 

function of x : 

 Here V is either axax cosor  sin only. It should not be of the form 
axn ex or  . 

 If V is 
nx then 

nmm xx  V  and P.I. can be evaluated by the short method discussed in 

Method 3.  

 If V is 
axe  then 

axmm exx  V  and P.I. can be evaluated by the short method discussed in 

Method 4.  

 But V is of the form axax cosor  sin , P.I. can be evaluated as follows. 

Working Rule for finding P.I. of   axxaxxyDf mm cosor  sin : 

 
   

 axiaxx
Df

axx
Df

i mm sin cos
1

 of (I.P.)Part Imaginary sin
1

P.I.  )(   

  
 

iaxmex
Df

1
 of I.P.  

 
   

iaxmm ex
Df

axx
Df

ii
1

 of (R.P.)Part  Realcos
1

P.I.  )(    

 Now P.I. can be evaluated by the short method discussed in Method 4. 

Method6: Alternative method for finding P.I. of    xQyDf   when    1when  V  mxxQ m

where V is any function of x : 

Let   VxyDf  where V is a function of x . Operating with
 Df

1
, we get 

 
 V

1
x

Df
y  . 

 
 V

1
P.I.      x

Df
  

 Consider     V2V V  V;V V 22 DDxxDDxxD   

Similarly   VV V 1 nnn nDDxxD  

    V... V... 1

2

2

1

11

2

2

1

1 nn

nnn

nn

nnn aDaDaDaDxxaDaDaDaD  






 

  V...1 1

2

1

1



  n

nn aDnanD  

         V V  V ' DfDfxxDf    (1) 

Let   
 

 V
1

V   VV 11
Df

Df     (2) 

  
 

 
  1

'

11 V
1

 V V
1

 
Df

Dfx
Df

xDf 







 , from (1) and (2) 

Operating with 
 Df

1
 on both sides, we get 



Dr.K.V.Nageswara Reddy, AITS(Autonomous) Page 33 
 

   
 

 
 

  1

'

11 V
1

 
1

V 
1

V
1

Df
Df

Df
x

DfDf
x   

 
 

   
 

  1

'

11 V
1

 
1

V
1

V
1

Df
Df

DfDf
xx

Df
  

 
 

 
 

  1

'

1 V
1

 
1

V
1

Df
Df

Df
xx

Df








  

 
 

 
 

 
V

1
 

1
V

1
    '

Df
Df

Df
xx

Df








  

 

Examples 

1. Solve   (𝑫𝟐 − 𝟏)𝒚 = 𝒙𝒆𝒙𝒔𝒊𝒏 𝒙. 

Solution: Given differential equation is  

(𝐷2 − 1)𝑦 = 𝑥𝑒𝑥𝑠𝑖𝑛 𝑥                            (1) 

𝑖. 𝑒., [𝑓(𝐷)]𝑦 = 𝑥𝑒𝑥𝑠𝑖𝑛 𝑥 

where𝑓(𝐷) = 𝐷2 − 1 

Now the auxiliary equation is 𝑓(𝑚) = 0, 𝑖. 𝑒., 𝑚2 − 1=0 

𝑖. 𝑒., 𝑚 = −1, 1 

The roots are real and different. 

∴    𝐶. 𝐹. = 𝑐1𝑒−𝑥 + 𝑐2𝑒𝑥                    (2) 

Now    𝑃. 𝐼. =
1

𝑓(𝐷)
[𝑥𝑒𝑥𝑠𝑖𝑛 𝑥] =

1

𝐷2 − 1
[𝑥𝑒𝑥𝑠𝑖𝑛 𝑥] 

                     = 𝑒𝑥
1

(𝐷 + 1)2 − 1
[𝑥𝑠𝑖𝑛 𝑥] , since

1

𝑓(𝐷)
[𝑒𝑎𝑥𝑉(𝑥)] = 𝑒𝑎𝑥

1

𝑓(𝐷 + 𝑎)
𝑉(𝑥) 

                     = 𝑒𝑥
1

𝐷2 + 2𝐷
[𝑥𝑠𝑖𝑛 𝑥] 

                     = 𝑒𝑥 [𝑥 −
2𝐷 + 2

𝐷2 + 2𝐷
]

1

𝐷2 + 2𝐷
𝑠𝑖𝑛 𝑥 , since

1

𝑓(𝐷)
[𝑥𝑉(𝑥)] = [𝑥 −

𝑓′(𝐷)

𝑓(𝐷)
]

1

𝑓(𝐷)
𝑉(𝑥) 

                     = 𝑒𝑥 [𝑥 −
2𝐷 + 2

𝐷2 + 2𝐷
]

1

(−1 + 2𝐷)
sin 𝑥  , since

1

𝑓(𝐷2)
𝑠𝑖𝑛 𝑎𝑥 =

𝑠𝑖𝑛 𝑎𝑥

𝑓(−𝑎2)
 

                     = 𝑒𝑥 [𝑥 −
2𝐷 + 2

𝐷2 + 2𝐷
]

2𝐷 + 1

4𝐷2 − 1
sin 𝑥 

                     = −
𝑒𝑥

5
[𝑥 −

2𝐷 + 2

𝐷2 + 2𝐷
] (2 𝑐𝑜𝑠 𝑥 + 𝑠𝑖𝑛 𝑥) 

                     = −
𝑒𝑥

5
[𝑥(2 𝑐𝑜𝑠 𝑥 + 𝑠𝑖𝑛 𝑥) −

2𝐷 + 2

−1 + 2𝐷
(2 𝑐𝑜𝑠 𝑥 + 𝑠𝑖𝑛 𝑥)] 

                     = −
𝑒𝑥

5
[𝑥(2 𝑐𝑜𝑠 𝑥 + 𝑠𝑖𝑛 𝑥) −

(2𝐷 + 2)(2𝐷 + 1)

4𝐷2 − 1
(2 𝑐𝑜𝑠 𝑥 + 𝑠𝑖𝑛 𝑥)] 

                     = −
𝑒𝑥

5
[𝑥(2 𝑐𝑜𝑠 𝑥 + 𝑠𝑖𝑛 𝑥) +

1

5
(4𝐷2 + 6𝐷 + 2)(2 𝑐𝑜𝑠 𝑥 + 𝑠𝑖𝑛 𝑥)] 

                     = −
𝑒𝑥

5
[𝑥(2 𝑐𝑜𝑠 𝑥 + 𝑠𝑖𝑛 𝑥) +

1

5
(2 𝑐𝑜𝑠 𝑥 − 14 𝑠𝑖𝑛 𝑥)] 

Therefore the general solution of (1) is 

                𝑦 = 𝐶. 𝐹. +𝑃. 𝐼. = 𝑐1𝑒−𝑥 + 𝑐2𝑒𝑥 −
𝑒𝑥

5
[𝑥(2 𝑐𝑜𝑠 𝑥 + 𝑠𝑖𝑛 𝑥) +

1

5
(2 𝑐𝑜𝑠 𝑥 − 14 𝑠𝑖𝑛 𝑥)] 
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2. Solve   (𝑫𝟐 − 𝟒𝑫 + 𝟒)𝒚 = 𝟖𝒙𝟐𝒆𝟐𝒙𝒔𝒊𝒏 𝟐𝒙. 

Solution: Given differential equation is  

(𝐷2 − 4𝐷 + 4)𝑦 = 8𝑥2𝑒2𝑥𝑠𝑖𝑛 2𝑥                            (1) 

𝑖. 𝑒., [𝑓(𝐷)]𝑦 = 𝑄(𝑥) 

where𝑓(𝐷) = 𝐷2 − 1 and 𝑄(𝑥) = 8𝑥2𝑒2𝑥𝑠𝑖𝑛 2𝑥 

Now the auxiliary equation is 𝑓(𝑚) = 0 ⇒ 𝑚2 − 4𝑚 + 4=0 

⇒ (𝑚 − 2)(𝑚 − 2) = 0 ⇒  𝑚 = 2, 2 

The roots are real and equal. 

∴    𝐶. 𝐹. = (𝑐1 + 𝑐2𝑥)𝑒2𝑥    (2) 

Here P.I. can be found out using the above case twice which is laborious. We will find P.I. in another 

way. 

Now    𝑃. 𝐼. =
1

𝑓(𝐷)
𝑄(𝑥) =

1

𝐷2 − 4𝐷 + 4
[8𝑥2𝑒2𝑥𝑠𝑖𝑛 2𝑥] 

                     = 8𝑒2𝑥
1

(𝐷 + 2)2 − 4(𝐷 + 2) + 4
[𝑥2𝑠𝑖𝑛 2𝑥] ,

since
1

𝑓(𝐷)
[𝑒𝑎𝑥𝑉(𝑥)] = 𝑒𝑎𝑥

1

𝑓(𝐷 + 𝑎)
𝑉(𝑥) 

                     = 8𝑒2𝑥
1

𝐷2
[𝑥2𝑠𝑖𝑛 2𝑥] = Imaginary Part of  8𝑒2𝑥

1

𝐷2
[𝑥2𝑒𝑖2𝑥] 

                     = I. P. of 8𝑒2𝑥𝑒𝑖2𝑥
1

(𝐷 + 𝑖2)2
𝑥2 

                     = I. P. of 8𝑒2𝑥𝑒𝑖2𝑥
1

4𝑖2 (1 +
𝐷

2𝑖
)

2 𝑥2 

                     = I. P. of(−2𝑒2𝑥)𝑒𝑖2𝑥 (1 +
𝐷

2𝑖
)

−2

𝑥2 

                     = I. P. of(−2𝑒2𝑥)𝑒𝑖2𝑥 (1 − 2
𝐷

2𝑖
+ 3

𝐷2

4𝑖2
+ ⋯ ) 𝑥2 

                     = I. P. of(−2𝑒2𝑥)𝑒𝑖2𝑥 (𝑥2 −
2𝑥

𝑖
+

3

2𝑖2
) 

                     = I. P. of(−2𝑒2𝑥)𝑒𝑖2𝑥 (𝑥2 + 𝑖2𝑥 −
3

2
) 

                     = I. P. of(−2𝑒2𝑥)(𝑐𝑜𝑠 2𝑥 + 𝑖 𝑠𝑖𝑛 2𝑥) [(𝑥2 −
3

2
) + 𝑖2𝑥] 

                     = (−2𝑒2𝑥) [2𝑥 𝑐𝑜𝑠 2𝑥 + (𝑥2 −
3

2
)  𝑠𝑖𝑛 2𝑥]  (3) 

Therefore the general solution of (1) is 

       𝑦 = 𝐶. 𝐹. +𝑃. 𝐼. = (𝑐1 + 𝑐2𝑥)𝑒2𝑥 − 2𝑒2𝑥 [2𝑥 𝑐𝑜𝑠 2𝑥 + (𝑥2 −
3

2
)  𝑠𝑖𝑛 2𝑥] 

3. Solve   (𝑫𝟐 + 𝟗)𝒚 = 𝒙 𝒔𝒊𝒏 𝟐𝒙. 

Solution: Given differential equation is  

(𝐷2 + 9)𝑦 = 𝑥 𝑠𝑖𝑛 2𝑥                            (1) 

𝑖. 𝑒., [𝑓(𝐷)]𝑦 = 𝑥 𝑠𝑖𝑛 2𝑥 

where𝑓(𝐷) = 𝐷2 + 9 

Now the auxiliary equation is 𝑓(𝑚) = 0, 𝑖. 𝑒., 𝑚2 + 9=0 

𝑖. 𝑒., 𝑚 = ±𝑖3 

The roots are real and different. 

∴    𝐶. 𝐹. = 𝑐1𝑐𝑜𝑠 3𝑥 + 𝑐2𝑠𝑖𝑛 3𝑥                   (2) 
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Now    𝑃. 𝐼. =
1

𝑓(𝐷)
[𝑥 𝑠𝑖𝑛 2𝑥] =

1

𝐷2 + 9
[𝑥 𝑠𝑖𝑛 2𝑥] 

                     = [𝑥 −
2𝐷

𝐷2 + 9
]

1

𝐷2 + 9
𝑠𝑖𝑛 2𝑥 , since

1

𝑓(𝐷)
[𝑥𝑉(𝑥)] = [𝑥 −

𝑓′(𝐷)

𝑓(𝐷)
]

1

𝑓(𝐷)
𝑉(𝑥) 

                     = [𝑥 −
2𝐷

𝐷2 + 9
]

1

(−4 + 9)
sin 2𝑥  , since

1

𝑓(𝐷2)
𝑠𝑖𝑛 𝑎𝑥 =

𝑠𝑖𝑛 𝑎𝑥

𝑓(−𝑎2)
 

                     =
𝑥 𝑠𝑖𝑛 2𝑥

5
−

2𝐷

5(𝐷2 + 9)
𝑠𝑖𝑛 2𝑥 

                     =
𝑥 𝑠𝑖𝑛 2𝑥

5
−

2𝐷

5(−4 + 9)
𝑠𝑖𝑛 2𝑥, since

1

𝑓(𝐷2)
𝑠𝑖𝑛 𝑎𝑥 =

𝑠𝑖𝑛 𝑎𝑥

𝑓(−𝑎2)
 

                     =
𝑥 𝑠𝑖𝑛 2𝑥

5
−

2𝐷

25
𝑠𝑖𝑛 2𝑥 

                     =
𝑥 𝑠𝑖𝑛 2𝑥

5
−

4

25
𝑐𝑜𝑠 2𝑥                                    (3) 

Therefore the general solution of (1) is 

                  𝑦 = 𝐶. 𝐹. +𝑃. 𝐼. = 𝑐1𝑐𝑜𝑠 3𝑥 + 𝑐2𝑠𝑖𝑛 3𝑥 +
𝑥 𝑠𝑖𝑛 2𝑥

5
−

4

25
𝑐𝑜𝑠 2𝑥 

Method of Variation of Parameters: 

Wronskian:Wronskian of two functions    xvxu  and  is denoted by  vuW ,  and is defined by 

 
dx

du
v

dx

dv
u

vu

vu

dx

dv

dx

du
vu

vuW 
''

or  ,  

Working Rule:To solve RQy
dx

dy
P

dx

yd


2

2

by the method of variation of parameters, follow 

these steps 

1. Reduce the given equation to the standard form , if necessary. 

2. Find the solution of 0
2

2

 Qy
dx

dy
P

dx

yd
and let the solution be  

   xvcxucyFC c 21..   

3. Take    xvBxuAyIP p   ..  , where A and B are functions of x . 

4. Find  
dx

du
v

dx

dv
uvuW , . 

5. Find A and B using  

      
,

   , 
,

dx
vuW

uR
Bdx

vuW

vR
A  

6. Write the general solution of the given equation as 

pc yyy   

Examples 

1. Solve  (𝑫𝟐 + 𝒂𝟐)𝒚 = 𝒕𝒂𝒏 𝒂𝒙 by method of variation of parameters. 

Solution: Given differential equation is  

(𝐷2 + 𝑎2)𝑦 = 𝑡𝑎𝑛 𝑎𝑥                       (1) 

𝑖. 𝑒., [𝑓(𝐷)]𝑦 = 𝑅 



Dr.K.V.Nageswara Reddy, AITS(Autonomous) Page 36 
 

where𝑓(𝐷) = 𝐷2 + 3𝐷 + 2 and 𝑅 = 𝑡𝑎𝑛 𝑎𝑥 

Now the auxiliary equation is 𝑓(𝑚) = 0, 𝑖. 𝑒., 𝑚2 + 𝑎2=0 

𝑖. 𝑒., 𝑚 = ±𝑖𝑎 

The roots are complex. 

∴    𝐶. 𝐹. = 𝑐1𝑐𝑜𝑠 𝑎𝑥 + 𝑐2𝑠𝑖𝑛 𝑎𝑥                   (2) 

Consider                 𝑃. 𝐼. = 𝐴 𝑐𝑜𝑠 𝑎𝑥 + 𝐵 𝑠𝑖𝑛 𝑎𝑥                   (3)            

Here 𝑢 = 𝑐𝑜𝑠 𝑎𝑥, 𝑣 = 𝑠𝑖𝑛 𝑎𝑥 

Then      𝑊(𝑢, 𝑣) = 𝑢
𝑑𝑣

𝑑𝑥
− 𝑣

𝑑𝑢

𝑑𝑥
= 𝑐𝑜𝑠 𝑎𝑥 (𝑎 𝑐𝑜𝑠 𝑎𝑥) − 𝑠𝑖𝑛 𝑎𝑥 (– 𝑎 𝑠𝑖𝑛 𝑎𝑥) = 𝑎 

Where 𝐴 and 𝐵 are given by 

            𝐴 = − ∫
𝑣𝑅

𝑊(𝑢, 𝑣)
𝑑𝑥 = − ∫

𝑠𝑖𝑛 𝑎𝑥 𝑡𝑎𝑛 𝑎𝑥

𝑎
𝑑𝑥 = −

1

𝑎
∫

1 − 𝑐𝑜𝑠2𝑎𝑥

𝑐𝑜𝑠 𝑎𝑥
𝑑𝑥 

               = −
1

𝑎
∫ (𝑠𝑒𝑐 𝑎𝑥 − 𝑐𝑜𝑠 𝑎𝑥) 𝑑𝑥 = −

1

𝑎
[
log(𝑠𝑒𝑐 𝑎𝑥 + 𝑡𝑎𝑛 𝑎𝑥)

𝑎
−

𝑠𝑖𝑛 𝑎𝑥

𝑎
] 

               =
1

𝑎2
[𝑠𝑖𝑛 𝑎𝑥 − log(𝑠𝑒𝑐 𝑎𝑥 + 𝑡𝑎𝑛 𝑎𝑥)] 

            𝐵 = ∫
𝑢𝑅

𝑊(𝑢, 𝑣)
𝑑𝑥 = ∫

𝑐𝑜𝑠 𝑎𝑥 𝑡𝑎𝑛 𝑎𝑥

𝑎
𝑑𝑥 =

1

𝑎
∫ 𝑠𝑖𝑛 𝑎𝑥 𝑑𝑥 = −

1

𝑎2
𝑐𝑜𝑠 𝑎𝑥 

∴ (3) ⇒   𝑃. 𝐼. =
1

𝑎2
[𝑠𝑖𝑛 𝑎𝑥 − log(𝑠𝑒𝑐 𝑎𝑥 + 𝑡𝑎𝑛 𝑎𝑥)] 𝑐𝑜𝑠 𝑎𝑥 −

1

𝑎2
𝑐𝑜𝑠 𝑎𝑥 𝑠𝑖𝑛 𝑎𝑥 

                          = −
1

𝑎2
𝑐𝑜𝑠 𝑎𝑥 . log(𝑠𝑒𝑐 𝑎𝑥 + 𝑡𝑎𝑛 𝑎𝑥) 

Hence the general solution of (1) is 

𝑦 = 𝐶. 𝐹. +𝑃. 𝐼. 

               𝑦 = 𝑐1𝑐𝑜𝑠 𝑎𝑥 + 𝑐2𝑠𝑖𝑛 𝑎𝑥 −
1

𝑎2
𝑐𝑜𝑠 𝑎𝑥 . log(𝑠𝑒𝑐 𝑎𝑥 + 𝑡𝑎𝑛 𝑎𝑥) 

2. Solve  (𝑫𝟐 − 𝟐𝑫)𝒚 = 𝒆𝒙𝒔𝒊𝒏 𝒙 by the method of variation of parameters. 

Solution:  Given differential equation is  

(𝐷2 − 2𝐷)𝑦 = 𝑒𝑥𝑠𝑖𝑛 𝑥                     (1) 

𝑖. 𝑒., [𝑓(𝐷)]𝑦 = 𝑅 

where𝑓(𝐷) = 𝐷2 − 2𝐷 and 𝑅 = 𝑒𝑥𝑠𝑖𝑛 𝑥 

Now the auxiliary equation is 𝑓(𝑚) = 0, 𝑖. 𝑒., 𝑚2 − 2𝑚 = 0 

𝑖. 𝑒., 𝑚(𝑚 − 2) = 0, 𝑖. 𝑒., 𝑚 = 0, 2 

The roots are real and different. 

∴    𝐶. 𝐹. = 𝑐1 + 𝑐2𝑒2𝑥                    (2) 

By the method of variation of parameters 

Consider                 𝑃. 𝐼. = 𝐴 + 𝐵 𝑒2𝑥                    (3)            

Here 𝑢 = 1, 𝑣 = 𝑒2𝑥  

Then      𝑊(𝑢, 𝑣) = 𝑢
𝑑𝑣

𝑑𝑥
− 𝑣

𝑑𝑢

𝑑𝑥
= 1 (2𝑒2𝑥) − 𝑒2𝑥(0) = 2𝑒2𝑥  

Where 𝐴 and 𝐵 are given by 

            𝐴 = − ∫
𝑣𝑅

𝑊(𝑢, 𝑣)
𝑑𝑥 = − ∫

𝑒2𝑥𝑒𝑥𝑠𝑖𝑛 𝑥

2𝑒2𝑥
𝑑𝑥 = −

1

2
∫ 𝑒𝑥𝑠𝑖𝑛 𝑥 𝑑𝑥 

               = −
1

4
[𝑒𝑥𝑠𝑖𝑛 𝑥 − 𝑒𝑥𝑐𝑜𝑠 𝑥] 
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            𝐵 = ∫
𝑢𝑅

𝑊(𝑢, 𝑣)
𝑑𝑥 = ∫

1. 𝑒𝑥𝑠𝑖𝑛 𝑥

2𝑒2𝑥
𝑑𝑥 =

1

2
∫ 𝑒−𝑥𝑠𝑖𝑛 𝑥 𝑑𝑥 

               =
1

4
[−𝑒−𝑥𝑠𝑖𝑛 𝑥 − 𝑒−𝑥𝑐𝑜𝑠 𝑥] 

∴ (3) ⇒   𝑃. 𝐼. = −
1

4
[𝑒𝑥𝑠𝑖𝑛 𝑥 − 𝑒𝑥𝑐𝑜𝑠 𝑥] +

1

4
[−𝑒−𝑥𝑠𝑖𝑛 𝑥 − 𝑒−𝑥𝑐𝑜𝑠 𝑥]. 𝑒2𝑥  

                           = −
𝑒𝑥𝑠𝑖𝑛 𝑥

2
 

Hence the general solution of (1) is 

𝑦 = 𝐶. 𝐹. +𝑃. 𝐼. 

         ∴          𝑦 = 𝑐1 + 𝑐2𝑒2𝑥 −
𝑒𝑥𝑠𝑖𝑛 𝑥

2
 

3. Solve the equation using method of variation of parameters: (𝑫𝟐 + 𝟑𝑫 + 𝟐)𝒚 = 𝒆𝒙 + 𝒙𝟐. 

Solution: Given differential equation is  

(𝐷2 + 3𝐷 + 2)𝑦 = 𝑒𝑥 + 𝑥2                       (1) 

𝑖. 𝑒., [𝑓(𝐷)]𝑦 = 𝑒𝑥 + 𝑥2  

where𝑓(𝐷) = 𝐷2 + 3𝐷 + 2 

Now the auxiliary equation is 𝑓(𝑚) = 0, 𝑖. 𝑒., 𝑚2 + 3𝑚 + 2=0 

𝑖. 𝑒., 𝑚 = −1, −2 

The roots are real and different. 

∴    𝐶. 𝐹. = 𝑐1𝑒−𝑥 + 𝑐2𝑒−2𝑥                    (2) 

Consider                 𝑃. 𝐼. = 𝐴 𝑒−𝑥 + 𝐵 𝑒−2𝑥                    (3)             

Here 𝑢 = 𝑒−𝑥 , 𝑣 = 𝑒−2𝑥  

Then      𝑊(𝑢, 𝑣) = 𝑢
𝑑𝑣

𝑑𝑥
− 𝑣

𝑑𝑢

𝑑𝑥
= −2𝑒−𝑥𝑒−2𝑥 + 𝑒−2𝑥𝑒−𝑥 = −𝑒−3𝑥  

Where 𝐴 and 𝐵 are given by 

            𝐴 = − ∫
𝑣𝑅

𝑊(𝑢, 𝑣)
𝑑𝑥 = − ∫

𝑒−2𝑥(𝑒𝑥 + 𝑥2)

−𝑒−3𝑥
𝑑𝑥 = ∫ (𝑒2𝑥 + 𝑒𝑥𝑥2) 𝑑𝑥 

                =
𝑒2𝑥

2
+ (𝑥2 − 2𝑥 + 2)𝑒𝑥  

            𝐵 = ∫
𝑢𝑅

𝑊(𝑢, 𝑣)
𝑑𝑥 = ∫

𝑒−𝑥(𝑒𝑥 + 𝑥2)

−𝑒−3𝑥
𝑑𝑥 = − ∫ (𝑒3𝑥 + 𝑒2𝑥𝑥2) 𝑑𝑥 

                = − [
𝑒3𝑥

3
+ (

𝑥2

2
−

𝑥

2
+

1

4
) 𝑒2𝑥] 

∴ (3) ⇒   𝑃. 𝐼. = [
𝑒2𝑥

2
+ (𝑥2 − 2𝑥 + 2)𝑒𝑥] 𝑒−𝑥 − [

𝑒3𝑥

3
+ (

𝑥2

2
−

𝑥

2
+

1

4
) 𝑒2𝑥] 𝑒−2𝑥  

                          =
𝑒𝑥

2
+ (𝑥2 − 2𝑥 + 2) −

𝑒𝑥

3
− (

𝑥2

2
−

𝑥

2
+

1

4
) 

                          =
𝑒𝑥

6
+

1

4
(2𝑥2 − 6𝑥 + 7) 

Hence the general solution of (1) is 

𝑦 = 𝐶. 𝐹. +𝑃. 𝐼. 

               𝑦 = 𝑐1𝑒−𝑥 + 𝑐2𝑒−2𝑥 +
𝑒𝑥

6
+

1

4
(2𝑥2 − 6𝑥 + 7) 
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4. Solve  (𝑫𝟐 + 𝟏)𝒚 = 𝒄𝒐𝒔𝒆𝒄 𝒙 by method of variation of parameters. 

Solution: Given differential equation is  

(𝐷2 + 1)𝑦 = 𝑐𝑜𝑠𝑒𝑐 𝑥                       (1) 

𝑖. 𝑒., [𝑓(𝐷)]𝑦 = 𝑅 

where𝑓(𝐷) = 𝐷2 + 1 and 𝑅 = 𝑐𝑜𝑠𝑒𝑐 𝑥 

Now the auxiliary equation is 𝑓(𝑚) = 0, 𝑖. 𝑒., 𝑚2 + 1=0 

𝑖. 𝑒., 𝑚 = ±𝑖 

The roots are complex. 

∴    𝐶. 𝐹. = 𝑐1𝑐𝑜𝑠 𝑥 + 𝑐2𝑠𝑖𝑛 𝑥                   (2) 

Consider                 𝑃. 𝐼. = 𝐴 𝑐𝑜𝑠 𝑥 + 𝐵 𝑠𝑖𝑛 𝑥        (3)            

Here 𝑢 = 𝑐𝑜𝑠 𝑥, 𝑣 = 𝑠𝑖𝑛 𝑥 

Then      𝑊(𝑢, 𝑣) = 𝑢
𝑑𝑣

𝑑𝑥
− 𝑣

𝑑𝑢

𝑑𝑥
= 𝑐𝑜𝑠 𝑥 (𝑐𝑜𝑠 𝑥) − 𝑠𝑖𝑛 𝑥 (– 𝑠𝑖𝑛 𝑥) = 1 

Where 𝐴 and 𝐵 are given by 

            𝐴 = − ∫
𝑣𝑅

𝑊(𝑢, 𝑣)
𝑑𝑥 = − ∫

𝑠𝑖𝑛 𝑥 𝑐𝑜𝑠𝑒𝑐 𝑥

1
𝑑𝑥 = − ∫ 𝑑𝑥 = −𝑥 

            𝐵 = ∫
𝑢𝑅

𝑊(𝑢, 𝑣)
𝑑𝑥 = ∫

𝑐𝑜𝑠 𝑥 𝑐𝑜𝑠𝑒𝑐 𝑥

1
𝑑𝑥 = ∫ 𝑐𝑜𝑡 𝑥 𝑑𝑥 = log(𝑠𝑖𝑛 𝑥) 

∴ (3) ⇒   𝑃. 𝐼. = −𝑥 𝑐𝑜𝑠 𝑥 + 𝑠𝑖𝑛 𝑥. log(𝑠𝑖𝑛 𝑥)  (3) 

Hence the general solution of (1) is 

𝑦 = 𝐶. 𝐹. +𝑃. 𝐼. 

                         𝑦 = 𝑐1𝑐𝑜𝑠 𝑥 + 𝑐2𝑠𝑖𝑛 𝑥 − 𝑥 𝑐𝑜𝑠 𝑥 + 𝑠𝑖𝑛 𝑥. log(𝑠𝑖𝑛 𝑥) 

ELECTRICAL CIRCUIT PROBLEMS 

L -C - R Circuit: Cinsider the discharge of a condenser C  through an induction L  and the 

resistance R . Since the voltage drop across L , C  and R respectively 
dt

dq
R

c

q

dt

qd
L  and  ,

2

2

. 

  By Kirchoff’s law,  0  
2

2


c

q

dt

dq
R

dt

qd
L  

1. A condenser of capacity C discharged through an inductance L and resistance R in series 

and the charge q at time t satisfies the equation  0  
2

2


c

q

dt

dq
R

dt

qd
L . Given that 25.0L

henries, 250R ohms, 
6102 C farads, and that when 0t , charge 002.0q coulombs 

and the current 0
dt

dq
, obtain the value of q in terms of t . 

Solution: Given differential equation is  

0  or   0  
2

2

2

2


Lc

q

dt

dq

L

R

dt

qd

c

q

dt

dq
R

dt

qd
L  

Substituting the given values in (1), we get 

0 
10225.0

 
25.0

250
62

2







q

dt

dq

dt

qd
 

or 0  1021000 6

2

2

 q
dt

dq

dt

qd
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or   0  1021000 62  qDD   (1) 

 Its auxiliary equation is 01021000 62  mm  

1323 5007500 500
2

108101000 66

iim 


  

 Thus the solution of (1) is  

   tctceq t 1323sin1323cos 21

500  
  (2) 

 when 0t , 002.0q 002.01 c  

   tctce
dt

dq t 1323sin1323cos 500 21

500  
 

 tctce t 1323cos1323sin1323 21

500  
 (3) 

  when 0t , 0008.00 2  c
dt

dq
 

 Hence the required solution is  tteq t 1323sin 0008.01323cos 002.0500  
 

2. The charge  tq  on the capacitor is given by the D.E., tq
dt

dq

dt

qd
2sin71  100012010

2

2

  . at 

time zero the current is zero and the charge on the capacitor is 
2000

1
coulomb. Find the charge 

on the capacitor for 0t . 

Solution: Given differential equation is tq
dt

dq

dt

qd
2sin71  100012010

2

2

  

tq
dt

dq

dt

qd
2sin

10

71
  10012

2

2

  

  tqDD 2sin
10

71
  100122    (1) 

 Its auxiliary equation is 0100122  mm  

8 6
2

40014412
im 


  

   tctceFC t 8sin8cos.. 21

6  
  (2) 

 Now t
DD

IP 2sin
10

71

10012

1
..

2 
  











 t

D
2sin

100124

1
 

10

71
, Put 42 D  

  









 t

D
2sin

812

1
 

10

71
 













 t

D

D
2sin

64

8
 

120

71
2

 













 t

D
2sin

644

8
 

120

71
, Put 42 D  
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 










 tt 2sin82cos2

68

1
 

120

71
 

 tt 2cos2sin4
240

1
    (3) 

Thus the solution of (1) is .... IPFCq   

     tttctceq t 2cos2sin4
240

1
8sin8cos 21

6  
  (4) 

 when 0t , 
1500

7

240

1

2000

1

2000

1
11  ccq  

     tctcetctce
dt

dq tt 8cos88sin88sin8cos6 21

6

21

6  
 

 tt 2sin22cos8
240

1
  (3) 

  when 0t , 0
30

1
860 21  cc

dt

dq
 

1500

1

750

4

30

1

250

7
8

30

1
68 2212





 cccc  

 Hence the required solution is  

   tttt
e

q
t

2cos2sin4
240

1
8sin8cos7

1500

6




 

and      tttt
e

dt

dq
ti

t

2sin2cos4
120

1
8sin8cos

30

6




 

 here the current is a sum of two parts, namely transient part and steady state part. 

 Transient part  tt
e t

8sin8cos
30

6




 

 It is named so, because it decreses as ‘ t ’ increases. 

