DEPARTMENT OF HUMANITIES AND SCIENCES

B.Tech | Year Il Semester

DIFFERENTIAL EQUATIONS AND VECTOR CALCULUS

Subject Code: 23HBS9904

Regulation: HM23

ANNAMACHARYA INSTITUTE OF TECHNOLOGY AND SCIENCES

(Autonomous)
(Affiliated to J.N.T.U.A, Anantapur, Approved by A.l.C.T.E, New Delhi)
Utukur (P), C.K.Dinne (V&M), Kadapa-516003
Accredited by NAAC with ‘A’ Grade, Bangalore.
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e To furnish the learners with basic concepts and techniques at plus two level
to lead theminto advanced level by handling various real-world
applications.
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UNIT Ill Partial Differential Equations

Introduction and formation of Partial Differential Equations by elimination of arbitrary
constants and arbitrary functions, solutions of first order linear equations using Lagrange’s
method. Homogeneous Linear Partial differential equations with constant coefficients.

UNIT IV Vector differentiation

Scalar and vector point functions, vector operator Del, Del applies to scalar point



functions- Gradient, Directional derivative, del applied to vector point functions-
Divergence and Curl, vector identities.
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UNIT-I
DIFFERENTIAL EQUATIONS OF FIRST ORDER AND FIRST DEGREE

Definition: An equation involving derivatives of one or more dependent variables with respect to one
or more independent variables is called a Differential Equation.

Types of Differential Equations: there are two types of differential equations
1. Ordinary differential equations 2. Partial differential equations

Ordinary Differential Equation: A differential equation is said to be ordinary, if the derivatives in
the equation are ordinary derivatives.

3 2
Ex: 1. (ﬂJ _(d_y) + 7Yy =COSX

dx dx
2 2

2. %+5x(%) —6y=tany
X X

3. (% +y? —x)dy +(ye? —2xy)dx =0

d2y dy 2 1/2
xS ()
dx dx

The general form of an ordinary differential equation is
2 n
f(xyOly d’y ,dy):O

rdxdxE T dx]

Partial Differential Equation: A differential equation is said to be partial, if the derivatives in the
equation have reference to two or more independent variables.

2 2
1 . . .
Ex: 1. 8_2/ == 8_3/ (One-dimensional wave equation)
ox® c¢c° ot
2
1 . . .
2. 8_2/ =— @ (One-dimensional heat equation)
ox® ¢ ot
o’u o
3. F +— = 0(Two-dimensional Laplace’s equation)
X

These equations can studied in detail later.
We now discuss only ordinary differential equations.

Order of a Differential Equation: The order of the highest order derivative in a differential equation
is called the order of the differential equation (Or) A differential equation is said to be of order n, if
the n™ order derivative is the highest derivative in that equation.

dy

Ex: 1. (X +1)&

+2xy = 4x°

The first order derivative g—y is the highest derivative in the above equation.
X

=~ The order of above differential equation is 1.

d’y dy e
2. XW—(Zx—l)&Nx—l)y =e
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d’y

X2

is the highest derivative in the above equation.
= The order of above differential equation is 2.

Degree of a Differential Equation: The degree of a differential equation is the highest degree of the
highest order derivative which occurs in it, after the differential equation has been made free from
radicals and fractions as far as the derivatives are concerned.

Let f (x, VoYY e y(”))z Obe a differential equation of order nwhich is free from radicals
and fractions as far as the derivatives are concerned. If the given differential equation is a polynomial
in y(™, then the highest degree of y"is defined as the degree of the differential equation.

2
Ex: 1. y:xd—y+ 1+(d—yj
dx dx

2 2
(g (2]
dx dx

= (1- xz(d—yjz - 2xyﬂ+(1— y2)=0
dx dx

This is a differential equation of order 1. The highest degree of d—y is 2.
X

Hence the degree of the above differential equation is 2.
d 9 d 2 3/2 d 9 2 d 2 3
dx dx dx dx

This is a differential equation of order 2. The highest degree of

d’y

X2

is 2.

Hence the degree of the above differential equation is 2.

Solution of Differential Equation: Any relation between the dependent and independent variables
not containing their derivatives, which satisfies the given differential equation is called a solution or

integral of the differential equation.
2

d7y

XZ

For example, y = AcosX+ Bsin X is a solution of +y=0.

Observe that y= Acosx+ Bsin Xis a solution of the given differential equation for any real
constants Aand B which are called arbitrary constants.

General solution: A solution containing the number of independent arbitrary constants which is equal
to the order of the differential equation is called the general solution or complete solution of the

equation.
2

d y_ ﬂ+2y:0, as it contains

x? dx

For example, Y = c,e* +c,e*is the general solution of

two independent arbitrary constants.
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Particular solution: A solution obtained from the general solution of a differential equation by
giving particular values to the independent arbitrary constants is called a particular solution to the

given differential equation.
2

d’y qdy

For example, some particular solutions of —
dx dx

+2Yy =0 are given by
y=e*+e” y=e" —2eetc.

Singular solution: A solution which cannot be obtained from any general solution of a differential
equation by any choice of the independent arbitrary constants is called a singular solution of the given
differential equation.

For example, y = (x+c)’ (1)

is the general solution of y/ —4y =0 (2)

y = Ois also a solution of (2). Moreover y = 0 cannot be obtained by any choice of cin (1).
Hence Yy = 0 is a singular solution of (2).

Formation of differential equation:
In general an ordinary differential equation is obtained by eliminating the arbitrary constants

C,,C,,....,C, from a relation like ¢(X, Y,C,Cy,...s C, ) = Oor from a physical problem.

Consider ¢(X, y,cl,cz,....,cn)=0 1)
Where c,,C,,....,C, are arbitrary constants. Differentiating (1) successively with respect to X, ntimes
and eliminating the n arbitrary constants c,,C,,....,C, from the above n+1equations, we obtain the

differential equation f(x, YAVAR A y(”)): 0. Its general solution is given by the relation (1) itself.

Examples
1. By eliminating Aand B, form the differential equation of which y = Ae®* + Be**isa
solution.
Solution: Given y = Ae™®* + Be™ (1)
Differentiating (1) with respect to X successively two times, we get
y = a_ —2Ae ™ +5Be™ )
dx
y =3 22’ — 4Ae ¥ 4+ 25Be @A)
dx
Eliminating Aand B from (1), (2), and (3), we get
g e -y 1 1 vy
—2e¥ 5 —y|=0=|-2 5 y|=0=y -3y -10y=0
4e7 25> -y 4 25 y

This is the required differential equation obtained by eliminating the arbitrary constants Aand B
fromy = Ae > + Be™.

2. Find the differential equation corresponding to y = ae* +be®* + ce™ where a,b,care
arbitrary constants.
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Solution: Given y = ae* +be®* +ce* (1)
Differentiating (1) with respect to X, we get

y = % =ae* +2be** +3ce*

X
= (ae” +be? +ce® )+ (be? +2ce™)
=y+ (be2X + 20e3x), using (1)
Or y —vy=be* +2ce* )
Differentiating (2) with respect to X, we get
y —y =2be” +6ce™
= 2(be2X +2ce¥ )+ 2ce™
= 2(y' - y)+ 2ce®, using (2)
Or y —3y +2y=2ce* ©)
Differentiating (3) with respect to X, we get
y —3y +2y =6ce* = 3(2ce3x)
=y -3y +2y = 3(y" -3y + 2y), using (3)
=y -6y +1ly —6y=0
This is the required differential equation.

3. Form the differential equation by eliminating the arbitrary constants Aand B from the
equation y = e*(Acosx+ Bsin x).

Solution: Given y =e*(Acosx + Bsin x) 1)

Differentiating (1) with respect to X, we get

y :% =e*(Acos x + Bsin x)+e*(~ Asin x + B cos x)

=y +e*(~ Asin x + Bcos x), using (1) )
Again differentiating with respect to X, we get

. d?y dy : '

- =—2 +e*(~ Asin x+Bcosx)+e*(— Acosx — Bsin x
Y =ae Al )
=ﬂ_ y+(ﬂ— yj, uSing (1) and (2)

dx dx

2
:d_Z_ZQ
dx dx

+2Yy =0is the required differential equation.
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DIFFERENTIAL EQUATIONS OF FIRST ORDER AND OF THE FIRST DEGREE

Definition: An equation of the form % = f (x, y) is called a differential equation of first order and
X

of first degree.
LINEAR DIFFERENTIAL EQUATIONS OF FIRST ORDER

An equation of the form % +P(x)y=Q(x) 1)

where P and Q are either constants or functions of X only is called a linear differential
equation of first order in y .

Working rule: To solve the linear equation % + P(x) y= Q(X)
X

(i) Write the integrating factor (1.F.)= ejP(x)dx

(ii) Solution is given by y>< I F jQ dx+c

Note 1:Given % + P(x) y= Q(X), we may directly proceed as above and solve. Sometimes it may
X

, : : o dx
be convenient to put the differential equation in the form @ +P(y)x=Q(y) and treat xas the
y

dependent variable and Y as the independent variable. In this case , the general solution is given by

xx (L.F.) .[Q x (I.F.)dy +c where I.F. _elP

Note 2: Remember the following results which are useful in evaluating some integrals directly
(i) Jte'dt=(t-1)e' +c (i) [tedt=(-t-1)" +c
EXAMPLES

1. Solve xﬂ+ y =log x.
dx

. . . . .. .d
Solution: Given differential equation is Xd_y +y =log x
X

L dy 1 bgx

1
dx X X @
This is of the form % + P(x) y= Q(x), where P and Q are functions of xonly.
X
Here P—1 Q:—IOg X
X X

1
LF. =gl 0 el g _

General Solution is given by yx (I.F.)= jQ(x)x (LF.)dx+c

:yxx:jlogxxdeJrc:jlog Xdx+c
X

= xy=x(log x-1)+c¢
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2. Solve (1 xz)g—y+ Xy =ax.
X

Solution: Given differential equation is (1— xz)g—y+ Xy = ax
X
dy X ax
— 4+ — 1
ax 1-x2 ) T1-x W)
This is a linear equation of first order in y .
R ¢\ X ax
Comparing it with —+ P(X)y =Q(X), we have P = Q=
paring 5 H Py =Qlx) Qe
N L LN e B T I

1-x?

General Solution is given by yx (1.F.)= jQ(x)x (LF.)dx+c

dx+c:aj%dx+c
1-x

y 1 :j ax y 1
Ji-x2 J1-x* 1-y?

:——I 2x)(1 NG dx+c

—-3/2+1 n+1
S =—E(1_X) +c,wheref[f(x)]”f'(x)dx:[f(x)]
1—x2 2 3 n+1
7+l
y _ a

=

= +C
Vi—x®2 J1-x2

= y=—=a+Cv1l- x” is the required general solution.

3. Solve (l—xz)%+2xy: xv1-x*

Solution: Given differential equation is (1— xz)g—y+ 2xy = X/1-x*
X
dy 2X X
==+ 1
dx 1- )T J1-x2 @
This is a linear equation of first order in V.
Comparing it with ﬂ+ P(x)y=Q(x), we have P = 2X2 ,Q= X
dx 1-x 1—x2
2x
I L
1-
General Solution is given by y x (I.F.) jQ x)x (LF.)dx+c
=Yy = S dx+c= —dx+c

= 1—yx2 :—EJ(— 2x)(1— xz)f dx +c
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2 )73/ 2+1

_1l-x ne e
:>1_yx2 __E( i +C, where I[f(x)] f (x)dx_ﬁ
2

= +C
1-x* J1-x2
=y=+1-x"+ c(l— x? )is the required general solution.

4. Solve dy +2Xy = 26
dx

d 2
Solution: Given equation is d—y +2xy=2e""
X

:% +(2x)y =27

This is a linear differential equation
Here P=2x and Q=2

X2

’7 —e

2

j2xdx _ 2.[ xdx X

LF.—elP®_ =e
Its solution is y I F jQ )

yexzzzj.dx+c :>yex2=2x+c

This is the required solution.

3

5. Solve Z—z + ytanx = cos’x.

Solution: Given differential equation isZ—z + ytanx = cos3x
It is a linear differential equation in y.