 Steady state part  tt 2sin2cos4
120

1
  

3. An uncharged condenser of capacity C is charged by applying an e.m.f. 








LC

t
E sin , 

through leads of self-inductance L and negligible resistance. Prove that at any time t , the charge 

on one of the plates is 
























LC

t

LC

t

LC

tEC
cossin 

2
. 

Solution: Let q be the charge on the condenser, the differential equation of the circuit is 











LC

t
E

q

dt

qd
L sin  

C
 

2

2

 











LC

t

L

E

LC

q

dt

qd
sin   

2

2

 




















LC

t

L

E
q

LC
D sin   

12
  (1) 
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 Its auxiliary equation is 0
12 

LC
m

LC

1
 im   

  

















LC

t
c

LC

t
cFC sincos.. 21  (2) 

 Now 











LC

t

L

E

LC
D

IP sin
1

1
..

2

 













LC

t

LC
D

L

E
sin

1

1

2

, Put 
LC

D
12  , we get denominator as zero 






































 at

a

t
at

aDLC

t

LC

t

L

E
cos

2
sin

1
               , cos

1
2

22
  











LC

t

L

CEt
cos

2
   (3) 

Thus the solution of (1) is .... IPFCq   

  

























LC

t

L

CEt

LC

t
c

LC

t
cq cos

2
sincos 21  (4) 

 when 0t , 00 1  cq  

  

















LC

t

L

CEt

LC

t
cq cos

2
sin    2   (5) 

Differentiating with respect to t , we get 

 

































LC

t

LC

t

LC

t

L

CE

LC

t

LC

c

dt

dq
sincos

2
cos2   (6) 

  when 0t , 
2

0
2

0 2
2 EC

c
L

CE

LC

c

dt

dq
  

Substituting 2c in (5), we get the required solution is  



























LC

t

LC

t

LC

tEC
q cossin 

2
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Unit-III 

PARTIAL DIFFERENTIAL DIFFERENTIAL EQUATIONS 

Introduction: 

 Partial differential equations arise in geometry, physics and in engineering branches 

when the number of independent variables in the given problem under discussion is two or 

more. In such cases any dependent variable is likely to be a function of more than one 

variables, so that it possesses not ordinary derivatives with respect to a single variable but 

partial derivatives with respect to several variables. For example, in the study of thermal 

effects in a solid body the temperature 𝑢 may vary from point to point in the solid as well as 

from time to time, and, as a consequence, the derivatives 
𝜕𝑢

𝜕𝑥
 ,

𝜕𝑢

𝜕𝑦
 ,

𝜕𝑢

𝜕𝑧
 ,

𝜕𝑢

𝜕𝑡
 , will, in general, be 

non zero. In general it may happen that higher derivatives of the types 
𝜕2𝑢

𝜕𝑥2  ,
𝜕2𝑢

𝜕𝑥𝜕𝑦
 ,

𝜕3𝑢

𝜕𝑥3 , etc. 

may be of physical significance.  

 When the laws of physics are applied to a problem of this kind, we may sometimes 

obtain a relation between the derivatives of the kind 

𝜙 (
𝜕𝑢

𝜕𝑥
 ,

𝜕𝑢

𝜕𝑦
 ,

𝜕2𝑢

𝜕𝑥2
 , … … ,

𝜕2𝑢

𝜕𝑥𝜕𝑦
) = 0 

Such an equation relating partial derivatives is called a “Partial Differential 

Equation”. 

Simply, a partial differential equation is an equation involving a function of two or 

more variables and some of its partial derivatives. Therefore a partial differential equation 

contains one dependent variable and more than one independent variable. Hence the main 

difference between partial and ordinary differential equations if the number of 

independent variables involved in the equations. 

Examples: 

1. 
𝜕2𝑢

𝜕𝑥2 =
𝜕𝑢

𝜕𝑦
where𝑢- dependent variable; 𝑥, 𝑦-independent variables. 

2. (
𝜕𝑢

𝜕𝑥
)

3

+
𝜕𝑢

𝜕𝑦
= 0where𝑢- dependent variable; 𝑥, 𝑦-independent variables. 

3. 𝑥
𝜕𝑢

𝜕𝑥
+ 𝑦

𝜕𝑢

𝜕𝑦
+

𝜕𝑢

𝜕𝑡
= 0where𝑢- dependent variable; 𝑥, 𝑦-independent variables. 
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 The order of a partial differential equation is the order of the highest partial 

derivative occurring in the equation. 

 In the above, example 1 is a second order equation in two variables, example 2 is a 

first order equation in two variables and example 3 is first order equation in three 

variables. 

 Now the students are able to understand what a partial differential equation is and 

how to identify whether a given differential equation is a partial differential or ordinary 

differential equation.  

 Now we are going to see how a partial differential equation is formed by using a 

given equation. Actually there are two methods to form a partial differential equation as 

given below. 

Formation of Partial Differential Equations: 

 In practice, there are two methods to form a partial differential equation. 

(i) By elimination of arbitrary constants 

(ii) By elimination of arbitrary functions 

Formation of Partial Differential Equations by Elimination of Arbitrary Constants: 

 Let 𝑓(𝑥, 𝑦, 𝑧, 𝑎, 𝑏) = 0                    (1) 

be an equation which contains two arbitrary constants ‘𝑎’ and ‘𝑏’. We know that, to 

eliminate two constants we need atleast three equations. Therefore partially differentiating 

equation (1) with respect to 𝑥 and 𝑦 we get two more equations. From these three 

equations we can eliminate the two constants  ‘𝑎’ and ‘𝑏’. Similarly, for eliminating three 

constants we need four equations and so on.  

Note 1: If the number of arbitrary constants to be eliminated is equal to the number of 

independent variables, elimination of constants gives a first order partial differential 

equation. If the number of arbitrary constants to be eliminated is greater than the number 

of independent variables, then the elimination of constants gives a second or higher order 

partial differential equations. 

Note 2: In this chapter we use the following notations. 

𝑝 =
𝜕𝑧

𝜕𝑥
 , 𝑞 =

𝜕𝑧

𝜕𝑦
 , 𝑟 =

𝜕2𝑧

𝜕𝑥2
 , 𝑠 =

𝜕2𝑧

𝜕𝑥𝜕𝑦
and 𝑡 =

𝜕2𝑧

𝜕𝑦2
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EXAMPLES 

1. Form the partial differential equation by eliminating the arbitrary constants from  

𝑧 = 𝑎𝑥 + 𝑏𝑦 + 𝑎2 + 𝑏2 . 

Solution: Given 𝑧 = 𝑎𝑥 + 𝑏𝑦 + 𝑎2 + 𝑏2          (1) 

Partially differentiating (1) with respect to ‘𝑥’ and ‘𝑦’, we get 

𝑝 =
𝜕𝑧

𝜕𝑥
= 𝑎            (2) 

𝑞 =
𝜕𝑧

𝜕𝑦
= 𝑏          (3) 

From equations (2) and (3), we get 

𝑎 = 𝑝 and 𝑏 = 𝑞 

Substituting these values of 𝑎 and 𝑏 in (1), we get 

𝑧 = 𝑝𝑥 + 𝑞𝑦 + 𝑝2 + 𝑞2 

This is the required partial differential equation. 

2. Form the partial differential equation by eliminating the arbitrary constants from  

𝑧 = (𝑥 − 𝑎)2 + (𝑦 − 𝑏)2 + 1. 

Solution: Given 𝑧 = (𝑥 − 𝑎)2 + (𝑦 − 𝑏)2 + 1          (1) 

Partially differentiating (1) with respect to ‘𝑥’ and ‘𝑦’, we get 

𝑝 =
𝜕𝑧

𝜕𝑥
= 2(𝑥 − 𝑎)            (2) 

𝑞 =
𝜕𝑧

𝜕𝑦
= 2(𝑦 − 𝑏)          (3) 

From equations (2) and (3), we get 

𝑎 = 𝑥 −
𝑝

2
and 𝑏 = 𝑦 −

𝑞

2
 

Substituting these values of 𝑎 and 𝑏 in (1), we get 
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         𝑧 = (
𝑝

2
)

2

+ (
𝑞

2
)

2

+ 1 

4𝑧 = 𝑝2 + 𝑞2 + 4 

This is the required partial differential equation. 

3. Form the partial differential equation by eliminating the arbitrary constants from  

𝑧 = (𝑥2 + 𝑎)(𝑦2 + 𝑏). 

Solution: Given 𝑧 = (𝑥2 + 𝑎)(𝑦2 + 𝑏)          (1) 

Partially differentiating (1) with respect to ‘𝑥’ and ‘𝑦’, we get 

𝑝 =
𝜕𝑧

𝜕𝑥
= 2𝑥(𝑦2 + 𝑏)            (2) 

𝑞 =
𝜕𝑧

𝜕𝑦
= 2𝑦(𝑥2 + 𝑎)          (3) 

From equations (2) and (3), we get 

𝑦2 + 𝑏 =
𝑝

2𝑥
                          (4) 

and𝑥2 + 𝑎 =
𝑞

2𝑦
                                  (5) 

Substituting (4) and (5) in (1), we get 

         𝑧 = (
𝑝

2𝑥
) (

𝑞

2𝑦
)      or  𝑝𝑞 = 4𝑥𝑦𝑧 

This is the required partial differential equation. 

4. Find the differential equation of all spheres of radius 5 having their centre’s in the 𝒙𝒚-

plane. 

Solution: The equation of the given spheres is  

(𝑥 − 𝑎)2 + (𝑦 − 𝑏)2 + 𝑧2 = 25                                 (1) 

Partially differentiating (1) with respect to ‘𝑥’ and ‘𝑦’, we get 

2(𝑥 − 𝑎) + 2𝑧𝑝 = 0 ⇒  𝑥 − 𝑎 = −𝑧𝑝                      (2) 

2(𝑦 − 𝑏) + 2𝑧𝑞 = 0 ⇒  𝑦 − 𝑏 = −𝑧𝑞                      (3) 
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Substituting (2) and (3) in (1), we get 

𝑧2𝑝2 + 𝑧2𝑞2 + 𝑧2 = 25 

𝑧2(𝑝2 + 𝑞2 + 1) = 25 

This is the required partial differential equation. 

5. Form the partial differential equation by eliminating the constants from 

𝒛 = 𝒂𝒙𝒆𝒚 +
𝟏

𝟐
𝒂𝟐𝒆𝟐𝒚 + 𝒃. 

Solution: Given      𝑧 = 𝑎𝑥𝑒𝑦 +
1

2
𝑎2𝑒2𝑦 + 𝑏                                                        (1) 

Partially differentiating (1) with respect to ‘𝑥’ and ‘𝑦’, we get 

𝜕𝑧

𝜕𝑥
= 𝑝 = 𝑎𝑒𝑦 ⇒ 𝑎 =

𝑝

𝑒𝑦
                                           (2) 

𝜕𝑧

𝜕𝑦
= 𝑞 = 𝑎𝑥𝑒𝑦 +

1

2
𝑎2𝑒2𝑦(2) 

                                     𝑖. 𝑒. ,
𝜕𝑧

𝜕𝑦
=

𝑝

𝑒𝑦
𝑥𝑒𝑦 + (

𝑝

𝑒𝑦
)

2

𝑒2𝑦 , using (1) 

                                     𝑖. 𝑒. ,   𝑞 = 𝑝𝑥 + 𝑝2 

This is the required partial differential equation. 

6. Form the partial differential equation by eliminating the constants ‘𝒂’ and ‘𝒃’ from 

𝒛 = 𝒂 𝒍𝒐𝒈 [
𝒃(𝒚 − 𝟏)

𝟏 − 𝒙
]. 

Solution: Given      𝑧 = 𝑎𝑙𝑜𝑔 [
𝑏(𝑦−1)

1−𝑥
]                                                        (1) 

Partially differentiating (1) with respect to ‘𝑥’ and ‘𝑦’, we get 

𝜕𝑧

𝜕𝑥
= 𝑝 = 𝑎 [

1 − 𝑥

𝑏(𝑦 − 1)
] . 𝑏(𝑦 − 1) [

−1

(1 − 𝑥)2
] (−1) 

                                𝑖. 𝑒., 𝑝 =
𝑎

1 − 𝑥
 ⇒ 𝑎 = 𝑝(1 − 𝑥)                       (2) 

𝜕𝑧

𝜕𝑦
= 𝑞 = 𝑎 [

1 − 𝑥

𝑏(𝑦 − 1)
]

𝑏

1 − 𝑥
=

𝑎

𝑦 − 1
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                                𝑖. 𝑒. ,       𝑎 = 𝑞(𝑦 − 1)                                                 (3) 

From (2) and (3), we get 

                               𝑝(1 − 𝑥) = 𝑞(𝑦 − 1)or                𝑝𝑥 + 𝑞𝑦 = 𝑝 + 𝑞 

This is the required partial differential equation. 

7. Form the partial differential equation by eliminating the constants ‘𝒂’ and ‘𝒃’ from 

𝟐𝒛 = (𝒙 + 𝒂)𝟏/𝟐 + (𝒚 − 𝒂)𝟏/𝟐 + 𝒃. 

Solution: Given      2𝑧 = (𝑥 + 𝑎)1/2 + (𝑦 − 𝑎)1/2 + 𝑏                  (1) 

Partially differentiating (1) with respect to ‘𝑥’ and ‘𝑦’, we get 

                             2 
𝜕𝑧

𝜕𝑥
=

1

2√𝑥 + 𝑎
   ⇒   2𝑝 =

1

2√𝑥 + 𝑎
 

                             𝑖. 𝑒., √𝑥 + 𝑎 =
1

4𝑝
                                           (2) 

                             2 
𝜕𝑧

𝜕𝑦
=

1

2√𝑦 − 𝑎
   ⇒   2𝑞 =

1

2√𝑦 − 𝑎
 

                             𝑖. 𝑒., √𝑦 − 𝑎 =
1

4𝑞
                                           (3) 

From(2),     𝑥 + 𝑎 =
1

16𝑝2
   ⇒   𝑎 =

1

16𝑝2
− 𝑥                          (4) 

From(3),     𝑦 − 𝑎 =
1

16𝑞2
   ⇒   𝑎 = 𝑦 −

1

16𝑞2
                          (5) 

From (4) and (5), we get 

                        𝑥 + 𝑦 =
1

16
(

1

𝑝2
+

1

𝑞2
) or

1

𝑝2
+

1

𝑞2
= 16(𝑥 + 𝑦) 

This is the required partial differential equation. 

 

8. Form the partial differential equation by eliminating the constants ‘𝒂’ and ‘𝒃’ from 

(𝒙 − 𝒂)𝟐 + (𝒚 − 𝒃)𝟐 = 𝒛𝟐𝒄𝒐𝒕𝟐𝜶. 
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Solution: Given      (𝑥 + 𝑎)2 + (𝑦 − 𝑏)2 = 𝑧2𝑐𝑜𝑡2𝛼                  (1) 

Partially differentiating (1) with respect to ‘𝑥’ and ‘𝑦’, we get 

                 2(𝑥 − 𝑎) = 2𝑧 
𝜕𝑧

𝜕𝑥
𝑐𝑜𝑡2𝛼  ⇒   𝑥 − 𝑎 = 𝑧 𝑝𝑐𝑜𝑡2𝛼      (2) 

                 2(𝑦 − 𝑏) = 2𝑧 
𝜕𝑧

𝜕𝑦
𝑐𝑜𝑡2𝛼  ⇒   𝑦 − 𝑏 = 𝑧 𝑞𝑐𝑜𝑡2𝛼      (3) 

Using (2) and (3) in (1), we get 

𝑧2𝑝2𝑐𝑜𝑡4𝛼 + 𝑧2𝑞2𝑐𝑜𝑡4𝛼 = 𝑧2𝑐𝑜𝑡2𝛼                 ⇒   𝑝2 + 𝑞2 = 𝑡𝑎𝑛2𝛼 

This is the required partial differential equation. 

9. Find the partial differential equation of all planes having equal intercepts on the  𝒙 and𝒚 

axis. 

Solution: The equation of such plane is  

𝑥

𝑎
+

𝑦

𝑎
+

𝑧

𝑏
= 1                                      (1) 

Partially differentiating (1) with respect to ‘𝑥’ and ‘𝑦’, we get 

1

𝑎
+

𝑝

𝑏
= 0  ⇒   𝑝 = −

𝑏

𝑎
                   (2) 

1

𝑎
+

𝑞

𝑏
= 0  ⇒   𝑞 = −

𝑏

𝑎
                   (3) 

From (2) and (3), we get                               𝑝 = 𝑞 

This is the required partial differential equation. 

10. Form the partial differential equation by eliminating the constants ‘𝒂’ and ‘𝒃’ from 

𝒛 = 𝒂𝒙𝒏 + 𝒃𝒚𝒏. 

Solution: Given      𝑧 = 𝑎𝑥𝑛 + 𝑏𝑦𝑛                                    (1) 

Partially differentiating (1) with respect to ‘𝑥’ and ‘𝑦’, we get 

                           𝑝 =
𝜕𝑧

𝜕𝑥
= 𝑎 𝑛𝑥𝑛−1   ⇒   𝑎 =

𝑝

𝑛𝑥𝑛−1
     (2) 
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                           𝑞 =
𝜕𝑧

𝜕𝑦
= 𝑏 𝑛𝑦𝑛−1   ⇒   𝑏 =

𝑞

𝑛𝑦𝑛−1
     (3) 

Substituting (2) and (3) in (1), we get 

                           𝑧 =
𝑝

𝑛𝑥𝑛−1
𝑥𝑛 +

𝑞

𝑛𝑦𝑛−1
𝑦𝑛 

                           𝑧 =
1

𝑛
(𝑝𝑥 + 𝑞𝑦) 

This is the required  partial differential equation. 

11. Form the partial differential equation by eliminating the constants ‘𝒂’ and ‘𝒃’ from 

(𝒙 − 𝒂)𝟐 + (𝒚 − 𝒃)𝟐 + 𝒛𝟐 = 𝟏. 

Solution: Given      (𝑥 + 𝑎)2 + (𝑦 − 𝑏)2 + 𝑧2 = 1                          (1) 

Partially differentiating (1) with respect to ‘𝑥’ and ‘𝑦’, we get 

                 2(𝑥 − 𝑎) + 2𝑧 
𝜕𝑧

𝜕𝑥
= 0  ⇒   𝑥 − 𝑎 = −𝑧 𝑝      (2) 

                 2(𝑦 − 𝑏) + 2𝑧 
𝜕𝑧

𝜕𝑦
= 0  ⇒   𝑦 − 𝑏 = −𝑧 𝑞      (3) 

Substituting (2) and (3) in (1), we get 

𝑧2𝑝2 + 𝑧2𝑞2 + 𝑧2 = 1 

𝑝2 + 𝑞2 + 1 =
1

𝑧2
 

This is the required partial differential equation. 

12.  Derive a partial differential equation by eliminating the constants from the equation 

𝟐𝒛 =
𝒙𝟐

𝒂𝟐
+

𝒚𝟐

𝒃𝟐
 . 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: Given     2𝑧 =
𝑥2

𝑎2
+

𝑦2

𝑏2
                              (1) 

Partially differentiating (1) with respect to ‘𝑥’ and ‘𝑦’, we get 
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                2 
𝜕𝑧

𝜕𝑥
=

2𝑥

𝑎2
  ⇒   

1

𝑎2
=

1

𝑥

𝜕𝑧

𝜕𝑥
=

𝑝

𝑥
                (2) 

                2 
𝜕𝑧

𝜕𝑦
=

2𝑦

𝑏2
  ⇒   

1

𝑏2
=

1

𝑦

𝜕𝑧

𝜕𝑦
=

𝑞

𝑦
                (3) 

Substituting (2) and (3) in (1), we get 

 2𝑧 = 𝑥𝑝 + 𝑦𝑞 

This is the required partial differential equation. 

 

13. Find the differential equation of all spheres of the same radius ‘𝒄’ having their centres on 

the 𝒚𝒛-plane. 

Solution: The equation of spheres whose radius is  ‘𝑐’ and the centres (0, 𝑎, 𝑏) lies on 𝑦𝑧-

plane is 

𝑥2 + (𝑦 − 𝑎)2 + (𝑧 − 𝑏)2 = 𝑐2                          (1) 

Differentiating (1) partially with respect to ‘𝑥’ and ‘𝑦’, we get 

                 2𝑥 + 2(𝑧 − 𝑏)
𝜕𝑧

𝜕𝑥
= 0  ⇒   𝑧 − 𝑏 = −

𝑥

𝑝
                      (2) 

                 2(𝑦 − 𝑎) + 2(𝑧 − 𝑏)
𝜕𝑧

𝜕𝑦
= 0  ⇒   𝑦 − 𝑎 =

𝑞𝑥

𝑝
(3)   (using(2)) 

Substituting (2) and (3) in (1), we get 

𝑥2 + (
𝑞𝑥

𝑝
)

2

+ (−
𝑥

𝑝
)

2

= 𝑐2   𝑖. 𝑒. ,       𝑥2(1 + 𝑝2 + 𝑞2) = 𝑐2𝑝2 

This is the required partial differential equation. 

14. Find the differential equation of all spheres whose centres lie on the 𝒛-axis. 

Solution: The equation of such spheres is 

𝑥2 + 𝑦2 + (𝑧 − 𝑐)2 = 𝑟2                          (1)  

where𝑟, 𝑐 are constats 

Differentiating (1) partially with respect to ‘𝑥’ and ‘𝑦’, we get 
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                 2𝑥 + 2(𝑧 − 𝑐)
𝜕𝑧

𝜕𝑥
= 0  ⇒   𝑧 − 𝑐 = − 

𝑥

𝑝
                      (2) 

                 2𝑦 + 2(𝑧 − 𝑐)
𝜕𝑧

𝜕𝑦
= 0  ⇒   𝑧 − 𝑐 = −

𝑦

𝑞
(3) 

From (2) and (3), we get 

𝑥

𝑝
=

𝑦

𝑞
  , 𝑖. 𝑒. ,   𝑞𝑥 = 𝑝𝑦 

This is the required partial differential equation. 

15.  Derive a partial differential equation by eliminating the constants 𝒂 and 𝒃 from 

𝒍𝒐𝒈(𝒂𝒛 − 𝟏) = 𝒙 + 𝒂𝒚 + 𝒃 . 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: Given     𝑙𝑜𝑔(𝑎𝑧 − 1) = 𝑥 + 𝑎𝑦 + 𝑏                              (1) 

Partially differentiating (1) with respect to ‘𝑥’ and ‘𝑦’, we get 

𝑎

𝑎𝑧 − 1
 𝑝 = 1                         (2) 

and
𝑎

𝑎𝑧 − 1
 𝑞 = 𝑎                (3) 

From (2) and (3), we get 

                               𝑎 =
1

𝑧 − 𝑝
(4)and  𝑎𝑧 − 1 = 𝑞       (5) 

Substituting (4) in (5), we get 

𝑞 =
𝑧

𝑧 − 𝑝
− 1 or 𝑞(𝑧 − 𝑝) = 𝑝  or  𝑝(𝑞 + 1) = 𝑧𝑞 

This is the required partial differential equation. 

16.  Form the partial differential equation by eliminating the constants from the equation 

𝒙𝟐

𝒂𝟐
+

𝒚𝟐

𝒃𝟐
+

𝒛𝟐

𝒄𝟐
= 𝟏. 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: Given     
𝑥2

𝑎2
+

𝑦2

𝑏2
+

𝑧2

𝑐2
= 1                              (1) 

Partially differentiating (1) with respect to ‘𝑥’ and ‘𝑦’, we get 
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2𝑥

𝑎2
+

2𝑧

𝑐2
 𝑝 = 0                  (2) 

2𝑦

𝑏2
+

2𝑧

𝑐2
 𝑞 = 0                  (3) 

Partially differentiating equation (2) with respect to 𝑥, we get 

2

𝑎2
+

2

𝑐2
(𝑧𝑟 + 𝑝2) = 0      

𝑐2

𝑎2
+  (𝑧𝑟 + 𝑝2) = 0             (4) 

From equation (2), we get 

𝑐2

𝑎2
= −

𝑝𝑧

𝑥
                   (5) 

Substituting (5) in (4), we get 

       −
𝑝𝑧

𝑥
+ (𝑧𝑟 + 𝑝2) = 0𝑖. 𝑒., 𝑧𝑥𝑟 + 𝑥𝑝2 − 𝑧𝑝 = 0 

This is the required partial differential equation. 

 

 

Formation of partial differential equations by elimination of arbitrary functions: 

 Formation of partial differential equations by elimination of arbitrary functions 

from the given relation is explained in the following examples. 

Note: The elimination of one arbitrary function from a given relation gives a partial 

differential equation of first order while elimination of two arbitrary functions from a given 

relation gives a second or higher order partial differential equations. 

 

EXAMPLES 

17. Form the partial differential equation by eliminating the arbitrary function ‘𝒇’ from  

𝒛 = 𝒆𝒂𝒙+𝒃𝒚𝒇(𝒂𝒙 − 𝒃𝒚). 



Dr.K.V.Nageswara Reddy, AITS(Autonomous), Kadapa Page 12 
 
 

Solution: Given         𝑧 = 𝑒𝑎𝑥+𝑏𝑦𝑓(𝑎𝑥 − 𝑏𝑦)                     (1) 

Differentiating (1) partially with respect to ‘𝑥’ and ‘𝑦’, we get 

                 𝑝 =
𝜕𝑧

𝜕𝑥
= 𝑒𝑎𝑥+𝑏𝑦𝑓′(𝑎𝑥 − 𝑏𝑦) . 𝑎 + 𝑎𝑒𝑎𝑥+𝑏𝑦𝑓(𝑎𝑥 − 𝑏𝑦) 

                 𝑝 = 𝑎𝑒𝑎𝑥+𝑏𝑦𝑓′(𝑎𝑥 − 𝑏𝑦) + 𝑎𝑧 

                 ⇒   𝑓′(𝑎𝑥 − 𝑏𝑦) =
𝑝 − 𝑎𝑧

𝑎𝑒𝑎𝑥+𝑏𝑦
                               (2) 

𝑎𝑛𝑑          𝑞 =
𝜕𝑧

𝜕𝑦
= 𝑒𝑎𝑥+𝑏𝑦𝑓′(𝑎𝑥 − 𝑏𝑦) . (−𝑏) + 𝑏𝑒𝑎𝑥+𝑏𝑦𝑓(𝑎𝑥 − 𝑏𝑦) 

                  𝑞 = −𝑏 (
𝑝 − 𝑎𝑧

𝑎
) + 𝑏𝑧   using (2) 

                 𝑎𝑞 = −𝑝𝑏 + 𝑎𝑏𝑧 + 𝑎𝑏𝑧 

                 𝑝𝑏 + 𝑎𝑞 = 2𝑎𝑏𝑧 

This is the required partial differential equation. 

18. Form the partial differential equation by eliminating the arbitrary function from  

𝒛 = (𝒙 + 𝒚) 𝝓(𝒙𝟐 − 𝒚𝟐). 

Solution: Given         𝑧 = (𝑥 + 𝑦) 𝜙(𝑥2 − 𝑦2)                     (1) 

Differentiating (1) partially with respect to ‘𝑥’ and ‘𝑦’, we get 

                 𝑝 =
𝜕𝑧

𝜕𝑥
= (𝑥 + 𝑦)𝜙′(𝑥2 − 𝑦2) .2𝑥 + 𝜙(𝑥2 − 𝑦2) 

            ⇒ 𝑝 = 2𝑥 (𝑥 + 𝑦)𝜙′(𝑥2 − 𝑦2) +
𝑧

𝑥 + 𝑦
 

            ⇒ 𝑝 −
𝑧

𝑥 + 𝑦
= 2𝑥 (𝑥 + 𝑦)𝜙′(𝑥2 − 𝑦2)                (2) 

and          𝑞 =
𝜕𝑧

𝜕𝑦
= (𝑥 + 𝑦)𝜙′(𝑥2 − 𝑦2) . −2𝑦 + 𝜙(𝑥2 − 𝑦2) 

            ⇒ 𝑞 = −2𝑦 (𝑥 + 𝑦)𝜙′(𝑥2 − 𝑦2) +
𝑧

𝑥 + 𝑦
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            ⇒ 𝑞 −
𝑧

𝑥 + 𝑦
= −2𝑦 (𝑥 + 𝑦)𝜙′(𝑥2 − 𝑦2)            (3) 

Division gives
𝑝 −

𝑧

𝑥+𝑦

𝑞 −
𝑧

𝑥+𝑦

= −
𝑥

𝑦
 

             ⇒  [𝑝(𝑥 + 𝑦) − 𝑧]𝑦 + [𝑞(𝑥 + 𝑦) − 𝑧]𝑥 = 0 

             ⇒  (𝑥 + 𝑦)(𝑝𝑦 + 𝑞𝑥) − 𝑧(𝑥 + 𝑦) = 0 

             ⇒  𝑝𝑦 + 𝑞𝑥 = 𝑧 

This is the required partial differential equation. 

19. Form the partial differential equation by eliminating the arbitrary functions from  

𝒛 = 𝒇(𝒙 + 𝒂𝒕) + 𝒈(𝒙 − 𝒂𝒕). 

Solution: Given         𝑧 = 𝑓(𝑥 + 𝑎𝑡) + 𝑔(𝑥 − 𝑎𝑡)                     (1) 

Differentiating (1) partially with respect to ‘𝑥’ and ‘𝑡’, we get 

𝜕𝑧

𝜕𝑥
= 𝑓′(𝑥 + 𝑎𝑡) +  𝑔′(𝑥 − 𝑎𝑡),   

𝜕2𝑧

𝜕𝑥2
= 𝑓′′(𝑥 + 𝑎𝑡) +  𝑔′′(𝑥 − 𝑎𝑡)         (2) 

𝜕𝑧

𝜕𝑡
= 𝑎 𝑓′(𝑥 + 𝑎𝑡) − 𝑎 𝑔′(𝑥 − 𝑎𝑡) 

and
𝜕2𝑧

𝜕𝑡2
= 𝑎2𝑓′′(𝑥 + 𝑎𝑡) + 𝑎2𝑔′′(𝑥 − 𝑎𝑡) = 𝑎2

𝜕2𝑧

𝜕𝑥2
From(2) 

thus the required partial differential equation is  

𝜕2𝑧

𝜕𝑡2
= 𝑎2

𝜕2𝑧

𝜕𝑥2
 

Which is an equation of the second order and (1) is its solution. 

20. Form the partial differential equation by eliminating the arbitrary function ‘𝒇’ from  

𝒛 =  𝒇(𝒙𝟐 − 𝒚𝟐). 

Solution: Given         𝑧 = 𝑓(𝑥2 − 𝑦2)                     (1) 

Differentiating (1) partially with respect to ‘𝑥’ and ‘𝑦’, we get 
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                 𝑝 =
𝜕𝑧

𝜕𝑥
= 𝑓′(𝑥2 − 𝑦2) .2𝑥 

            ⇒
𝑝

2𝑥
=  𝑓′(𝑥2 − 𝑦2)                                    (2) 

and          𝑞 =
𝜕𝑧

𝜕𝑦
= 𝑓′(𝑥2 − 𝑦2) . −2𝑦 

            ⇒  −
𝑞

2𝑦
= 𝑓′(𝑥2 − 𝑦2)                               (3) 

From (2) and (3), we get 

𝑝

2𝑥
= −

𝑞

2𝑦
  ⇒   𝑝𝑦 + 𝑞𝑥 = 0 

This is the required partial differential equation. 

21. Form the partial differential equation by eliminating the arbitrary functions from  

𝒛 = 𝒇(𝒙) + 𝒆𝒚𝒈(𝒙). 

Solution: Given         𝑧 = 𝑓(𝑥) + 𝑒𝑦𝑔(𝑥)                     (1) 

Differentiating (1) partially with respect to ‘𝑥’ and ‘𝑦’, we get 

                 𝑝 =
𝜕𝑧

𝜕𝑥
= 𝑓′(𝑥) + 𝑒𝑦𝑔′(𝑥)                          (2) 

                 𝑞 =
𝜕𝑧

𝜕𝑦
= 𝑒𝑦𝑔(𝑥)                                            (3) 

From (3), we get 

𝜕2𝑧

𝜕𝑦2
= 𝑒𝑦𝑔(𝑥) =

𝜕𝑧

𝜕𝑦
From(3) 

Therefore the required partial differential equation is    
𝜕2𝑧

𝜕𝑦2 =
𝜕𝑧

𝜕𝑦
 

22. Eliminate 𝒇𝟏𝐚𝐧𝐝𝒇𝟐from 𝒛 = 𝒇𝟏(𝒙)𝒇𝟐(𝒚). 

Solution: Given  𝑧 = 𝑓1(𝑥)𝑓2(𝑦)                        (1) 

Differentiating (1) partially with respect to ‘𝑥’ and ‘𝑦’, we get 
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                 𝑝 =
𝜕𝑧

𝜕𝑥
= 𝑓1

′(𝑥)𝑓2(𝑦)                           (2) 

                 𝑞 =
𝜕𝑧

𝜕𝑦
= 𝑓1(𝑥)𝑓2

′(𝑦)                           (3) 

Differentiating (3) with respect to ‘𝑥’ we get 

                 𝑠 =
𝜕2𝑧

𝜕𝑥 𝜕𝑦
= 𝑓1

′(𝑥)𝑓2
′(𝑦)                   (4) 

(2) × (3)  ⇒   𝑝𝑞 = 𝑓1
′(𝑥)𝑓2(𝑦). 𝑓1(𝑥)𝑓2

′(𝑦) 

                 ⇒   𝑝𝑞 = 𝑠 𝑧 ,   Using (1) and (4) 

This is the required partial differential equation. 

23. Form the partial differential equation by eliminating 𝒇 𝒂𝒏𝒅𝝓from  𝒛 = 𝒇(𝒚) + 𝝓(𝒙 +

𝒚 + 𝒛). 

Solution: Given   𝑧 = 𝑓(𝑦) + 𝜙(𝑥 + 𝑦 + 𝑧)(1) 

Differentiating (1) partially with respect to ‘𝑥’ and ‘𝑦’, we get 

                 𝑝 =
𝜕𝑧

𝜕𝑥
= 𝜙′(𝑥 + 𝑦 + 𝑧). (1 + 𝑝)                                                                   (2) 

                 𝑞 =
𝜕𝑧

𝜕𝑦
= 𝑓′(𝑦) + 𝜙′(𝑥 + 𝑦 + 𝑧). (1 + 𝑞)                                                   (3) 

                 𝑟 =
𝜕2𝑧

𝜕𝑥2
= 𝜙′(𝑥 + 𝑦 + 𝑧). 𝑟 + 𝜙′′(𝑥 + 𝑦 + 𝑧). (1 + 𝑝)2                          (4) 

                 𝑠 =
𝜕2𝑧

𝜕𝑥 𝜕𝑦
= 𝜙′(𝑥 + 𝑦 + 𝑧). 𝑠 + 𝜙′′(𝑥 + 𝑦 + 𝑧). (1 + 𝑝)(1 + 𝑞)           (5) 

                 𝑡 =
𝜕2𝑧

𝜕𝑦2
= 𝑓′′(𝑦) + 𝜙′(𝑥 + 𝑦 + 𝑧). 𝑡 + 𝜙′′(𝑥 + 𝑦 + 𝑧). (1 + 𝑞)2          (6) 

From (4),                  𝑟[1 − 𝜙′(𝑥 + 𝑦 + 𝑧)] = (1 + 𝑝)2𝜙′′(𝑥 + 𝑦 + 𝑧)                                       (7) 

From (5),                  𝑠[1 − 𝜙′(𝑥 + 𝑦 + 𝑧)] = (1 + 𝑝)(1 + 𝑞)𝜙′′(𝑥 + 𝑦 + 𝑧)                         (8) 

Now        
(7)

(8)
  ⇒  

𝑟

𝑠
=

1 + 𝑝

1 + 𝑞
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This is the required partial differential equation. 

24. Eliminate the arbitrary function 𝒇 from 𝒛 = 𝒇 (
𝒙𝒚

𝒛
) and form the partial differential 

equation. 

Solution:  Given   𝑧 = 𝑓 (
𝑥𝑦

𝑧
)                                 (1) 

Differentiating (1) partially with respect to ‘𝑥’ and ‘𝑦’, we get 

                 𝑝 =
𝜕𝑧

𝜕𝑥
= 𝑓′ (

𝑥𝑦

𝑧
) .

𝑧𝑦 − 𝑥𝑦. 𝑝

𝑧2
             (2) 

                 𝑞 =
𝜕𝑧

𝜕𝑦
= 𝑓′ (

𝑥𝑦

𝑧
) .

𝑧𝑥 − 𝑥𝑦. 𝑞

𝑧2
             (3) 

Now        
(2)

(3)
  ⇒

𝑝

𝑞
=

𝑧𝑦 − 𝑥𝑦. 𝑝

𝑧𝑥 − 𝑥𝑦. 𝑞
   ⇒    𝑝𝑥 = 𝑞𝑦 

This is the required partial differential equation. 

25. Form the partial differential equation by eliminating the arbitrary functions 𝒇 and 𝒈from 

𝒛 = 𝒇(𝟐𝒙 + 𝒚) + 𝒈(𝟑𝒙 − 𝒚). 

Solution:  Given   𝑧 = 𝑓(2𝑥 + 𝑦) + 𝑔(3𝑥 − 𝑦)   (1) 

Differentiating (1) partially with respect to ‘𝑥’ and ‘𝑦’, we get 

                 𝑝 =
𝜕𝑧

𝜕𝑥
= 2 𝑓′(2𝑥 + 𝑦) + 3 𝑔′(3𝑥 − 𝑦) 

(Or)         𝑝 = 2 𝑓′ + 3 𝑔′                                       (2) 

Where 𝑓′ means 𝑓′(2𝑥 + 𝑦) and 𝑔′ means  𝑔′(3𝑥 − 𝑦) 

and          𝑞 =
𝜕𝑧

𝜕𝑦
= 𝑓′(2𝑥 + 𝑦) − 𝑔′(3𝑥 − 𝑦) 

(Or)         𝑞 = 𝑓′ − 𝑔′                                              (3) 

From(2), 𝑟 =
𝜕2𝑧

𝜕𝑥2
= 4 𝑓′′ + 9 𝑔′′            (4) 

Where 𝑓′′  means 𝑓′′(2𝑥 + 𝑦) and 𝑔′′ means  𝑔′′(3𝑥 − 𝑦) 
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From(2), 𝑠 =
𝜕2𝑧

𝜕𝑥 𝜕𝑦
= 2 𝑓′′ − 3 𝑔′′            (5) 

From(3), 𝑡 =
𝜕2𝑧

𝜕𝑦2
= 𝑓′′ + 𝑔′′                       (6) 

Eliminating 𝑓′′ and 𝑔′′ from (4), (5) and (6), we get 

|
4 9 𝑟
2 −3 𝑠
1 1 𝑡

| = 0       [Using determinant] 

𝑖. 𝑒., 4(−3𝑡 − 𝑠) − 9(2𝑡 − 𝑠) + 𝑟(2 + 3) = 0   

𝑖. 𝑒. ,                      −12𝑡 − 4𝑠 − 18𝑡 + 9𝑠 + 5𝑟 = 0 

𝑖. 𝑒. ,                                                5𝑟 + 5𝑠 − 30𝑡 = 0 

𝑖. 𝑒.,                                  
𝜕2𝑧

𝜕𝑥2
+  

𝜕2𝑧

𝜕𝑥 𝜕𝑦
− 6 

𝜕2𝑧

𝜕𝑦2
= 0 

This is the required partial differential equation. 

26. Form the partial differential equation by eliminating the arbitrary function 𝒈 from the 

relation 𝒛 = 𝒚𝟐 + 𝟐 𝒈 (
𝟏

𝒙
+ 𝒍𝒐𝒈 𝒚). 

Solution: Given   𝑧 = 𝑦2 + 2 𝑔 (
1

𝑥
+ 𝑙𝑜𝑔 𝑦)               (1) 

Here we have to eliminate the only arbitrary function 𝑔. 

For, differentiating partially (1) with respect to ‘𝑥’ and ‘𝑦’ we get 

                 𝑝 =
𝜕𝑧

𝜕𝑥
= 2 𝑔′ (

1

𝑥
+ 𝑙𝑜𝑔 𝑦) . (

−1

𝑥2
) 

𝑖. 𝑒. ,          𝑝 =
−2

𝑥2
𝑔′ (

1

𝑥
+ 𝑙𝑜𝑔 𝑦) 

𝑖. 𝑒. ,          2 𝑔′ (
1

𝑥
+ 𝑙𝑜𝑔 𝑦) = −𝑝 𝑥2                              (2) 

and          𝑞 =
𝜕𝑧

𝜕𝑦
= 2𝑦 + 2 𝑔′ (

1

𝑥
+ 𝑙𝑜𝑔 𝑦) . (

1

𝑦
) 

𝑖. 𝑒. ,          𝑞 = 2𝑦 +
2

𝑦
𝑔′ (

1

𝑥
+ 𝑙𝑜𝑔 𝑦)                           (3) 
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𝑖. 𝑒. ,          𝑞 = 2𝑦 −
𝑝 𝑥2

𝑦
Using  (2) 

𝑖. 𝑒. ,          𝑝 𝑥2 + 𝑞𝑦 = 2𝑦2 

This is the required partial differential equation. 

27. Form the partial differential equation by eliminating the arbitrary function 𝛟 from 

𝒙𝒚𝒛 = 𝝓(𝒙𝟐 + 𝒚𝟐 − 𝒛𝟐). 

Solution: Given   𝑥𝑦𝑧 = 𝜙(𝑥2 + 𝑦2 − 𝑧2)         (1) 

This equation contains only one arbitrary function 𝜙 and we have to eliminate it. 

For, differentiating (1) partially with respect to ‘𝑥’ and ‘𝑦’ we get 

                 𝑦𝑧 + 𝑥𝑦𝑝 =  𝜙′(𝑥2 + 𝑦2 − 𝑧2). (2𝑥 − 2𝑧𝑝) 

and𝑥𝑧 + 𝑥𝑦𝑞 =  𝜙′(𝑥2 + 𝑦2 − 𝑧2). (2𝑦 − 2𝑧𝑞) 

⇒      𝜙′(𝑥2 + 𝑦2 − 𝑧2) =
𝑦𝑧 + 𝑥𝑦𝑝

2𝑥 − 2𝑧𝑝
                        (2) 

and𝜙′(𝑥2 + 𝑦2 − 𝑧2) =
𝑥𝑧 + 𝑥𝑦𝑞

2𝑦 − 2𝑧𝑞
                        (3) 

From (2) and (3), we get 

𝑦𝑧 + 𝑥𝑦𝑝

2𝑥 − 2𝑧𝑝
=

𝑥𝑧 + 𝑥𝑦𝑞

2𝑦 − 2𝑧𝑞
 

𝑖. 𝑒.,                    (𝑦𝑧 + 𝑥𝑦𝑝)(2𝑦 − 2𝑧𝑞) = (𝑥𝑧 + 𝑥𝑦𝑞)(2𝑥 − 2𝑧𝑝) 

𝑖. 𝑒. ,                         𝑦 (𝑧 + 𝑥𝑝)(𝑦 − 𝑧𝑞) = 𝑥 (𝑧 + 𝑦𝑞)(𝑥 − 𝑧𝑝) 

𝑖. 𝑒., 𝑝𝑥 (𝑦2 + 𝑧2) − 𝑞𝑦 (𝑥2 + 𝑧2) = 𝑧 (𝑥2 − 𝑦2) 

This is the required partial differential equation. 

28. Form the partial differential equation by eliminating the arbitrary functions from  

𝒛 = 𝒙 𝒇𝟏(𝒙 + 𝒕) + 𝒇𝟐(𝒙 + 𝒕). 

Solution:   Given  𝑧 = 𝑥 𝑓1(𝑥 + 𝑡) + 𝑓2(𝑥 + 𝑡)               (1) 

Differentiating (1) partially with respect to ‘𝑥’ and ‘𝑦’ we get 
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𝜕𝑧

𝜕𝑥
= 𝑥 𝑓1

′(𝑥 + 𝑡) + 𝑓1(𝑥 + 𝑡) + 𝑓2
′(𝑥 + 𝑡)            (2) 

𝜕𝑧

𝜕𝑡
= 𝑥 𝑓1

′(𝑥 + 𝑡) + 𝑓2
′(𝑥 + 𝑡)                                    (3) 

𝜕2𝑧

𝜕𝑥2
= 𝑥 𝑓1

′′(𝑥 + 𝑡) + 2𝑓1
′(𝑥 + 𝑡) + 𝑓2

′′(𝑥 + 𝑡)            (4) 

𝜕2𝑧

𝜕𝑡2
= 𝑥 𝑓1

′′(𝑥 + 𝑡) + 𝑓2
′′(𝑥 + 𝑡)                                         (5) 

𝜕2𝑧

𝜕𝑥 𝜕𝑡
= 𝑥 𝑓1

′′(𝑥 + 𝑡) + 𝑓1
′(𝑥 + 𝑡) + 𝑓2

′′(𝑥 + 𝑡) 

𝑖. 𝑒. ,   
𝜕2𝑧

𝜕𝑥 𝜕𝑡
=

𝜕2𝑧

𝜕𝑡2
+ 𝑓1

′(𝑥 + 𝑡)[Using (5)]                                  (6)   

Substituting (5) in (4), we get 

𝜕2𝑧

𝜕𝑥2
=

𝜕2𝑧

𝜕𝑡2
+ 2 𝑓1

′(𝑥 + 𝑡) 

𝑖. 𝑒. ,      
𝜕2𝑧

𝜕𝑥2
=

𝜕2𝑧

𝜕𝑡2
+ 2 [

𝜕2𝑧

𝜕𝑥 𝜕𝑡
−

𝜕2𝑧

𝜕𝑡2
]           [Using(6)] 

𝑖. 𝑒. ,      
𝜕2𝑧

𝜕𝑥2
= 2

𝜕2𝑧

𝜕𝑥 𝜕𝑡
−

𝜕2𝑧

𝜕𝑡2
 

This is the required partial differential equation. 

29. Form the partial differential equation by eliminating arbitrary function from 

𝒛 = 𝒆𝒎𝒚𝒇(𝒙 − 𝒚). 

Solution: Given  𝑧 = 𝑒𝑚𝑦𝑓(𝑥 − 𝑦)                        (1) 

Differentiating (1) partially with respect to ‘𝑥’ and ‘𝑦’ we get 

              𝑝 =
𝜕𝑧

𝜕𝑥
= 𝑒𝑚𝑦𝑓′(𝑥 − 𝑦)                            (2) 

              𝑞 =  
𝜕𝑧

𝜕𝑦
= −𝑒𝑚𝑦𝑓′(𝑥 − 𝑦) + 𝑚𝑒𝑚𝑦𝑓(𝑥 − 𝑦) 

𝑖. 𝑒. ,      𝑞 = −𝑝 + 𝑚𝑒𝑚𝑦𝑓(𝑥 − 𝑦)        [Using (2)] 
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𝑖. 𝑒. ,      𝑝 + 𝑞 = 𝑚𝑧                                  [Using (1)] 

This is the required partial differential equation. 

 

30. Form the partial differential equation by eliminating the arbitrary functions ‘𝒇’ and ‘𝒈’ 

from 𝒛 = 𝒙𝟐𝒇(𝒚) + 𝒚𝟐𝒈(𝒙). 

Solution:  Given   𝑧 = 𝑥2𝑓(𝑦) + 𝑦2𝑔(𝑥)                        (1) 

Differentiating (1) partially with respect to ‘𝑥’ and ‘𝑦’ we get 

                 𝑝 =
𝜕𝑧

𝜕𝑥
= 2𝑥 𝑓 + 𝑦2𝑔′                            (2) 

                 𝑞 =  
𝜕𝑧

𝜕𝑦
= 𝑥2𝑓′ + 2𝑦 𝑔                           (3) 

                  𝑟 =  
𝜕2𝑧

𝜕𝑥2
= 2𝑓 + 𝑦2𝑔′′                           (4) 

                  𝑠 =  
𝜕2𝑧

𝜕𝑥 𝜕𝑦 
= 2𝑥𝑓′ + 2𝑦 𝑔′                  (5) 

                  𝑡 =  
𝜕2𝑧

𝜕𝑦2
= 𝑥2𝑓′′ + 2 𝑔                           (6) 

(3)  ⇒   𝑓′ =
𝑞 − 2 𝑔 𝑦

𝑥2
                                             (7) 

(2)  ⇒   𝑔′ =
𝑝 − 2 𝑓 𝑥

𝑦2
                                             (8) 

Substituting (7) and (8) in (5), we get 

                  𝑠 = 2𝑥 [
𝑞 − 2 𝑔 𝑦

𝑥2
] + 2𝑦 [

𝑝 − 2 𝑓 𝑥

𝑦2
] 

𝑖. 𝑒. ,          𝑠 = 2 [
𝑦(𝑞 − 2 𝑔 𝑦) + 𝑥(𝑝 − 2 𝑓 𝑥)

𝑥𝑦
] 

𝑖. 𝑒. ,      𝑥𝑦𝑠 = 2[𝑞𝑦 + 𝑝𝑥 − 2(𝑥2𝑓 + 𝑦2𝑔)] 

𝑖. 𝑒. ,      𝑥𝑦𝑠 = 2[𝑝𝑥 + 𝑞𝑦 − 2𝑧]                 From (1) 
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This is the required partial differential equation. 

31. Obtain the partial differential equation by eliminating ‘𝒇’ from  𝒙𝒚 + 𝒚𝒛 + 𝒛𝒙 = 𝒇 (
𝒛

𝒙+𝒚
). 

Solution:  Given   𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥 = 𝑓 (
𝑧

𝑥+𝑦
)                        (1) 

Here we have to eliminate the only one arbitrary function ‘𝑓’. For differentiating (1) 

partially with respect to ‘𝑥’ we get 

                 𝑦 + 𝑦𝑝 + 𝑧 + 𝑥𝑝 = 𝑓′ (
𝑧

𝑥 + 𝑦
) {

(𝑥 + 𝑦)𝑝 − 𝑧

(𝑥 + 𝑦)2
} 

                𝑖. 𝑒. ,      
(𝑥 + 𝑦)2

(𝑥 + 𝑦)𝑝 − 𝑧
[𝑝(𝑥 + 𝑦) + (𝑦 + 𝑧)] = 𝑓′ (

𝑧

𝑥 + 𝑦
)                    (2) 

Differentiating (1) partially with respect to ‘𝑦’ we get 

                 𝑥 + 𝑦𝑞 + 𝑧 + 𝑥𝑞 = 𝑓′ (
𝑧

𝑥 + 𝑦
) {

(𝑥 + 𝑦)𝑞 − 𝑧

(𝑥 + 𝑦)2
} 

                𝑖. 𝑒. ,      
(𝑥 + 𝑦)2

(𝑥 + 𝑦)𝑞 − 𝑧
[𝑞(𝑥 + 𝑦) + (𝑥 + 𝑧)] = 𝑓′ (

𝑧

𝑥 + 𝑦
)                    (3) 

From (2) and (3), we get 

[𝑝(𝑥 + 𝑦) + (𝑦 + 𝑧)][(𝑥 + 𝑦)𝑞 − 𝑧] = [𝑞(𝑥 + 𝑦) + (𝑥 + 𝑧)][(𝑥 + 𝑦)𝑝 − 𝑧] 

𝑖. 𝑒., 𝑝(𝑥 + 𝑦)(𝑥 + 2𝑧) − 𝑞(𝑥 + 𝑦)(𝑦 + 2𝑧) = 𝑧(𝑥 − 𝑦) 

This is the required partial differential equation. 

32. Obtain the partial differential equation by eliminating the arbitrary functions 𝒇 and  

from  𝒛 = 𝒙 𝒇 (
𝒚

𝒙
) + 𝒚 (𝒙). 

Solution:  Given   𝑧 = 𝑥 𝑓 (
𝑦

𝑥
) + 𝑦 (𝑥)                        (1) 

Here we have to eliminate two arbitrary functions 𝑓and .  

Differentiating (1) partially with respect to ‘𝑥’ and ‘𝑦’ we get 

𝜕𝑧

𝜕𝑥
= 𝑓 (

𝑦

𝑥
) −

𝑦

𝑥
𝑓′ (

𝑦

𝑥
) + 𝑦′(𝑥)                   (2) 
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and
𝜕𝑧

𝜕𝑦
= 𝑓′ (

𝑦

𝑥
) + (𝑥)                                           (3) 

Partially differentiating (3) with respect to ‘𝑦’ and ‘𝑥’, we get 

𝜕2𝑧

𝜕𝑦2
=

1

𝑥
𝑓′′ (

𝑦

𝑥
)                            (4)   

and
𝜕2𝑧

𝜕𝑥𝜕𝑦
= − 

𝑦

𝑥2
𝑓′′ (

𝑦

𝑥
) + 

′(𝑥)    (5)    

Still we are unable to eliminate the two arbitrary functions. Hence we find one more 

partial derivatives i.e., third derivatives. 

Differentiating (4) partially with respect to ‘𝑦’ and ‘𝑥’ we get 

𝜕3𝑧

𝜕𝑦3
=

1

𝑥2
𝑓′′′ (

𝑦

𝑥
)                            (6)   

and
𝜕3𝑧

𝜕𝑥𝜕𝑦2
= − 

1

𝑥2
𝑓′′ (

𝑦

𝑥
) −

𝑦

𝑥3
𝑓′′′ (

𝑦

𝑥
)            (7)    

Substituting (4) and (6) in (7), we get 

𝜕3𝑧

𝜕𝑥𝜕𝑦2
= − 

1

𝑥2
(𝑥 

𝜕2𝑧

𝜕𝑦2
) −

𝑦

𝑥3
(𝑥2

𝜕3𝑧

𝜕𝑦3
) 

𝜕3𝑧

𝜕𝑥𝜕𝑦2
= − 

1

𝑥
[
𝜕2𝑧

𝜕𝑦2
+ 𝑦 

𝜕3𝑧

𝜕𝑦3
]     or            𝑥 

𝜕3𝑧

𝜕𝑥𝜕𝑦2
+

𝜕2𝑧

𝜕𝑦2
+ 𝑦 

𝜕3𝑧

𝜕𝑦3
= 0 

This is the required partial differential equation. 

 

 

 

Formation of partial differential equations by elimination of arbitrary function 𝒇 from 

𝒇(𝒖, 𝒗) = 𝟎 where 𝒖 and 𝒗 are functions of 𝒙, 𝒚 𝐚𝐧𝐝 𝒛. 

Let  𝑓(𝑢, 𝑣) = 0               (1) 

be a given function of 𝑢 and 𝑣, where 𝑢 and 𝑣 are functions of 𝑥, 𝑦 and 𝑧. 



Dr.K.V.Nageswara Reddy, AITS(Autonomous), Kadapa Page 23 
 
 

Differentiating (1) partially with respect to 𝑥 and 𝑦, we get 

𝜕𝑓

𝜕𝑢
 .

𝜕𝑢

𝜕𝑥
+

𝜕𝑓

𝜕𝑣
 .

𝜕𝑣

𝜕𝑥
= 0                        (2) 

and
𝜕𝑓

𝜕𝑢
 .

𝜕𝑢

𝜕𝑦
+

𝜕𝑓

𝜕𝑣
 .

𝜕𝑣

𝜕𝑦
= 0              (3) 

To eliminate 𝑓 it is enough we eliminate 
𝜕𝑓

𝜕𝑢
 and 

𝜕𝑓

𝜕𝑣
 from (2) and (3). Elimination of  

𝜕𝑓

𝜕𝑢
 and 

𝜕𝑓

𝜕𝑣
 from (2) and (3) gives 

||

𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑥
𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑦

|| = 0                       (4) 

Where 
𝜕𝑢

𝜕𝑥
 ,

𝜕𝑢

𝜕𝑦
 ,

𝜕𝑣

𝜕𝑥
 ,

𝜕𝑣

𝜕𝑦
 are to be determined from 𝑢and 𝑣, where 𝑢 and 𝑣 are functions of 

𝑥, 𝑦 and 𝑧. 

 

EXAMPLES 

33. Form the partial differential equation by eliminating the function 𝒇 from the relation  

𝒇(𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐, 𝒙𝒚𝒛) = 𝟎. 

Solution: Given 𝑓(𝑥2 + 𝑦2 + 𝑧2, 𝑥𝑦𝑧) = 0                           (1) 

Let      𝑢 = 𝑥2 + 𝑦2 + 𝑧2                                               (2) 

𝑣 = 𝑥𝑦𝑧                                                                 (3) 

Equation (1) becomes    𝑓(𝑢, 𝑣) = 0                        (4) 

This is of the above type. We know that elimination of 𝑓 from (4) gives 

||

𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑥
𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑦

|| = 0              (5) 

              From (2), we get     
𝜕𝑢

𝜕𝑥
= 2𝑥 + 2𝑧𝑝                     (6) 
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𝜕𝑢

𝜕𝑦
= 2𝑦 + 2𝑧𝑞                     (7) 

              From (3), we get     
𝜕𝑣

𝜕𝑥
= 𝑥𝑦𝑝 + 𝑦𝑧                     (8) 

𝜕𝑣

𝜕𝑦
= 𝑥𝑦𝑞 + 𝑥𝑧                     (9) 

Substituting (6), (7), (8) and (9) in (5), we get 

|
2𝑥 + 2𝑧𝑝 2𝑦 + 2𝑧𝑞
𝑥𝑦𝑝 + 𝑦𝑧 𝑥𝑦𝑞 + 𝑥𝑧

| = 0 

𝑖. 𝑒., (2𝑥 + 2𝑧𝑝)(𝑥𝑦𝑞 + 𝑥𝑧) − (2𝑦 + 2𝑧𝑞)(𝑥𝑦𝑝 + 𝑦𝑧) = 0 

𝑖. 𝑒., 𝑝𝑥(𝑧2 − 𝑦2) + 𝑞𝑦(𝑥2 − 𝑧2) = 𝑧(𝑦2 − 𝑥2) 

This is the required partial differential equation. 

34. Form the partial differential equation by eliminating the function 𝒇 from the relation  

𝒇 (
𝒚

𝒙
, 𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐) = 𝟎 

Solution: Given 𝑓 (
𝑦

𝑥
, 𝑥2 + 𝑦2 + 𝑧2) = 0                           (1) 

Let      𝑢 = 𝑦/𝑥                                                             (2) 

𝑣 = 𝑥2 + 𝑦2 + 𝑧2                                           (3) 

Equation (1) becomes    𝑓(𝑢, 𝑣) = 0                   (4) 

This is of the above type. We know that elimination of 𝑓 from (4) gives 

||

𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑥
𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑦

|| = 0              (5) 

              From (2), we get     
𝜕𝑢

𝜕𝑥
= −

𝑦

𝑥2
 ,   

𝜕𝑢

𝜕𝑦
=

1

𝑥
                     (6) 

              From (3), we get     
𝜕𝑣

𝜕𝑥
= 2𝑥 + 2𝑧𝑝 ,   

𝜕𝑣

𝜕𝑦
= 2𝑦 + 2𝑧𝑞                   (7) 

Substituting (6) and (7) in (5), we get 
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| −
𝑦

𝑥2

1

𝑥
2𝑥 + 2𝑧𝑝 2𝑦 + 2𝑧𝑞

| = 0 

                𝑖. 𝑒., −
𝑦

𝑥2
(2𝑦 + 2𝑧𝑞) −

1

𝑥
(2𝑥 + 2𝑧𝑝) = 0 

𝑖. 𝑒. ,           𝑥𝑧𝑝 + 𝑦𝑧𝑞 + 𝑥2 + 𝑦2 = 0 

This is the required partial differential equation. 
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VECTOR CALCULUS 

Unit-IV 

Vector Differentiation 

 

 

INTRODUCTION 

The main objective is to introduce vector calculus to the engineering student 

which consists of differentiation and integration of vector functions.  This, 

naturally, leads to the study of new concepts like gradient, divergence and curl of 

scalar and vector respectively, which in turn will facilitate the study of 

solenoidal, conservative and irrotational fields.  These are important to 

engineering branches like electrical and electronics engineering and mechanical 

engineering.  Finally, vector integration with useful theorems like Green;s 

Stokes; and Gauss’ divergence theorems are introduced.    

We have studies the differential and integral calculus of functions of a single 

variable and several variables.  We are also familiar with the study of vectors.  

All these topics together form a branch of engineering mathematics known as 

vector calculus. 

Vector calculus is used to model a vast range of engineering problems.  For 

example, it is used in electrostatic charges, electromagnetic fields, air flow 

around air craft, cars and other solid objects, fluid flow around ships and heat 

flow in nuclear reactors.  One can appreciate the actual use of vector calculus 

while dealing with different topics in it. 

 

VECTOR FUNCTIONS 

If to each value of a scalar variable 𝑡, there corresponds a value of vector 𝑟̅, then 

𝑟̅is called a vector function of a scalar variable 𝑡 and we write 𝑟̅ = 𝑟̅ (𝑡) or 𝑟̅ =

 𝑓̅(𝑡). 

For example the position vector 𝑟̅ of a particle moving along a curved path is a 

vector function of time 𝑡, a scalar. 

Since every vector can be uniquely expressed as a linear combination of three 

fixed non co-planar vectors, therefore, we may write  
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𝑓(̅𝑡) =  𝑓1(𝑡)𝑖̅ + 𝑓2(𝑡)𝑗̅ + 𝑓3(𝑡)𝑘̅ 

where 𝑖,̅ 𝑗,̅ 𝑘̅  denote unit vectors along the axes of 𝑥, 𝑦, 𝑧respectively, 

𝑓1(𝑡), 𝑓2(𝑡)𝑎𝑛𝑑𝑓3(𝑡) are called the components of the vector 𝑓̅(𝑡) along the 

coordinate axes. 

 

SCALAR AND VECTOR FIELDS 

Consider a region𝑅 of space such that every point 𝑃 in this region is connected 

with some physical property. Let the physical property be expressed by a 

quantity which has a definite value at every such point, 𝑃. The region in which 

the physical property is specified is called a field. 

Now, fields are of two kinds Scalar and Vector, according to the quantity 

expressing the physical property being the scalar or a vector. 

Thus a scalar field is one where the physical property in question is given by a 

scalar quantity. This scalar quantity will have different values at the different 

points of the region. In the other words, its value at a point 𝑃 in 𝑅 will depend on 

the coordinates of 𝑃.Hence this variable quantity is a function of position. It is 

known as the scalar point function. 

For example, in the study of temperature distribution is a heated body, the region 

occupied by that body will be a scalar field and the temperature at any point 

within it is a scalar point function. Other examples of scalar fields are 

distribution of density, electric potential or of any other non- directed and the 

pressure in the atmosphere. 

∅(𝑥, 𝑦, 𝑧) =  𝑥2 + 𝑦2 − 𝑧2 −  3𝑥𝑦𝑧 define a scalar field.  

 

If the physical property of a region is represented by a vector quantity, it is said 

to constitute a vectorfield. 

A typical example of a vector field is the distribution of velocity at all points of a 

moving fluid. 

 

The velocity at every point will be represented by a continuous vector function. 

At a particular point, the function is specified by a vector of certain magnitude 

and direction, both of which change continuously from point to point throughout 
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the field. Such a function which represents the physical property by a vector 

quantity is known as vector point function. 

Examples of vector fields are the velocity at any point in moving field, 

gravitational force on a particle in space and the earth’s magnetic field. 

𝐹̅(𝑥, 𝑦, 𝑧) =  (𝑦 − 𝑧)𝑖̅ + (𝑧 − 𝑥)𝑗̅ + (𝑥 − 𝑦)𝑘̅ 

defines a vector field, where 𝑖,̅ 𝑗,̅ 𝑘̅ are unit vectors along 𝑥, 𝑦, 𝑧. 

 

THE VECTOR DIFFERENTIAL OPERATOR DEL 

The vector operator ∇ (read del) is defined as ∇= 𝑖̅
𝜕

𝜕𝑥
+ 𝑗̅

𝜕

𝜕𝑦
+  𝑘̅

𝜕

𝜕𝑧
 

The vector operator possesses properties analogous to those of ordinary vectors. 

It is useful in defining their quantities which arise in practical applications and 

are known as the gradient, the divergence and the curl. 

 

By its definition, ∇ is a symbolic vector consisting of three symbolic components 

along the axes 𝑖,̅ 𝑗,̅ 𝑘̅ the symbolic magnitudes of them being
𝜕

𝜕𝑥
,

𝜕

𝜕𝑦
,

𝜕

𝜕𝑧
. 

 

So ∇ is a vector operator. It is also a differential operator, just as 
𝑑

𝑑𝑥
 is an operator 

in the differential calculus. 