So Integrating Factor = I.F.= ef tanxdx — plogsecx — g0

Therefore the general solution of given differential equation is

y(L.F.) =fcos3x.(I.F.)dx+c

y secx =fcos3x.secxdx+c

fcos xdx+c== f(1+c052x)dx+c
1
2

( sin Zx) 4

6. Solve (1+y2)+( etan” y)zzzo.

Solution: Given differential equation is(1 + y2) + (x — et@" ) Z—z =0
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dx 1 etan™'y
= —+ X =
dy 1+ y? 1+ y?
Itis a linear differential equation in x.

M

1
. —d -
So Integrating Factor = ef 112 @ = gtan”ly
Therefore the general solution of given differential equation is

tan~ly
x(l.F.)=f1+y2.

(I.LF.)dy +c

tan~ly

tan~ly e tan~ly

xe = .e dy +c
1+y2

1 -

= f e? du + c,Puttan™ly = u
2u
e 1 1
=—+c=ce?Mm V4
2 2
Hence the required solution of (1) is
x etan™y = %e“‘m—iy +c

7. Solve x(x—l)%— y=x*(x-1)°.

Solution: Given differential equation is

dy
i ™ - 7 - =
lx = 1)——v =x"(x = 1)°

dx
, . -
dy 1 relr—11%
= - - - " 1I1 = - -
dx xlx—11- xlr —1)
dy 1 ) .
= ————y=xlx =1} (1)

. |
dx  xlx—1)-

It is a first order linear differential equation of the form

dy
yoo_ . ..
——+ Plx) y = Qlx)
dx
- N - - -
here Plx) = ———— and Qlx) = x(x - 1)°
xix —1)
(o 3 V= = dx =_— 4 .
o LE = ol Pl dx — 7 Talx—0%° = Jl3—5T0/8% = glog x-loglx-1
= glaz.‘-.'.ii = *
x—1

Therefore the general solution of (1) is

yAF) = | QL) WE)dx +¢

LAy __|| r"r_lfl_'kx_l

ldx+ ¢

T i A" .
= || rlxr—1ldr+r¢

Dr.K.V.Nageswara Reddy, AITS(Autonomous), Kadapa Page 8



Hence the required solution of (1) is

I. r
vi =
Sy =14 4 3

== _ ¢

8. Solve x°sec’ y%+3x2 tan y = cosX.
X

Solution: Given differential equation is

x* sec? yﬂ+3x2 tan y = cos X

ie., seczyﬂ+§tan y:cosax (1)
dx x X
Put tan y = u then sec? yd—y _du
dx dx
du 3  cosx
— = 2

¢ —u=
()jdx+x x3

It is a first order linear differential equation of the form P + P(X)u = Q(X), we have
X

3 COS X
P=2,Q="
X X
3
LF. =g/ P0 _ ekdx — g¥logx _ x3

Therefore the general solution of (1) is
ux(LF.)=[Q(x)x (I.F.)dx+c

COS X
:>uxx3:I —xx*dx+c
X

=tanyx x° =jcosxdx+c

= x’tany =sin x+c
It is the required solution of (1).

d
9. Solve cos’ xd—y +y=tanx.
X

: : : d
Solution: Given equation cos’ xd—y+ y =tan X
X

d
= & (sec® x)y = tan xsec? x
X
This is a linear equationin y .
Here P=sec®x and Q =tan xsec” x

| E :eIde :ejseczxdx _ gt

The solution of given differential equation is
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y(IF)=[Q(IF )ax+c

= jtan X sec’ xe™dx +c

tanx

ye
ye' :Itet dt+c=e'(t—1)+c (Put tanx =t, sec®x dx = dt)

tan x

ye™™ =g (tan x —1)+ ¢
y = (tan x —1)+ce ™™

which is the required solution.

10. Solve dx + xdy = e sec® y dy.

. . . : dx _
Solution: Given equation can be written as @ +x=¢e"sec’y
y

Here P=1 and Q=¢e"'sec’y
I.F. :ejpdy :ejldy =e’
Solution is given by
X(IF)=[Q(IF )dy +c
xe’ = '[e*y sec’e’dy +c = _[secz y+C

xe’ =tany + ¢, which is the required solution.

BERNOULLI’S EQUATION
A first order and first degree differential equation of the form
d "
d—i +P(x)y=Q(x)y ()

is called Bernoulli’s equation if Pand Qare constants or functions of Xalone and nis a real
constant.
Case 1: If n =1then the equation (1) can be written as

Y b_o)e
dx+(P Q)y=0 )

Here the variables are separable. The general solution is
dy
—+|(P-Q)dx=0
2

Case 2:If n=1, multiplying (1) with y™", we get

-n dy 1-n _
y "o POy = Q) (3)

Now, putting z = yl’n and % = (1— n)y‘n % in equation (3), we get
X X

= L a-n)P()7 = - n)Q(x) @
X
This is a first order linear differential equation in z.
LE = ej(l_n)p(x)dx
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Hence the general solution of (3) is

2(1.F.) = [(1=n)Q(x)(1.F.)dx+c

Z(ej(l—n)P(x)dxj _ J.(l— n)Q(x) (ef(l—n)P(x)dxj dx +C @)
Substituting z=y*™" in (4), we get the general solution of (1).
Examples
1. Solve xﬂ+ y=xy°.
dx
Solution: Given equation i Yy oy
; guation |sxdx+y—x y
= dy Yo x2y® (1)
dx x
: dy n
It is of the form d—+ Py =Qy" we have
X
1 2 n 6
P=—, Q=x"and y"=y
X
Multiplying on both sides of (1) by y°, we get
6 d _ _
y 6_y+y 6X:y B2y
dx X
Sy WLy )
dx x
Put u=y° then du_ ~5y~° &y
dx dx
_ld_u =y d_y (3)
5 dx dx
Using (3) in (2), we get
S Lo S M5, s 4)
5dx x dx x

It is a linear differential equation in u.

Here P:_—5 and Q=-5x°
X

.[de J‘(T]dx —SI;dx —5logx logx™® -5

Its solutionis  u(I.F.)= IQ (1.F.)dx+c

1 :J'(—sz)%dx+c=—5j%dX+C

e
—-3+1

=— X3 1+c:252+C
—o+ X

Since U= y‘5 then the general solution of (1) is
Page 11
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1 5 1 5x%° 5
55 o2 T %
y’x>  2x y
This is the required solution.

2. Solve g—i(xzy3 + xy)

1.

Solution: Given equation is%(xzy3 + xy): 1
X

= X yy=xy? (1)
dy

This is a Bernoulli’s equation in * X’
Multiplying (1) with X \ye get

X‘Z%—x‘zxy= x‘2x2y3:x‘2%—x‘ly= vQ
dy dy
Put u = x™ then d_u = X2 % _d_u = x? % ©)
dy dy dy dy
Using (3) in (2), we get

du du

-y =y =S ryu=-y’ 4
dy dx

It is a linear differential equation in u.
Here P=y and Q=-y°
LE.—elP el g2

Its solution is u(l.F.)= _[Q(I F.)dy+c

=[y)e

y2

L 2
=—Iyy262dy+c:—I2tetdt+c [Puty?ztthen ydy:dtj

y2

dy+c:—jy3e7dy+c

bl
2

N“<,\,

ue

:—thetdt+c =-2¢'(t-1)+c
¥ ¥ y?
uez =-2e? (?—1j+c

2 2 2

y y y 1
X

-

“e2 =—e2y?4+22 +c Sinceu=x'=

v v
2 2

¥
e? =e2(2—y*)+c  or [1—2+y2)e
X

This is the required solution.

=C

X |~ X
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3. Solve %jtytanx: y?secx.
X

Solution: Given equation is %+ y tan x = y* secx (1)
X

Multiplying on both sides of (1) by Y we get

y gy +yttanx =secx 2)
dx
Put y* =u,then —y gy _du (3)
dx dx

Using (3) in (2), we get

du du
——+utanx=secxor——utan x =—secx (4)
dx dx

This is a linear differential equation in u.
LE. = el g e o gloseos) _ gy
Therefore the general solution of (4) is

u(lF.)=[Q(I.F.)dx+c

ucosx=—jsecxcosxdx+c:—J'dx+c:—x+c

1 : 5 1
or—COSX=—-X+Csince U=y =—
y

y
this is the required general solution of (1).
4. Solve (1—x )g—y+ xy=y’sin " x.
X
. . . . 2 dy 3ain 1
Solution: Given equation is (l—x )&+ Xy=y~sin "X
Dividing throughout by(l— X2) Q+L _ S Tx (1)
Tdx 1-x° 1-x?
Multiplying on both sides of (1) by y‘3 we get
Ldy  x ., sinT'x
e 2 _ 2
Y T1mx 1-x? @
Put y‘zzu,then—Zy‘sﬂ:d—u: ady__ldu ?3)
dx dx 2 dx
Using (3) in (2), we get
1du  x sinx du 2x 2sin ' x
——— U= 5 Or—— SU=— 5 4)
2dx 1-x 1-Xx dx 1-x 1-x

This is a linear differential equation in u.

—2X
LF. el el o) gy
Therefore the general solution of (4) is

u(lF)=[Q(I.F.)dx+c
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u
u (1
sinceu = y‘2 = 7 we get the general solution of (1) is
1-x? . 5
= —2[x5|n X+ HL c

7=

y

sin ™ x .
(1-x2)= —ZI 1 (L-x?)dx+c = —2jsm fxdx+c
—x?)==2|xsin "t x++/1-x? J+C , integration by parts
1

5. Solve e* Y _ 2xy* + ye*.
dx

- - - - X d X
Solution: Given equation is e d_y =2xy* + ye
X

dy

Dividing throughout by e*, o o 2xe*y? (1)
X

This is Bernoulli’s equation. Multiplying on both sides of (1) by y_2 we get

y2 Wyt oxe 2

dx
Put —y ' =u,then y? dy _du (3)
dx dx

Using (3) in (2), we get

au +U=2xe" 4)

dx

This is a linear differential equation in U.
LF.=el™ o el e

Therefore the general solution of (4) is
u(lF)=[Q(I.F.)dx+c

ue* :2'|‘xe’X e* dx+c:2jxdx+c:x2+c

1 . .
1 = —— we get the general solution of (1) is

sinceU =—y
X
—=—x"+c
y
DIFFERENTIAL EQUATIONS REDUCIBLE TO LINEAR EQUATION BY SUBSTITUTION
d
1. Solve sec’ y—y+ 2xtany =x°,
dx
. . . d
Solution: Given equation is sec’ yd—y+ 2xtany = x® (D)
X
dy du
Put tan y = u so that sec’ y—y =—
dx dx

Substituting these values in (1), we get

d—u+2xu:x3 2)
dx
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This is a linear equation in u. Here P =2xand Q = x°
I.LF.= edeX = eIZX -
Therefore the general solution of (2) is
u(lF.)=[Q(I.F.)dx+c
Ix3e dx+c== ( 2—1)9Xz +¢ (Put X* = tso that xdx:%dt)

Substituting U =tan y, we get the general solution of (1) is

e tany :%(x2 ~1* +c

2. Solve %+ xsin 2y =x*cos’y .
X
Solution: Given equation is %jt xsin 2y = x*cos’ y (1)
X
. . dy _ 2sin y Cosy
This can be written as s———+X =X
cos” y dx cos’y
sec’ yﬂJrZXtanyzx3 2)
dx
Put tan y = u so that sec ydy d_u
dx dx
Substituting these values in (2), we get
du +2xu=x° (3)
dx

This is a linear equation in u. Here P =2xand Q = x°
|F _ edex _ eij dx _ exz
Therefore the general solution of (3) is
u(lF)=[Q(I.F.)dx+c
2 2 1
=Ix3eX dx+c:%(x2 —1)eX +c (Put x* =tso that xdx:Edt)

Substituting U = tan y, we get the general solution of (2) is

e¥ tany :%(x2 ~17 +c

dy 2 . 3
3. Solve 2y cosy’ —> ————sin y* =(x+1)°.
yeosy dx x+1 y ( )
. . . . . zdy 2 . 2 3
Solution: Given equationis 2y cosy”————siny —(x+1) )
dx x+1
Put sin y* =u then 2y cos y* -~ dy _du
dx dx
Substituting these values in (1), we get
du 2
———Uu=(x+1 2
dx x+1 ( ) @)
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2
This is a linear equation in u. Here P == and Q =(x+1)°
X +