Thus ∇∅ =  (𝑖̅
𝜕

𝜕𝑥
+  𝑗̅

𝜕

𝜕𝑦
+ 𝑘̅

𝜕

𝜕𝑧
) ∅ =  (𝑖̅

𝜕∅

𝜕𝑥
+ 𝑗̅

𝜕∅

𝜕𝑦
+ 𝑘̅

𝜕∅

𝜕𝑧
) 

So ∇ acts both as a differential operator and as a vector. 

 

Note: The symbol ∇(𝑑𝑒𝑙) was originally called “nabla” an also “atled” which is 

“delta” (∆) reversed. It is called ‘del’ 

 

GRADIENT OF A SCALAR FUNCTION 

Let ∅(𝑥, 𝑦, 𝑧) be a scalar function of position throughout some region of space. 

Then the vector function 𝑖̅
𝜕∅

𝜕𝑥
+  𝑗̅

𝜕∅

𝜕𝑦
+ 𝑘̅

𝜕∅

𝜕𝑧
 is known as the gradient of ∅  and is 

denoted by ∅ . In forming this new vector, it is assumed that the partial 
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derivatives  
𝜕∅

𝜕𝑥
,

𝜕∅

𝜕𝑦
,

𝜕∅

𝜕𝑧
  are exists. Such a vector exists corresponding each point 

of the region in which ∅(𝑥, 𝑦, 𝑧) is continuous and differentiable.  

Hence 𝑔𝑟𝑎𝑑∅ = 𝑖̅
𝜕∅

𝜕𝑥
+ 𝑗̅

𝜕∅

𝜕𝑦
+ 𝑘̅

𝜕∅

𝜕𝑧
 = (𝑖̅

𝜕

𝜕𝑥
+  𝑗̅

𝜕

𝜕𝑦
+ 𝑘̅

𝜕

𝜕𝑧
) ∅ = ∇∅ 

It is to be noted that ∇∅ defines a vector field. 

Note :  If ∅ is constant, then 
𝜕∅

𝜕𝑥
=  

𝜕∅

𝜕𝑦
=

𝜕∅

𝜕𝑧
= 0, so that 𝑔𝑟𝑎𝑑∅ = 0̅. 

 

IMPORTANT DEDUCTIONS 

1. Gradient of the sum of the functions: 

Let 𝑢 and 𝑣 be two scalar point functions 

∇(𝑢 + 𝑣) = 𝑖̅
𝜕(𝑢 + 𝑣)

𝜕𝑥
+ 𝑗̅

𝜕(𝑢 + 𝑣)

𝜕𝑦
+  𝑘̅

𝜕(𝑢 + 𝑣)

𝜕𝑧
 

= 𝑖̅
𝜕𝑢

𝜕𝑥
+ 𝑗̅

𝜕𝑢

𝜕𝑦
+  𝑘̅

𝜕𝑢

𝜕𝑧
 +  𝑖̅

𝜕𝑣

𝜕𝑥
+ 𝑗̅

𝜕𝑣

𝜕𝑦
+  𝑘̅

𝜕𝑣

𝜕𝑧
= ∇𝑢 +  ∇𝑣 

 

2. Gradient of the product of the functions ∇(𝑢𝑣) = 𝑢∇v + 𝑣∇u 

 

3. Gradient of a function: 

Let  =  𝑓(𝑢) , ∇𝑣 = ∇𝑓(𝑢) = (𝑖̅
𝜕

𝜕𝑥
+ 𝑗̅

𝜕

𝜕𝑦
+ 𝑘̅

𝜕

𝜕𝑧
) 𝑓(𝑢) 

= 𝑓′(𝑢) (𝑖̅
𝜕𝑢

𝜕𝑥
+ 𝑗̅

𝜕𝑢

𝜕𝑦
+ 𝑘̅

𝜕𝑢

𝜕𝑧
) = 𝑓′(𝑢)∇𝑢. 

Thus, as a differential operators, the operator ∇, follows the ordinary 

rules of calculus 

 

EXAMPLES 

1. If 𝑟̅ is the positive vector joining the origin 0 of a coordinate system and 

any point (𝑥, 𝑦, 𝑧). Prove that ∇(𝑟𝑛) = 𝑛𝑟𝑛−2𝑟̅  where 𝑜𝑝̅̅ ̅ =  𝑟̅ =  𝑥𝑖̅ +

 𝑦𝑗̅ + 𝑧𝑘̅ and 𝑟2 = 𝑥2 + 𝑦2 + 𝑧2 . 

Solution:  Hence 2𝑟
𝜕𝑟

𝜕𝑥
= 2𝑥 , i.e., 

𝜕𝑟

𝜕𝑥
=

𝑥

𝑟
 

Similarly, 
𝜕𝑟

𝜕𝑦
=

𝑦

𝑟
 and 

𝜕𝑟

𝜕𝑧
=

𝑧

𝑟
. Also 𝑟̅ =  𝑥𝑖̅ +  𝑦𝑗̅ + 𝑧𝑘̅ 
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∇(𝑟𝑛) = (𝑖̅
𝜕

𝜕𝑥
+ 𝑗̅

𝜕

𝜕𝑦
+ 𝑘̅

𝜕

𝜕𝑧
) 𝑟𝑛  

= 𝑛𝑟𝑛−1 (𝑖̅
𝜕𝑟

𝜕𝑥
+ 𝑗̅

𝜕𝑟

𝜕𝑦
+ 𝑘̅

𝜕𝑟

𝜕𝑧
) 

                   = 𝑛𝑟𝑛−1 (
𝑥

𝑟
𝑖̅ +

𝑦

𝑟
𝑗̅ +

𝑧

𝑟
𝑘̅) 

∇(𝑟𝑛) = 𝑛𝑟𝑛−2𝑟̅ 

 

 

2.  If  ∇∅ = 𝑦𝑧𝑖̅ +  𝑧𝑥𝑗̅ + 𝑥𝑦𝑘̅, find ∅. 

Solution: Let  ∇∅ = (𝑖̅
𝜕∅

𝜕𝑥
+ 𝑗̅

𝜕∅

𝜕𝑦
+  𝑘̅

𝜕∅

𝜕𝑧
) = 𝑦𝑧𝑖̅ +  𝑧𝑥𝑗̅ + 𝑥𝑦𝑘̅ 

Equating the corresponding coefficients of the unit vectors, we get 

𝜕∅

𝜕𝑥
= 𝑦𝑧                                  (𝐼) 

𝜕∅

𝜕𝑦
= 𝑧𝑥                                  (𝐼𝐼) 

𝜕∅

𝜕𝑧
= 𝑥𝑦                                   (𝐼𝐼𝐼) 

Partially integrating (𝐼), (𝐼𝐼) 𝑎𝑛𝑑 (𝐼𝐼𝐼) with respect to 

𝑥, 𝑦, 𝑧respectively, we get  

∅ = xyz + a constant independent of x 

∅ = xyz + a constant independent of y 

∅ = xyz + a constant independent of z 

Hence a possible form of ∅ is ∅ = 𝑥𝑦𝑧 + a constant. 

 

OPERATIONS INVOLVING𝛁: 

The vector character of the operator ∇ suggests that ∇ can operate scalarly or 

vectorially on a vector point function, say 𝐹̅. The dot product ∇ ∙ 𝐹̅ and the cross 

product ∇ × 𝐹̅are known respectively as the divergence and curl of the vector 

function 𝐹̅ and they are great importance in vector analysis.  

THE DIVERGENCE OF A VECTOR  

 Let 𝐹̅(𝑥, 𝑦, 𝑧)be definedand differential at each point (𝑥, 𝑦, 𝑧) in some region of 

space. i.e., 𝐹̅ defines a differentiable vector field. Then the scalar product of the 
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vector operator ∇𝑎𝑛𝑑𝐹̅ gives a scalar which is called the divergence of 𝐹̅ . Thus 

the divergence of 𝐹̅  written 𝑑𝑖𝑣𝐹̅ or ∇ ∙ 𝐹̅is defined as 

∇ ∙ 𝐹̅ =(𝑖̅
𝜕

𝜕𝑥
+  𝑗̅

𝜕

𝜕𝑦
+ 𝑘̅

𝜕

𝜕𝑧
) ∙ 𝐹̅ = (𝑖̅

𝜕𝐹

𝜕𝑥
+  𝑗̅

𝜕𝐹

𝜕𝑦
+ 𝑘̅

𝜕𝐹

𝜕𝑧
) 

We can find the value of ∇ ∙ 𝐹̅ in terms of the components of 𝐹̅. 

 Let 𝐹̅ =  𝐹1𝑖̅ +  𝐹2𝑗 ̅ + 𝐹3𝑘̅, where 𝐹1, 𝐹2 , 𝐹3 are functions of 𝑥, 𝑦, 𝑧. 

Then ∇ ∙ 𝐹̅ = (𝑖̅
𝜕

𝜕𝑥
+  𝑗̅

𝜕

𝜕𝑦
+ 𝑘̅

𝜕

𝜕𝑧
) ∙ (𝐹1𝑖̅ +  𝐹2𝑗 ̅ +  𝐹3𝑘̅) 

= 𝑖̅
𝜕𝐹1

𝜕𝑥
+ 𝑗̅

𝜕𝐹2

𝜕𝑦
+  𝑘̅

𝜕𝐹3

𝜕𝑧
 (∵ 𝑖̅ ∙ 𝑖̅ = 𝑗̅ ∙ 𝑗 ̅ = 𝑘̅ ∙ 𝑘̅ = 1) 

This formula enables us to compute the divergence of 𝐹̅ when it is given in the 

form 

𝐹1𝑖̅ +   𝐹2𝑗 ̅ + 𝐹3𝑘̅.  Clearly, the divergence of 𝐹̅. i.e., ∇ ∙ 𝐹̅ is a Scalar.  

 

THE CURL OF A VECTOR 

Let 𝑣̅(𝑥, 𝑦, 𝑧)be defined and differentiable at each point (𝑥, 𝑦, 𝑧) in some region 

of space. i.e., 𝑣̅ defines a differentiable vector field. Then the vector product of 

the vector operator ∇𝑎𝑛𝑑𝑣̅gives a vector which is called the 𝑐𝑢𝑟𝑙𝑜𝑓𝑣̅written 

𝑐𝑢𝑟𝑙𝑣̅ or 𝑟𝑜𝑡𝑣̅𝑜𝑟∇ × 𝑣̅ is defined as  

𝑐𝑢𝑟𝑙𝑣̅ =  ∇ × 𝑣̅ =  (𝑖̅
𝜕

𝜕𝑥
+  𝑗̅

𝜕

𝜕𝑦
+ 𝑘̅

𝜕

𝜕𝑧
) × 𝑣̅ 

= 𝑖̅ ×
𝜕𝑣̅

𝜕𝑥
+ 𝑗̅ ×

𝜕𝑣̅

𝜕𝑦
+ 𝑘̅ ×

𝜕𝑣̅

𝜕𝑧
 

We can find the value of the 𝑐𝑢𝑟𝑙𝑣̅ in terms of its components. Let 𝑣̅ = 𝑣1𝑖̅ +

  𝑣2𝑗 ̅ + 𝑣3𝑘̅. where 𝑣1, 𝑣2, 𝑣3 are function of 𝑥, 𝑦, 𝑧.  

𝑐𝑢𝑟𝑙𝑣̅ =  ∇ × 𝑣̅  =  ||

𝑖̅ 𝑗 ̅ 𝑘̅
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧
𝑣1 𝑣2 𝑣3

|| 

Note:𝑔𝑟𝑎𝑑∅ =  ∇∅ = 𝑣𝑒𝑐𝑡𝑜𝑟 

𝑑𝑖𝑣𝑣̅ =  ∇ ∙ 𝑣̅ = 𝑠𝑐𝑎𝑙𝑎𝑟 

𝑐𝑢𝑟𝑙𝑣̅ =  ∇ × 𝑣̅ = 𝑣𝑒𝑐𝑡𝑜𝑟 
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3. If 𝑟̅ = 𝑥𝑖̅ +   𝑦𝑗̅ +  𝑧𝑘̅, then prove that 

(I)∇ ∙ 𝑟̅ = 3  𝑎𝑛𝑑(𝑖𝑖)∇ × 𝑟̅ = 0   

Solution: ∇ ∙ 𝑟̅  =
𝜕

𝜕𝑥
(𝑥) + 

𝜕

𝜕𝑦
(𝑦) + 

𝜕

𝜕𝑧
(𝑧) = 1 + 1 + 1 = 3  

 ∇ × 𝑟̅ =  (
𝜕

𝜕𝑥
𝑖̅ +  𝑗 ̅

𝜕

𝜕𝑦
+ 𝑘̅

𝜕

𝜕𝑧
) × (𝑥𝑖̅ + 𝑦𝑗̅ + 𝑧𝑘̅) = 0 

  

SOME GEOMETRICAL CONSIDERATIONS 

From the three dimensional analytic geometry, we recall that the equation of a 

plane is of the form 

∅(𝑥, 𝑦, 𝑧) =  constant , 𝑐say                  (1) 

 where ∅(𝑥, 𝑦, 𝑧) is a linear function of 𝑥, 𝑦, 𝑧. Let 𝑆 be the surface represented 

by (1), since ∅(𝑥, 𝑦, 𝑧) = 𝑐 , 𝜎𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑜𝑛𝑆, we have 𝑑∅ = 0 𝑜𝑛𝑆. Thus 𝑑∅ =

 ∇∅ ∙ 𝑑𝑟̅ = 0 𝑜𝑛𝑆.                                                                (2) 

Let 𝑃(𝑥, 𝑦, 𝑧) be a point on the surface 𝑆 and 𝑄(𝑥 + 𝑑𝑥, 𝑦 + 𝑑𝑦, 𝑍 + 𝑑𝑧) be a 

neighbouring point on 𝑆. then 𝑃𝑄̅̅ ̅̅ =  𝑂𝑄̅̅ ̅̅ − 𝑂𝑃̅̅ ̅̅ = 𝑑𝑥𝑖̅  +  𝑑𝑦𝑗̅ +  𝑑𝑧𝑘̅ = 𝑑𝑟̅ 

Expression (2) implies that at a point 𝑃 on a surface 𝑆, the vector ∇∅ is 

perpendicular to every directed line segment 𝑃𝑄̅̅ ̅̅  that is tangential to 𝑆. This 

means that ∇∅ is along the normal to the surface 𝑆 at the point 𝑃. 

 

Figure.10.1                                                   Figure.10.2 

 

UNIT NORMAL: we denote the unit vector directed along ∇∅ by 𝑛̅. Thus, 

𝑛̂ =  
∇∅

|∇∅|
                                                                                (3) 
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The vector 𝑛̂ is referred to as the unit vector to the surface 𝑆 at the point 

𝑃(𝑥, 𝑦, 𝑧).  

Directional Derivative: consider a vector 𝑎̅ inclined at an angle 𝜃 to the direction 

of ∇∅. thus the components of ∇∅ along 𝑎̅, namely ∇∅ ∙

𝑎̅(𝑤ℎ𝑒𝑟𝑒𝑎̂𝑖𝑠𝑢𝑛𝑖𝑡𝑣𝑒𝑐𝑡𝑜𝑟𝑎̅),  is called the directional derivative of ∅ along 𝑎̅.  

This is denoted by 

𝑑∅

𝑑𝑎̅
= ∇∅ ∙ 𝑎̂ =  |∇∅||𝑎̂|𝑐𝑜𝑠𝜃 =  |∇∅|𝑐𝑜𝑠𝜃           (4) 

In particular, the directional derivative of ∅ along 𝑛̂ 

𝑑∅

𝑑𝑛̅
= ∇∅ ∙ 𝑛̂ =  |∇∅| ∙

∇∅

|∇∅|
 =  

|∇∅|2

|∇∅|
=  |∇∅|          (5) 

This is called the normal derivative of ∅. 

Since 𝑐𝑜𝑠𝜃 assumes the maximum value, when 𝜃 = 0, it follows from 

(4) and (5) that  

max
𝜕∅

𝜕𝑎̅
= |∇∅| cos(0) =  |∇∅| =  

𝜕∅

𝜕𝑛̂
                           (6) 

Thus, the directional derivative 
𝜕∅

𝜕𝑎̅
 is maximum when 𝑎̅ is directed along 𝑛̂, and 

the maximum is equal to the normal derivative. This means that ∅ varies most 

rapidly along ∇∅ and |∇∅| gives the maximum rate of variation. 

 

4. Find the unit normal to the surface 𝑦𝑧 + 𝑧𝑥 + 𝑥𝑦 = 𝑐at the point 

𝑃(−1, 2, 3). 

Solution: The equation of the given surface is ∅(𝑥, 𝑦, 𝑧) = 𝑐, where ∅ = 𝑦𝑧 +

𝑧𝑥 + 𝑥𝑦. 

This gives 
𝜕∅

𝜕𝑥
= 𝑧 + 𝑦; 

𝜕∅

𝜕𝑦
= 𝑧 + 𝑥; 

𝜕∅

𝜕𝑧
= 𝑥 + 𝑦;  

∵ ∇∅ = (𝑧 + 𝑦)𝑖̅ + (𝑧 + 𝑥)𝑗̅ + (𝑥 + 𝑦)𝑘̅ 

At the point 𝑃(−1, 2, 3), this gives ∇∅ = 5𝑖̅ + 2𝑗̅ + 𝑘̅ 

and |∇∅| =  √52 + 22 + 12 =  √30 

Accordingly, the unit normal to the given surface at the given point 𝑃 is 

𝑛̂ =
∇∅

|∇∅|
=

1

√30
(5𝑖̅ + 2𝑗̅ + 𝑘̅). 
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5. Find the angle between the directions of the normals to the surface 

𝑥2𝑦𝑧 = 1 at the points 𝑃(−1,1,1) and 𝑄(1, −1, 1). 

Solution: The given surface is 𝑄(𝑥, 𝑦, 𝑧) =  𝑥2𝑦𝑧 = 1. 

At any point (𝑥, 𝑦, 𝑧) of this surface, the normal is along the vector  

∇∅ = 2𝑥𝑦𝑧𝑖̅ + 𝑥2𝑧𝑗̅ + 𝑥2𝑦𝑘̅ 

At the point 𝑃(−1, 1, 1) the normal is along the vector 𝑎̅ =  [∇∅]𝑝 = 2𝑖̅ −

𝑗̅ + 𝑘̅ 

If 𝜃 is the angle between the directions of these normals, we have  

                 cos 𝜃 = 
𝑎̅ ∙ 𝑏̅

|𝑎||𝑏|
=  

−6

√6√6
= −1 

This gives 𝜃 =  𝜋 as the required angle. Thus, at the given points the normals to 

the given surface are in opposite direction. 

 

6. Find the angle between the surfaces 𝑥2 + 𝑦2 + 𝑧2 = 9  and 𝑧 = 𝑥2 +

𝑦2 − 3  at the point (2, −1, 2). 

Solution: The angle between two surfaces at a common point 𝑃 is defined to be 

equal to the angle between the normal to the surfaces at the point 𝑃. 

Here, the given surfaces are 𝑆1, whose equation is 

∅(𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑦2 + 𝑧2 − 9 = 0  (1)  

and 𝑆2, whose equation is  

𝜓(𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑦2 + −3 − 3 = 0  (2)  

These gives            
𝜕∅

𝜕𝑥
= 2𝑥,   

𝜕∅

𝜕𝑦
= 2𝑦, 

𝜕∅

𝜕𝑧
= 2𝑧 ; 

 
𝜕𝜓

𝜕𝑥
= 2𝑥,   

𝜕𝜓

𝜕𝑦
= 2𝑦, 

𝜕𝜓

𝜕𝑧
= −1 

∇∅ = 2𝑥𝑖̅ + 2𝑦𝑗̅ + 2𝑧𝑘̅ and  ∇𝜓 = 2𝑥𝑖̅ + 2𝑦𝑗̅ − 𝑘̅  (3) 

At the given point 𝑃(2, −1, 2) these become  

∇∅ = 4𝑖̅ − 2𝑗̅ + 4𝑘̅ and  ∇𝜓 = 4𝑖̅ − 2𝑗̅ − 𝑘̅   (4) 

So that at 𝑃, |∇∅| = 6 and |∇𝜓| =  √21    (5) 

We note that ∇∅is along normal to surface 𝑆1 and ∇𝜓is along normal to surface 

𝑆2.Therefore , if 𝜃 is angle between ∇∅ and ∇𝜓at point 𝑃. As such we have at 𝑃, 
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∇∅ ∙ ∇𝜓 =  |∇∅||∇𝜓| cos θ 

using equations (4) and (5), this gives  

cos θ =  
∇∅ ∙ ∇𝜓

|∇∅||∇𝜓|
   =  

(4𝑖̅ − 2𝑗̅ + 4𝑘̅) ∙ (4𝑖̅ − 2𝑗̅ − 𝑘̅)

(6)(√21)
=  

8

3√21
 

so that 𝜃 =  cos−1 (
8

3√21
).         This is the required angle.  

 

7. Find the equation of the tangent plane to the surface 𝑥3 + 𝑦3 +  3𝑥𝑦𝑧 =

3 at the point (1, 2, −1). 

Solution: The equation of the given surface 𝑆 is ∅(𝑥, 𝑦, 𝑧) = 3. Where 

∅(𝑥, 𝑦, 𝑧) = 𝑥3 + 𝑦3 +  3𝑥𝑦𝑧. 

This gives 
𝜕∅

𝜕𝑥
= 3𝑥2 +  3𝑦𝑧,   

𝜕∅

𝜕𝑦
= 3𝑦2 +  3𝑧𝑥, 

𝜕∅

𝜕𝑧
= 3𝑥𝑦 

∇∅ = 3{(𝑥2 +  𝑦𝑧)𝑖̅ + (𝑦2 + 𝑧𝑥)𝑗̅ +  (𝑥𝑦)𝑘̅} 

At point P(1, 2, −1) , this becomes  

∇∅ = 3(−𝑖̅ + 3𝑗̅ + 2𝑘̅) 

This vector is directed along the normal to the given surface 𝑆 at the 

given point 𝑃. The direction ratio’s  of this vector are (−1, 3, 2) 

The tangent plane to the given surface 𝑆 at the given point 𝑃 =

(1, 2, −1) is the plane through 𝑃 which is perpendicular to the normal to 𝑆 at 𝑃, 

whose direction ratio’s are (−1, 3, 2).  

Hence the equation of this tangent plane is 

(−1)(𝑥 − 1) +  3(𝑦 − 2) +  2(𝑧 + 1) =  0 which implies to 𝑥 − 3𝑦 −

2𝑧 + 3 = 0. 

 

8. Find the constants a and b so that the surfaces 𝑥2 +  𝑎𝑦𝑧 = 3𝑥 and 

𝑏𝑥2𝑦 + 𝑧3 = (𝑏 − 8)𝑦 are orthogonal at the point 𝑃 = (1, 1, −2). 

Solution: The given surfaces are 𝑆1 , whose equation is 

∅(𝑥, 𝑦, 𝑧) = 𝑥2 +  𝑎𝑦𝑧 − 3𝑥 = 0   (1)  

and 𝑆2, whose equation is 𝜓(𝑥, 𝑦, 𝑧) = 𝑏𝑥2𝑦 + 𝑧3(𝑏 − 8)𝑦 = 0                (2)  

Then       
𝜕∅

𝜕𝑥
= 2𝑥 − 3,   

𝜕∅

𝜕𝑦
= 𝑎𝑧, 

𝜕∅

𝜕𝑧
= 𝑎𝑦 ;  

𝜕𝜓

𝜕𝑥
= 2𝑏𝑦,   

𝜕𝜓

𝜕𝑦
= 𝑏𝑥2 − 𝑏 + 8, 

𝜕𝜓

𝜕𝑧
= 3𝑧2 

∇∅ = −𝑖̅ − 2𝑎𝑗̅ + 𝑎𝑘̅ and  ∇𝜓 = 2𝑏𝑖̅ + 8𝑗̅ + 12𝑘̅                  (3) 
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The Surfaces 𝑆1𝑎𝑛𝑑 𝑆2 are orthogonal at the point 𝑃 if   ∇∅ and  ∇𝜓 given by (3) 

are orthogonal. That is  if ∇∅ ∙ ∇𝜓 = 0 this yields 

−2𝑏 − 16𝑎 + 12𝑎 = 0 (𝑜𝑟) 4𝑎 + 2𝑏 = 0(4) 

Further, the point P must be common to the surfaces 𝑆1𝑎𝑛𝑑 𝑆2. That is 

the coordinates (1,1, −2) of 𝑃 must satisfy equations (1) and (2). This yields 

𝑎 =  −1 consequently, (4) yields  𝑏 = 2. 

Thus, when 𝑎 =  −1 and 𝑏 = 2, the given surfaces cut orthogonally at 

the point (1, 1, −2). 

 

9. Find the directional derivative of ∅ = 𝑥2𝑦𝑧 + 4𝑧2 at the point 

𝑃(1, −2, −1) along the vector 𝑎̅ = 2𝑖̅ − 𝑗̅ − 2𝑘.̅ 

Solution: For the given ∅, we have  

𝜕∅

𝜕𝑥
= 2𝑥𝑦𝑧,   

𝜕∅

𝜕𝑦
= 𝑥2𝑧, 

𝜕∅

𝜕𝑧
= 𝑥2𝑦 + 8𝑧 

∇∅ = 4𝑖̅ − 𝑗̅ + 10𝑘̅      (1) 

Next, we find that for the given vector 𝑎,̅ |𝑎 ̅| = 3 

The unit vector along 𝑎̂ is 𝑎̂ =  
𝑎̅

|𝑎̅|
=  

1

3
(2𝑖̅ − 𝑗̅ − 2𝑘̅)  (2) 

From (1) and (2), we get ∇∅ ∙ 𝑎̂ =  
1

3
(8 + 1 + 20) =  

29

3
 

This is the directional derivative of the given function ∅ along the given  

vector 𝑎̅at the given point 𝑃. 

 

10. Find the directional derivative of ∅ = 𝑥𝑦𝑧  along the tangent vector to 

the curve 𝑥 = 𝑡, 𝑦 = 𝑡2, 𝑧 =  𝑡3at the point 𝑃(−1, 1, −1). 

Solution: For the given ∅, we find that  

∇∅ = 𝑦𝑧𝑖̅ +  𝑧𝑥𝑗̅ +  𝑥𝑦𝑘̅     (1) 

The vector equation of the given is  𝑟̅ = 𝑡𝑖̅ +  𝑡2𝑗 ̅ + 𝑡3𝑘̅  (2) 

This gives 
𝑑𝑟̅

𝑑𝑡
= 𝑖̅ +  2𝑡𝑗̅ +  3𝑡2𝑘̅ =  𝑎̅ 

And |𝑎̅| = (1 +  4𝑡2 +  9𝑡4)
1

2⁄  

Therefore the unit tangent vector to the curve is 𝑎̂ =  
𝑎

|𝑎|̅̅ ̅̅
̅ =

𝑖̅+ 2𝑡𝑗̅+ 3𝑡2𝑘̅

(1+ 4𝑡2+ 9𝑡4)
1

2⁄

     (3) 

From (2), we verify that the given point  𝑃(−1, 1, −1) corresponds to  
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𝑡 =  −1. Hence at 𝑃, we get from (1) and (3),  

∇∅ = −𝑖̅ + 𝑗 ̅ − 𝑘̅ , 𝑎̂ =  
1

√14
(−𝑖̅ − 2𝑗̅ + 3𝑘̅) 

Hence the required directional derivative of ∅ =  𝑥3 − 𝑦2 + 𝑧 at the 

point (−1, 1, −1) 

We first recall that |∇∅| is the maximal directional derivative of ∅. 

For the given ∅, we find that ∇∅ =  3𝑥2𝑖̅ − 2𝑦𝑗̅ + 𝑘̅ 

 At the point (−1, 1, −1), this yields ∇∅ =  3𝑖̅ − 2𝑗̅ + 𝑘̅ and |∇∅| =  √14 

 Thus √14is the required maximum directional derivative. 

 

11. Find the directional derivative of ∅ = 𝑥2𝑦𝑧 + 4𝑥𝑧2 at the point 

𝑃(1, −2, −1) along the vector 𝑎̅ = 2𝑖̅ − 𝑗̅ − 2𝑘.̅ 

Solution: For the given ∅ we find that vector ∇∅ = (2𝑥𝑦𝑧 + 4𝑧2)𝑖̅ + 𝑥2𝑧 𝑗 ̅ +

(𝑥2𝑦 + 8𝑧𝑥)𝑘̅ 

At the point 𝑃(1, −2, −1), this becomes  

∇∅ = 8𝑖̅ − 𝑗 ̅ − 10 𝑘̅ 

Next, we find that for the given vector 𝑎̅, we have |𝑎̅| = 3. Therefore, the unit 

vector along 𝑎̅ is 𝑎̂ =  
𝑎̅

|𝑎̅|
=  

1

3
(2𝑖̅ − 𝑗̅ − 2𝑘̅) 

∇∅ ∙ 𝑎̅ =  
1

3
(16 + 1 + 20) =  

37

3
 

This is the directional derivative of the given function ∅ along the given vector 𝑎̅ 

at the given point 𝑃. 

 

12. Find the direction from the point 𝑃(3, 1, −2) along which the directional 

derivative of ∅ = 𝑥2𝑦2𝑧4 is maximum. Find also the magnitude of this 

maximum. 

 

Solution: For the given ∅ we find that ∇∅ = 2𝑥𝑦2𝑧4𝑖̅ + 2𝑥2𝑦𝑧4𝑗 ̅ + 4𝑥2𝑦2𝑧3𝑘̅ 

At the point 𝑃(3, 1, −2), this becomes  

∇∅ = 96𝑖̅ +  288𝑗̅ − 288 𝑘̅ = 96(𝑖̅ +  3𝑗̅ − 3 𝑘̅ 
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Since the directional derivative of ∅ along the vector 𝑐̅ is maximum 

when 𝑐̅ is along ∇∅, it follows that the directional derivative of the given 

function ∅ at the given point 𝑃 is maximum along the direction of the 

vector   96(𝑖̅ +  3𝑗̅ − 3 𝑘̅.  Also the magnitude of this maximum 

directional derivative is |96(𝑖̅ +  3𝑗̅ − 3 𝑘̅| = 96√19. 

 

13. If thetemperature at any point in space is given by 𝑇 = 𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥 

find the direction in which temperature changes most rapidly with 

distance from the point (1, 1, 1) and determine the maximum rate of 

change.The greatest of increase of 𝑇 at any point is given in magnitude 

and direction by ∇𝑇. 

Solution: Here ∇𝑇 = (𝑖̅
𝜕

𝜕𝑥
+  𝑗̅

𝜕

𝜕𝑦
+ 𝑘̅

𝜕

𝜕𝑧
) (𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥) 

= (𝑦 + 𝑧)𝑖̅  + (𝑧 + 𝑥)𝑗̅ + (𝑥 + 𝑦)𝑘̅ 

                =  2𝑖̅  + 2𝑗̅ +  2𝑘̅ at the point (1,1,1). 

Magnitude of this vector  = ∇𝑇 = √12 = 2√3. 

 Hence at the point (1,1,1), the temperature changes most rapidly in the  

direction given by the vector 2𝑖̅  + 2𝑗̅ +  2𝑘̅ and the greatest rate of  

increase  2√3. 

 

14. Prove that thedirectional derivative of ∅ = 𝑥3𝑦2𝑧 at (1 ,2 ,3) is 

maximum along the direction 9𝑖̅ + 3𝑗̅ + 𝑘.̅ Also find the maximum 

directional derivative. 

Solution: Let∅ = 𝑥3𝑦2𝑧,  

∇∅ = (𝑖̅
𝜕

𝜕𝑥
+  𝑗̅

𝜕

𝜕𝑦
+  𝑘̅

𝜕

𝜕𝑧
) (𝑥3𝑦2𝑧) 

        = 36𝑖̅  + 12𝑗̅ +  4𝑘̅  at the point (1 ,2 ,3) 

We know that the directional derivative of ∅ is maximum along the 

direction ∇∅ 

 

Hence, it is maximum along the direction   of  4(9𝑖̅  + 3𝑗̅ + 𝑘)̅̅ ̅ 

The magnitude of this vector is 4√91 and this is the maximum 

directional derivative. 
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PHYSICAL INTERPRETATION OF DIVERGENCE  

Let us consider the case of a fluid flow. Consider a small rectangular 

parallelepiped of dimensions 𝑑𝑥, 𝑑𝑦, 𝑑𝑧 parallel to 𝑥, 𝑦 𝑎𝑛𝑑 𝑧 axes respectively. 

 

                                           Figure 10.3 

Let 𝑉̅ =  𝑉𝑥𝑖̅ + 𝑉𝑦𝑗 ̅ + 𝑉𝑧𝑘̅ be the velocity of the fluid at 𝑝(𝑥, 𝑦, 𝑧) 

Mass of fluid flowing in through the face 𝐴𝐵𝐶per unit time =  𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 ×

𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑎𝑐𝑒 =  𝑉𝑥(𝑑𝑦 𝑑𝑧) 

Mass of fluid flowing out across the face 𝑃𝑄𝑅𝑆 per unit time= 𝑉𝑥+𝑑𝑥(𝑑𝑦 𝑑𝑧) =

 (𝑉𝑥 + 
𝜕𝑉𝑥

𝜕𝑥
 𝑑𝑥 ) 𝑑𝑦 𝑑𝑧 

Net decrease in the mass of fluid in the parallelepiped corresponding to 

the flow along the 𝑥 axis per unit time 

𝑉𝑥  𝑑𝑦 𝑑𝑧 − (𝑉𝑥 + 
𝜕𝑉𝑥

𝜕𝑥
) 𝑑𝑦 𝑑𝑧  

=
𝜕𝑉𝑥

𝜕𝑥
 𝑑𝑥 𝑑𝑦 𝑑𝑧                   (−𝑣𝑒 𝑠𝑖𝑔𝑛 𝑠ℎ𝑜𝑤𝑠 𝑑𝑒𝑐𝑟𝑒𝑠𝑖𝑛𝑔 )  

Similarly the decrease in mass of fluid to the flow along the 𝑦 axis =
𝜕𝑉𝑦

𝜕𝑦
 𝑑𝑥 𝑑𝑦 𝑑𝑧                    

Decrease in mass of fluid to the flow along the 𝑧 axis =
𝜕𝑉𝑧

𝜕𝑧
 𝑑𝑥 𝑑𝑦 𝑑𝑧 

Total decrease of the amount of the fluid per unit time 

= (
𝜕𝑉𝑥

𝜕𝑥
+ 

𝜕𝑉𝑦

𝜕𝑦
+

𝜕𝑉𝑧

𝜕𝑧
)  𝑑𝑥 𝑑𝑦 𝑑𝑧 
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Thus the rate of loss of fluid per unit volume 

𝜕𝑉𝑥

𝜕𝑥
+ 

𝜕𝑉𝑦

𝜕𝑦
+

𝜕𝑉𝑧

𝜕𝑧
= (𝑖̅

𝜕

𝜕𝑥
+  𝑗̅

𝜕

𝜕𝑦
+ 𝑘̅

𝜕

 𝜕𝑧
) ∙ (𝑖𝑉̅𝑥 + 𝑗𝑉̅𝑦 + 𝑘̅𝑉𝑧) 

= ∇ ∙ 𝑉̅ = 𝑑𝑖𝑣 𝑉̅ 

If the fluid is incompressible, there can be no gain or no lose in the 

volume element. Hence   𝑑𝑖𝑣 𝑉̅ = 0    (1)𝑎𝑛𝑑  𝑉̅ is called a Solenoidal vector 

function. Equation (1) is also called the equation of continuity. 

 

PHYSICAL INTERPRETATION OF A CURL 

We know that 𝑉̅ = 𝜔 ×  𝑟̅, where 𝜔 is the angular velocity, 𝑉̅ is the linear 

velocity and 𝑟̅ is the position vector of a point on the rotating body. 

 

Result:If𝑉̅ = 𝜔̅  ×  𝑟̅, prove that  

𝜔 =  
1

2
 𝑐𝑢𝑟𝑙 𝑉̅, 𝑤ℎ𝑒𝑟𝑒 𝜔̅ 𝑖𝑠 𝑐𝑜𝑛𝑠𝑡𝑠𝑎𝑛𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 𝑎𝑛𝑑 𝑟̅ is the position vector . 

 Let 𝜔̅ = 𝜔1𝑖̅ + 𝜔2𝑗 ̅ + 𝜔3𝑘̅,since 𝜔̅is constant vector and 𝜔1 , 𝜔2, 𝜔3are 

constants 

𝑟̅ = 𝑥𝑖̅ + 𝑦𝑗̅ + 𝑧𝑘̅𝜔̅  ×  𝑟̅ =  |
i̅ j ̅ k̅

𝜔1 𝜔2 𝜔3

x y z
| 

𝜔̅  × 𝑟̅ =  (𝜔2𝑧 − 𝜔3𝑦 )i + (𝜔3𝑥 − 𝜔1𝑧)j +  (𝜔1𝑦 − 𝜔2𝑥 )k 

𝑐𝑢𝑟𝑙 (𝜔̅  ×  𝑟̅) =  |

i̅ j ̅ k̅
∂

∂x⁄ ∂
∂y⁄ ∂

∂z⁄

𝜔2𝑧 − 𝜔3𝑦 𝜔3𝑥 −  𝜔1𝑧 𝜔1𝑦 − 𝜔2𝑥

| 

=  i̅ {
∂

∂y
(𝜔1𝑦 − 𝜔2𝑥 ) −

∂

∂z
(𝜔3𝑥 − 𝜔1𝑧)}

+ j̅ {
∂

∂z
(𝜔2𝑧 − 𝜔3𝑦 ) −

∂

∂x
(𝜔1𝑦 − 𝜔2𝑥 )}

+ k̅ {
∂

∂x
(𝜔3𝑥 − 𝜔1𝑧) − 

∂

∂y
(𝜔2𝑧 − 𝜔3𝑦 )} 

 = 2𝜔1𝑖̅ + 2𝜔2𝑗 ̅ + 2𝜔3𝑘̅ 

 = 2𝜔̅ 

Hence 𝜔 =  
1

2
 𝑐𝑢𝑟𝑙 𝑉̅. 
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Thus, the angular velocity at any point is equal to half the curl of the 

linear velocity at that point of the body. 

 

Definition: A vector is said to be solenoidal if its divergence is zero and 

irrotational if its curl is zero. 

 

EXPANSION FORMULAE FOR OPERATORS INVOLVING 𝛁: 

Let ∅ be a scalar point function and 𝑢̅, 𝑣̅ be vector point functions.  We can form 

the following products between these point functions:∅𝑢̅(Vector), 𝑢̅ ∙

 𝑣̅(Scalar), 𝑢̅ ×  𝑣̅(Vector). Operating with ∇ Scalarlly or vectorially we get the 

expressions:∇ ∙ ∅𝑢̅, ∇ × ∅𝑢̅, ∇(𝑢̅ ∙ 𝑣̅), ∇ ∙ (𝑢̅ × 𝑣̅), ∇ × (𝑢̅ × 𝑣̅). 

1. To prove that 𝑑𝑖𝑣 (∅𝑢̅) =  ∅ 𝑑𝑖𝑣 𝑢̅ + 𝑢̅ ∙ 𝑔𝑟𝑎𝑑 ∅ 

 ∇ ∙ ∅𝑢̅ = : ∅∇ ∙ 𝑢̅ + 𝑢̅ ∙ ∇∅ 

   By definition,  

                       𝑑𝑖𝑣 𝐹̅ = 𝑖̅ ∙  
𝜕𝐹̅

𝜕𝑥
+ 𝑗̅ ∙

𝜕𝐹̅

𝜕𝑦
+ 𝑘̅ ∙

𝜕𝐹̅

𝜕𝑧
 

Hence  𝑑𝑖𝑣 (∅𝑢̅) = 𝑖̅ ∙  
𝜕(∅𝑢)

𝜕𝑥
+ 𝑗̅ ∙

𝜕(∅𝑢)

𝜕𝑦
+ 𝑘̅ ∙

𝜕(∅𝑢)

𝜕𝑧
 

= 𝑖̅ ∙  (∅ 
𝜕𝑢̅

𝜕𝑥
+ 𝑢̅

𝜕∅

𝜕𝑥
) +  𝑗̅ ∙ (∅ 

𝜕𝑢̅

𝜕𝑦
+ 𝑢̅

𝜕∅

𝜕𝑦
) + 𝑘̅ ∙ (∅ 

𝜕𝑢̅

𝜕𝑧
+ 𝑢̅

𝜕∅

𝜕𝑧
) 

=  ∅ {𝑖̅ ∙  
𝜕𝑢̅

𝜕𝑥
+  𝑗̅ ∙

𝜕𝑢̅

𝜕𝑦
+  𝑘̅ ∙

𝜕𝑢̅

𝜕𝑧
} + 𝑢̅ {𝑖̅ ∙  

𝜕∅

𝜕𝑥
+ 𝑗̅ ∙

𝜕∅

𝜕𝑦
+  𝑘̅ ∙

𝜕∅

𝜕𝑧
} 

=  ∅ ∇ ∙ 𝑢̅ + 𝑢̅ ∙ ∇ ∅  

i.e., 𝑑𝑖𝑣 (∅𝑢̅) =  ∅ 𝑑𝑖𝑣 𝑢̅ + 𝑢̅ ∙ 𝑔𝑟𝑎𝑑 ∅ 

 

2.  To prove that 𝐶𝑢𝑟𝑙 (∅𝑢̅) =  ∇∅ ×  𝑢̅ + ∅ 𝐶𝑢𝑟𝑙 𝑢̅ 

 By definition  

            𝐶𝑢𝑟𝑙 𝐹̅ = 𝑖̅ ×  
𝜕𝐹̅

𝜕𝑥
+  𝑗̅ ×

𝜕𝐹̅

𝜕𝑦
+ 𝑘̅ ×

𝜕𝐹̅

𝜕𝑧
 

Hence 𝐶𝑢𝑟𝑙 (∅𝑢̅) = 𝑖̅ ×  
𝜕(∅𝑢)

𝜕𝑥
+  𝑗̅ ×

𝜕(∅𝑢)

𝜕𝑦
+  𝑘̅ ×

𝜕(∅𝑢)

𝜕𝑧
 

 = 𝑖̅ ×  (∅ 
𝜕𝑢

𝜕𝑥
+ 𝑢̅

𝜕∅

𝜕𝑥
) + 𝑗̅ × (∅ 

𝜕𝑢

𝜕𝑦
+ 𝑢̅

𝜕∅

𝜕𝑦
) + 𝑘̅ × (∅ 

𝜕𝑢

𝜕𝑧
+ 𝑢̅

𝜕∅

𝜕𝑧
) 
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=  ∅ {𝑖̅ ×  
𝜕𝑢̅

𝜕𝑥
+  𝑗̅ ×

𝜕𝑢̅

𝜕𝑦
+ 𝑘̅ ×

𝜕𝑢̅

𝜕𝑧
} + 𝑢̅ {𝑖̅  ×

𝜕∅

𝜕𝑥
+ 𝑗̅ ×

𝜕∅

𝜕𝑦
+ 𝑘̅ ×

𝜕∅

𝜕𝑧
} 

   =  ∅ Curl 𝑢̅ +  (𝐺𝑟𝑎𝑑 ∅) ×  𝑢̅ 

 

3.  To prove that 𝑑𝑖𝑣 (𝑢̅  ×  𝑣̅) =  𝑣̅ ∙ 𝐶𝑢𝑟𝑙 𝑢̅ − 𝑢̅ ∙ 𝐶𝑢𝑟𝑙 𝑣̅ 

 By definition,  

                                 𝑑𝑖𝑣 𝐹̅ = 𝑖̅ ∙  
𝜕𝐹̅

𝜕𝑥
+ 𝑗̅ ∙

𝜕𝐹̅

𝜕𝑦
+ 𝑘̅ ∙

𝜕𝐹̅

𝜕𝑧
 

 

 Hence      𝑑𝑖𝑣 (𝑢̅  ×  𝑣̅) = 𝑖̅ ∙  
𝜕(𝑢 × 𝑣̅)

𝜕𝑥
+  𝑗̅ ∙

𝜕(𝑢 × 𝑣̅)

𝜕𝑦
+ 𝑘̅ ∙

𝜕(𝑢 × 𝑣̅)

𝜕𝑧
 

= 𝑖̅ ∙  (𝑢̅ ×
𝜕𝑣̅

𝜕𝑥
+

𝜕𝑢̅

𝜕𝑥
× 𝑣̅) + 𝑗̅ ∙ (𝑢̅ ×

𝜕𝑣̅

𝜕𝑦
+

𝜕𝑢̅

𝜕𝑦
× 𝑣̅) + 𝑘̅ ∙ (𝑢̅ ×

𝜕𝑣̅

𝜕𝑧
+

𝜕𝑢̅

𝜕𝑧
× 𝑣̅)

= 𝑖̅ ∙  𝑢̅ ×
𝜕𝑣̅

𝜕𝑥
+ 𝑖̅ ∙

𝜕𝑢̅

𝜕𝑥
× 𝑣̅ + 𝑗̅ ∙ 𝑢̅ ×

𝜕𝑣̅

𝜕𝑦
+ 𝑗̅ ∙

𝜕𝑢̅

𝜕𝑦
× 𝑣̅ + 𝑘̅

∙ 𝑢̅ ×
𝜕𝑣̅

𝜕𝑧
+  𝑘̅ ∙

𝜕𝑢̅

𝜕𝑧
× 𝑣̅ 

= −𝑖̅ ∙  
𝜕𝑣̅

𝜕𝑥
× 𝑢̅ + 𝑖̅ ∙

𝜕𝑢̅

𝜕𝑥
× 𝑣̅ −  𝑗̅ ∙

𝜕𝑣̅

𝜕𝑦
× 𝑢̅ + 𝑗̅ ∙

𝜕𝑢̅

𝜕𝑦
× 𝑣̅ − 𝑘̅

∙
𝜕𝑣̅

𝜕𝑧
× 𝑢̅ +  𝑘̅ ∙

𝜕𝑢̅

𝜕𝑧
× 𝑣̅ 

Now in each of the triple products in the right side, the dot and the cross can be 

interchanged. 

Hence  

𝑑𝑖𝑣 (𝑢̅  ×  𝑣̅) = −𝑖̅ ×  
𝜕𝑣̅

𝜕𝑥
∙ 𝑢̅ + 𝑖̅ ×

𝜕𝑢̅

𝜕𝑥
∙ 𝑣̅ − 𝑗̅ ×

𝜕𝑣̅

𝜕𝑦
∙ 𝑢̅ + 𝑗̅ ×

𝜕𝑢̅

𝜕𝑦
∙ 𝑣̅ − 𝑘̅

×
𝜕𝑣̅

𝜕𝑧
∙ 𝑢̅ + 𝑘̅ ×

𝜕𝑢̅

𝜕𝑧
∙ 𝑣̅ 

= [𝑖̅ ×  
𝜕𝑢̅

𝜕𝑥
+ 𝑗̅ ×

𝜕𝑢̅

𝜕𝑦
+ 𝑘̅ ×

𝜕𝑢̅

𝜕𝑧
] ∙ 𝑣̅ − [ 𝑖̅ ×  

𝜕𝑣̅

𝜕𝑥
+ 𝑗̅ ×

𝜕𝑣̅

𝜕𝑦
+ 𝑘̅ ×

𝜕𝑣̅

𝜕𝑧
] ∙ 𝑢̅ 

   = (𝐶𝑢𝑟𝑙 𝑢̅) ∙  𝑣̅ − (𝐶𝑢𝑟𝑙 𝑣̅) ∙  𝑢̅ 

    𝑑𝑖𝑣 (𝑢̅  ×  𝑣̅) =  𝑣̅ ∙ 𝐶𝑢𝑟𝑙 𝑢̅ − 𝑢̅ ∙ 𝐶𝑢𝑟𝑙 𝑣̅ 
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SECOND ORDER DIFFERENTIAL OPERATORS 

1. To find the result of the operation ∇ ∙ (∇∅) = div(grad ∅) 

 Div grad ∅ = ∇ ∙ (∇∅) =  ∇ ∙ (𝑖̅ ∙  
𝜕∅

𝜕𝑥
+ 𝑗̅ ∙

𝜕∅

𝜕𝑦
+ 𝑘̅ ∙

𝜕∅

𝜕𝑧
) 

=  
𝜕

𝜕𝑥
(

𝜕∅

𝜕𝑥
) +  

𝜕

𝜕𝑦
(

𝜕∅

𝜕𝑦
) +

𝜕

𝜕𝑧
(

𝜕∅

𝜕𝑧
) 

=
𝜕2∅

𝜕𝑥2
+

𝜕2∅

𝜕𝑦2
+

𝜕2∅

𝜕𝑧2
=  (

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
) ∅ 

The operator 
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2 +
𝜕2

𝜕𝑧2 is called the Laplacian operator and it is 

denoted by  

∇2=  
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
 

Hence we have ∇. ∇∅ = ∇2∅ 

The divergence of the gradient of a function is its Laplacian.  

We notice that we can use the notation ∇ ∙ ∇ = ∇2, Similar to the notation 

𝑎̅ ∙  a̅ = a̅2 

 

2. To prove the identity :Curl (grad ∅) =  0̅, ∇ × (∇∅) 

 𝐺𝑟𝑎𝑑 ∅ =  𝑖 ̅
𝜕∅

𝜕𝑥
+ 𝑗̅

𝜕∅

𝜕𝑦
+ 𝑘̅

𝜕∅

𝜕𝑧
 

Hence Curl (grad ∅) =  ∇ × ∇∅ = ∇ ×  (𝑖̅
𝜕∅

𝜕𝑥
+  𝑗̅

𝜕∅

𝜕𝑦
+  𝑘̅

𝜕∅

𝜕𝑧
) 

=  
|

|

i̅ j ̅ k̅
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧
𝜕∅

𝜕𝑥

𝜕∅

𝜕𝑦

𝜕∅

𝜕𝑧

|

|
 

= 𝑖 (
𝜕2∅

𝜕𝑦 𝜕𝑧
−

𝜕2∅

𝜕𝑧 𝜕𝑦
) + 𝑗 (

𝜕2∅

𝜕𝑧 𝜕𝑥
−

𝜕2∅

𝜕𝑥 𝜕𝑧
) + 𝑘 (

𝜕2∅

𝜕𝑥 𝜕𝑦
−

𝜕2∅

𝜕𝑦 𝜕𝑥
) 

  =  0̅ + 0̅ + 0̅ = 0̅ 

The identity  Curl (grad ∅) = 0̅ is true for all values of ∅ and is very 

important. If 𝐶𝑢𝑟𝑙 𝐹̅ =  0̅, then the vector 𝐹̅is calledirrational. From the 
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above, we have the result that 𝐶𝑢𝑟𝑙 (𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡) =  0̅. Hence if 𝐶𝑢𝑟𝑙 𝐹̅ =  0̅, 

then the vector 𝐹̅ can be expressed an the gradient of a scalar function. 

 

 

3. To prove the identity : 𝑑𝑖𝑣 𝐶𝑢𝑟𝑙 𝐹̅ =  0,i.e., ∇ ∙ (∇ × F̅) = 0 

 Let 𝐹̅ =  𝐹1𝑖̅ + 𝐹2𝑗 ̅ + 𝐹3𝑘̅ 

𝐶𝑢𝑟𝑙 𝐹̅ =  ∇ × F̅ =  ||

i̅ j ̅ k̅
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧
𝐹1 𝐹2 𝐹3

|| 

= 𝑖̅ (
𝜕𝐹3

𝜕𝑦
−

𝜕𝐹2

𝜕𝑧
) + 𝑗̅ (

𝜕𝐹1

𝜕𝑧
−

𝜕𝐹3

𝜕𝑥
) + 𝑘̅ (

𝜕𝐹2

𝜕𝑥
−

𝜕𝐹1

𝜕𝑦
) 

Hence           𝑑𝑖𝑣 𝐶𝑢𝑟𝑙 𝐹̅  =
𝜕

𝜕𝑥
(

𝜕𝐹3

𝜕𝑦
−

𝜕𝐹2

𝜕𝑧
) +

𝜕

𝜕𝑦
(

𝜕𝐹1

𝜕𝑧
−

𝜕𝐹3

𝜕𝑥
) +

𝜕

𝜕𝑧
(

𝜕𝐹2

𝜕𝑥
−

𝜕𝐹1

𝜕𝑦
) 

𝜕2𝐹3

𝜕𝑥 𝜕𝑦
−

𝜕2𝐹2

𝜕𝑥 𝜕𝑧
+

𝜕2𝐹1

𝜕𝑦 𝜕𝑧
−

𝜕2𝐹3

𝜕𝑦 𝜕𝑥
+

𝜕2𝐹2

𝜕𝑧 𝜕𝑥
−

𝜕2𝐹1

𝜕𝑧 𝜕𝑦
= 0 

 The identity 𝑑𝑖𝑣 𝐶𝑢𝑟𝑙 𝐹̅ =  0, i.e., ∇ ∙ (∇ × F̅) = 0 is true for any vector F̅. 

 

4. To prove𝐶𝑢𝑟𝑙 𝐶𝑢𝑟𝑙 F̅ =  𝑔𝑟𝑎𝑑 𝑑𝑖𝑣F̅ − ∇2F̅ 

 Let 𝐹̅ =  𝐹1𝑖 + 𝐹2𝑗 + 𝐹3𝑘 , then  𝐶𝑢𝑟𝑙 𝐹̅ =   |

i̅ j ̅ k̅
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝐹1 𝐹2 𝐹3

| 

  𝐶𝑢𝑟𝑙 𝐹̅ = 𝑖̅ (
𝜕𝐹3

𝜕𝑦
−

𝜕𝐹2

𝜕𝑧
) + 𝑗̅ (

𝜕𝐹1

𝜕𝑧
−

𝜕𝐹3

𝜕𝑥
) + 𝑘̅ (

𝜕𝐹2

𝜕𝑥
−

𝜕𝐹1

𝜕𝑦
) 

Hence 𝐶𝑢𝑟𝑙 𝐶𝑢𝑟𝑙 F̅ =  ||

i̅ j ̅ k̅
∂

∂x⁄ ∂
∂y⁄ ∂

∂z⁄

(
𝜕𝐹3

𝜕𝑦
−

𝜕𝐹2

𝜕𝑧
) (

𝜕𝐹1

𝜕𝑧
−

𝜕𝐹3

𝜕𝑥
) (

𝜕𝐹2

𝜕𝑥
−

𝜕𝐹1

𝜕𝑦
)

|| 

= 𝑖̅ [
𝜕

𝜕𝑦
(

𝜕𝐹2

𝜕𝑥
−

𝜕𝐹1

𝜕𝑦
) −  

𝜕

𝜕𝑧
(

𝜕𝐹1

𝜕𝑧
−

𝜕𝐹3

𝜕𝑥
)]

+ 𝑗̅ [
𝜕

𝜕𝑧
(

𝜕𝐹3

𝜕𝑦
−

𝜕𝐹2

𝜕𝑧
) −  

𝜕

𝜕𝑥
(

𝜕𝐹2

𝜕𝑥
−

𝜕𝐹1

𝜕𝑦
)]

+ 𝑘̅ [
𝜕

𝜕𝑥
(

𝜕𝐹1

𝜕𝑧
−

𝜕𝐹3

𝜕𝑥
) − 

𝜕

𝜕𝑦
(

𝜕𝐹3

𝜕𝑦
−

𝜕𝐹2

𝜕𝑧
)] 
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= 𝑖̅ [
𝜕2𝐹2

𝜕𝑦 𝜕𝑥
+

𝜕2𝐹3

𝜕𝑧 𝜕𝑥
] + 𝑗̅ [

𝜕2𝐹3

𝜕𝑧 𝜕𝑦
+

𝜕2𝐹1

𝜕𝑥 𝜕𝑦
] + 𝑘̅ [

𝜕2𝐹1

𝜕𝑥 𝜕𝑧
+

𝜕2𝐹3

𝜕𝑦 𝜕𝑧
]

− 𝑖̅ [
𝜕2𝐹1

𝜕𝑦2
+

𝜕2𝐹1

𝜕𝑧2
] − 𝑗̅ [

𝜕2𝐹2

𝜕𝑧2
+

𝜕2𝐹2

𝜕𝑥2
] − 𝑘̅ [

𝜕2𝐹3

𝜕𝑥2
+

𝜕2𝐹3

𝜕𝑦2
] 

= 𝑖̅ [
𝜕2𝐹1

𝜕𝑥2
+

𝜕2𝐹2

𝜕𝑦 𝜕𝑥
+

𝜕2𝐹3

𝜕𝑧 𝜕𝑥
] + 𝑗̅ [

𝜕2𝐹2

𝜕𝑦2
+

𝜕2𝐹3

𝜕𝑧 𝜕𝑦
+

𝜕2𝐹1

𝜕𝑥 𝜕𝑦
]

+ 𝑘̅ [
𝜕2𝐹3

𝜕𝑧2
+

𝜕2𝐹1

𝜕𝑥 𝜕𝑧
+

𝜕2𝐹3

𝜕𝑦 𝜕𝑧
] − 𝑖̅ [

𝜕2𝐹1

𝜕𝑥2
+

𝜕2𝐹1

𝜕𝑦2
+

𝜕2𝐹1

𝜕𝑧2
]

− 𝑗̅ [
𝜕2𝐹2

𝜕𝑥2
+

𝜕2𝐹2

𝜕𝑦2
+

𝜕2𝐹2

𝜕𝑧2
] − 𝑘̅ [

𝜕2𝐹3

𝜕𝑥2
+

𝜕2𝐹3

𝜕𝑦2
+

𝜕2𝐹3

𝜕𝑧2
] 

= 𝑖̅
𝜕

𝜕𝑥
[
𝜕𝐹1

𝜕𝑥
+

𝜕𝐹2

𝜕𝑦
+

𝜕𝐹3

𝜕𝑧
] + 𝑗̅

𝜕

𝜕𝑦
[
𝜕𝐹1

𝜕𝑥
+

𝜕𝐹2

𝜕𝑦
+

𝜕𝐹3

𝜕𝑧
] + 𝑘̅

𝜕

𝜕𝑧
[
𝜕𝐹1

𝜕𝑥
+

𝜕𝐹2

𝜕𝑦
+

𝜕𝐹3

𝜕𝑧
]

− [
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
] (𝐹1𝑖̅ + 𝐹2𝑗 ̅ + 𝐹3𝑘̅) 

= [𝑖̅
𝜕

𝜕𝑥
+  𝑗̅

𝜕

𝜕𝑦
+ 𝑘̅

𝜕

𝜕𝑧
] [

𝜕𝐹1

𝜕𝑥
+

𝜕𝐹2

𝜕𝑦
+

𝜕𝐹3

𝜕𝑧
] − ∇2F̅ 

 = grad div F̅ − ∇2F̅ 

Hence𝐶𝑢𝑟𝑙 𝐶𝑢𝑟𝑙 F̅ =  𝑔𝑟𝑎𝑑 𝑑𝑖𝑣F̅ − ∇2F̅ 

 

MEANING OF THE OPERATION (𝒖̅  ∙ 𝛁)𝒗̅: 

 ∇is a vector operator. Hence we first express the dot product 𝑢̅  ∙ ∇ as a 

scalar operator.  

𝑢̅  ∙ ∇=  (𝑢1𝑖̅ + 𝑢2𝑗 ̅ + 𝑢3𝑘̅). (𝑖̅
𝜕

𝜕𝑥
+ 𝑗̅

𝜕

𝜕𝑦
+ 𝑘̅

𝜕

𝜕𝑧
) 

                                                                = 𝑢1

𝜕

𝜕𝑥
+ 𝑢2

𝜕

𝜕𝑦
+ 𝑢3

𝜕

𝜕𝑧
 

Hence (𝑢̅  ∙ ∇)𝑣̅ = (𝑢1
𝜕

𝜕𝑥
+ 𝑢2

𝜕

𝜕𝑦
+ 𝑢3

𝜕

𝜕𝑧
) 𝑣̅ 

= (𝑢1

𝜕𝑣̅

𝜕𝑥
+ 𝑢2

𝜕𝑣̅

𝜕𝑦
+ 𝑢3

𝜕𝑣̅

𝜕𝑧
) 

Now (𝑢̅  ∙ ∇)𝑣̅is written without the brackets as𝑢̅  ∙ ∇𝑣̅  but since ∙ ∇𝑣̅  has no 

meaning,  𝑢̅  ∙ ∇𝑣̅  means that 𝑢̅associated with ∇ operates on 𝑣̅. 