-2
I.F_:ejpdx zej.a dx =e72log(x+1) 1
(x+1)

Therefore the general solution of (2) is u(1.F.)= J.Q (1LF.)dx +c

uﬁ:_f(x+l)sﬁdx+c=j(x+lhx+c
1 (x+1) (x+1)° .
u(x+1)2— > or u= +c(x+1)

Substituting U = sin y?, we get the general solution of (1) is

4
sin y? = —(le) +c(x+1)

EXACT DIFFERENTIAL EQUATIONS
The differential of a function f(x, y) is denoted by df and is given by
df =ﬂdx+ﬂdy Q)
OX oy

Consider M (X, y)dx +N (X, y)dy =0 2

of
S —=M(X, 3
uppose . (x,y) (3)

of
d = N(x, 4
an ey (x,y) @)

Using equations (3) and (4), then the equation (1) becomes
of of
df = &dx+5dy =M (xy)dx+ N(x,y)dy =0
ie.,df =0
On integration, f (x, y) = C, arbitrary constant.
Therefore the expression of (2), M dx+ N dy = Ois said to be an exact differential equation if there
exists a function f(x, y)such that M = ﬂand N = i
2 %y
Ex: 1. 2xydx+ x*dy =0
2. ydx+ xdy=0
Condition for Exactness
If M(x,y)and N(x,y)are two real valued functions which have continuous partial
derivatives, then a necessary and sufficient condition for the differential equation M dx+ N dy =0
to be exact is 8_M = @ :
X

Working rule to solve an Exact Differential Equation
Step 1: Let the differential equation be of the form M(x, y)dx+ N(x, y)dy =0.
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Check the condition for exactness %VI = % , If exact proceed to step 2.

Step 2: The solution of the given equation is J'M dx +I N dy=c

In the first integral treating Yy as constant and in second integral take only those terms in N

which do not contain X.

(OR) the solution the given equation is _[M dx + I (terms independen t of xin N)dy =¢

(y constant)

EXAMPLES
1. Solve (hx+by + f )dy +(ax+hy +g)dx=0.
Solution: Given differential equation is
(hx+by + f )dy +(ax+hy+g)dx =0 (1)
This is of the form M dx + N dy =0, where
M =ax+hy+gand N =hx+by+ f

M N M N

oy X o X
Hence the given differential equation is exact.

.". The general solution is given by

Now

J' M dx + I (terms independen t of xin N )y =c

(y constant)

= J.(ax+hy+g)dx+J'(by+ f)y=c
(y constant)

X2 2
:>a7+hyx+gx+b7+ fy=c

= ax® +2hyx+2gx+ 2 fy+by* =c
This is the required general solution of (1).

2. Solve (2x—y+1)dx+(2y —x—1)dy =0.
Solution: Given differential equation is

(2x—y+1)dx+(2y —x—1)dy =0 1)
This is of the form M dx + N dy =0, where

M =2x—y+land N =2y—x-1
Now ﬂ:—1, @z—l @:ﬁ

oy X oy X

Hence the given differential equation is exact.
.. The general solution is given by

J' M dx + I (terms independen t of xin N )y =c¢

(y constant)
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= j(2x—y+1)dx+f(2y—1)dy=c

(y constant)
=X —yX+X+y’—y=c
=X —Xy+x—-y+y’=cC
This is the required general solution of (1).

X
3. Solve (1+ ex’y)dx+ex’y(l——de =0.
y
Solution: a} Given differential equation is
'd . R I-f x
(1+e¥7 )dx+e*¥ {1 - —] dy =10 (1)

It is of the form M (x., v} dx+ N(x, v!dy =0, we have

—_— " gr [ o ¥ -
MG, y)=1+e"%and Nlx, y} ="V (1 -7]
M . X an 1 b 1 , —X
Then — = ¢*'V.— and — =93'.—.|,1——]—9‘——9 Y=
¥ da ¥ / z
aM 8N
'E” =] = =]
g da

i.e. (1) is an Exact differential equation.

So the general solution of (1) is

|| Mdr+ || (terms of N independent of x} dy = ¢
& o
y=tonstant
|| (1+e¥7)dx + |I (Ddv=c¢
o o
y=tconstant
r+yett=¢

4. Solve (ey +1)cosx dx+e”sin xdy=0.
Solution: Given differential equation is
(ey+1)cosx dx+e”sin xdy =0 1)
This is of the form M dx + N dy =0, where
M =(ey +1)cosxand N =e”sin x
oM y N oM ON
Now — =e’cosx, —=e’cosx ..—=—
X X

Hence the given differential equation is exact.
.. The general solution is given by

Dr.K.V.Nageswara Reddy, AITS(Autonomous), Kadapa Page 18



J' M dx+ I (terms independen t of xin Ny =c

(y constant)

= J'(ey +1)cos x dx+I(0)dy =c

(y constant)

= (ey +1)'|.cosxdx+0 =C

= (ey +1)sin X=C
This is the required general solution of (1).

5. Solve (y2 —2xy)dx = (x2 - 2xy)dy :
Solution: Given differential equation is
(y2 - 2xy)dx = (x2 - 2xy)dy
:>(y2 —2xy)dx+(2xy—x2)dy=0 (1)
This is of the form M dx + N dy =0, where
M=y*-2xy and N =2xy-x?
M N

Nowa—M=2y—2x, ﬂ:2y—2x o=
o X y X

Hence the given differential equation is exact.
.. The general solution is given by

J' M dx+ I (terms independen t of xin Ny =c

(y constant)

= I(yz —2xy)dx+j(0)dy =c
(y constant)
= y?X—yx* =c¢
This is the required general solution of (1).

EQUATIONS REDUCIBLE TO EXACT EQUATIONS
Integrating Factor:
Let M dx+ N dy = 0 be not an exact differential equation.

If M dx+ N dy = 0can be made exact by multiplying it with a suitable factor u(x, y) # O called an

integrating factor.
Example: Let ydx —xdy =0 @
Here M = y,N = —x
oM oN

Then—=1and—= -1
dy d0x

oM L oN

dy  0x
So that (1) is not an exact differential equation.
Multiplying (1) with 1/x?2, we get
y
x2

i.e.

1
dx—~=dy=0 2
x——dy 2)
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y 1
HereM = — ,N = ——

x x
i oM 1 0N
ince by 2 ox

So (2) is an exact differential equation.
Hence 1/x? is an integrating factor of ydx — xdy = 0.

Note: Also since d[ﬁJ _ yax—xdy , d(log EJ _ ydx—xdy , d(tan 1 ﬁj _ ydx—xdy

y y? y Xy y) xXi+y°

are also integrating factors ofydx — xdy = 0.

. 1
The functions — 5
y

xy' x*+y
From the above example we observe that a differential equation can have more than one
integrating factor.

Methods to find integrating factor of Mdx + Ndy = 0
Method 1: with some experience integrating factors can be found by inspection. For this purpose the
student should keep in mind the following differentials.

2 2
1. d(xy)=x dy+y dx 2. d(x ;y ]:xdx+ydy
3 g Xj:xdy—zydx . g ilzydx—zxdy
X X y y
5 d Iog(XD:M 6 d |og(1nzw
X Xy y Xy
.y tan{z} _ xdy—y dx 5. dftan X |-y X=Xy
X X2 +y y X2 +y
y dx+x dy > 2\ 2(xdx+ ydy)
9. d(log(xy))=Z——"= 10. dllog(x SR YEY)
(og ()= = logl +y* ==
Examples

1. Solve xdy —ydx+ a(x2 + yz)dx =0
Solution: Given equation is xdy — ydx+ a(x2 + yz)dx =0

xd;z/;yzdx +adx=0
X“+y
. xdy — ydx 3
Integrating IW+aIdx—c
tan 1(XJ +ax=c
X
Which is the required solution.
2. Solve xdx+ ydy=Xd¥;y2dX
X“+y
) . . xdy — ydx
Solution: Given equation is XdX+ydy = ————
X“+y
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("

Integrating (

ol )
) f{er )

X _tan lj+c
2

X

= x?+y?=2tan" XJ+2C
X

which is the required solution.

3. Solve ydx — xdy = a(x2 + yz)dx
Solution: Given equation is  ydx — xdy = a(x2 + yz)dx
ydx xdy
x> +y?

=l (3]

. 4 X A . .
Integrating, we get tan 1(—] =ax+ C, which is the required solution.
y

= adx

4. Solve xdy— ydx = xy“dx
Solution: Given equation is xdy — ydx = xy*dx

= —xdy—zydx _ xdx=> xdx— XY =YX

y y? =0

2

:>xdx+M:0:> xdx+d[§j:0
y

. x> X
Integrating, we get?+— =C

This is the required solution.

5. Solve y(xy+ex)dx—exdy =0.

y2
Solution: Given equation is y(xy+e )?X_e dy =0
y
2 X X X X
N (xy +ye zdx—e dy 0= xdxs Y& dx;e dy 0
y
eX
:>xdx+d(—j=0
y
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2 X
Integrating, we get > +—=C

Method 2: If Mdx+ Ndy = 0is a homogeneous differential equation and Mx + Ny = 0 then

—————is an integrating factor of Mdx+ Ndy=0.
Mx + Ny

EXAMPLES
1. Solve x%y dx — (x® + y3)dy = 0.
Solution: Given differential equation is
x2ydx—(x3+y3dy =0 )
This is of the form M dx + N dy = 0, we have
M =x%*yand N = x3 +y3

2 aN 2
Theng =X anda = 3x
. oM ON
l.e., E * a

So that (1) is not an exact differential equation.
But (1) is homogeneous differential equation and
Mx+Ny=x3y +(—x* —y3)y=—y*#0

1 1

LF=—— = ——
Mx + Ny y*

. . - 1
Multiplying (1) with — e we get

X2 PRIV
—Fdx+ 5 dy=0

2 x3 1
——dx+|—+—-|dy=0 2
<y4 y) y (2
Again it is of the form M; dx + N, dy = 0, we have
x? 3 1

X
M; = ——andN; = — +—
P78 oyt Ty

oM, 3x? oN;  3x?

Thenw = Fan W = F
_ oM, _ 0N,
l.e., ay = ax

So that (2) is an exact differential equation.
Therefore the general solution of (2) is

M; dx + f (terms of N; not cotaining x) dy = c

y=constant

S f <x2>d+f1d > 1f2d+j1d
- X —y=C - X X —_’y=C
y3 y y3 y

y=constant
1 (x3 x3
= _F? +logy =c :>—3—y3+logy=c

It is the required general solution of (1).
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2. Solve y?dx + (x* — xy — y*)dy = 0.
Solution: Given differential equation is
yidx + (x> —xy —y?)dy =0 )
This is of the form M dx + N dy = 0, we have
M = y?and N = x? — xy — y?

oM JON
Thena =2y anda =2x-Yy
) oM 0N
l.e., E * a

So that (1) is not an exact differential equation.
But (1) is homogeneous differential equation and
Mx+Ny=y%x+ (x2 —xy —y2)y=y(x? —y?) #0
1 1
F= + Ny  y(x?2 —y2)
Multiplying (1) with ﬁ we get

y* x* —xy —y*
oz =yt [ Yoz —yn |0
y 1
xz_yzdx+<;—x2_y2>dy=0 2)
Again it is of the form M; dx + N; dy = 0, we have
1 x
Ml =x2 —_')/2 and Nl =;—ryz
oM; (x> —y?).1-y.(0-2y) x*>+y?
Then = =
dy (x2 — y2)2 (x2 — y2)2
oN; (P -y 1-x(0-2x) x*+y°
and ax (x% — y2)2 T (xZ —y2)2
lL.e., W = W

So that (2) is an exact differential equation.
Therefore the general solution of (2) is

f M; dx + f (terms ofN;not cotaining x) dy = ¢

y=constant

1
= Xy dx+f;dy=c
y=constant
L (x — ) +logy =
2 °9 x+y gy =¢
It is the required general solution of (1).
dy dy
3.Sol —X——= —-—.
olve y xdx x+ydx
Solution: Given differential equation is
dy N dy
y xdx - ydx
i.e, (x—y)dx+ (x+y)dy=0 @

This is of the form M dx + N dy = 0, we have
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M=x—yandN =x+y

ON
Thena— =-1 anda— =1
) oM ON
l.e., E * a

So that (1) is not an exact differential equation.