Similarly we shall now prove that (𝑢̅  ∙ ∇)∅ = 𝑢̅  ∙ ∇∅ 
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𝑢̅  ∙ ∇ as before gives the scalar operator   𝑢1
𝜕

𝜕𝑥
+ 𝑢2

𝜕

𝜕𝑦
+ 𝑢3

𝜕

𝜕𝑧
 

Hence (𝑢̅  ∙ ∇)∅ = (𝑢1
𝜕

𝜕𝑥
+ 𝑢2

𝜕

𝜕𝑦
+ 𝑢3

𝜕

𝜕𝑧
)  ∅ = (𝑢1

𝜕∅

𝜕𝑥
+ 𝑢2

𝜕∅

𝜕𝑦
+ 𝑢3

𝜕∅

𝜕𝑧
) 

Now 𝑢̅  ∙ ∇∅ =  (𝑢1𝑥 + 𝑢2𝑦 + 𝑢3𝑧) ∙ (
𝑖̅(𝜕∅)

𝜕𝑥
+

𝑗̅(𝜕∅)

𝜕𝑦
+

𝑘̅(𝜕∅)

𝜕𝑧
) = 𝑢1

𝜕∅

𝜕𝑥
+ 𝑢2

𝜕∅

𝜕𝑦
+

𝑢3
𝜕∅

𝜕𝑧
 

Hence (𝑢̅  ∙ ∇)∅ = 𝑢̅  ∙ ∇∅ 

 

 

TWO MORE EXPANSION FORMULAS 

1. To prove that𝐶𝑢𝑟𝑙(𝑢̅ × 𝑣̅) = 𝑣̅ ∙ ∇𝑢̅ − 𝑢̅ ∙ ∇𝑣̅ + 𝑢̅𝑑𝑖𝑣 𝑣̅ − 𝑣̅ 𝑑𝑖𝑣 𝑢̅ 

 By the definition 𝐶𝑢𝑟𝑙(𝐹̅) = 𝑖̅ ×  
𝜕𝐹

𝜕𝑥
+ 𝑗̅ ×

𝜕𝐹

𝜕𝑦
+ 𝑘̅ ×

𝜕𝐹

𝜕𝑧
 

Hence 𝐶𝑢𝑟𝑙 (𝑢̅ × 𝑣̅) = 𝑖̅ ×  
𝜕(𝑢×𝑣̅)

𝜕𝑥
+ 𝑗̅ ×

𝜕(𝑢×𝑣̅)

𝜕𝑦
+ 𝑘̅ ×

𝜕(𝑢×𝑣̅)

𝜕𝑧
 

= 𝑖̅ ×  (𝑢̅ ×
𝜕𝑣̅

𝜕𝑥
+

𝜕𝑢̅

𝜕𝑥
× 𝑣̅) +  𝑗̅ × (𝑢̅ ×

𝜕𝑣̅

𝜕𝑦
+

𝜕𝑢̅

𝜕𝑦
× 𝑣̅) + 𝑘̅ × (𝑢̅ ×

𝜕𝑣̅

𝜕𝑧
+

𝜕𝑢̅

𝜕𝑧
× 𝑣̅) 

 = 𝑖̅ ×  (𝑢̅ ×
𝜕𝑣̅

𝜕𝑥
) + 𝑖̅ × (

𝜕𝑢

𝜕𝑥
× 𝑣̅) +  𝑗̅ × (𝑢̅ ×

𝜕𝑣̅

𝜕𝑦
) + 𝑗̅ × (

𝜕𝑢

𝜕𝑦
× 𝑣̅) 

+𝑘̅ × (𝑢̅ ×
𝜕𝑣̅

𝜕𝑧
) + 𝑘̅ × (

𝜕𝑢̅

𝜕𝑧
× 𝑣̅) 

But we know that 𝑎̅ ×  (𝑏̅ × 𝑐̅) =  (𝑎̅ ∙ 𝑐̅)𝑏̅ − (𝑎̅ ∙ 𝑏̅)𝑐̅ 

Hence 𝐶𝑢𝑟𝑙(𝑢̅ × 𝑣̅) = (𝑖̅ ∙
𝜕𝑣̅

𝜕𝑥
) 𝑢̅ − (𝑖̅ ∙ 𝑢̅)

𝜕𝑣̅

𝜕𝑥
+ (𝑖̅ ∙ 𝑣̅)

𝜕𝑢

𝜕𝑥
− (𝑖̅ ∙

𝜕𝑢

𝜕𝑥
) 𝑣̅ +

 (𝑗̅ ∙
𝜕𝑣̅

𝜕𝑦
) 𝑢̅ − (𝑗̅ ∙ 𝑢̅)

𝜕𝑣̅

𝜕𝑦
+      (𝑗 ̅ ∙ 𝑣̅)

𝜕𝑢

𝜕𝑦
− (𝑗̅ ∙

𝜕𝑢

𝜕𝑦
) 𝑣̅ + (𝑘̅ ∙

𝜕𝑣̅

𝜕𝑧
) 𝑢̅ − (𝑘̅ ∙ 𝑢̅)

𝜕𝑣̅

𝜕𝑧
+

(𝑘̅ ∙ 𝑣̅)
𝜕𝑢

𝜕𝑧
− (𝑘̅ ∙

𝜕𝑢

𝜕𝑧
) 𝑣̅ 

= (𝑖̅ ∙
𝜕𝑣̅

𝜕𝑥
+ 𝑗̅ ∙

𝜕𝑣̅

𝜕𝑦
+ 𝑘̅ ∙

𝜕𝑣̅

𝜕𝑧
) 𝑢̅ − 𝑣̅ (𝑖̅ ∙

𝜕𝑢̅

𝜕𝑥
+ 𝑗̅ ∙

𝜕𝑢̅

𝜕𝑦
+ 𝑘̅ ∙

𝜕𝑢̅

𝜕𝑧
) 

− ((𝑢̅ ∙ 𝑖)̅
𝜕𝑣̅

𝜕𝑥
+ (𝑢̅ ∙ 𝑗)̅

𝜕𝑣̅

𝜕𝑦
+ (𝑢̅ ∙ 𝑘̅)

𝜕𝑣̅

𝜕𝑧
) 

+ ((𝑣̅ ∙ 𝑖)̅
𝜕𝑢̅

𝜕𝑥
+ (𝑣̅ ∙ 𝑗)̅

𝜕𝑢̅

𝜕𝑦
+ (𝑣̅ ∙ 𝑘̅)

𝜕𝑢̅

𝜕𝑧
)                         (𝐴) 
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Now (𝑢̅ ∙ 𝑖)̅ = (𝑢1𝑖̅ + 𝑢2𝑗 ̅ + 𝑢3𝑘̅) ∙ 𝑖̅ =  𝑢1 

Similarly,  (𝑢̅ ∙ 𝑗)̅ = 𝑢2, (𝑢̅ ∙ 𝑘̅) =  𝑢3 , (𝑣̅ ∙ 𝑖)̅ = 𝑣1, (𝑣̅ ∙ 𝑗)̅ = 𝑣2, (𝑣̅ ∙ 𝑘̅) = 𝑣3 

Also ∑ 𝑖̅ ∙
𝜕𝑣̅

𝜕𝑥
 = 𝑑𝑖𝑣 𝑣̅and ∑ 𝑖̅ ∙

𝜕𝑢

𝜕𝑥
 = 𝑑𝑖𝑣 𝑢̅ 

Hence (A) becomes  

Curl (𝑢̅ × 𝑣̅) = (𝑑𝑖𝑣 𝑣̅)𝑢̅ − (𝑑𝑖𝑣 𝑢̅)𝑣̅ − (𝑢1

𝜕𝑣̅

𝜕𝑥
+ 𝑢2

𝜕𝑣̅

𝜕𝑦
+ 𝑢3

𝜕𝑣̅

𝜕𝑧
)

+ (𝑣1

𝜕𝑢̅

𝜕𝑥
+ 𝑣2

𝜕𝑢̅

𝜕𝑦
+ 𝑣3

𝜕𝑢̅

𝜕𝑧
) 

 = (𝑑𝑖𝑣 𝑣̅)𝑢̅ − (𝑑𝑖𝑣 𝑢̅)𝑣̅ − (𝑢1
𝜕

𝜕𝑥
+ 𝑢2

𝜕

𝜕𝑦
+ 𝑢3

𝜕

𝜕𝑧
) 𝑣̅ + (𝑣1

𝜕

𝜕𝑥
+ 𝑣2

𝜕

𝜕𝑦
+

𝑣3
𝜕

𝜕𝑧
) 𝑢̅ 

 = (𝑑𝑖𝑣 𝑣̅)𝑢̅ − (𝑑𝑖𝑣 𝑢̅)𝑣̅ − (𝑢̅ ∙ ∇)𝑣̅ + (𝑣̅ ∙ ∇)𝑢̅ 

 = (𝑑𝑖𝑣 𝑣̅)𝑢̅ − (𝑑𝑖𝑣 𝑢̅)𝑣̅ − 𝑢̅ ∙ ∇𝑣̅ + 𝑣̅ ∙ ∇𝑢̅ 

= 𝑣̅ ∙ ∇𝑢̅ − 𝑢̅ ∙ ∇𝑣̅ + (𝑑𝑖𝑣 𝑣̅)𝑢̅ − (𝑑𝑖𝑣 𝑢̅)𝑣̅ 

 

2. To Prove that grad (𝑢̅ ∙ 𝑣̅) = 𝑣̅ ∙ ∇𝑢̅ + 𝑢̅ ∙ ∇𝑣̅ + 𝑣̅ ×  𝑐𝑢𝑟𝑙 𝑢̅ + 𝑢̅ × 𝑐𝑢𝑟𝑙 𝑣̅ 

 By the definition grad (𝑢̅ ∙ 𝑣̅) =  (𝑖̅ ∙
𝜕

𝜕𝑥
+ 𝑗̅ ∙

𝜕

𝜕𝑦
+ 𝑘̅ ∙

𝜕

𝜕𝑧
) (𝑢̅ ∙ 𝑣̅) 

= 𝑖̅ ∙  (𝑢̅ ∙
𝜕𝑣̅

𝜕𝑥
+

𝜕𝑢̅

𝜕𝑥
∙ 𝑣̅) +  𝑗̅ ∙ (𝑢̅ ∙

𝜕𝑣̅

𝜕𝑦
+

𝜕𝑢̅

𝜕𝑦
∙ 𝑣̅) + 𝑘̅

∙ (𝑢̅ ∙
𝜕𝑣̅

𝜕𝑧
+

𝜕𝑢̅

𝜕𝑧
∙ 𝑣̅) (1) 

Now, 𝑣̅ ×  𝑐𝑢𝑟𝑙 𝑢̅ = 𝑣̅ ×  (𝑖̅ ×  
𝜕𝑢

𝜕𝑥
+ 𝑗̅ ×

𝜕𝑢

𝜕𝑦
+ 𝑘̅ ×

𝜕𝑢

𝜕𝑧
) 

=  𝑣̅ × (𝑖̅ ×  
𝜕𝑢̅

𝜕𝑥
) + 𝑣̅ ×  (𝑗̅ ×

𝜕𝑢̅

𝜕𝑦
) + 𝑣̅ × (𝑘̅ ×

𝜕𝑢̅

𝜕𝑧
) 

= (𝑣̅ ∙  
𝜕𝑢̅

𝜕𝑥
) ∙ 𝑖̅ − (𝑣̅ ∙ 𝑖)̅

𝜕𝑢̅

𝜕𝑥
+ (𝑣̅ ∙  

𝜕𝑢̅

𝜕𝑦
) ∙ 𝑗̅ − (𝑣̅ ∙ 𝑗)̅

𝜕𝑢̅

𝜕𝑦
+ (𝑣̅ ∙  

𝜕𝑢̅

𝜕𝑧
) ∙ 𝑘̅

− (𝑣̅ ∙ 𝑘̅)
𝜕𝑢̅

𝜕𝑧
 

= (𝑣̅ ∙  
𝜕𝑢̅

𝜕𝑥
) ∙ 𝑖̅ − 𝑣1̅̅ ̅ ∙  

𝜕𝑢̅

𝜕𝑥
+ (𝑣̅ ∙  

𝜕𝑢̅

𝜕𝑦
) ∙ 𝑗̅ − 𝑣̅2 ∙  

𝜕𝑢̅

𝜕𝑦
+ (𝑣̅ ∙  

𝜕𝑢̅

𝜕𝑧
) ∙ 𝑘̅ − 𝑣3̅̅ ̅

∙  
𝜕𝑢̅

𝜕𝑥
(∵ 𝑣̅ ∙ 𝑖̅ = 𝑣1̅̅ ̅ 𝑒𝑡𝑐). 



 

Dr.K.V.Nageswara Reddy, AITS(Autonomous), Kadapa  
 

= (𝑣̅ ∙  
𝜕𝑢̅

𝜕𝑥
) ∙ 𝑖̅ + (𝑣̅ ∙  

𝜕𝑢̅

𝜕𝑦
) ∙ 𝑗̅ + (𝑣̅ ∙  

𝜕𝑢̅

𝜕𝑧
) ∙ 𝑘̅ −   (𝑣1

𝜕

𝜕𝑥
+ 𝑣2

𝜕

𝜕𝑦
+ 𝑣3

𝜕

𝜕𝑧
) 𝑢̅ 

= (𝑣̅ ∙  
𝜕𝑢̅

𝜕𝑥
) ∙ 𝑖̅ + (𝑣̅ ∙  

𝜕𝑢̅

𝜕𝑦
) ∙ 𝑗̅ + (𝑣̅ ∙  

𝜕𝑢̅

𝜕𝑧
) ∙ 𝑘̅ − (𝑣̅ ∙ ∇)𝑢̅ 

= (𝑣̅ ∙  
𝜕𝑢̅

𝜕𝑥
) ∙ 𝑖̅ + (𝑣̅ ∙  

𝜕𝑢̅

𝜕𝑦
) ∙ 𝑗̅ + (𝑣̅ ∙  

𝜕𝑢̅

𝜕𝑧
) ∙ 𝑘̅ − 𝑣̅

∙ ∇𝑢 ̅                                             (2)  

Similarly, 𝑢̅ × 𝑐𝑢𝑟𝑙 𝑣̅ = (𝑢̅ ∙  
𝜕𝑣̅

𝜕𝑥
) ∙ 𝑖̅ + (𝑢̅ ∙  

𝜕𝑣̅

𝜕𝑦
) ∙ 𝑗̅ + (𝑢̅ ∙  

𝜕𝑣̅

𝜕𝑧
) ∙ 𝑘̅ − 𝑢̅ ∙

∇𝑢 ̅                                             (3)  

Adding (2) and (3), we get  

𝑣̅ ×  𝑐𝑢𝑟𝑙 𝑢̅ + 𝑢̅ × 𝑐𝑢𝑟𝑙 𝑣̅ 

= (𝑢̅ ∙
𝜕𝑣̅

𝜕𝑥
+ 𝑣̅ ∙

𝜕𝑢̅

𝜕𝑥
) ∙ 𝑖̅ + (𝑢̅ ∙

𝜕𝑣̅

𝜕𝑦
+ 𝑣̅ ∙

𝜕𝑢̅

𝜕𝑦
) ∙ 𝑗̅ + (𝑢̅ ∙

𝜕𝑣̅

𝜕𝑧
+ 𝑣̅ ∙

𝜕𝑢̅

𝜕𝑧
) ∙ 𝑘̅ − 𝑣̅ ∙ ∇𝑢̅

− 𝑢̅ ∙ ∇𝑢 ̅ 

= grad(𝑢̅ ∙ 𝑣̅) − 𝑣̅ ∙ ∇𝑢̅ − 𝑢̅ ∙ ∇𝑣̅                      [from(1)] 

grad (𝑢̅ ∙ 𝑣̅) = 𝑣̅ ∙ ∇𝑢̅ + 𝑢̅ ∙ ∇𝑣̅ + 𝑣̅ ×  𝑐𝑢𝑟𝑙 𝑢̅ + 𝑢̅ × 𝑐𝑢𝑟𝑙 𝑣̅ 

 

 

SOLENOIDAL AND IRROTATIONAL FIELDS 

We shall mention here only two kinds of vector fields, having different 

associations of Curl and Divergence: 

(i) If the divergence of a vector  is zero, everywhere in a field, that field is 

termed Solenoidal.  

Suppose 𝑑𝑖𝑣 𝑣̅ = 0                                                                  (1) 

Then 𝑣 determines a solenoidal field, we have the identity 

𝑑𝑖𝑣 𝐶𝑢𝑟𝑙 𝐹̅ = 0                                                                       (2) 

Hence from (1) & (2) , we have 𝑣̅ = 𝐶𝑢𝑟𝑙 𝐹̅ 

i.e., the solenoidal field 𝑣̅ can be expressed as the curl of another vector 𝐹̅. 

This is an important characteristic of a solenoidal field. 

In the motion of an incompressible field, the divergence of the velocity 

vector is zero. Hence the velocity field is solenoidal. 
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(ii) If the curl of a vector is zero everywhere in a field, that field is termed 

irrotational or lamellar. Suppose  𝐶𝑢𝑟𝑙 𝑣̅ = 0           (3) 

We have the identity that, if ∅ is a scalar function. Then 𝑐𝑢𝑟𝑙 𝑔𝑟𝑎𝑑 ∅ = 0̅ 

From (3) & (4), we get 𝑣̅ = 𝑔𝑟𝑎𝑑 ∅ 

i.e., the irrotational field 𝑣̅ can be expressed as the gradient of a scalar function.   

This is an important characteristic of an irrotational field. Since 𝑣̅ = 𝑔𝑟𝑎𝑑 ∅, the 

vector field 𝑣̅ can be derived from a scalar field ∅. 𝑣̅ is called a Conservative 

vector field and ∅ is called the scalar potential. 

 

15. Show that the vector 𝑣̅ = (𝑥 + 3𝑦)𝑖̅ + (𝑦 − 3𝑧)𝑗̅ + (𝑥 −

2𝑧)𝑘̅ 𝑖𝑠 𝑠𝑜𝑙𝑒𝑛𝑜𝑖𝑑𝑎𝑙. 

Solution: Let  𝑣̅ = (𝑥 + 3𝑦)𝑖̅ +  (𝑦 − 3𝑧)𝑗̅ +  (𝑥 − 2𝑧)𝑘̅ 

𝑑𝑖𝑣 𝐹̅ =  ∇ ∙  𝐹̅ =  (𝑖̅
𝜕

𝜕𝑥
+ 𝑗̅

𝜕

𝜕𝑦
+  𝑘̅

𝜕

𝜕𝑧
)

∙  {(𝑥 + 3𝑦)𝑖̅ +  (𝑦 − 3𝑧)𝑗̅ +  (𝑥 − 2𝑧)𝑘̅} 

=  (
𝜕

𝜕𝑥
(𝑥 + 3𝑦) +   

𝜕

𝜕𝑦
(𝑦 − 3𝑧) + 

𝜕

𝜕𝑧
(𝑥 − 2𝑧)) 

  = 1 + 1 − 2 = 0𝑣̅  𝑖𝑠 𝑠𝑜𝑙𝑒𝑛𝑜𝑖𝑑𝑎𝑙 

 

 

16. Show that ∇ 𝑓(𝑟) =  
𝑟̅

𝑟
(

𝜕𝑓

𝜕𝑟
)and (∇ 𝑓(𝑟̅) ×  𝑟̅ = 0  

Solution: Where |𝑟̅| =  |𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘 | , 𝑟2 =  𝑥2 + 𝑦2 + 𝑧2 ,
𝜕𝑟

𝜕𝑥
=  

𝑥

𝑟
 

 ∇ 𝑓(𝑟) = (𝑖̅
𝜕 𝑓(𝑟)

𝜕𝑥
+ 𝑗̅

𝜕 𝑓(𝑟)

𝜕𝑦
+ 𝑘̅

𝜕𝑓(𝑟)

𝜕𝑧
) 

= 𝑖̅
𝜕𝑓

𝜕𝑟

𝜕𝑟

𝜕𝑥
 + 𝑗̅

𝜕𝑓

𝜕𝑟

𝜕𝑟

𝜕𝑦
+ 𝑘̅

𝜕𝑓

𝜕𝑟

𝜕𝑟

𝜕𝑧
 

{∇ 𝑓(𝑟)} × 𝑟̅ =  (
𝑟̅

𝑟

𝜕𝑓

𝜕𝑟
)  × 𝑟̅ =  

1

𝑟

𝜕𝑓

𝜕𝑟
(𝑟̅ × 𝑟̅) =  0̅ 

 

 

17. Show that 𝑑𝑖𝑣 (𝑟𝑛𝑟̅) = (𝑛 + 3)𝑟𝑛 and  𝐶𝑢𝑟𝑙 (𝑟𝑛𝑟̅) =  0̅. 

Solution: where 𝑟̅ =  𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘, 𝑟2 =  𝑥2 + 𝑦2 + 𝑧2 ,
𝜕𝑟

𝜕𝑥
=  

𝑥

𝑟
 ,

𝜕𝑟

𝜕𝑦
=  

𝑦

𝑟
 , 

𝜕𝑟

𝜕𝑧
=  

𝑧

𝑟
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𝑑𝑖𝑣 (𝑟𝑛𝑟̅) =  𝑑𝑖𝑣  (𝑟𝑛( 𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘)) =  ∇ ∙  (𝑟𝑛( 𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘)) 

=  
𝜕

𝜕𝑥
(𝑟𝑛𝑥) +  

𝜕

𝜕𝑦
(𝑟𝑛𝑦) +  

𝜕

𝜕𝑧
(𝑟𝑛𝑧) 

= 3𝑟𝑛 +  𝑛𝑟𝑛−1 {
𝜕𝑟

𝜕𝑥
 𝑥 + 

𝜕𝑟

𝜕𝑦
𝑦 +  

𝜕𝑟

𝜕𝑧
𝑧} 

= 3𝑟𝑛 +  𝑛𝑟𝑛−1 (
𝑥2 + 𝑦2 + 𝑧2

𝑟
) = 3𝑟𝑛 +  𝑛𝑟𝑛−1𝑟 =  3𝑟𝑛 +  𝑛𝑟𝑛

= (𝑛 + 3)𝑟𝑛 

 

18. If 𝐴̅ 𝑎𝑛𝑑 𝐵̅ are irrotational, show that 𝐴̅  × 𝐵̅ is solenoidal. 

Solution: Let 𝐴̅ 𝑎𝑛𝑑 𝐵̅ are irrotational  

𝐶𝑢𝑟𝑙 𝐴 ̅ = 0̅ 𝑎𝑛𝑑 𝐶𝑢𝑟𝑙 𝐵 ̅ = 0̅ , 𝑖. 𝑒. , ∇  ×  𝐴 ̅ = 0̅ 𝑎𝑛𝑑 ∇ × 𝐵 ̅ = 0̅(1) 

𝑑𝑖𝑣 (𝐴̅  × 𝐵̅) = ∇ ∙ 𝐴̅  × 𝐵̅ =  𝐵̅  ∙ (∇ × 𝐴̅) − 𝐴̅  ∙ (∇ × 𝐵̅) 

= 𝐵̅  ∙ 0̅ − 𝐴̅  ∙ 0̅ = 0                                                                            𝑢𝑠𝑖𝑛𝑔 (1) 

By the definition, a vector is solenoidal if its divergence is zero. 

𝐴̅  × 𝐵̅ is solenoidal if 𝐴̅ 𝑎𝑛𝑑 𝐵̅ are irrotational.  

 

19. Show that 𝑟𝑛𝑟̅ is an irrotational vector for any value of 𝑛, but it is 

solenoidal only if𝑛 =  −3. 

Solution: ∇ × (𝑟𝑛𝑟̅ ) = 0̅ , 𝑟𝑛𝑟̅ is an irrotational vector for any value of 𝑛, ∇ ∙

(𝑟𝑛𝑟̅ ) = (𝑛 + 3)𝑟𝑛 

But the vector is solenoidal, ∇ ∙ (𝑟𝑛 𝑟̅) = 0  

⇒ 𝑛 + 3 = 0 ⇒ 𝑛 =  −3 

 

20. Determine the constant 𝑎 so that the vector 𝐹̅ =  (𝑥 + 3𝑦)𝑖̅ +

 (𝑦 − 3𝑧)𝑗̅ + (𝑥 − 𝑎𝑧)𝑘̅is solenoidal  

Solution: ∇ ∙ 𝐹̅ = 1 +  1 + 𝑎 = 𝑎 + 2 

For a solenoidal field, ∇ ∙ 𝐹̅ = 0 

𝑖. 𝑒., 𝑎 + 2 = 0 𝑜𝑟 𝑎 =  −2 

 

21. If ∅ 𝑎𝑛𝑑 𝛹 are differential scalar fields, prove that (∇∅ ∙ ∇𝛹) is 

solenoidal. 

Solution:   𝑑𝑖𝑣 (∇∅ ∙ ∇𝛹) = ∇𝛹 ∙ 𝑐𝑢𝑟𝑙 ∅ − ∇∅ ∙ curl ∇Ψ                     (1) 

But 𝑐𝑢𝑟𝑙 (𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 ) =  0̅ identically  
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Hence 𝑐𝑢𝑟𝑙 𝑔𝑟𝑎𝑑 ∅ = 0̅ = 𝑐𝑢𝑟𝑙 𝑔𝑟𝑎𝑑 𝛹 

So (1) becomes 𝑑𝑖𝑣 (∇∅ ∙ ∇𝛹) =  0, ∇∅ × ∇𝛹 is solenoidal. 

 

 

22. Show that𝛻2𝑟𝑛 = 𝑛 (𝑛 + 1)𝑟𝑛−2 

Solution: We have ∇𝑟𝑛 = 𝑛 𝑟𝑛−2𝑟̅       (1) 

∇𝑟𝑛 =  ∇ ∙ ∇𝑟𝑛, since ∇ ∙ ∇∅ =  𝛻2∅ 

          = ∇ ∙ 𝑛 𝑟𝑛−2𝑟̅ =   𝑛𝑟𝑛−2∇ ∙ 𝑟̅ + ∇( 𝑟𝑛−2) ∙ 𝑟̅ 

But ∇ ∙ 𝑟̅ = 3 

               𝛻2𝑟𝑛 = 3𝑛𝑟𝑛−2 + 𝑛 ∇(𝑟𝑛−2) ∙ 𝑟̅                (2) 

Changing 𝑛 into 𝑛 − 2 in (1), we  have  

              ∇ ∙  𝑟𝑛−2 = (𝑛 − 2)𝑟𝑛−4𝑟̅ 

Substituting in (2), we have  

               𝛻2𝑟𝑛 = 3𝑛𝑟𝑛−2 + 𝑛 (𝑛 − 2) 𝑟𝑛−4𝑟̅ ∙  𝑟̅ 

                         = 3𝑛𝑟𝑛−2 + 𝑛 (𝑛 − 2) 𝑟𝑛−2 

                            = 𝑛(3 + 𝑛 − 2) 𝑟𝑛−2 = 𝑛(𝑛 + 1) 𝑟𝑛−2 

 

23. Prove that 𝑐𝑢𝑟𝑙 (∅ ∇∅) =  0̅.  

Solution: ∇  ×  (∅ ∇∅) =  ∅(∇ × ∇∅) + ∇∅ × ∇∅ =  0̅ 

 

24. A Vector field is given by 𝐹̅ = (𝑥2 − 𝑦2 +  𝑥)i ̅ −  (2𝑥𝑦 + 𝑦)j ̅show that 

the field is irrotational and find its scalar potential. 

Solution:Since∇ × 𝐹̅ =  |

i̅ j k
∂

∂x⁄ ∂
∂y⁄ ∂

∂z⁄

𝑥2 − 𝑦2 +  𝑥 −2𝑥𝑦 − 𝑦 0

| 

 

=  i(̅0 − 0) + 𝑗(̅0 − 0) + 𝑘̅(−2𝑦 − +2𝑦) = 0̅ 

𝐹̅ is irrotational field and the vector 𝐹̅ can be expressed as the gradient of 

a scalar potential. i.e., 𝐹̅ =  ∇∅. 

(𝑥2 − 𝑦2 +  𝑥)i ̅ −  (2𝑥𝑦 + 𝑦)j ̅ =
𝜕∅

𝜕𝑥
i̅ +

𝜕∅

𝜕𝑦
j 

𝜕∅

𝜕𝑥
= 𝑥2 − 𝑦2 +  𝑥             (1),   

𝜕∅

𝜕𝑦
=  −2𝑥𝑦 − 𝑦                 (2) 

Integrating (1)𝑤. 𝑟. 𝑡.   𝑥, keeping 𝑦 constant, we get  
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∅ =  
𝑥3

3
− 𝑦2𝑥 +

𝑥2

2
+ 𝑓(𝑦)                       (3) 

Integrating (2)𝑤. 𝑟. 𝑡.  𝑦 , keeping 𝑥 constant, we get  

∅ =  −𝑥𝑦2 −
𝑦2

2
+  𝑔(𝑥)                              (4) 

Equating (3) & (4), we get 
𝑥3

3
− 𝑦2𝑥 +

𝑥2

2
+ 𝑓(𝑦) = −𝑥𝑦2 −

𝑦2

2
+  𝑔(𝑥) 

𝑓 (𝑦) =  −
𝑦2

2
                   𝑎𝑛𝑑  𝑔(𝑥) =  

𝑥3

3
+ 

𝑥2

2
 

Hence ∅ =
𝑥3

3
− 𝑦2𝑥 +  

𝑥2

2
−

𝑦2

2
 

 

25. A fluid motion is given by  𝐹̅ = (𝑦 + 𝑧)𝑖̅ + (𝑧 + 𝑥)𝑗̅ + (𝑥 + 𝑦)𝑘̅. Is this 

motion irrotational? If so, find the scalar potential.  

Solution: 

curl 𝐹̅ = ∇ × 𝐹̅ =  |

i̅ j k
∂

∂x⁄ ∂
∂y⁄ ∂

∂z⁄

 𝑥 + 𝑦 𝑧 + 𝑥 𝑥 + 𝑦

|

=  i(̅1 − 1) + 𝑗(̅1 − 1) + 𝑘̅(1 − 1) = 0̅ 

This motion is irrational and if ∅ is the scalar potential then 𝐹̅ =  ∇∅ 

ie., (𝑦 + 𝑧)𝑖̅ + (𝑧 + 𝑥)𝑗̅ + (𝑥 + 𝑦)𝑘̅ = 𝑖̅
𝜕∅

𝜕𝑥
+ 𝑗̅

𝜕∅

𝜕𝑦
+ 𝑘̅

𝜕∅

𝜕𝑧
 

𝜕∅

𝜕𝑥
= (𝑦 + 𝑧)(1);  

𝜕∅

𝜕𝑦
= (𝑧 + 𝑥)(2);

𝜕∅

𝜕𝑧
= (𝑥 + 𝑦)     (3)  

Integrating these, we get  

∅ =  (𝑦 + 𝑧)𝑥 + 𝑓1(𝑦, 𝑧)            (4) 

∅ =  (𝑧 + 𝑥)𝑦 + 𝑓2(𝑧, 𝑥)            (5) 

∅ =  (𝑥 + 𝑦)𝑧 + 𝑓3(𝑥, 𝑦)             (6) 

Equating (4), (5) & (6), we get 𝑓1(𝑦, 𝑧) = 𝑦𝑧, 𝑓2(𝑧, 𝑥) = 𝑧𝑥, 𝑓3(𝑥, 𝑦) =

𝑥𝑦  

Hence ∅ = 𝑦𝑧 + 𝑧𝑥 + 𝑥𝑦 
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Unit-V 

Vector Integration 

INTEGRATION OF A VECTOR FUNCTIONS  

Let 𝑓(̅𝑡) and𝐹̅(𝑡) be two vector functions of a scalar variable 𝑡 such that
𝑑𝐹(𝑡)

𝑑𝑡
=

𝑓̅(𝑡), then𝐹̅(𝑡) is called an integral of 𝑓̅(𝑡)  with respect to 𝑡 and we write 

∫ 𝑓(̅𝑡) 𝑑𝑡 =  𝐹̅(𝑡). 

If 𝑐̅  is any arbitrary constant vector independent of 𝑡, then
𝑑(𝐹(𝑡)+𝑐 ̅)

𝑑𝑡
= 𝑓̅(𝑡) 

This is equivalent to ∫ 𝑓(̅𝑡) 𝑑𝑡 =  𝐹̅(𝑡) + 𝑐̅.  

𝐹̅(𝑡) is called the indefinite integral of 𝑓̅(𝑡) . The constant vector 𝑐̅ is called the 

constant of integration and can be determined if some initial conditions are 

given.  

The definite integral of 𝑓̅(𝑡) between the limits 𝑡 = 𝑎 𝑎𝑛𝑑 𝑡 = 𝑏 is written as 

∫ 𝐹̅(𝑡) 𝑑𝑡 
𝑏

𝑎

=  [𝐹̅(𝑡)]𝑎
𝑏 =  𝐹̅(𝑏) − 𝐹̅(𝑎) 

 

Note 1: If 𝑓(̅𝑡) = 𝑓1(𝑡)𝑖̅ + 𝑓2(𝑡)𝑗̅ + 𝑓3(𝑡)𝑘̅ , then 

∫ 𝑓̅(𝑡) 𝑑𝑡 = 𝑖̅ ∫ 𝑓1(𝑡)𝑑𝑡 + 𝑗̅ ∫  𝑓2(𝑡) 𝑑𝑡 + 𝑘̅ ∫ 𝑓3(𝑡) 𝑑𝑡 

Thus in order to integrate a vector function, integrate the components.  

 

Note 2: we can obtain some standard results for integration of vector functions 

by considering the derivatives of suitable vector functions. For example,  

(i) 
𝑑(𝑟̅∙𝑠̅)

𝑑𝑡
=

𝑑𝑟̅

𝑑𝑡
∙ 𝑠̅ + 𝑟̅ ∙  

𝑑𝑠̅

𝑑𝑡
  ⇒  ∫ (

𝑑𝑟̅

𝑑𝑡
∙ 𝑠̅ + 𝑟̅ ∙  

𝑑𝑠̅

𝑑𝑡
) 𝑑𝑡 = 𝑟̅ ∙ 𝑠̅ + 𝑐 

Here 𝑐 is a scalar quantity. Since the integrand is a scalar.  

(ii) 
𝑑𝑟̅2

𝑑𝑡
= 2𝑟̅ ∙

𝑑𝑟̅

𝑑𝑡
  ⇒  ∫ (2𝑟̅ ∙

𝑑𝑟̅

𝑑𝑡
) 𝑑𝑡 = 𝑟̅2 + 𝑐 

Here 𝑐 is a scalar quantity. Since the integrand is a scalar.  

(iii) 
𝑑

𝑑𝑡
(𝑟̅ ×

𝑑𝑟̅

𝑑𝑡
) =

𝑑𝑟̅

𝑑𝑡
×

𝑑𝑟̅

𝑑𝑡
+ 𝑟̅ ×

𝑑2𝑟̅

𝑑𝑡2  = 𝑟̅ ×  
𝑑2𝑟̅

𝑑𝑡2 

 ⇒  ∫ (𝑟̅ × 
𝑑2𝑟̅

𝑑𝑡2
) 𝑑𝑡 = 𝑟̅ ×

𝑑𝑟̅

𝑑𝑡
+ 𝑐̅ 

Here 𝑐̅ is a vector quantity. Since the integrand is a vector.  
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(iv) If 𝑎̅ is a constant vector, then  

𝑑

𝑑𝑡
(𝑎̅ × 𝑟̅) =

𝑑𝑎̅

𝑑𝑡
× 𝑟̅ + 𝑎̅ ×  

𝑑𝑟̅

𝑑𝑡
 = 𝑎̅ ×  

𝑑𝑟̅

𝑑𝑡
 

 ⇒  ∫ (𝑎̅ ×  
𝑑𝑟̅

𝑑𝑡
) 𝑑𝑡 = 𝑎̅ × 𝑟̅ + 𝑐̅ 

Here 𝑐̅ is a vector quantity. Since the integrand is a vector.  

 

1. The acceleration of a particle at time 𝑡 is given by 𝑎̅ = 18 cos 3𝑡 𝑖̅ −

8 sin 2𝑡 𝑗̅ + 6𝑡 𝑘̅ . If the velocity 𝑣̅and displacement 𝑟̅ are zero at 𝑡 = 0, 

find 𝑣̅and 𝑟̅ at any point 𝑡 . 

Solution: Given 𝑎̅ =
𝑑2𝑟̅

𝑑𝑡2 = 18 cos 3𝑡 𝑖̅ − 8 sin 2𝑡 𝑗̅ + 6𝑡 𝑘̅ 

Integrating, we get 

𝑣̅ =
𝑑𝑟̅

𝑑𝑡
=  ∫(18 cos 3𝑡 𝑖̅ − 8 sin 2𝑡 𝑗̅ + 6𝑡 𝑘̅) 𝑑𝑡 

= 𝑖̅ ∫ 18 cos 3𝑡  𝑑𝑡  – 𝑗̅ ∫ 8 sin 2𝑡  𝑑𝑡 +  𝑘̅ ∫ 6𝑡  𝑑𝑡 

= 6 sin 3𝑡 𝑖̅ + 4 cos 2𝑡 𝑗̅ + 3𝑡2𝑘̅ + 𝑐̅ 

At 𝑡 = 0, 𝑣̅ = 0̅  ⇒ 0̅ = 4𝑗̅ + 𝑐̅  𝑜𝑟  𝑐̅ =  −4𝑗 ̅

∴ 𝑣̅ = 6 sin 3𝑡 𝑖̅ + 4 (cos 2𝑡 − 1)𝑗̅ + 3𝑡2𝑘̅ 

Integrating again, we get  

𝑟̅ = ∫(6 sin 3𝑡 𝑖̅ + 4 (cos 2𝑡 − 1)𝑗̅ + 3𝑡2𝑘̅) 𝑑𝑡 

= 𝑖̅ ∫ 6 sin 3𝑡  𝑑𝑡 – 𝑗̅∫ 4 (cos 2𝑡 − 1)  𝑑𝑡 +  𝑘̅ ∫ 3𝑡2  𝑑𝑡 

= −2 cos 3𝑡 𝑖̅ + (2 sin 2𝑡 − 4𝑡)𝑗̅ + 𝑡3𝑘̅ + 𝑑̅ 

At 𝑡 = 0, 𝑟̅ = 0̅  ⇒ 0̅ = −2 𝑖̅ + 𝑑̅  𝑜𝑟 𝑑̅ =  2𝑖 ̅

∴ 𝑟̅ = 2(1 − cos 3𝑡)𝑖̅ + (2 sin 2𝑡 − 4𝑡)𝑗̅ + 𝑡3𝑘̅ 

 

2. If 𝑓̅(𝑡) = (3𝑡2 − 2𝑡)𝑖̅ + (6𝑡 − 4)𝑗̅ + 4𝑡 𝑘̅ , evaluate ∫ 𝑓(̅𝑡) 𝑑𝑡
3

2
. 

Solution: ∫ 𝑓̅(𝑡) 𝑑𝑡
3

2
=  ∫ (3𝑡2 − 2𝑡)𝑖̅ + (6𝑡 − 4)𝑗̅ + 4𝑡 𝑘̅ 𝑑𝑡

3

2
 

= [(𝑡3 − 𝑡2)𝑖̅ + (3𝑡2 − 4𝑡)𝑗̅ + 2𝑡2𝑘̅]
2 

3
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= 14𝑖̅ + 11𝑗̅ + 10 𝑘̅ 

 

LINE INTEGRAL OF A VECTOR FUNCTION 

Any integral which is to be evaluated along a curve is called a line integral.  

Consider a vector 𝑓̅ defined over a region 𝑅 in three dimensional space. Let 𝐶 be 

curve in this region and let its vector equation be 𝑟̅ = 𝑥(𝑡)𝑖̅ + 𝑦(𝑡)𝑗̅ + 𝑧(𝑡)𝑘̅(1) 

Where t is a real parameter. Let 𝐴 and 𝐵 be end points of 𝐶, which corresponds 

to 𝑡 = 𝑎 𝑎𝑛𝑑 𝑡 = 𝑏 respectively, where 𝑎 < 𝑏. Then, as 𝑡 increases 𝑎 𝑡𝑜 𝑏, a 

variable point 𝑃 (𝑥, 𝑦, 𝑧) describes the curve 𝐶 from the initial point 𝐴 to the 

terminal point B. If 𝐶 is a closed curve, then the point 𝐵 becomes coincident with 

the point 𝐴. 

 

                                                   Figure 10.4 

We note that 
𝑑𝑟̅

𝑑𝑡
is along the tangent vector to the curve 𝐶 at the point 

𝑃 (𝑥, 𝑦, 𝑧)and that the unit vector to 𝐶, at P is given by 

𝑡̂ =  

𝑑𝑟̅

𝑑𝑡

|
𝑑𝑟̅

𝑑𝑡
|

                                                        (2) 

Now, consider the scalar function  𝑓̅ ∙
𝑑𝑟̅

𝑑𝑡
 , since 𝑓̅ is a function of 𝑥, 𝑦, 𝑧  

and 𝑥, 𝑦, 𝑧   are functions of the parameter 𝑡 on 𝐶,  and 
𝑑𝑟̅

𝑑𝑡
 is a function of 𝑡, it 

follows that 𝑓̅ ∙
𝑑𝑟̅

𝑑𝑡
 is a function of 𝑡 on 𝐶.  Suppose we integrate this function 

with respect to 𝑡 from 𝑡 = 𝑎 𝑡𝑜 𝑡 = 𝑏.  The resulting integral is called the scalar 

line integral of 𝑓̅ along the curve 𝐶 and is denoted by ∫ 𝒇̅ . 𝑑𝑟
𝐶

.  

Thus, we have by definition 
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∫ 𝒇̅ . 𝑑𝑟
𝐶

=  ∫ (𝑓̅ ∙
𝑑𝑟̅

𝑑𝑡
)

𝑏

𝑎

 𝑑𝑡                            (3) 

If 𝐶is a closed curve, then the integral sign  ∫𝐶
 is replaced by ∮𝐶

.  

 

Circulation: In fluid dynamics, if 𝑣̅ represent s the velocity of a fluid particle 

and 𝐶 is a closed curve then the integral ∫ 𝑣̅  ∙ 𝑑𝑟̅
𝐶

 is called the circulation of 𝑣̅ 

around the curve 𝐶. 

If the circulation of 𝑣̅around every closed curve in a region R vanishes 

then 𝑣̅ is said to be irrotational in R. 

Remarks:  

1. While defining ∫ 𝒇̅ . 𝑑𝑟
𝐶

 through the relation (3) it is customary to take 

the curve 𝐶 as positively oriented. A space curve 𝐶 is said to be 

positively oriented if its projection on the 𝑥𝑦 − plane is described in the 

anti-clockwise sense. The sign of the integral ∫ 𝒇̅ . 𝑑𝑟
𝐶

 changes, when 

the sense of description of C is reversed. 

2. In Cartesians, expression (3) becomes  

∫ 𝒇̅ . 𝑑𝑟
𝐶

=  ∫ (𝑓1𝑑𝑥 + 𝑓2𝑑𝑦 + 𝑓3𝑑𝑧 )
𝐶

 

= ∫ (𝑓1

𝑑𝑥

𝑑𝑡
+ 𝑓2

𝑑𝑦

𝑑𝑡
+ 𝑓3

𝑑𝑧

𝑑𝑡
)

𝑏

𝑎

 𝑑𝑡                                     (4) 

3.  In the special case where 𝑅 is a region in the 𝑥𝑦 − plane so that 𝐶 is a 

plane curve (in this region),  expression (4) becomes    

∫ 𝑓1𝑑𝑥 + 𝑓2𝑑𝑦 
𝐶

= ∫ (𝑓1

𝑑𝑥

𝑑𝑡
+ 𝑓2

𝑑𝑦

𝑑𝑡
)

𝑏

𝑎

 𝑑𝑡            (5)        

4. If 𝑓̅ represents a force  under which a particle moves from one end of 

curve 𝐶 to the other end (along the curve), then ∫ 𝑓̅ . 𝑑𝑟
𝐶

 represents the 

corresponding total work done by 𝑓̅. 
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3. If  𝒇̅  =  (5𝑥𝑦 –  6𝑥2)𝑖̅ + (2𝑦 − 4𝑥)𝑗,̅  evaluate ∫ 𝒇̅ . 𝑑𝑟,
𝐶

where  𝐶 is the 

curve 𝑦 = 𝑥3 , from the point(1, 1) to the point(2, 8). 

Solution: The given curve 𝐶 is a curve in the 𝑥𝑦 – plane. Therefore, 𝑧 ≡ 0 at 

every point of the curve. Setting 𝑥 = 𝑡 in the equation of 𝐶, we get 𝑦 =  𝑡3. 

Thus, the parametric equations of the given curve 𝐶 may be taken as 𝑥 = 𝑡, 𝑦 =

 𝑡3 , z = 0.Since 𝐶 is from the point (1, 1)to the point (2, 8), the x- coordinate of 

a point on the curve from 1 to 2. Thus, since we have set 𝑥 = 𝑡 on 𝐶,  we have 

1 ≤  𝑡 ≤ 2. 

We find that , on 𝐶, 

𝑟 =  𝑥𝑖̅  +  𝑦𝑗̅  +  𝑧𝑘̅  =  𝑡𝑖̅  + 𝑡3𝑗 ̅ + 0𝑘̅ ,               
𝑑𝑟

𝑑𝑡
= 𝑖̅ + 3𝑡2𝑗 ̅

and   𝑓 = (5𝑡4 −  6𝑡2)𝑖̅ + (2𝑡3 −  4𝑡)𝑗,̅ 

so that    𝑓.
𝑑𝑟

𝑑𝑡
= (5𝑡4 −  6𝑡2) + 3𝑡2(2𝑡3 −  4𝑡) = 6𝑡5 +  5𝑡4 −  12𝑡3 −

 6𝑡2 . 

Therefore,  

∫ 𝑓 . 𝑑𝑟
𝑐

=  ∫ (𝑓 .
𝑑𝑟

𝑑𝑡

2

1

) 𝑑𝑡 =  ∫(6𝑡5 +  5𝑡4 −  12𝑡3 −  6𝑡2)𝑑𝑡 

2

1

= 35 

 

4. Evaluate∫ 𝒇̅ . 𝑑𝑟
𝑐

  along the circle𝑥2 +  𝑦2 =  𝑎2, where𝒇̅  = 3𝑥𝑦𝑖 −

𝑦𝑗 + 2𝑧𝑘.  

Solution:  The parametric equations of the given curve 𝐶 can be taken as 𝑥 =

𝑎𝑐𝑜𝑠𝑡, 𝑦 =  𝑎𝑠𝑖𝑛𝑡, z = 0, 0 ≤ t ≤ 2π.  Hence, on 𝐶,  

𝑟 =  𝑥𝑖̅  +  𝑦𝑗̅  +  𝑧𝑘̅  = (𝑎𝑐𝑜𝑠𝑡)𝑖̅  + (𝑎𝑠𝑖𝑛𝑡)𝑗̅ + 0𝑘,         
𝑑𝑟

𝑑𝑡
= 𝑎(−𝑠𝑖𝑛𝑡𝑖̅ + 𝑐𝑜𝑠𝑡𝑗)̅,  

and  𝑓 = 3(𝑎𝑐𝑜𝑠𝑡)(𝑎𝑠𝑖𝑛𝑡)𝑖̅ − (𝑎𝑠𝑖𝑛𝑡)𝑗̅ + 2 ∙  0𝑘̅ 

so that 𝑓.
𝑑𝑟

𝑑𝑡
=  −3𝑎3𝑠𝑖𝑛2𝑡 𝑐𝑜𝑠𝑡 − 𝑎2𝑠𝑖𝑛𝑡 𝑐𝑜𝑠𝑡 =  −𝑎2(3𝑎 𝑠𝑖𝑛2𝑡 +

  𝑠𝑖𝑛𝑡 ) 𝑐𝑜𝑠𝑡 
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Therefore,    

∫ 𝑓 . 𝑑𝑟
𝑐

=  ∫ (𝑓 .
𝑑𝑟

𝑑𝑡

2𝜋

0

) 𝑑𝑡 =  ∫ {−𝑎2(3𝑎 𝑠𝑖𝑛2𝑡 +   𝑠𝑖𝑛𝑡 ) 𝑐𝑜𝑠𝑡} 𝑑𝑡 

2𝜋

0

 

     =  −𝑎2[𝑎𝑠𝑖𝑛3𝑡 +  
1

2
𝑠𝑖𝑛2𝑡]0

2𝜋 = 0 

 

5. If  𝒇̅  =  (2𝑦 + 3)𝑖̅ + 𝑥𝑧𝑗̅ + (𝑦𝑧 − 𝑥)𝑘̅,  evaluate the integral ∫ 𝑓 . 𝑑𝑟
𝑐

,  

where 𝐶 is the curve 𝑥 = 2𝑡2 , 𝑦 = 𝑡, 𝑧 =  𝑡3 from the point  (0,0,0) to 

the point (2, 1,1). 

Solution: The vector equation of the given curve 𝐶 is  

𝑟 =  𝑥𝑖̅  +  𝑦𝑗̅  +  𝑧𝑘̅ = 2𝑡2𝑖̅ + 𝑡𝑗̅ +  𝑡3𝑘̅ ,  

so that         
𝑑𝑟

𝑑𝑡
= 4𝑡𝑖̅ + 𝑗̅ + 3𝑡2𝑘̅. 

Also on 𝐶, we have 

 𝑓 =   (2𝑡 + 3)𝑖̅ + 2𝑡5𝑗 ̅ + (𝑡4 − 2𝑡2)𝑘̅. 

Therefore, on 𝐶, 

        𝑓.
𝑑𝑟

𝑑𝑡
= 4𝑡(2𝑡 + 3) +  2𝑡5 + 3𝑡2(𝑡4 − 2𝑡2)

= 3𝑡6 + 2𝑡5 −  6𝑡4 +  8𝑡2 +  12𝑡.  

Since, the curve 𝐶 is from the point (0,0,0) to the point (2, 1, 1) and 𝑦 =  𝑡 

on 𝐶, we note that, on the curve 𝐶,𝑦 = 𝑡 varies from 0 𝑡𝑜 1. Hence,  

∫ 𝑓 . 𝑑𝑟
𝑐

=  ∫ (𝑓 .
𝑑𝑟

𝑑𝑡

1

0

) 𝑑𝑡 =  ∫(

1

0

3𝑡6 + 2𝑡5 −  6𝑡4 +  8𝑡2 +  12𝑡) 𝑑𝑡 =  
288

35
 

 

6. If 𝒇̅  =  (3𝑥2 + 6𝑦)𝒊̅ − 14𝑦𝑧𝒋̅ + 20𝑥𝑧2𝒌̅,  evaluate ∫ 𝑓 . 𝑑𝑟
𝑐

,  from 

(0,0,0) to the point (1, 1,1) along the curve 𝐶 given by  𝑥 = 𝑡, 𝑦 =

𝑡2 , 𝑧 =  𝑡3.  

Solution: The vector equation of the given curve 𝐶 is    𝑟 =  𝑡𝒊̅ + 𝑡2𝒋̅ + 𝑡3𝒌̅, so 

that  

𝑑𝑟

𝑑𝑡
= 𝒊̅ + 2𝑡𝒋̅ + 3𝑡2𝒌̅. 

Also on 𝐶, we have 
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 𝑓 =  9𝑡2𝒊̅ −  14𝑡5𝒋̅ +  20𝑡7𝒌̅.  

Therefore, on 𝐶, 

𝑓.
𝑑𝑟

𝑑𝑡
=  9𝑡2 −  28𝑡6 +  60𝑡9  

We note that along  the curve 𝐶 is from the point (0,0,0) to the point (1, 1, 1) 

the parameter 𝑡 increases from 0 𝑡𝑜 1. therefore,  

∫ 𝒇̅ . 𝑑𝑟
𝑐

=  ∫ (𝒇̅ .
𝑑𝑟

𝑑𝑡

1

0

) 𝑑𝑡 =  ∫(9𝑡2 −  28𝑡6 +  60𝑡9

1

0

) 𝑑𝑡 =  5. 

 

7. Find the total work done by a force 𝒇 = 2𝑥𝑦𝒊̅ − 4𝑧𝒋̅ + 5𝑥𝒌̅ along the 

curve by  𝑥 = 𝑡2 , 𝑦 = 2𝑡 + 1, 𝑧 =  𝑡3  from the point 𝑡 =  1 to the 

point  𝑡 =  2. 

Solution: On the given curve 𝐶, we have    

𝑟 =  𝑡2𝒊̅  + (2𝑡 + 1) 𝒋̅ + 𝑡3𝒌̅,         

𝑑𝑟

𝑑𝑡
= 2𝑡𝒊̅ + 2𝒋̅ + 3𝑡2𝒌̅.      and 𝒇̅  =  2𝑡2(2𝑡 + 1)𝒊̅ −  4𝑡3𝒋̅ +  5𝑡2𝒌̅, 

So that    

𝒇̅.
𝑑𝑟

𝑑𝑡
=  4𝑡3(2𝑡 + 1) − 8𝑡3 +  15𝑡4 = 23𝑡4 −  4𝑡3 ,                     𝟏 ≤ 𝒕 ≤ 𝟐 

Hence, the required work is  

∫ 𝒇̅ . 𝑑𝑟
𝑐

=  ∫ (𝒇̅ .
𝑑𝑟

𝑑𝑡

2

1

) 𝑑𝑡 = ∫(23𝑡4 −  4𝑡3

2

1

) 𝑑𝑡 =  
638

5
. 

 

8. Find the total work done by a force𝒇̅ = (2𝑦 − 𝑥2)𝒊̅ + 𝟔𝑦𝑧𝒋̅ −

8𝑥𝑧2𝒌̅from the point (0,0,0) to the point(1, 1,1) along the straight line 

joining these points. 

Solution: Here the path (curve) 𝐶 along which the work is done is the straight 

line from the origin (0,0,0) to the point (1,1,1).The Cartesian equations of this 

straight line are 
𝑥

1
=  

𝑦

1
=  

𝑧

1
= 𝑡 (𝑠𝑎𝑦).These equations yield 𝑥 = 𝑡, 𝑦 = 𝑡, 𝑧 =

 𝑡, 0 ≤ 𝑡 ≤ 1 as the parametric equations of the path  𝐶. Thus, here, 

𝑟 =  𝑡 (𝒊̅ + 𝒋̅ + 𝒌̅),               
𝑑𝑟

𝑑𝑡
= 𝒊̅ + 𝒋̅ + 𝒌̅. 



 

Dr.K.V.Nageswara Reddy, AITS(Autonomous), Kadapa  
 

Hence on 𝐶,   𝒇 = (2𝑡 − 𝑡2)𝒊̅ +  6𝑡2𝒋̅ − 8𝑡3𝒌̅, 

and    𝒇̅.
𝑑𝑟

𝑑𝑡
= (2𝑡 − 𝑡2) +  6𝑡2 − 8𝑡3 =  −8𝑡3 +  5𝑡2 + 2𝑡. 

Therefore, the required work is q 

∫ 𝒇̅ . 𝑑𝑟
𝑐

=  ∫ (𝒇̅ .
𝑑𝑟

𝑑𝑡

1

0

) 𝑑𝑡 = ∫(−8𝑡3 +  5𝑡2 + 2𝑡

1

0

) 𝑑𝑡 =  
2

3
. 

 

SURFACE INTEGRAL OF A VECTOR FUNCTION 

Any integral which is to be evaluated over a surface is called a surface integral.  

Consider a surface 𝑆 in a three dimensional region. Suppose we setup an 

orthogonal coordinate system (𝑢, 𝑣)𝑜𝑛 𝑆. Let 𝑃(𝑥, 𝑦, 𝑧) be any point on S.  Then 

𝑥, 𝑦, 𝑧 are functions are 𝑢 𝑎𝑛𝑑 𝑣,so that on 𝑆,  

𝑟̅  =  𝑥(𝑢, 𝑣)𝑖̅  + 𝑦(𝑢, 𝑣)𝑗̅  + 𝑧(𝑢, 𝑣)𝑘̅ =  𝑟̅(𝑢, 𝑣), 𝑠𝑎𝑦                                        (1) 

This expression for 𝑟̅ holds for any 𝑃(𝑥, 𝑦, 𝑧); therefore, this is (taken as) the 

vector equation of S, with u and v as parameters.  As (𝑥, 𝑦, 𝑧)vary over S; the 

parameter pair (𝑢 , 𝑣) varies over region 𝑆̅ in the 𝑢𝑣 − plane. 

 

                                                   Figure 10.5 

 Now consider a vector function 𝑓̅ defined over the region R. Then on S, 

𝑓̅ is a u and v. Let 𝑛̂be the unit normal vector to S. Then it can be proved that 𝑛̂ 

is along the vector 
𝜕𝑟̅

𝜕𝑢
×

𝜕𝑟̅

𝜕𝑣
. 

Suppose we the double integral of the scalar function 𝑓̅  ∙ (
𝜕𝑟̅

𝜕𝑢
×

𝜕𝑟̅

𝜕𝑣
) over 

the plane region 𝑆̅. This double is called the scalar surface integral of 𝑓̅ over S 

and is denoted by ∫ 𝑓 ̅. 𝑛̂ ds.
𝑆

 



  

Dr.K.V.Nageswara Reddy, AITS(Autonomous), Kadapa  
 

Thus we have by definition  

∫ 𝑓 ̅. 𝑛̂ ds
𝑆

=  ∬ 𝒇̅ . (
𝜕𝒓

𝜕𝑢
 ×  

𝜕𝒓

𝜕𝑣
)

S̅

𝑑𝑢 𝑑𝑣                                        (2) 

 The term (
𝜕𝑟̅

𝜕𝑢
×

𝜕𝑟̅

𝜕𝑣
)  𝑑𝑢𝑑𝑣 present in the integral on the R.H.S of the 

above expression is referred to as the vectorial area element on S and is denoted 

by 𝑛̂ dS. Thus by definition  

𝑛̂ ds =  (
𝜕𝑟̅

𝜕𝑢
×

𝜕𝑟̅

𝜕𝑣
)  𝑑𝑢𝑑𝑣                                                                    (3) 

 

Remark: Integrals of the form ∫ 𝑓 ̅. 𝑛̂ ds
𝑠

 arise in many physical situations. In 

fluid flow problems the integral ∫ 𝑓 ̅. 𝑛̂ dS
𝑠

 gives the flux across S(= mass of 

fluid crossing S per unit time) when 𝑓̅ =  𝜌𝑣̅, where  𝜌 is the density of the fluid  

and 𝑣̅ is the velocity vector of the flow for this reason, the integral ∫ 𝑓 ̅. 𝑛̂ dS
𝑠

 is 

often referred to as the flux integral of the vector  𝑓̅( across S). 

 

CARTESIAN EXPRESSION 

Suppose the Cartesian equation of S is of the form 𝑧 =  𝑓(𝑥, 𝑦). Then 𝑥 𝑎𝑛𝑑 𝑦 

serve as parameters defining𝑆. Consequently, the region 𝑆̅ on which these 

parameters vary is the projection of S on the 𝑥𝑦 −plane, and expression (3) 

yields 

𝑛̂ ds =  (
𝜕𝑟̅

𝜕𝑥
×

𝜕𝑟̅

𝜕𝑦
)  𝑑𝑥𝑑𝑦 = (𝑖̅ +

𝜕𝑧

𝜕𝑥
𝑘̅) × (𝑗̅ +

𝜕𝑧

𝜕𝑦
𝑘̅) 𝑑𝑥𝑑𝑦 

= {𝑘̅ − (
𝜕𝑧

𝜕𝑥
𝑖̅ +

𝜕𝑧

𝜕𝑦
𝑗)̅} 𝑑𝑥                                                                       (4) 

 Thus, if the equation of the surface S is of the form 𝑧 =  𝑧(𝑥, 𝑦), we have 

∫ 𝑓̅ . 𝑛̂ ds
𝑠

=  ∬ 𝒇̅ . {𝑘̅ − (
𝜕𝑧

𝜕𝑥
𝑖̅ +

𝜕𝑧

𝜕𝑦
𝑗)̅}

s̅

𝑑𝑥 𝑑𝑦                            (5) 

From (4), we find𝑘̅ ∙ (𝑛̂ ds) = 𝑑𝑥𝑑𝑦                                                       (6) 

We note that𝑘̅ ∙ (𝑛̂ ds) is the projection of the vectorial area elements 

(𝑛̂ ds) on the 𝑥𝑦 −plane, and (6) shows that this projection is equal to 𝑑𝑥𝑑𝑦, 

which is the area element in the 𝑥𝑦 −plane. 
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Similarly, we can show that the projections of (𝑛̂ ds) on 𝑦𝑧 − and 𝑧𝑥 −

 planes are 𝑑𝑦𝑑𝑧 and 𝑑𝑧𝑑𝑥 respectively. That is, 

𝑖 ∙̅ (𝑛̂ ds) = 𝑑𝑦𝑑𝑧, 𝑗̅ ∙ (𝑛̂ ds) = 𝑑𝑧𝑑𝑥                                                (7)  

In view of (6) and (7), we obtain the following Cartesian expression for the 

vectorial area element. 

(𝑛̂ ds) = (𝑑𝑦𝑑𝑧)𝑖̅ + (𝑑𝑧𝑑𝑥)𝑗̅ + (𝑑𝑥𝑑𝑦)𝑘̅                                            (8) 

 

9. If 𝑆 denotes that the part of the plane 2𝑥 +  𝑦 +  2𝑧 =  6 which lies in 

the positive octant, and 𝒇̅ = 4𝑥𝐢̅ + y𝐣̅ + z𝐤̅,evalute∫ 𝑓̅ . 𝑛̂ ds.
𝑠

 

Solution: The intercepts of the given plane on the positive x-, y- and z-axes are 3, 

6 and 3 respectively. Therefore, in the first octant, we have 0 ≤ 𝑥 ≤ 3, 0 ≤ 𝑦 ≤

6, 0 ≤ 𝑧 ≤ 3.  

With (x, y) as parameters, the parametric equations of 𝑆 are 𝑥 = 𝑥, 𝑦 =

𝑦, 3 − 𝑥 −  
1

2
𝑦. 

Therefore, at a point of 𝑆,  

𝑟̅  =  𝑥𝑖̅  +  𝑦𝑗̅  + (3 − 𝑥 −  
1

2
𝑦)𝑘̅ 

and 
𝜕𝒓

𝜕𝑥
= 𝒊̅ − 𝒌̅,       

𝜕𝒓

𝜕𝑦
= 𝒋̅ − 

𝟏

𝟐
𝒌̅,  

so that  
𝜕𝒓

𝜕𝑥
 ×  

𝜕𝒓

𝜕𝑦
= 𝒊̅ + 

𝟏

𝟐
𝒋̅ + 𝒌̅. 

 

Therefore 

𝒇̅ . (
𝜕𝒓

𝜕𝑥
 ×  

𝜕𝒓

𝜕𝑦
) = 4𝑥 + 

1

2
𝑦 + 𝑧 =  4𝑥 + 

1

2
𝑦 + (3 − 𝑥 − 

1

2
𝑦) = 3(𝑥 + 1). 

According to the virtue of expression (2), we have  

∫ 𝑓 ̅. 𝑛̂ ds.
𝑠

=  ∬ 𝒇̅ . (
𝜕𝒓

𝜕𝑥
 ×  

𝜕𝒓

𝜕𝑦
)

S̅

𝑑𝑥 𝑑𝑦 = ∬ 3(𝑥 + 1)𝑑𝑥 𝑑𝑦
S

 

Hence 𝑆̅ is the projection of 𝑆 on the 𝑥𝑦 – plane; this projection is the 

triangular area having vertices  𝑂 =  (0, 0), 𝐴 =  (3, 0), 𝐵 =  (0, 6). See 

figure .   Thus 
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                                              Figure 10.6 

∫ 𝑓̅ . 𝑛̂ ds
𝑠

=  ∫ ∫ 3(x + 1)dy dx
6 −2x 

y = 0 

3

x = 0

= 3 ∫ (x + 1)(6 − 2x)dx 
3

0

= 54. 

 

10. Evaluate ∫ 𝑓 ̅. 𝑛̂ ds
𝑠

, where 𝑆 is the part of the surface of the sphere 

𝑥2 +  𝑦2 + 𝑧2 =  𝑎2 in the first octant, and 𝒇̅ = 𝑦𝑧 𝒊̅ + 𝑧𝑥𝒋̅ + 𝑥𝑦𝒌̅. 

Solution: The given surface 𝑆 has the Cartesian equation 

𝑧2 =  𝑎2 − 𝑥2 − 𝑦2 𝑥 > 0, 𝑦 > 0, 𝑧 > 0 

 (𝑖) 

 From this, we find 2𝑧
𝜕𝑧

𝜕𝑥
=  −2𝑥,  so that     

𝜕𝑧

𝜕𝑥
=  − 

𝑥

𝑧
=  − 

𝑥

√𝑎2−𝑥2−𝑦2
 

Similarly, 
𝜕𝑧

𝜕𝑦
=  − 

𝑥

𝑧
=  − 

𝑦

√𝑎2−𝑥2−𝑦2
 

Therefore, if 𝑆̅ is the projection of 𝑆 on the 𝑥𝑦 – plane, we have  

∫ 𝑓̅ . 𝑛̂ ds
𝑠

=  ∬ 𝒇̅ . {𝒌̅ − (
𝜕𝒛

𝜕𝑥
𝒊̅ +  

𝜕𝑧

𝜕𝑦
𝒋)̅}

S̅

𝑑𝑥 𝑑𝑦 

= ∬ 𝒇̅ . {𝒌̅ + (
𝒙𝒊̅ + 𝒚𝒋̅

√𝑎2 − 𝑥2 − 𝑦2
)}

S̅

𝑑𝑥 𝑑𝑦 

On 𝑆, the given vector is  

 𝒇 = 𝑦𝑧𝒊̅ + 𝑧𝑥𝒋̅ + 𝑥𝑦𝒌̅ = ∬ {(√𝑎2 − 𝑥2 − 𝑦2) (
𝑦𝑥+𝑥𝑦

√𝑎2−𝑥2−𝑦2
)} 𝑑𝑥 𝑑𝑦

𝑺̅
 

              = ∬ (3𝑥𝑦)𝑑𝑥 𝑑𝑦
𝑺̅

 

Since 𝑆 is the part of spherical surface 𝑥2 + 𝑦2 +  𝑧2 =  𝑎2 in the first octant, its 

projection 𝑆̅ on the 𝑥𝑦 -plane is the area bounded by the circle 𝑥2 + 𝑦2 =  𝑎2 in 
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the first quadrant. As such, changing to polar coordinates, expression (iii) 

becomes  

∫ 𝑓 ̅. 𝑛̂ ds
𝑠

= ∫ ∫ 3((rcosθ)(rsinθ)(rdrdθ)
π 2⁄

 θ= 0 

a

r = 0

 

= 3 ∫ 𝑟3𝑑𝑟 × ∫ 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃𝑑𝜃
π 2⁄

0

𝑎

0

= 3 ∙
𝑎4

4
∙

1

2
=  

3

8
𝑎4. 

Thus, the given surface integral is evaluated.  

 

 

VOLUME INTEGRAL OF A VECTOR FUNCTION 

Any integral which is to be evaluated over a volume is called a volume integral.  

Consider a vector field 𝑓̅ defined over region of volume 𝑉 in three dimensional 

space.  If 𝑓̅ = 𝑓1𝑖̅ + 𝑓2𝑗 ̅ +  𝑓3𝑘̅, then 𝑓1, 𝑓2, 𝑓3 are scalar functions of 𝑥, 𝑦, 𝑧  over 

region. The vector whose 𝑥−, 𝑦−, 𝑧 − components of the volume integrals of 

𝑓1, 𝑓2, 𝑓3respectively over  𝑉 is called the vector volume integral of 𝑓̅ over 𝑉; it is 

denoted by ∫ 𝑓̅𝑑𝑉.
𝑉

 

Thus, we have by definition  

∫ 𝑓𝑑̅𝑉
𝑉

= ∫(𝑓1𝑖̅ + 𝑓2𝑗 ̅ + 𝑓3𝑘̅) 𝑑𝑉 =  𝑖̅ ∫ 𝑓1𝑑𝑉 + 𝑗̅∫ 𝑓2𝑑𝑉 +
𝑉

𝑘̅ ∫ 𝑓3𝑑𝑉
𝑉𝑉𝑉

 

 

11. If 𝑓̅  = 2𝑥𝑧𝑖̅ − 𝑥𝑗̅ +  𝑦2𝑘̅, evaluate ∫ 𝑓𝑑̅𝑉,
𝑉

 where V is the volume of 

the region bounded by the surfaces 𝑥 =  0, 𝑥 =  2, 𝑦 =  0, 𝑦 =  6, 𝑧 =

 𝑥2 , 𝑧 = 4. 