But (1) is a homogeneous differential equation and

Mx+Ny=x—-y)x+x+y)y=x2+y2+0
1 1

'=Mx+Ny=x2+y2

Multiplying (1) with ——, we get

LLF

y?'
X — x +
<x2+z2>dx+<x2 +z2)dy=0 @)
Again it is of the form M; dx + N; dy = 0, we have
X—=y x+y
1= m and N1 = m
Then M1 _ G2 +y1). (D - (x—y).(0+2y) _y? —x*—2xy
Z o2+ 7)) 2 +y))?
oN; (x?2+y2).1=(x+y).(0 + 2x) 3 y? —x% = 2xy
and ox (x% + y?)? T (22 4+ y2)2
] oM; 0N,
lL.e., W = W

So that (2) is an exact differential equation.
Therefore the general solution of (2) is

f M, dx + f (terms of N; not cotaining x) dy = ¢

y=constant

= f Y dx+f(0)dy=c

x? + y?
y=constant
X y
= 3 dx — 3 dx+0=c
x*+y x*+y
y=constant y=constant

1 X
= Elog(x2 +y?) —tan™? (;) =c

It is the required general solution of (1).

4.Solve xy dx — (x* + y?)dy = 0.
Solution: Given differential equation is
xydx — (x*+y?)dy =0 @)
This is of the form M dx + N dy = 0, we have
M =xyand N = —x? — y?

oM ON
Then— =x and — = —2x
dy 0x
] oM L ON
i.e., 3y T2

So that (1) is not an exact differential equation.
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But (1) is a homogeneous differential equation and
Mx+ Ny =(xy)x +(—x2—y)y=—y3#0
_ 1 1
" Mx+Ny  y3

-1

Multiplying (1) with et we get

2 2
Xy x“+y
<—_y3>dx_< —y? >dy:0

X 4 +<x2+1>d 0 )
R— x — — =
z vy

LLF

Again it is of the form M; dx + N; dy = 0, we have

x x2 1
M; = =2 and N; =3 +y
oM, 2x JON; 2x
Thenw = Fand E = F
oM; 90N,
Ay ox
So that (2) is an exact differential equation.
Therefore the general solution of (2) is

i.e.

f M; dx + f (terms of N; not cotaining x) dy = ¢

y=constant

SRC IO

y=constant
1 —_—
= }7 xdx+logy=c

X
= }7+logy=c

It is the required general solution of (1).

5. Solve (3xy2 - ys)dx —~ (2x2y — Xy? )dy =0.

Solution: Given equation is (3xy2 - ya)dx - (2x2y —xy® )dy =0

Here M =3xy’—y®> N :—(2x2y—xy2)

We have M = 6xy—3y? oN = —4xy+y®
oy X
@ # ﬂ . Hence it is not exact. It is a homogeneous equation
oy  OXx
I.LF.= ! = 1
Mx+Ny x?y?

Multiplying with I.F. we get

(3xy* - y3)dx_ (2x?y - xyz)dy _o

2,,2

x2y? X2y
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(é - lzjdx _(E - 1jdy =0 (2
X X y X

This is an exact equation, its solution is

[ [

= 3log x—y(_—lj—ZIog y=cC
X

= 3log x + R log y = ¢, which is the required solution.
X
2 2
6. Find an integrating factor so that 2 =2 4+ 3%
dx x x

Solution: Given differential equation is

dy y_l_x2+y2 dy xy+x?+7y?
—_— - > - = —
dx x x2 dx x2

(xy +x% + y*)dx —x*dy =0
It is of the form M dx + N dy = 0 and it is a homogeneous differential equation.

1 1
Mx +Ny (xy+x2+y2)x —x2y  x(x2 + y2)

So integrating factor =

Method 3: If the differential equation Mdx + Ndy = Qis of the form

y f,(xy)dx+x f,(xy)dy =0, then I'F':Mx+l\ly provided Mx — Ny #0

1. Solve y(x%y? + 2) dx + x(2 — 2x?y?)dy = 0.
Solution: Given differential equation is
y(x?y? +2) dx + x(2 — 2x%*y?)dy = 0 1)
This is of the form M dx + N dy = 0, we have
M = y(x%y? + 2)and N = x(2 — 2x2y?)

oM _ N -
Thena—y—3x y +Zanda—2—6x y
oM ON
oy~ ox
So that (1) is not an exact differential equation.
But (1) is of the form y f, (x y)dx+ X f,(xy)dy =0 and
Mx — Ny = y(x?y? + 2)x — x(2 — 2x?y?)y = 3x3y3 # 0

1 1

Mx — Ny - 3x3y3
Multiplying (1) with — we get

3x3y3’
y(x?y? +2) x(2 — 2x%y?)
dx +
3x3y3 3x3y3

i.e.

LF.=

dy=0
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<1+ 2 )+ ( 2 2)d —0
3x  3x3y? x 3x2y3 3y Y= @

Again it is of the form M; dx + N; dy = 0, we have

1 2 2 2
M1 =§+WandN1 :W—E
oM, —4 N, —4
Then 3y = 3x3y7 and P 3xiys
_ oM, ON,
tL.e., W = g

So that (2) is an exact differential equation.
Therefore the general solution of (2) is

f M, dx + f (terms of N; not cotaining x) dy = ¢

y=constant

[ (Gt et [ (-5)a
= — —Zdy =
3x  3x3y? x 3y y=¢

y=constant

111 2 1 2 (1
igf;dx-l-—z x—3dx—§f;dy=c

3y
1 2 1 2
:glogx +ﬁ<—ﬁ> —§logy =c
1 1 2
= §logx —W—glogy =c

It is the required general solution of (1).

2. Solve y(xy sin xy + cos xy)dx + x(xy sin xy — cos xy)dy = 0.
Solution: Given differential equation is
y(xy sin xy + cos xy)dx + x(xy sin xy — cos xy)dy = 0 (1)
This is of the form M dx + N dy = 0, we have
M = y(xy sin xy + cos xy)and N = x(xy sin xy — cos xy)

oM _
Then@ = (x2y% + 1)cos xy + xy sin xy

JdN
anda = (x%y? — 1)cos xy + 3xy sinxy

oM  ON
oy~ ox
So that (1) is not an exact differential equation.
But (1) is of the form y f, (x y)dx+ X f,(xy)dy =0 and
Mx — Ny = y(xy sin xy + cos xy)x — x(xy sin xy — cos xy)y
=2xycosxy # 0

i.e.

B 1 B 1
"~ Mx—Ny 2xycosxy
. . - 1
Multiplying (1) with Try cos 1y’ we get
y(xy sin xy + cos xy) e+ x(xy sin xy — cos xy) 4
2xy cos xy x 2xy cos xy

LLF.

y=0
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sin x 1 X sin x 1
Grose " 20 * (Fa05my

— - ——]dy=0
2cosxy 2x 2 cos xy Zy) Y

(yt +1>d +<xt 1)d =0 2
> an xy % X > an xy 2y y = (2)

Again it is of the form M; dx + N; dy = 0, we have
1

M, =2t L anan, =2
1 =3 tanxy +——andN, = 3 tan xy 2

M, 1 , N, 1 ,
Thenw =5 (tan xy + xy sec xy)anda =5 (tan xy + xy sec®xy)
oM; 0N
9y ox
So that (2) is an exact differential equation.

Therefore the general solution of (2) is

i.e.,

f M, dx + f (terms of N; not cotaining x) dy = ¢

y=constant

[ Granmsg) s [ (-5)e-
= > anxy+2x X+ _Zy y=¢

y=constant

yft d +1f1d 1f1d =
== g _Z | Z4v =
5 anxy dx 5| 5 X > yy c

ylog(secxy) 1 1 3
:2 5 +2l0gx 2logy—c
= 1l (x ) =

5108 ysec xy|=c
= X sec xy =e* =¢

y
It is the required general solution of (1).

3.Solve y(1 + xy)dx+ x(1 — xy)dy = 0.
Solution: Given differential equation is
y(1+xy)dx +x(1 —xy)dy =0 1)
This is of the form M dx + N dy = 0, we have
M =y(1+ xy)and N = x(1 — xy)
oM oN

Thenaz 1+ 2xy and Frie 1-2xy

oM ON

oy~ ox
So that (1) is not an exact differential equation.
But (1) is of the form y f, (x y)dx+ X f,(xy)dy =0 and

Mx — Ny =y(1+ xy)x —x(1 — xy)y
=2x%y? #0

i.e.

B 1 1
~ Mx—Ny 2x%y2
Multiplying (1) with ——;, we get

1
2x2y2’

LLF.
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y(1 +xy) 4 x(1—xy)

2x2%y? x 2x2y? dy =0
1 1 1 1

<2x2y * §> dx + <2xy2 B 5) dy =0 @

Again it is of the form M; dx + N; dy = 0, we have
1 1

M, = 27y + aanle = 277 _Z

oM, 1 dN; 1

Then 3y = _2x2y2 and P _2x2y2

) oM; 0N,

tL.e., W = W

So that (2) is an exact differential equation.
Therefore the general solution of (2) is

f M, dx + f (terms of N; not cotaining x) dy = ¢

y=constant

[ G et](5)e-
= 2x2y+2x x + _2y y=¢

y=constant

1f1d+1f1d 1J‘1d
= — — - - —_— — =
2y ) x? T2 x Y2 yy ¢

1 1y 1 1
:5<_3_c> +§l0gx—§l0gy =c
1 1 x 1 x 1
= —m+ Elog<;> =c orzlog(;)—ﬁ =c

It is the required general solution of (1).

4. Solve y(xy + 2x%y?)dx + x(xy — x*y?)dy = 0.
Solution: Given differential equation is
y(xy + 2x?y?)dx + x(xy — x*y?)dy = 0 (1)
This is of the form M dx + N dy = 0, we have
M = y(xy + 2x?y?)and N = x(xy — x?y?)
oM . N -

Then@— 2xy + 6x“y“and Frie 2xy — 3x°y
oM ON
oy~ ox
So that (1) is not an exact differential equation.
But (1) is of the form y f, (x y)dx+x f,(xy)dy =0 and

Mx — Ny = y(xy + 2x*y?)x — x(xy — x*y?)y

=3x3y3 #0

i.e.

11
~ Mx—Ny 3x3y3
Multiplying (L) with ——, we get

3x3y3’

LLF.

y(xy + 2x*y?) N x(xy — x%y?)

dy=20
3x3y3 3x3y3 y

Dr.K.V.Nageswara Reddy, AITS(Autonomous), Kadapa Page 29



(RS PRNE T | PRI
3x%2y  3x x 3xy? 3y Y= @

Again it is of the form M, dx + N; dy = 0, we have

1 21 1 1
M, = 3x2y + g;anle = 3xy? —5
oM, 1 aN, 1
Then 3y = _3x2y2 and - 3x2y2
_ oM; _ N,
tL.e., W = g

So that (2) is an exact differential equation.
Therefore the general solution of (2) is

f M, dx + f (terms of N; not cotaining x) dy = ¢

y=constant

1 21 1
= | Gtz e ] (5) o=
y=constant
1 1 2 (1 171
:@fx—zdx+§f;dx—§f;dy=c
1\ 2 1
:—(—J—C>+§l0gx—§l0gy=c

s 1 +1l x? 3 11 x? 1
3xy 3108 " =c orzlog " 3xy_c

It is the required general solution of (1).