Solution: Here 𝑓1 = 2𝑥𝑧, 𝑓2 = −𝑥, 𝑓3 = 𝑦2.  Therefore, 

∫ 𝑓̅
𝑉

𝑑𝑉 =  {∫ 𝑓1𝑑𝑉
𝑉

} 𝑖 +  {∫ 𝑓2𝑑𝑉
𝑉

} 𝑗 + {∫ 𝑓3𝑑𝑉
𝑉

} 𝑘 

=  {2 ∫ 𝑥𝑧𝑑𝑉
𝑉

} 𝑖̅ −  {∫ 𝑥𝑑𝑉
𝑉

} 𝑗̅ + {∫ 𝑦2𝑑𝑉
𝑉

} 𝑘̅                (𝐼) 

Now ∫ 𝑥𝑧
𝑉

𝑑𝑉 =  ∫ ∫ ∫ 𝑥𝑧 𝑑𝑧 𝑑𝑦 𝑑𝑥

4

𝑧=𝑥2

6

𝑦=0

2

𝑥=0

=  ∫ ∫ 𝑥 (
16

2
−

𝑥4

2
)

6

0

2

0

𝑑𝑦 𝑑𝑥 

= 3 ∫ 𝑥(16 − 𝑥4)

2

0

 𝑑𝑥 = 64                                                      (𝐼𝐼) 
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∫ 𝑥
𝑉

𝑑𝑉 =  ∫ ∫ ∫ 𝑥 𝑑𝑧 𝑑𝑦 𝑑𝑥

4

𝑧=𝑥2

6

𝑦=0

2

𝑥=0

=  ∫ ∫ 𝑥(4 − 𝑥2)

6

0

1

0

𝑑𝑦 𝑑𝑥 

    = 6 ∫ 𝑥(4 − 𝑥2)

2

0

 𝑑𝑥 = 24                                             (𝐼𝐼𝐼) 

∫ 𝑦2

𝑉

𝑑𝑉 =  ∫ ∫ ∫ 𝑦2 𝑑𝑧 𝑑𝑦 𝑑𝑥

4

𝑧=𝑥2

6

𝑦=0

2

𝑥=0

=  ∫ ∫ 𝑦2(4 − 𝑥2)

6

0

2

0

𝑑𝑦 𝑑𝑥 

                                         = 72 ∫(4 − 𝑥2)

2

0

 𝑑𝑥 = 384.                            (𝐼𝑉) 

Putting (II), (III), and (IV) into (I), we get  

∫ 𝑓̅
𝑉

𝑑𝑉 = 128𝑖̅ − 24𝑗̅ + 384 𝑘. 

 

12. If 𝒇̅  = (2𝑥2 −  3𝑧)𝒊̅ − 2𝑥𝑦𝒋̅ −

4𝒌̅,evaluate∫ 𝑑𝑖𝑣𝒇̅𝑑𝑉 𝑎𝑛𝑑 ∫ 𝑐𝑢𝑟𝑙𝒇̅𝑑𝑉 
𝑉𝑉

 where V is the volume of the 

region bounded by the surfaces x=0, y=0, z=0 and 2x+2y+z=4. 

Solution: For the given 𝒇,̅we find that 𝑑𝑖𝑣 𝒇̅ = 2x.  Therefore,  

∫ 𝑑𝑖𝑣𝒇̅𝑑𝑉 =

𝑉

∫ 2𝑥 𝑑𝑉  

𝑉

 

= 2 ∫ ∫ ∫ 𝑥 𝑑𝑧 𝑑𝑦 𝑑𝑥

4−2𝑥−2𝑦

𝑧=0

2−𝑥

𝑦=0

2

𝑥=0

=  ∫ ∫ 𝑥(4 − 2𝑥 − 2𝑦)

2−𝑥

0

2

0

𝑑𝑦 𝑑𝑥 

= 2 ∫{𝑥(4 − 2𝑥)(2 − 𝑥) − 𝑥(2 − 𝑥)2}𝑑𝑥

2

0

= 2 ∫(𝑥3 − 4𝑥2 + 4𝑥) 𝑑𝑥 =
8

3

2

0

                                (𝑖) 

Next, we find that, for the given f, we have curl 𝒇̅  =  𝒋̅ − 2𝑦𝒌̅.Therefore, 

∫ 𝑐𝑢𝑟𝑙 𝒇̅ 𝑑𝑉 = 

𝑉

{∫ 1 𝑑𝑉

𝑉

} 𝒋̅ − 𝟐 {∫ 𝑦 𝑑𝑉

𝑉

} 𝒌̅                                          (𝒊𝒊)       
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Now ∫ 𝑑𝑉

𝑉

= ∫ ∫ ∫  𝑑𝑧 𝑑𝑦 𝑑𝑥

4−2𝑥−2𝑦

0

2−𝑥

0

2

0

=  ∫ ∫ (4 − 2𝑥 − 2𝑦)

2−𝑥

0

2

0

𝑑𝑦 𝑑𝑥 

                           = ∫{(4 − 2𝑥)(2 − 𝑥) − (2 − 𝑥)2}𝑑𝑥

2

0

= ∫(𝑥2 − 4𝑥 + 4) 𝑑𝑥 =
8

3

2

0

                                                     (𝑖𝑖𝑖) 

∫ 𝑦 𝑑𝑉

𝑉

= ∫ ∫ ∫ 𝑦  𝑑𝑧 𝑑𝑦 𝑑𝑥

4−2𝑥−2𝑦

0

2−𝑥

0

2

0

=  ∫ ∫ 𝑦(4 − 2𝑥 − 2𝑦)

2−𝑥

0

2

0

𝑑𝑦 𝑑𝑥 

                             =
1

3
∫(2 − 𝑥)3𝑑𝑥 =  

4

3

2

0

                                                              (𝑖𝑣) 

 

 

Putting (iii) and  (iv) into (i), we get  

∫ 𝑐𝑢𝑟𝑙 𝒇̅ 𝑑𝑉 = 

𝑉

8

3
(𝒋 − 𝒌). 
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GREEN’S THEOREM IN THE PLANE 

Let 𝑃(𝑥, 𝑦) and 𝑄(𝑥, 𝑦) be two functions defined in a region R in the xy-plane 

with a simple closed curve C as its boundary. 

 Then dydx
y

P

x

Q
dyQdxP

RC


















   

 

EXAMPLES 

1. (a) If C is a simple closed curve in the xy-plane, prove by using Green’s 

theorem that the integral  dxydyx
C

 2

1
 represents the area A 

enclosed by C. 

 (b) Hence find the areas enclosed by the following curves: 

(i) The ellipse : 1
2

2

2

2


b

y

a

x
    (ii) The asteroid : 3

2

3

2

3

2

ayx   

Solution: 

(a) According to Green’s theorem 

  dydx
y

P

x

Q
dyQdxP

RC


















   

 Take P = - y and Q = x in this result, we get  

     
ARC

Adydxdydxdyxdxy 222  

 or  dxydyxA
C

  2

1
  This proves the required result. 

(b) (i) The parametric equations of the given ellipse are 

 20,sin,cos  byax  

The area bounded by this curve is 

  abdabdxydyxA
C




 
2

0
2

1

2

1
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(ii) The parametric equations of the given asteroid are 

 20,sin,cos 33  ayax  

Hence, the area enclosed by this curve is  

    


dadxydyxA
C

2424

2

0

2 cossinsincos
2

3

2

1
 

 

  





dada 22
1

0

22222

2

0

2 sincos6sincossincos
2

3
 

 

22

8

3

22

1

4

1
6 aa 




 

 

2.  By using Green’s theorem, evaluate     dyyxdxyx
C

3243   

where C is the circle. 422  yx  . 

Solution: If A is the area enclosed by the given circle, we have, by Green’s 

theorem 

         dydxyx
y

yx
x

dyyxdxyx
RC



















  43323243

 

   84222   Adydx
R

 

 

3.  By using Green’s theorem, evaluate     dyyxdxxyx
C

222   

where C is the squire formed by the lines  11  yx  . 

Solution: Here the region bounded by C is the square region in which both x and 

y increase from -1 to +1, therefore by taking 
222 yxandQxyxP  in 

the Green’s theorem, we get 
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    dyyxdxxyx
C

222 

    dydxxyx
y

yx
x

R



















 

222
 

0

1

1

1

1

 


dydxxdydxx
R

 

 

Figure 10.7 

 

4.   By using Green’s theorem, evaluate     dyxdxxy
C

cossin   

where C is the triangle in the xy-plane bounded by the lines  



 x
yandxy

2

2
0   . 

Solution: By using Green’s theorem, we get  

         dydxxy
y

x
x

dyxdxxy
RC



















  sincoscossin

 

    







 








2

4
sin1sin1

2

0

2

0

x

yxR

dxdyxdydxx
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 Figure 10.8 

 

5. By using Green’s theorem evaluate     dyyxdxyx
C

22222   

where C is the boundary of the region in the xy-plane enclosed by the x 

axis and the upper half of the circle 
222 ayx   . 

Solution: By using Green’s theorem, we get  

         dydxyx
y

yx
x

dyyxdxyx
RC



















 

22222222 22

 

    
R

dydxyx2    (1) 

Where R is the region shown in figure above, in this region r various 

from 0 to a and various from 0 to , where (r, ) are the plane polar coordinates.   

 Also ddrrdydx  . 

      3

00
3

2
sincos addrrrdydxyx

a

rR

 







. 

 Putting this into equation (1), we get 

     32222

3

4
2 adyyxdxyx

C

  
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                                                              Figure 10.9 

 

6.   Using the Green’s theorem, find the area enclosed between the parabolas  

ayxandaxy 44 22   

Solution: The region between the given the parabolas is shown in figure below. 

 

                                                         Figure 10.10 

Let us denote the parabola 1

2 4 Cbyayx   and the parabola

2

2 4 Cbyaxy   .  Then the boundary C of the region is made up of 

21 CandC  . 

On 1C x increases from 0 to 4a,  and 







 dx

a

x
dythatso

a

x
y

24

2

 

On 2C y increases from 4a to 0,  and 







 dy

a

y
dxthatso

a

y
x

24

2

 

Now, by virtue of the green’s theorem, we find that the required area is 

given by  
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     dxydyxdxydyxdxydyxA
CCC

 
21

2

1

2

1

 


















  dy

a

y
ydy

a

y
dx

a

x
dx

a

x
x

a

a

24422

1 20

4

24

0

 
































 

aaaa
yx

a
dyydxx

a

4

0

34

0

4

0

22

4

0
33

3

8

1

8

1
 

 
    3

33

3

16

3

4

3

4

8

1
a

aa

a









  

 

7.  Using Green theorem, evaluate   
C

dxyxdyxy 22
 where C is the 

cardioids,  cos1 ar  . 

Solution:  

By using Green’s theorem we find   

        dydxyx
y

xy
x

dyxydxyxdxyxdyxy
ACC

 

















 222222

  dydxxy
A

  22
 where A is the area bounded by the given cardioids  

 
A

ddrrr 2
 on changing over to polar coordinates. 

   











d
r

ddrr

aa

r 

































cos1

0

42

0

3

cos1

0

2

0
4

 

  


















dad
a

d
a


























 


2

sin4
2

sin2
4

cos1
4

8

2

0

4

4

2

2

0

4
4

2

0

4

 

2
sin16 8

2

0

4 





 


twheredtta  
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44

16

35

22.4.6.8

1.3.5.7
16 aa 


  

 

Figure 10.11 

 

8. Verify Green’s theorem for      
C

dyxyydxyx 6483 22
 

where C is the boundary of the region enclosed by the line x = 0, y =0, 

and x+y = 1 

Solution:The given region is shown in figure below 

 We note that the boundary curve C is made up of three parts: 

(i) The line OP on which y = 0 and x increases from 0 to 1 

(ii) The line PQ on which y = 1-x, and x varies from 1 to 0 and 

(iii) The line QO on which x = 0 and y varies from 1 to 0 

Therefore taking ,6483 22 xyyQandyxP   we find the given 

integral is  

        
QOPQOPC

QdyPdxQdyPdxQdyPdxQdyPdx  

         
3

5
416141833

0

1

0

1

22

1

0

2    dyydxxxxdxxxdxx

 (1) 

on evaluating the integrals. 

On the other hand, we find that 

dx
y

dxdyydydxydydx
y

P

x

Q
x

x

x

yxAA





































1

0

21

0

1

0

1

0
2

101010  
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 
3

5
15

2
1

0

 


dxx
x

    

  (2) 

Expression (1) and (2) show that  

   


















AC

dydx
y

P

x

Q
QdyPdx  

Thus, the Green’s theorem is verified for the given integral. 

 

 

Figure 10.12 

  

9. Verify Green’s theorem for    
C

dyxdxyxy 22
 where C is the 

closed curve made up of the line y = x and the parabola, y = x2. 

 

Solution: The two parts C1 and C2 of the given curve C and the region bounded 

by the C are shown in figure below. 

We note that along C1:   y = x2  and x varies from 0 to 1 and  

  along C2: y = x and x varies from 1 to 0. 

Therefore taking ,22 xQandyxyP   we find that given integral is  

      

21 CCC

QdyPdxQdyPdxQdyPdx  
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          22222

1

01

xdxdxxxxQdyPdx
C

   , because y = x2 

on C1 

       
20

19
32 43

1

0

243

1

0

  dxxxdxxxdxxx  (1) 

And 

       dxxdxxxQdyPdx
C

222

0

12

   , because y = x on C2 

  13 2

0

1

  dxx       (2) 

Adding (1) and (2) we get the integral as  

 
20

1

20

1

20

19 


C

QdyPdx
    (3)

 

We find that  

    dxdyyxdydxyxdydx
y

P

x

Q
x

xyxAA

22
2

1

0





















 

   
20

132

1

0


 



dxxx
x

   (4) 

From (3) and (4), we note that  

    


















AC

dydx
y

P

x

Q
QdyPdx  

Thus, the Green’s theorem is verified for the given integral. 
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Figure 10.13 

 

10. Verify Green’s theorem for     
 

C

xx dyyedxye cossin  where C is 

the rectangle whose vertices are (0, 0), (, 0), (, /2), (0, /2) .  

Solution: Here the given rectangular boundary C is made up of the four lines 

OA, AB, BC, CO shown in figure below. 

Therefore taking ,cossin yeQandyeP xx    we find that given integral 

is            
COBCABOAC

QdyPdxQdyPdxQdyPdxQdyPdxQdyPdx  

Along OA: y =0, dy = 0, x varies from 0 to  

Along AB: x =, dx = 0, y varies from 0 to /2 

Along BC: y =/2, dy = 0, x varies from  to 0 

Along CO: x =0, dx = 0, y varies from /2 to 0 

  0
OA

QdyPdx       (1) 

  
 

2

0

cos



 edyyeQdyPdx
AB

   (2) 

    

0

1


edxeQdyPdx x

BC

    (3) 

   

0

2

1cos


dyyQdyPdx
CO

    (4) 
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Adding equations (1), (2), (3) and (4)we get the given integral 

       12110  


 eeeQdyPdx

C

 (5) 

We find that  

    dxdyyedydxyedydx
y

P

x

Q x

yxR

x

R

cos2cos2
2

00







 





















 

  12  e      (6) 

From (5) and (6), we note that  

    


















RC

dydx
y

P

x

Q
QdyPdx  

Thus, the Green’s theorem is verified for the given integral. 

 

 Figure 10.14 

 

 

 

 

 

 

 

 

 



 

Dr.K.V.Nageswara Reddy, AITS(Autonomous), Kadapa  
 

STOKE’S THEOREM 

If ‘S’ be an open surface bounded by a closed curve C and 

kFjFiFF 321  be vector point function having continuous first order 

partial derivatives, then dsnFcurlrdF
SC

   where n  is a unit normal 

vector at any point of S drawn in the sense in which a right in the sense of 

description of C. 

 

EXAMPLES 

1. Using Stoke’s theorem, evaluate dsnfcurl
S

   for

    kxzjyzizyf  42  where S is the cubical surface 

formed by the planes x=0, y=0, x =2, y = 2 and z= 2. 

Solution: The rim C of the given surface is the square OPQR in the xy-plane, 

where O(0, 0), P(2, 0), Q(2, 2), R(0, 2) we note that z=0 on the whole of C,  x = 

constant on PQ and RO, and y=constant on OP and QR. 

 By using Stoke’s theorem, we get 

rdfdsnfcurl
CS

   

dyfdxfdyfdxf
ROQRPQOP

  2121  

       dyyzdxzydyyzdxzy
ROQRPQOP

  4242  

44442

0

2

0

2

2

0

2

0

  dydxdydx
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2. Evaluate  
C

drf by Stoke’s theorem, where  kzxjxiyf  22
 

and C is the boundary of the triangle with vertices at (0,0, 0), (1, 0, 0) 

and (1, 1, 0). 

Solution: Since z- coordinates of each vertex of the triangle is zero, therefore, 

the triangle lies in the xy-plane and kn   

 kyxjfcurl  2  

    yxkkyxjnfcurl  22  

The equation of the line OB is y=x 

  By using Stoke’s theorem, we get 

dsnfcurlrdf
SC

   

  dx
y

xydxdyyx

x

x

x

yx 0

21

00

1

0
2

22 







 



 

3

1

32
2

1

0

3
2

1

0

2
2

1

0


















 



x
dxxdx

x
x

xx

 

 

3. Using Stoke’s theorem, evaluate        
C

dzzydyzxdxyx 2  

where C is the  boundary of the triangle with vertices at P(1, 0, 0), Q(0, 

2, 0) and R(0, 0, 3). 

Solution: We have  

              
CC

kzyjzxiyxdzzydyzxdxyx rd 2  2

 

 
SC

dsnfcurlrd f  by Stoke’s theorem. 

 Where        kzyjzxiyxf  2  and S is any surface 

having C as its rim.   
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 We may take the plane bounded by the given triangle PQR itself as S.  

The equation of this plane is  1
321


zyx
 , so that the direction ratios of its 

normal are (1, ½, 1/3). 

Therefore  kji

kji

n 236
7

1

9

1

4

1
1

3

1

2

1
























  

Hence ki

zyzxyx

zyx

kji

fCurl 














 2

2

 

Therefore       2212
7

1
236

7

1
2  kjikinfcurl  

Hence Adsdsnfcurl
SS

22   where A is the area of the triangle PQR. 

We note that the area of the triangle PQR, 
2

7

2

1
 PRPQA  

Therefore        7
2

7
22 










C

dzzydyzxdxyx  

 

4. Verify Stoke’s theorem for kxjziyf    for the upper part of the 

sphere 
2222 azyx   

Solution: The rim C of the given surface is the circle
222 ayx   in the xy-

plane.  Therefore the parametric equation C are 

20;0,sin,cos  tztaytax  

Hence,  
CC

dxyrd f  because z = 0 on C. 
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   2
2

0

22

2

0

sin4cossin adttadttata 





    (1) 

The given surface, S for which C is the rim is the upper part of the sphere 
2222 azyx   

Therefore on S, 02222  zyxaz     (2) 

From this we find, x
x

z





2 , so that 

222 yxa

x

z

x

x

z












 

Similarly, 
222 yxa

y

z

y

y

z












,  



































SS

dydx
yxa

jyix
kfcurldsnfcurl

222
  (3) 

Here S  is the projection of s on the xy-plane which is the area bounded 

by the circle 
222 ayx  . 

For the given f,  we find that 

   kji

xzy

zyx

kji

fcurl 











  

Using this in the r.h.s of (3), we get 

   

































SS

dydx
yxa

yx
dsnfcurl

222
1   (4) 

Changing to polar coordinates (r, ) and noting that, in the circular area rS ,  

varies from 0 to a and  varies from 0 to 2, expression (4) reads   

 
 








ddrr
ra

r
dsnfcurl

a

rS

















 


22

2

00

sincos
1   
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 










































 








ddr
ra

r
ddrr

aa

r

sincos

2

0
22

2

0

2

00

  

2
2

0
2

2 a
a

 







       (5) 

From (1) and (5), we note that dsnfcurl
SC

  rd f  

Thus, stokes’ theorem is verified in the given case. 

 

Figure 10.15 

 

5. Verify Stokes theorem for the vector field 

     kzyjyziyxf 222   over the upper half surface of 

1222  zyx   bounded by its projection on the xy-plane. 

Solution: Let S be the upper half surface of 1222  zyx  .  The boundary 

C of S is a circle in the xy-plane of radius unity and centre O (or origin). 

 

                                                                  Figure 10.16 
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 The equation of C are 0,122  zyx  . 

Therefore the parametric equations of C are 

20;0,sin,cos  tztaytx  

Hence,    
CC

dzzydyyzdxyx 222rd f  because z = 0 on C. 

 

       

 2

0

2

2

0

2

0

sincossin2sinsincos2sincos2 dttttdttttdt
dt

dx
tt

  

  




























 

2

0

2

0

2sin
2

1

2

1
2cos

2

1
2cos1

2

1
2sin tttdttt      (1) 

Also      kfCurl   

nknfCurl   

  




S RS kn
kndskndsnfcurl

dydx
    where 

R is the projection of x on xy-plane. 

dxxdxxdxdydydx

x

xyxR

2

1

0

2

1

1

1

1

1

1

1412

2

2

 






   





















 

22

1
4sin

2

1
1

2
4

1

0

12 xdxx
x

 

  (2) 

From (1) and (2) we get 

dsnfcurl
SC

  rd f  

Therefore Stokes theorem verified. 
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6. If C is the circle of intersection of the sphere  
2222 azyx    and 

the plane x+z=a, prove that 
2

2
2 axdzdydxy

C


  

Solution: We note that 

  
CC

rdkxjziyxdzdydxy 2   =     
S

dsnfcurl  

where kxjziyf        (1) 

by stokes theorem.  Here S is any, surface for which C is the rim.  We can take 

the portion of the plane x+z=a bounded by C itself as S. for this plane, the 

direction ratios of the normal are (1, 0, 1).  Therefore,  

 kin 
2

1
      (2) 

Also,   kjifcurl        (3) 

Putting (2) and (3) into (1), we get 

    Adsdskikjirdf
SSC

22
2

1
,    (4) 

Where A is the area of the plane x+z=a bounded by C. 

 Since C is the circle of inter section of the sphere 
2222 azyx  and 

the plane x+z=a the radius of C is 
22 paR   , where p is the length of the 

perpendicular from the centre of the sphere onto the plane.  Since the origin is the 

centre of the sphere, we note that
2

a
p   .   

(The length of the perpendicular from the origin onto the plane ax+by+cz+d = 0 

is 
2a

d


 ) 
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
22

2

1

2
2 aa

aR 







   consequently, the area bounded by C is  

22

22

2 aa
RA


 








   .  Putting this into (4), we get  

22
2

22 aa
rdf

C

 
   .   

 

DIVERGENCE THEOREM 

Let ‘S’ be the enclosed boundary surface of a region of volume V.  Then, for a 

vector field f defined in V and on S, dVfdivdsnf
VS

  .  (1) 

 Here n  is the unit outward normal to S.  

Note:  If we take kfjfiff 321  and use expression 

     kdydxjdxdzidzdydsn  , we get 

dxdyfdxdzfdzdyfdsnf 321  then equation (1) stated above as 

follows:  

  dzdydx
z

f

y

f

x

f
dydxfdxdzfdzdyf

VS

 





















 321

321  (2) 

 This is the Cartesian form of the divergence theorem.   

Remark: Whereas Stoke’s theorem converts a surface integral taken on an open 

surface into the line integral over its boundary curve (rim), the divergence 

theorem converts a surface integral on a closed surface into the volume integral 

over the region enclosed by the surface. 

 

EXAMPLES 

1. For any closed surface S, prove that 0 dsnfcurl
S

.   

Solution: By the divergence theorem, we have 
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    0sin0   fcurldivcedvfcurldivdsnfcurl
VS

 

Where V is the volume enclosed by S. 

 

2. Evaluate  dsnrcurl
S

   where S is a closed surface.  

Solution: By the divergence theorem, we have 

 dvrdivdsnrcurl
VS

  , where V is the volume enclosed by S. 

   333   rdivVdv
V  

3. Use divergence theorem to show that vsdr
S

62  , where S is any 

closed surface enclosing a volume V. 

Solution: By the divergence theorem, we have 

   dvrdivsdr
VS

  2
 

VdVdVr
zyx

VV

662
222























   

where V is the volume enclosed by S. 

4. Evaluate dsnf
S

  , where       kzyjyxzizxf 232 2   

where S is the surface of the sphere having centre at (3, -1, 2) and radius 

3.  

Solution: Let      kzyjyxzizxf 232 2   , we have 3fdiv

  

Let V be the volume enclosed by the surface S.  Then by the divergence theorem, 

we have 
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  VdVdvfdivdsnf
VVS

33    

But V is the volume of a sphere of a radius 3. 

   363
3

4 3
  

Hence   108363  dsnf
S  

 

5. Evaluate dsnf
S

  , where  kzjyixf   and S is the surface of 

the sphere 
2222 azyx  .  

Solution: Let kzjyixf   we have  3fdiv  

Let V be the volume enclosed by the surface S.  Then by the divergence theorem, 

we have   VdVdvfdivdsnf
VVS

33    

But V is the volume of a given sphere     33

3

4

3

4
aa    

Hence  
33 4

3

4
3 aadsnf

S

   

 

6. If S is a closed circuit enclosing a volume V and kczjbyiaxf  , 

where a, b, c are constants.  Prove that  Vcbadsnf
S

     .  

Solution: Let kczjbyiaxf    we have  cbafdiv   

Let V be the volume enclosed by the surface S.  Then by the divergence theorem, 

we have 

     VcbadVcbadvfdivdsnf
VVS

 
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7. Using the divergence theorem, evaluate dsnf
S

  , where  

kyzjyixzf  24  and S is the surface of the cube bounded by 

1,0,1,0,1,0  zzyyxx .  

Solution: Let kyzjyixzf  24  we have  yzfdiv  4 . 

Now, the divergence theorem yields  

    
VVS

dVyzdvfdivdsnf 4  

Where V is the volume of a given cube 

Hence   




1

0

1

0

1

0

4
zyxS

dxdydzyzdsnf  

    dxdyydxdyyzz
yxyx 
























 



1

0

1

0

1

0

1

0

2

1

0

1

0

22  

2

3

2

3

2

1
2

2
2

1

0

1

0

1

0

21

0


















































 



dxdxdx
y

y
xxx

 

 

8. If S is the sphere 
2222 azyx  , prove that  

  5333

5

12
adydxzdxdzydydzx

S

  

Solution: We recall that kfjfiff 321   

  
SS

dydxfdxdzfdzdyfdsnf 321   (1) 

According we can write  

  
SS

dydxzdxdzydzdyxdsnf 333
  (2) 
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By taking 
3

3

3

2

3

1 ,, zfyfxf  or equivalently 

kzjyixf 333  (3) 

Now if V is the volume of the given sphere, the divergence theorem 

yields  

  
VVS

dVzyxdvfdivdsnf 2223   (4) 

 Over the given sphere we have 10  ar , 

 200  and  

Where (r,  , ) are spherical polar coordinates.  Also  dddrrdV sin2  

Equation (4) becomes  

  522

2

000
5

12
sin3 adddrrrdsnf

s

rS










 


 using this in 

expression (2) we get the required results. 

 

9. If S is the sphere 
2222 kzyx  , prove that  

    4222

3

4
kcbadsczbyax

S




 

Solution: Here the given surface S is     0,, 2222  kzyxzyx , so 

that the unit outward normal to this surface is 

 
k

kzjyix

zyx

kzjyix
n














2222

2




 (1) 

Here we consider vector   kfjfiff 321     then we have  

 321

1
fzfyfx

k
nf     

According we can write  

 dsczbyaxdsnf
SS

  222
    (2) 
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By taking kczfkbyfkaxf  321 ,, or equivalently 

 kczjbyiaxkf        (3) 

Thus, with f  given by equation (3), we find that,  cbakfdiv   

Now the divergence theorem yields  

   VcbakdVcbakdvfdivdsnf
VVS

 

   

    43

3

4

3

4
kcbakcbak 


   

 (Since volume of the sphere, 
3

3

4
kV  ) 

10.  Evaluate    dskxyjzxiyz
S

  where S is the surface of the sphere, 

prove that 
2222 azyx   in the first octant. 

Solution: The surface of the region OABC is piece wise smooth and is 

comprised of four surfaces 

(i) S1 – circular quadrant OBC in the yz-plane 

(ii) S2 – circular quadrant OCA in the zx-plane 

(iii) S3 – circular quadrant OAB in the xy-plane 

(iv) S – surface ABC of the sphere in the first octant. 

 

                                      Figure 10.17 

Also in the yz-plane  kxyjzxiyzf   by divergence theorem 
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 sdfsdfsdfsdfdvfdiv
SSSSV

 
321

  (1) 

Now       0













 xy

z
zx

y
yz

x
fdiv  for the surface S1, x = 0 

    idzdyiyzsdf

yaa

S

 
 22

1 00

 
8

4

00

22

a
dzdyyz

yaa


 


 

Similarly  
8

4

2

a
sdf

S


  

8

4

3

a
sdf

S


  

Thus equation (1) becomes sdf
a

s




 8

3
0

4

 

Hence 
8

3 4a
sdf

s

  

 

11. Verify the divergence theorem for  

     kxyzjzxyiyzxf  222
 over the rectangular 

parallelepiped 0  x  a, 0yb, 0zc. 

Solution: For the given       kxyzjzxyiyzxf  222
 , we have  

  zyxfdiv  2 . 

 If V is the volume of the given parallelepiped, we have   

   

 cbaabc

dxdydzzyxdvzyxdvfdiv

c

z

b

y

a

xVV



 
 000

22
(1) 

Next, we note that the boundary surface S of the given parallelepiped is made up 

of the following six faces: 

 S1 : OABC,  S2: OPQA,   S3: OCSP,  S4: PQRS , S5: CSRB, S6: ABRQ 

The unit outward normals to these faces are: iandjkijk ,,,,   

respectively. 
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 
4

22

001

ba
dxdyxydydxxydskfdsnf

b

y

a

xOABCOABCS

 


(2) 

Similarly we find that 

4

22

2

ac
dsnf

S

       (3) 

4

22

3

cb
dsnf

S

       (4) 

Next,   

      dxdyxycdydxxycdskfdsnf

b

y

a

xPQRSPQRSS

 


2

00

2

4

 

4

22
2 ba

abc      (5) 

Similarly find that 

4

22
2

5

ac
cabdsnf

S

      (6) 

4

22
2

6

cb
bcadsnf

S

      (7) 

Adding expression (2) to (7), we get 

 cbaabcbcacababcdsnf
S


222

  (8) 

From equations (1) and (8) we obtain 

 
SV

dsnfdvfdiv  

Thus for the given f   and for the given region, the divergence theorem is 

verified. 
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Figure 10.18 

 

12. Verify divergence theorem for kzjyixf 2224   taken over the 

region bounded by the cylinder 3,0,422  zzyx .. 

Solution: For the given zyfdiv 244  . 

    dxdydzzydzdydxzydvfdiv
z

x

xyxVVV

244244

3

0

4

4

2

2

2

2

 






 

2

0

122

2

2

4

4

2

2
2

sin
2

4
4

2
8444221

2

2









 








x

x
x

dxxdxdy
x
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                                      Figure 10.19 

To evaluate the surface integral, divide the closed surface S of the cylinder into 3 

parts. 

S1:  The circular base in the plane z=0 

 S2:  The circular top in the plane z=3 

S3:  The curved surface of the cylinder given by the equation x2 + y2 = 4 

Also 

dsnfdsnfdsnfdsnf
SSSS

 
321

  

On S1 (z=0), we have  jyixfkn 224,     

So that     024 2  kjyixnf  

0

1

 dsnf
S

     (2) 

On S2 (z=3), we have  kjyixfkn 924, 2   

  

So that     9924 2  kkjyixnf  

dydxdydxdsnf
SSS

 

222

99    

  = 9  area of surface    3629 2

2 S   (3) 

On S3,  422  yx  

A vector normal to the surface S3 is given by  

  jyixyx 2222   

 n  = a unit vector normal to the surface S3 
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  3222 2
2
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
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






 
   

Also, on S3     i.e., 422  yx  ,  x = 2cos, y = 2sin and ds = dx dy = 2d dz 

To cover the whole surface S3, z varies from 0 to 3 and  varies from 0 to 2 
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Adding expression (2), (3) and (4), we get 

 8448360  dsnf
S

    (5) 

From equations (1) and (5) we obtain 

 
SV

dsnfdvfdiv  

Thus for the given f   and for the given region, the divergence theorem is 

verified. 
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