Method 4: If there exists a continuous single valued function f(x) such that

LM _oN)_ f(x), then e’ is an integrating factor of M dx + N dy = 0.
Nl oy ox

1.Solve 2xydy— (x> +y*+1)dx=0.
Solution: Given differential equation is
2xydy — (x*+y*+1)dx =0 Q)
This is of the form M dx + N dy = 0, we have
M=—-x?—-y2—1andN = 2xy
oM oN

Then@ = —2y and Fi 2y

oM 0N

oy~ ox
So that (1) is not an exact differential equation.
But (1) is a homogeneous differential equation and

d d
(5 -3) =52y~ 2] === )
1

i.e.

dy 0Ox =m

LF.= e/ feax = of (3)ax = p-2t0gx - =
X

. . . 1
Multiplying (1) with 5 we get
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2xy x> +y2+1
- (2 e

2y 1y
7dy—<1+x—2+F>dx=0 (2)

Again it is of the form M; dx + N; dy = 0, we have

1 y? 2y
M1:—<1+X_Z+F> and N1=7

oM 2 ON. 2
Then—1=——yand ke W4

oy x? ox  x?
_ oM, _ oN,
i.e., 3y = ox

So that (2) is an exact differential equation.
Therefore the general solution of (2) is

f M; dx + f (terms of N; not cotaining x) dy = ¢

y=constant

1 y?
> — f 1+x_2+F dx+f(0)dy=c

y=constant

(%)
=>—(x————|=c
X X

= 1+y?—x%=cx
It is the required general solution of (1).

2.Solve (x?+y*+2x)dx+2ydy=0.
Solution: Given differential equation is
(x2+y?2+4+2x)dx+2ydy=0 1)
This is of the form M dx + N dy = 0, we have
M =x?+y?+2x and N = 2y
oM oN

Thena = 2y and P 0

oM 0N

oy~ ox
So that (1) is not an exact differential equation.
But (1) is a homogeneous differential equation and
1/0M ON 1
75y ~3x) =gy~ 0 =1= ()

LF.= e/ f®dx = of1dx — ox

i.e.,

Multiplying (1) with e*, we get

e*(x? +y% +2x) dx + 2ye*dy =0 #))
Again it is of the form M; dx + N; dy = 0, we have
M; =e*(x?* + y?+2x) and N; = 2ye*

Th aMl—z x daNl—z x
enay— ye*and —-==2ye

oM; _ 0N,

i.e., 3y = o
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So that (2) is an exact differential equation.
Therefore the general solution of (2) is

f M, dx + f (terms of N; not cotaining x) dy = ¢

y=constant

= f e*(x? + y? + 2x) dx+f(0)dy:c

y=constant
=>fe"(x2 +2x)dx+y2fexdx=c
= e*x?+eXyl=c=e*(x?+y?) =c
3. Solve (x3 - 2y2)dx +2xydy = 0.
Solution: Given equation is (x3 - 2y2)dx +2xydy =0

Here M = x® —2y? N = 2xy
We have @:—4y ﬂ:2y
OX
@ # ﬂ . Hence the equation is not exact
oy X

But 1(ﬂ_ﬂj=—4y—2y:—6y=‘—3=f<x>

N oy oX 2Xy 2xXy X

-3
| F. = ejf(x)dx _ eJ.TdX _ e—3|ogx _ elogx’3 _ X—S

Multiplying the equation with is we get
X

3 2
b _fsy b, 2Xx3y dy=0

2
(1— Zisjdx + 2—z/dy =0. Itisan exact equation
X X

L 2y?
It solution is J 1—? dX+I(O)jy=c

y=constant

-2 2

X o . .
X—2y* S —=c=>x+ y—2 = cx?, which is the required solution.

X

Method 5: If there exists a continuous single valued function g(y) such that

LN _oM)_ g(y), then e!90% s an integrating factor of M dx + N dy = 0.
Ml ox oy

1. Solve (y4 + 2y)dx + (xy3 +2y° — 4x)dy =0.

Solution: Given equation is (y4 + 2y)dx + (Xy3 +2y* —4x)dy =0 (1)
Here M =y*+2y; N = xy® + 2y* — 4x
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We have %:4)/34-2; @=y3_4
oy OX
%;ﬁ—. Hence it is not exact
oy  OX
1(oN oM ) y®—4-4y*-2 —6-3y°
But —| —-— = 7 =——
M{ox oy y 42y y(y +2)
-3ly*+2) -3
y(y +2) y
-3 1
LE.= efg(y)dy _ ef?’y _ e’3I§dy _ @3l0gy _ glogy® _ is
y
Equation (1) multiplied by I.F., we get
4 3 4
(y +32y)dx+(xy +233/ _4X)dy=0
y y
:(y+%}dx+(x+2y—4—§]dy=0 )
y y

(2) is an exact differential equation. So its solution is

I (y+%}dx+[2ydy=c

y=constant

2 y
= YWX+—X+2—=
yX ¥ 5

[y ey
=|y+— [X+y =c
y

this is the required solution.

2. Solve (y + yz)dx +xydy =0.
Solution: Given equation is (y + yz)dx +xydy =0
Here M =y +y? N = xy

N

We have ﬂ:l+2y =
OX

Hence it is not exact
oy
i( MJ y—(1+ 2y) y—1-2y
M oy y+y? y(L+y)
-y _—(+y)_-
y)

i) iy~

. oM _ON-
' X

-1
= eIg(Y)jy _ ejvdy _ e—logy _ elogy'1 — y—l :%

Dr.K.V.Nageswara Reddy, AITS(Autonomous), Kadapa Page 33



Multiplying the equation with 1 we get
y

2
(y+_y) dx+Ydy=0 2)
y X
It is an exact equation. So its solution is

I(1+ y)dx+j0.dy=c:>x+yx:c
y=COnStant

which is the required solution.

3. Solve (xy2 - xz)dx + (3x2y2 +x2y—2x% + yz)dy =0.
Solution: Given equation is (xy2 - xz)dx + (3x2y2 +xPy—2x% + yz)dy =0

Here M = xy* — x° N =3x%y* + xh2y — 2x°* + y?
Wehave M _ 2Xy N _ 3y?(2x) + y(2x)— 6x* = 6xy? + 2xy — 6X°
oy OX
M #* N . Hence it is not exact
oy oX
1(oN 6N GM _BXy® +2Xy—6X* —2Xy 6x(y2 - x) —6=g(y)
M xy? — x* x(y2 - x)

fg yHy ejedy _ by
Multiplying the equation with €®¥ we get
eﬁy(xy2 —xz)dx+e6y(3x2y2 + X2y —2x + yz)dy:O )
It is an exact equation, its solution is

J.(ef‘yxy2 - 6eﬁyx2)+je6yy2dy =C

y=constant

2 3 2,6y 6y 6y
g8y y2 X? e % + { y 6e - Zéz + 22?[6 } = C, using integration by parts
2,,2 3 6y 6y 6y
eeyxy _eGyX_+ye _ye +e =C
2 3 6 18 108
2.,2 3 2
eﬁy{ﬂ XY Y, i} = C, which is required the solution.

2 3 6 18 108
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Newton’s law of Cooling
Statement: The rate of change of temperature of a body is proportional to the difference of the
temperature of the body and its surrounding medium.

Let 8 be the temperature of the body at time ¢ and 6, be the temperature of its surrounding
medium (usually air). By the Newton’ law of cooling, we have

do do _ N
i 0 — 6, or - = —k (6 — 6,), where k is a positive constant

Examples

1. A body is originally at 80°C and cools down to 60°C in 20 minutes. If the temperature of the
air is 40°C, find the temperature of the body after 40 minutes.

Solution: Let @be the temperature of the body at time t.

By Newton’s law of cooling, we have

Z—f =—k(0—-8,), where 6, is the temperature of the air

= ?j—f = —k(6 - 40), (since 6, = 40 be given )
or 46 _ —k dt (variables separable) (@))
0—40 P
Integrating on both sides, we get
I _de _ I dt
6 —40
= log(@—40)=—kt+logc, c is an integrating constant
= Iog[e_—mj N P
c C
=0-40=ce™ =0=40+ce™ 2)

Given that when t = 0, & = 80° and when t = 20, & = 60°
Substituting this in (2), we get ¢ =40and 60 =40+ ce >

5 20=40e 2 e =t e o2

1
= 20k=1log2 = k=—Ilog 2
g 20 g

iIogz]t

. (2) becomes & = 40+ 4067[20
Whent =30, ="

®)

—| i|O 2 140
- (3)= 6 = 40+40e (22  from (3)

1
log| =
40+ 4062 = 40+ 4064

=40+ 40&) =50°C
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2. If the temperature of a body is changing from 100°C to 70°C in 15 minutes, find the time
when the temperature will be 50°C, if the temperature of the air is 30°C.

Solution: Let @be the temperature of the body at time t.

By Newton’s law of cooling, we have

(jj_(tg = —k(& -6, ) where 6, is the temperature of the air

= Z—f = k(6 - 30), (since 4, = 30 be given )
or 4o _ —k dt (variables separable) (@)
9-30 P
Integrating on both sides, we get
I 4o _ j dt
6-30
= log(6—30)=—kt+logc, ¢ is an integrating constant

= log [H_T:%OJ — kt=? _CBO —e™

=0-30=ce™ =6=30+ce™ 2)
Given that when t =0, & =100° and when t =15, 8 = 70°

Substituting this in (2), we get ¢ =70and 70 =30+ ce ™

=40=70e% = ™% =; — el = %

= 15k =log [Zj =k= iIog(ZJ
4 15 4

{53
. (2) becomes & = 30 + 70e \*° * (3)
When8=40°, t="2

1 7
-~ (3)=40=30+ 70e7[5'°g(ﬂ}

=10= 7oe_[%'°g@j‘ 1 e—[ﬁlog(gj}

:—:
7
iIo Z t
:7:e[15 g(“)j = log7 = iIog(zjt
15 4
t=15x_97 15,348

=1t =52.16 Minutes

3. If the air is maintained at 15°C and the temperature of the body drops from 70°C to 40°C in

10 minutes. What will be its temperature after 30 minutes.
Solution:Let & be the temperature of the body at time t.
By Newton’s law of cooling, we have
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?j_f = —k(9 -6, ) where 6, is the temperature of the air

do
0 -0,
Integrating on both sides, we get

do
je_—go=—kjdt

= log(#-6,)=—kt+logc, c is an integrating constant
:>|og(0_00 0= _gn

c
=0-0,=ce’ " =0=0,+ce’™ (1)
Given @, =15°C so that (1) becomes
0 =15+ce™ 2)
Given that when t =0, & = 70° and when t =10, 8 = 40°

Substituting this in (2), we get ¢ =55and 40 =15+ 55¢ **

= 25=55e7% =% = % 3)

or = —k dt (variables separable)

jz—kt:>

Whent =30, =2
- (2) = 0 =15+55e %%

3 25\’
=15+55(e "% J' =15+ 55(%j

=20.1653 ~ 20°C

4. A body kept in air with temperature 25° C cools from 140°C to 80°C in 20 minutes, find the
time when the body cools down to 35°C.

Solution: Let &be the temperature of the body at time t.

By Newton’s law of cooling, we have

Z—f =-k(6-6,), where 6, is the temperature of the air

= ?j—f = k(0 - 25), (since 6, = 25 be given )
or 4o _ —k dt (variables separable) )
025 P
Integrating on both sides, we get
I 249 _ j dt
0-25
=log (9— 25)= —kt+logc, C is an integrating constant
= Iog[e_—zsj k= ITB _w
C C
=0-25=ce " =>0=25+ce™ (2)
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Given that when t =0, @ =140° and when t = 20, 8 = 80°

Substituting this in (2), we get ¢ =115and 80 = 25+ ce %

551150 2% — gk = 2 _ g2 (115

115 55
= 20k = Iog(&j = k= iIog(&j
55 20 55
{zed%))
. (2) becomes @ = 25+115¢ ‘*° % ©)

When @ =35°C, t="?
~(3)=35=25 +115e{%uog(§]}
=10= 115e_(%'°g[%]t _ 1o _ e‘%m{%}

115

= 115 = e[ﬁlog[g)} = log (ﬁj = [i log (§Dt
10 10 20 “\ 55

=1 =66.2 Minutes

Law of Natural Growth or Decay
Let x(t)be the amount of a substance at time tand let the substance be getting converted

chemically. A law of chemical conversion states that the rate of change of amount X(t) of a
chemically changing substance is proportional to the amount of the substance available at that time,

. dx
e, —aX.

dt

. . dx . .
If as tincreases, X increases, we can take E =kx (k > O) and if X decreases as t increases

we can take %z—kx(k >0).

Examples
1. The number N of bacteria in culture grew at a rate proportional to N. The value of N was

initially 100 and increased to 332 in one hour. What was the value of N after 1 %hours.
Solution: According to law of natural growth, we have

dN _ dN

i i.e., rrie kN D

dN
Separating the variables, we getW =kdt
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N
Integrating,log N = kt + logc = ri ekt = N =ceft  (2)

When t = 0, we have N = 100 so that c = 100
~(2)= N =100ek (3)

When t = 1 hour, N = 332 so that from (3), we have
332 = 100e* )

When t = 1%hours =% hours, N = 100e3k/2

332\3/2

32
> N =100(e¥)** = 100 (m) ,from (4)

~ N =604.5 = 605

2. In a certain chemical reaction the rate of conversion of a substance at time tis proportional to
the quantity of the substance still untransformed at that instant. At the end of one hour 60
grams remain and at the end of four hours 21 grams. How many grams of the first substance
was there initially?

Solution: According to law of natural decay, we have

dy . dy
76 &Y Le. i —ky D

d
Separating the variables, we get7y =—kdt

Integrating, logy = —kt +logc =>% —e M y=cekt (2)

Lety = yoatt = 0, then y = y ekt 3)
When t = 1 hour, y = 60 grams

~(3)> 60=yse*ore™*=60/y,(4)

When t = 4 hours, y = 21 grams, so that from (3), we have

21 = ype~ 4 (5)

Using (4) in (5), we get
4

60
21 = }’0(60/}’0)4 = }’g = 21

604 1/3
Yo = <H> = 85.13 grams

3. In a chemical reaction a given substance is being converted into another at a rate
h
. 1) .
proportional to the amount of substance unconverted. If (gj of the original amount has been

transformed in 4 minutes, how much time will be required to transform one half.
Solution: Let X grams be the amount of the remaining substance after ‘t’ minutes.

dx
.. The differential equation is pm =—kxk>0=x=ce™ (@))

Let the original amount of substance be ‘ M’ grams.
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Givenwhen t=0,x=m, ..(1)=>c=m

andwhen t=4,x=m_m=4_m
5 5
. (1) :>4—m: me74k :>e’4k :ﬂ
5 5
4 1
= —4k =log (Ej =k= Z(Iog 5—log 4) @)

We have to find twhen X = %

OE g =me™ =kt=log2
:>t:£|ogz :t=M=12.42=13minutes
k log5-log 4

4. A bacterial culture, growing exponentially, increases from 200 to 500 grams in the period
from 6 a.m. to 9 a.m. how many grams will be present at noon.
Solution: Let N be the number of bacteria in a culture atany time t > 0.

Then according law of natural growth N = ce" (1)

Where Cis a constant and k , the rate constant.

Given that N =200grams when t =0

(@D =c=200

Thus we have N = 200ce® 2)

But when t =3 hours (from 6 a.m. to 9a.m.), N =500grams

Using these in (2) we get

5

500 =200ce®* =—e¥* = 5= 2.5

=3k =log(2.5) =k :%log(z.s)z 0.3054

Hence the number of bacteria in the culture at any instant of time t > Qis given by

N = 200ce®3%"
To know N when t =6hours (from 6 a.m. to 12 noon)

N = 200ce®3*% =1249.8 grams
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ELECTRICAL CIRCUITS
We will consider circuits made up of
0] voltage source which may be a battery or a generator
(i) Resistance, Inductance and Capacitance
The formation of differential equation for an electric circuit depends upon the following laws.
Let ibe the current and q the charge in the condenser plate at any time t. Then

' . dq (s
(i) I_E or Q—Ildt

(i) Voltage drop across resistance R = Ri = Rd—q

(iii) Voltage drop across inductance L = L% =L—

(iv) Voltage drop across capacitance C = %

Kirchoff’s law:
1. Voltage law: The algebraic sum of the voltage drops in each part of any closed electrical circuit is
equal to the resultant electromotive force (e.m.f.) in that circuit.
2. Current law: At a junction or node, current coming is equal to current going.

Examples
1. If a voltage of 20cos5t is applied to a series circuit consisting of 10 ohm resistor and 2 henry
inductor, determine the current at any time t.

Solution: Let i be the current flowing in the circuit containing resistance R and inductance L in
series, with voltage source E atany time t.
Given E =20cos5t, R =10 ohm, L = 2 henry
By voltage law, we have
Lﬂ+Ri =E :>E+Bi= E
dt d L

= ﬂ+Ei =20cosbt
dt 2

= ﬂ+5i =20cos5t @)
dt
This is a linear differential equation is of the form %+ Pi=Q, where P =5,Q = 20 cos 5t

Now I.F. e/ = ¢l* _gn
.". The general solution of (1) is

ix(1.F)=[Qx(LF.)dt+c
=ixe® = j20c055t xe”dt + ¢

5t

=20 (5c0s5t +5sin 5t )+ ¢

25+ 25
= 2¢>(cos5t +sin 5t)+c

= i =2(cos5t +sin 5t)+ce™ @)
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Att=0,i1=0=0=2+c=>c=-2

Thus (2) becomes, i = 2(cos5t +sin 5t)—2e™
2. A circuit has in series on electromotive force given by E =100sin(40t)V a resistor of 10Q
and an inductor of 0.5H. if the initial current is 0, find the current at time t >0.
Solution: Let i denote the current in amperes at time t

The total electric magnetic force if E =100sin (40t)

Then by the laws of electric circuits, we have

the voltage drop across the resistor = Ri =10i

voltage drop across the inductor = L a 1 a
dt  2dt
Applying Kirchoff’s law, we have
Ldi, 10i - 100sin (40t)
2 dt
= %+ 20i = 200sin (40t) 1)

This is a linear differential equation is of the form %+ Pi=Q, where P =20,Q = 200sin (40t)

Pdt 20| dt
NowI.F.:eJ :ej =

.. The general solution of (1) is
ix(1.F)=[Qx(LF.)dt+c
=ixe™ = jZOOSin (40t)xe*dt +c

=200

%(mgn 40t —40¢0s 40t )+ ¢

20° +40

= 2¢”*(sin 40t —2c0os40t)+c

= i = 2(sin 40t —2cos 40t )+ ce ™™ @)
Att=0,i=0=0=4+c=c=4

Thus (2) becomes, | =2(sin 40t —2cos40t )+ 4e "
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Unit-11
LINEAR DIFFERENTIAL EQUATIONS OF SECOND AND HIGHER ORDER

Linear Differential Equation with constant coefficients:

n n-1
Definition: An equation of the form d’y +a, d’y
dx" dx"*

n-2

+a, y+...+an_1 3y+any:Q(x)

dx"? dx

Where a,,a,,...,a, are real constants and Q(x)is a continuous function of x is called an ordinary
linear equation of order nwith constant coefficients. We now state a theorem without proof.
Theorem: If y, and y, are two solutions of the equation

dn dn—l dn—2 d
dx'Y +a dx”i/ +a, anZ +..+a,, d—i +a,y=Q(x) (1)

theny =cC,Yy, +C,Y,is also its solution, where ¢, and c, are constants.

The general solution of an™ order contains n arbitrary constants. If Vi Yooy Yy are n
independent solutions of (1) then y =c,y, +C,Y, +...+C,, Y, is the most general solution of (1). Let

us denote this with u .

If y =V isany particular solution of (1) then y =u+V is the most general solution of (1).
The part “u’ is called the “Complementary Function” (C.F.) and the part v’ is called the “Particular
Integral” (P.1.) of (1). The complete solution of (1) is given by

y=CF.+P.l.
Operator D :
2 3 n
Let us denote i d =, d e d with D, D?,D?,..., D" so that
dx dx° dx dx"
dy . _d?y _, d°y n,_d"y
Dy=—,D°y= ,D’y=——=,..,D'y =
y dx y dx? y dx® dx"

Now equation (1) can be written in symbolic form as

(D" +a,D"* +a,D"?...+a, ,D+a, Jy = Q(X)

ie, f(D)y=Q(x)

Where f(D)=D" +a,D"* +a,D"?...+a,,D +a, isa polynomial in D . The symbol
D stands for the operation of differentiation.

To find the General solution (Complementary Function) of f(D)y =0
The algebraic equation f(m)y=0, m" +a,m"* +a,m"2...+a, ,m+a, =0 where
a,,a,,...,a, are real constants, is called the auxiliary equation (A.E.) of f (D)y =0. Since the A.E.,

f (m) = 0is a polynomial equation of degree n, it will have n roots, say m;,m,,...,m, .

S.No. | Roots of A.E. C.F. (Complementary Function)
f(m)=0

1 m,,m,,..,m,,ie,al | ce™ +c,e™ +..+ce™
roots are real and
distinct

2 m,m,my,...m (e, | (c, +c,x)e™ +c,e™ +..+ce™
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two roots are real and
equal and remaining are
all real and different)

3 m,,m;, m;,m,,...m, (cl +C, X+ c3x2)e'“1X +c,e™ +..+ce™
(i.e., three roots are real
and equal and
remaining are all real
and different)

4 Tworoots of AE.are | e*(¢, cos # X +C,sin B X)+C,e™ +...+ce™
complex say « + 1/

and o —if and the

remaining roots are real
and different.

5 A pair of conjugate e“*[(c, +¢,x)cos 8 x +(c, +¢,x)sin g x]+ce™ +..+ce™
complex roots & i/
are repeated twice and
the remaining roots are
real and different.

6 A pair of conjugate e”|(c, +c,x+¢;x? )cos B x + (C, +CoX+Cox? )sin B x]

complex roots o +if
are repeated thrice and
the remaining roots are
real and different.

+c,e™ +..+c,e™

Note: If o +./f is areal irrational root of f(m) =0, a- \/E is also a root of the equation. The

part of the complementary function corresponding to these roots can also be put in the form
e“*(c, cosh B x+c,sinh B x)

Examples
d 2
1. Solve g—azyzo,aiO.
X
. . . . . d¥y .,
Solution: Given Differential equation is -a‘y=0 @

dx?
Its operator form is (D2 —a’ )y =0
ie, f(D)y =0, where f(D)=D?-a?

Now the auxiliary equation of (1) is f (m) =0
=>m’-a’=0= m=+a

The roots are real and different

.. The general solution of (1) is y =c,e®™ +c,e ™

where ¢, and c,are arbitrary constants.

2

2. Solve d—Z +1.5ﬂ +0.5y =0.
dx dx
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2

Solution: Given Differential equation is % +1.5% +0.5y=0 (1)
X X

Its operator form is (D2 +1.5D + O.5)y =0
ie, f(D)y =0, where f(D)=D?+15D+0.5
Now the auxiliary equation of (1) is f (m) =0
=m?+15m+05=0
=2m* +3m+1=0
= (m+1)2m+1)=0
1

>m=-1——
2

The roots are real and different
.. The general solution of (1) is

X

y=ce " +cC,e 2 where ¢, and c,are arbitrary constants.

3 2
3. Solve d—Z—Qd—¥+ 23ﬂ—15y =0.
dx dx dx
3

2
Solution: Given Differential equation is d_z/ - 9d—¥ + ZBQ -15y =0 (1)
dx dx dx

Its operator form is (D3 -9D% +23D —15)y =0
ie, f(D)y =0, where f(D)=D*-9D*+23D-15
Now the auxiliary equation of (1) is f (m) =0
=m®-9m?+23m-15=0
= (m-1)m-3Ym-5)=0
=m=135
The roots are real and different

.. The general solution of (1) is
y =c,e* +c,e* +c,e”™ , where ¢, c, and c,are arbitrary constants.

3 2
X _pdx 3o _
d® Cdt? ot

4. Solve

Solution: Given Differential equation is d—si(— 2d—2;( - % = )
dt dt dt
Its operator form is (D3 -2D? - 3D)x =0
ie, f(D)y =0, where f(D)=D*-2D?-3D
Now the auxiliary equation of (1) is f (m) =0
=m’-2m*-3m=0
= mm-3 m+1)=0
=>m=0,3 -1
The roots are real and different

Dr.K.V.Nageswara Reddy, AITS(Autonomous) Page 3



.. The general solution of (1) is
x=c, +c,e* +c,e”" ,where c,,c, and c,are arbitrary constants.

3
5. Solve d—z—de+2y:O.
dx dx

Solution: Given Differential equation is (;—:(2/ —3% +2y=0 (1)

Its operator form is (D3 -3D + 2)y =0

ie, f(D)y=0,where f(D)=D*-3D+2

Now the auxiliary equation of (1) is f (m) =0

=m’-3m+2=0

= (m-1)m? +m-2)=0
= (m-1)m-1[m+2)=0
=>m=11-2

Sine two roots of f(m)= Oare equal

.. The general solution of (1) is

y =(c, +c,x)e* +ce™

, Where ¢, ¢, and c,are arbitrary constants.
6. Solve (D*—2D°—3D?+4D+4)y =0.
Solution: Given Differential equation is (D4 -2D°*-3D* +4D + 4)y =0 (1)
ie, f(D)y =0, where f(D)=D*-2D°-3D?+4D +4
Now the auxiliary equation of (1) is f (m) =0
=m*-2m®-3m?* +4m+4=0
= (m+1)\m® —3m? +4)=0
= (m+1)m+1)m? —4m+4)=0
= (m+1)m+1m-2)m-2)=0
>m=-1-12,2
.. The general solution of (1) is
y =(c, +c,x)e™ +(c, +c,x)e® , where c,, c,,c, and ¢, are arbitrary constants.

2
7. Solve d z+ﬂ+ y=0.
dx= dx
2
Solution: Given Differential equation is % + % +y=0 (D)
X X

Its operator form is (D2 +D +1)y =0
ie, f(D)y=0,where f(D)=D?+D+1
Now the auxiliary equation of (1) is f (m) =0

=m>+m+1=0

Dr.K.V.Nageswara Reddy, AITS(Autonomous) Page 4



o_-lxdl-4 -1xiV3
2 2

8
2

2

The roots are complex.
.. The general solution of (1) is

_X{ V3 x J3x

y=e? C, COST +C, sin T] , where ¢, and c,are arbitrary constants.

8. Solve (D4 +8D? +16)y =0.
Solution: Given Differential equation is (D4 +8D? +16)y =0 1)
ie, f(D)y=0,where f(D)=D*+8D? +16
Now the auxiliary equation of (1) is f (m) =0
=m*+8m?+16=0
= (m2 + 4)2 =0
= (m-2i)*(m+2i)° =0
=>m=2i2i,-2i,-2i
.. The general solution of (1) is
y = (c, +¢,x)cos 2x +(c, +¢,x)sin 2x

wherec,, C,, C, and c, are arbitrary constants.

9. Solve (D® 14D +8)y =0.
Solution: Given Differential equation is (D3 -14D +8)y =0 Q)
ie, f(D)y =0, where f(D)=D®-14D +8
Now the auxiliary equation of (1) is f (m) =0
=m’-14m+8=0
= (m+4)\m? —4m+2)=0

—m=-4andm=2++2
.. The general solution of (1) is

y=ce ™ +e* (c2 cosh+/2 x+c¢, sinh +/2 x)

wherec,, ¢, and c,are arbitrary constants.

10. Solve y" +6y +9y =0, y(0)= 4, y'(0)=14.
Solution: Solution: Given Differential equationis y +6y +9y=0 (1)
Its operator form is (D2 +6D + 9)y =0
ie, f(D)y=0,where f(D)=D?+6D+9
Now the auxiliary equation of (1) is f (m) =0
=m?+6m+9=0
= (m+3)° =0
=m=-3,—-3
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.. The general solution of (1) is
y =(c, +c,x)e ™ @)
where ¢, and c,are arbitrary constants.

Differentiating (2) with respect to “ X, we get

y =(c, +c,x)-3e¥)+ce™ 3)

Given y(O) = —4, then from (2), we have ¢, =4 4)
and y'(0)=14, then from (3), we have 14 = -3¢, +c,

¢, =14+3c, =14-12=2 (5)

Using (4) and (5) in (2), we get the required solution of (1) is
y=(-4+2x =(2x—4)™>

11.Solve y" +y -2y =0,y(0)=4,y'(0)=1.
Solution: Solution: Given Differential equationis y +y —2y =0 (1)
Its operator form is (D2 +D - 2)y =0
ie, f(D)y=0,where f(D)=D?+D-2
Now the auxiliary equation of (1) is f (m) =0
=>m’+m-2=0
=(m-1)m+2)=0
=>m=1-2
.. The general solution of (1) is
y=ce* +c,e ™ )
where ¢, and c,are arbitrary constants.
Differentiating (2) with respect to * X *, we get

y =ce*—2c,e™ A3)
Given y(O) =4, then from (2), we have c, +cC, =4 4)
and y '(0) =1, then from (3), we have ¢, —2c, =1 (5)

solve (4) and (5), we get ¢, =3,C, =1
Using these values in (2), we get the required solution of (1) is
y=3"+e

12. Solve (D3 —1)y =0.
Solution: Given differential equation is
(D*-Dy=0 ie,[fD)]y=0 €Y)
Where f(D) = D3 —1
Now the auxiliary equation of the given D.E. is
f(D)=0 ie, D3-1=0
(DO-1)D*+D+1)=0
ie. D—1=0andD?+D+1=0
—1+V1-4 -1+iV3
2 2

D=1andD =
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Therefore the general solution of (1) is

— x —-x/2 ﬁ ] ﬁ
y=ce +e C, COS 2x+c3sm 2x

13. Roots of the auxiliary equation for (LD2 +RD + %) q = E sinpt.
Solution: Given differential equation is

1
(LD2 + RD + E) q=Esinpt i.e., [f(D)]q=Esinpt (D

1
where f(D) =LD?+ RD + -

Now the auxiliary equation is

—R+ /RZ—E
- c

2L

~ Therootsare D =

Inverse operator:

1
The operator D™ or D is called inverse of the differential operator D .
1
Definition: If Q is any function of xthen DQ or BQ is called the integral of Q.

We write %sz/: Dy =Q

Ex: icosBx = Icos3x dx = sin 3x , Since D(Sin 3Xj = C0S3X
D 3 3
Definition: If f(D)is differential operator defined earlier. Let Q(x) be any function of x,
then we write %Q(x) — w(x)or[f (D)l (x) = Q(x)

4x
EX:————— L e =
D°+3D+2 30

4x 4x 4x 4x
Since (D2 +3D+2)e _lbe” 12" 2 =e™
30 30 30 30

Ex: cos3x = sin 3x is incorrect, Since (D + 2)(sin 3x) = 3cos 3x + 2sin 3x

D+2

Theorem:If Q(x) is any function of x and « is a constant, then the particular value of

LQ(X) is equal to e“XjQ(x)e‘“de.

D-«
: 1 ax o
ie., P.l.of D_aQ(x):e IQ(x)e dx
1 —ax ox
Also P.l.of D+aQ(x)=e jQ(x)e dx
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1

~Qlx)=y=(D-a)y-Q(x)

It is a first order linear differential equation, so its particular solution is given by
ye = J'Q(x)e‘“xdx ory= e“XjQ(x)e‘“de

Reason: Let
D

1
Definition: If D3 are two inverse operators, then we define

-f D-«

1 1 1
56" 55

where &, # are constants and Q is a function of x.
Qx)= ﬁ [e"’x jQ(X)e‘“de] = e/ _[ [e”’x jQ(x)e‘“xdx]a‘ﬂxdx

Examples

ie.,

1
(D-p\D-a)
1. Find ix2.

D

. 1, ) x®
Solution: Now — X* = jx dx = =—
D 3

1
2. Find §cos X.

Solution: Nowiscosx = i(l cos xj = izqcosx dx): iz(sin X)
D D°\D D D

1(1 . 1 (. 1
:_(—sm x] =BQSIH de):B(_ CoS X)

= —Icosxdx =—sin X

3. Find the particular value of X.

D+1

Solution: Now X = e’xjxexdx =g (xeX - ex): x—-1

D+1
4. Find the particular value of mezx
: 1 2 1 1
Solution; Now—M e = ——— | ——
olution OW(D—Z)(D—3)e (D—2){D—3e }

i 1 _ _
Since 3e2X :esxjezxe Sxdx:e”(—e X):—e2X

O S U R
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Note: The above method to find particular integral (P.1.) is a general method and it will be more
useful when Q(x) is of the form tan ax, cot ax, sec ax, Cosec ax.

General solution of f(D)y = Q(x):
We know that if y =y is a particular solution of f (D)y = Q(x) containing no arbitrary

constants and y =y, is the general solution of f(D)y =0theny =y, +Y, is the general solution
of f(D)y=0Q(x).

We have previously discussed the methods to find the general solution of f (D)y =0.

Now we will discuss methods to find P.1. of f(D)y =Q(x).
Particular Integral of f(D)y = Q(x):

Given equation is f (D)y = Q(x) )

Operating (1) by % , We get%[f (D)y] = %Q(x)
1

=>Yy= mQ(X)
Clearly (1) is satisfied, if we take y = %D)Q(x)
Thus particular integral = P.l. = %Q(x)

Note 1: To find the P.1. of f(D)y =Q(x), we find the value of iQ(X).

f(D)

Note 2: P.I. of f(D)y =Q(x) contains no arbitrary constants.

Note 3: P.I. of f(D)y = Q(x) when % is expressed as partial fractions.
Let f(D)=(D-a,D-a,).(D~«,), then
1 1

P.l.= WQ(X)= (D-a, \D-a,).(D-a,

A LA +...+L
D-o, D-gqa, D-«a,

= Aie”‘lx'[Q(x)e’“lxdx + Azeazx.fQ(x)a’“Zde +..+ Aﬂe“"XjQ(x)a’“"xdx

)Q(X)

}Q(x), resolving into partial fractions

Examples
1. Solve (D? ~5D +6)y = xe*.
Solution: Given differential equation is (D2 -5D + 6)y = xe¥
ie., f(D)y=Q(x) (1)
where f(D)=D? -5D +6 and Q(x)= xe*
Now the auxiliary equation of (1) is f (m) =0

=m?>-5m+6=0
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=(m-2)m-3)=0

=>m=2,3
y. =C.F.=ce” +c,e* 2)
1 1
Now y =P.l.=——Q(x)=—————— xe**
Ve f(D)Q() D’ -5D+6

—XeA‘X—‘:L_ 1
(D-2)p-3)"" | D-3 D-2
L oxe -1 ye»

D-3 D-2

_ eijxezlxe—sde_erJ‘Xe4xe—2xdx

= eSXJ' xe*dx — e“j xe**dx

}xe“x, using partial fractions

2x 2X
=e¥ (XeX - ex)— ezx[x% - eTj integration by parts
— e4x 2X - 3
4

.. The general solution (1) is

Y=Y, +Y, =ce” +c,e” +%e4x(2x -3)

2.Solve (D? +a? )y =secax.
Solution: Given differential equation is (D2 + az)y =secax
ie., f(D)y=Q(x) (1)
where (D)= D?+a? and Q(x)=secax
Now the auxiliary equation of (1) is f (m) =0

=m?+a’=0

= m=tia
y, =C.F.=c, cosax +c, sin ax 2
1 1
Yo f(D)Q( ) D? + a2
— : —_secax = _[ ! — — . }Sec ax, using partial fractions
(D-ia)D+ia) 2ai| D—ia D+ia
= i —Secax — ———Secax ®)
2ai| D—ia D+ia
Now —secax = e“"‘xjsec ax e ¥y = g [ LEAX NS AX 4,
D—-ia cos ax
—e™[(1—itan ax)dx = e“"{x +Llog cos ax} 4)
a
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Similarly,

secax = e'a{ . log cos ax} )
D-ia a

Using (4) and (5) in (3), we get

Y, :i_ e'™ x+llog cosax |—e ™ x—llog cos ax
2ai a a

X eiax _ e—iax 1 elax + e—lax
=—|——— |+—| ——=— |log cosax
a 21 a 2

X . 1
=~ sin ax+— cos ax log (cos ax) (6)

.. The general solution (1) is

Y=Y, +Y,=C cosax+cC,sin ax+§sin ax+§cosax Iog(cosax)
3.Solve (D2 +a’ )y =tanax.
Solution: Given differential equation is (D2 +a’ )y = tan ax
ie., f(D)y=0Q(x) ()
where f(D)=D?+a? and Q(x)= tan ax
Now the auxiliary equation of (1) is f( )

=m’+a’=0

= m=tia
y. =C.F.=c, cosax +c, sin ax 2
1 1
Now y, =P.l.=——=QI(X)= tan ax
1 1 1 1 . . .
= - —tanax =— — — — |tan ax, using partial fractions
(D-ia)D+ia) 2ai| D—-ia D+ia
=i_ —tan ax — — tan ax 3
2ai| D—ia D+la
Now ——— tan ax = e‘axjtan ax e dx = ™ [ (cos ax — i sin ax) > X dx

—l1a Ccosax

=e™|| sin ax—|1Cﬂ dx
COS ax

. ( .1-cos axJ
=e sin ax —i —— |dx

COs ax

|a><

jsm axdx—ljsecax dx+|Jcosaxdx

x| cosax i .
=g - S5 1 50 (secax + tan ax)+ -sin ax
a a a

== [(cosax —isin ax)+ i log(sec ax + tan ax)]
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iax

- _e? [e‘iax +ilog(secax + tan ax)]

_ 1w log (sec ax + tan ax) (4)
a a
Replace i by —i in (3), we get
__tanax = SR log (sec ax + tan ax) (5)
D+ia a a

Using (4) and (5) in (3), we get

y. = 1 [— 1 1w log (sec ax + tan ax)} - [— LI log (sec ax + tan ax)}
P 2ai a a a a

1 eiax +e—iax
== log (sec ax + tan ax)
a

1
=~ Cosax log (sec ax + tan ax) (6)
.. The general solution (1) is

. 1
Y= Yo +Yp =,C088X+C, Sin aX —— coSaxX log (sec ax + tan ax)

4. Solve (D? +4D+3)y =e".
Solution: Given differential equation is (D2 +4D + 3)y —e®
ie, f(D)y=0Q(x) 1)
where f(D)=D?+4D+3 and Q(x)=¢"

Now the auxiliary equation of (1) is f (m) =0
=m’+4m+3=0
=(m+1)m+3)=0

=>m=-1-3
y.=C.F.=ce*+c,e™ )

1 _ 1 4x

(x) D2+4D+3Xe
1 ex_l[i_ 1
(D+1(D+3)" 2| D+1 D+3

) B S 3
2| D+1 D+3

Now Diﬂeex —e” [e"erdx=e"e'dt, [Put & =t = e*dx = dt]

Now y, =P.l.=

}eex , using partial fractions

G 4)

and

53 e e feTe™dx=e ¥ [tPe'dt, [Put &* =t = e*dx = di

=e¥e' (t2 —2t+ 2)= e et (e2X —2e" + 2) (5)
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Using (4) and (5) in (3), we get
y, = %eex (e —e™+2e —2e)
— eeX (e—2x _ e—3x) (6)
.. The general solution (1) is
Y=y, +Y,=ce” +ce ¥ +e (e —e¥)

RULES FOR FINDING PARTICULAR INTEGRAL IN SOME SPECIAL CASES

Method 1: P.I. of f(D)y = Q( )When Q( ) ¥ where ‘a’ is constant.
Case I:Let f(D)y=e, then
1

_ e
e™ = Jif f(a)=0
"o
Case II: If f( )=0, then (D—a) is a factor of f(D).If‘a’ is a root repeated k times for
f(a)=0,then f(D)=(D-a) ¢(D) where ¢(a)=0, then we have

1 e — 1 e — 1 e _ 1 ax Xk
fo) )

(D-af¢(D)  #(a)(D-a) ¢<a>e [

1 X<
Hence y, =——e™ = —,iIf f(a)=0and ¢(a
eax_e—ax eax+e—ax

Note: In order to find the P.1. of sinh ax or cosh ax express them as > and

respectively.

Examples
2
1. Solve d—2/+4ﬂ+3y 1%
dx dx

Solution: Given differential equation is

d y dy 2X
+4—+3y=e
e Tax
i, (D? +4D +3)y =

ie, f(D)y=Q(x) )

where f(D)=D? +4D +3 and Q(x)=
Now the auxiliary equation of (1) is f (m) =0
=m?>+4m+3=0
=(m+1[m+3)=0
=>m=-1-3
y.=C.F.=ce*+c,e ™ )

1 1 )
Now Yy, = P.|.=WQ(x)—D2—ez
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e2x

:m, put D =2since (2)#0

e2x
16

.. The general solution of (1) is

@)

2x

—X -3x
Y=Y, +Y,=Ce  +C,e +16

where ¢, and c, are constants.

2. Solve (D2 -3D+ 2)y =e™.

Solution: Given differential equation is
(D?-3D+2)y =€
ie, f(D)y=Q(x)

where f(D)=D?-3D+2 and Q(x)=e™*
Now the auxiliary equation of (1) is f (m)

M)

0

=m*-3m+2=0
=(m-1)m-2)=0
=m=12
y, =C.F.=ce" +c,e” (2)
1 1
Now Yy =P.l.=——Q(x)=———— e
Y =57 3577

f(D)

5x

:#(S)M’ put D =5since f(5)=0
eSx
=5 )

.. The general solution of (1) is
5x

X 2X
y:yc+yp:C1e +Cze +E

where ¢, and ¢, are constants.

3. Solve (D? —4D+13)y =
Solution: Given differential equation is
(D? —4D +13)y =&
ie., f(D)y=Q(x) (1)
where f(D)=D?-4D +13 and Q(x)=e**
Now the auxiliary equation of (1) is f (m) =0
=m’-4m+13=0

o _4%V16-52 _4zi6
2 2
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=m=2+i3
y. = C.F.=e?(c, cos3x +c, sin 3x) )
1 1 o2t

Now yp = PIZ—Q(X):m

f(D)

:m, put D =2since (2)#0

= @)

~. The general solution of (1) is
2X
y=Y,+Y, =e"(c,cos3x+c,sin 3x)+%

where ¢, and ¢, are constants.

4. Solve (D2 +16)y =e ™,
Solution: Given differential equation is
(D2 +16)y e
ie., f(D)y=Q(x) ()
where f(D)=D?+16 and Q(x)=e™
Now the auxiliary equation of (1) is f (m) =0

=m?+16=0

=m==i4
y, =C.F.=c, cos4x+c,sin 4x 2
1 1
Now y_ =P.l.=——Q(x)= e
Yo f(D)Q( T
e—4x
=———— put D=-4since f(-4)%0
(-4) +16 P =4
e—4x
p— 3
3 ®)

~. The general solution of (1) is
—4x
. e
Y=Y, +Y,=C 054X +C,sin 4x+

where ¢, and ¢, are constants.

5. Solve (D? —5D +6)y = 4e” +5.
Solution: Given differential equation is
(D?-5D +6)y = 4e* +5
ie., f(D)y=0Q(x) ()
where f(D)=D?-5D+6 and Q(x)=4e* +5
Now the auxiliary equation of (1) is f (m) =0
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=m=2,3
y, =C.F.=ce” +c,e* 2)
Now Y, = P.l. = —=Q(x)= —— (4" +5)
P f(D) D?-5D+6
PR SO S
D?-5D+6 D?-5D+6
~ e~ . e(O)x
- 1?-5(1)+6 02-5(0)+6
5
=2e"+— 3
5 3)

.. The general solution of (1) is
5
y=Y.+Y, =ce”+c,e’ +2e* te

where ¢, and ¢, are constants.

6. Solve (D® ~5D? +8D 4y = e**.
Solution: Given differential equation is
(D®-5D% +8D—4)y =e*
ie., f(D)y=0Q(x) ()
where f(D)=D®-5D? +8D -4 and Q(x)=e*
Now the auxiliary equation of (1) is f (m) =0

=m*-5m?+8m-4=0

=(m-1)m-2) =
=m=1272
y, =C.F.=ce* +(c, + c,x)e** @)
1 1 ax
N =Pl.=——0Q(X)=—————¢€
ow Yy, f(D)Q( ) (D—l)(D—2)2
Here f(2)=0. Let ¢(D)=D-1, then §(2)=2-1=1%0
2
. yp — 1 1 e2x :X_eZX (3)

(2-1)(D-2y 2!
.. The general solution of (1) is

2
X
y=Y,+Y, =ce +(c, +c;x)je” +Ee2X

where ¢, c,and ¢, are constants.

7. Solve (D2 —3D +2)y =cosh x.
Solution: Given differential equation is
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(D2 —3D+2)y =cosh x
ie., f(D)y=0Q(x) (1)
where f(D)=D?-3D+2 and Q(x)=coshx
Now the auxiliary equation of (1) is f (m) =0
=m?-3m+2=0
=m=12

y, =C.F.=ce* +c,e” )

Now y, = P.I.=fiD)Q(x)=ﬁcoshx

1

2

1 1 x 1 x
“2|0-10-2)° TCi-11-2)° }

1

- 1
==|-xe"+=e” 3

i 5 } ®)
.. The general solution of (1) is

X 2x 1 X l —X
Y=Y . +Y,=Ce +Ce" +_|-Xe +—¢e
2 6

where ¢, and c, are constants.

8. Solve (D+2)D-1fy=e +2sinh x.
Solution: Given differential equation is
(D+2)D-1)y=e? +2sinh x
ie., f(D)y=Q(x) (1)
where f(D)=(D +2)D -1)* and Q(x)=e** + 2sinh x
Now the auxiliary equation of (1) is f (m) =0
=(m+2)m-17 =0

=>m=11,2
y, =C.F.=(c, +c,x)e* +c,e™ 2)
1 1 —-2X H
N =P.l.=——0Q(X)=———— e +2sinh X
Y )09~ o2x0-17 " )
1 -2X 1 H
= e 2sinh x
D+2D-17 (D+2)D-1f

= 1 e + : (e —e)
(D+2)(-2-1) (D+2)D-1)
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_ - —2X 1 X 1
“9"¢ +(1+2)(D—1)2e (-1+2)(-1-1)

—X

2
e Ko L A3)
9 6 4
.. The general solution of (1) is
y=Yy, +Y, =(c, +c,xe* +ce” P +X—2eX e
c p 1 2 3 9 6 4
wherec,, ¢,and c, are constants.
. . . 3 X 2
9. Solve the differential equation (D —1)y = (e +1) .
Solution: Given differential equation is
(D*-1)y =(e* +1f
ie, f(D)y=Q(x) )
where f(D)=D®-1and Q(x)= (ex +1)2
Now the auxiliary equation of (1) is f (m) =0
=m’-1=0
= (m-1)fm’ +m+1)=0
=m=land m= LZI\@
Y. :C.F.:cleXJreX’{c2 cos§x+c3sin ?x} )
Now Yy :P.I.:— = e’ +1
P g
(D—1)(D2 +D+1) 22 41)
= 1 e2X + 2 eX + 1 eOX
(D-1)D*+D+1)" (D-1)D*+D+1)  (D-1\D*+D+1)
= 1 er + 2 eX + 1 eOX
(2-1)22+2+1)"  (D-1f*+1+1)  (0-1)0*+0+1)
—£+ExeX -1 )
7 3

.. The general solution of (1) is

+gxeX -1
3

\/§J e

] J3 .
y=y.+Yy,=ce*+e X’{cz COS— =X+, 8in ==X |+
where c;, C,and c; are constants.

10. Solve the differential equation (D3 —3D%+ 4)y = (1+ e )3 .
Solution: Given differential equation is
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(D*-3D*+4)y=(1+e*)
ie, f(D)y=Q(x) 1)
where f(D)=D°-3D? +4 and Q(x)=(L+e™f
Now the auxiliary equation of (1) is f (m) =0
=m’-3m°+4=0
= (m+1)Ym? —4m+4)=0
=(m+1 m-2)*=0
=>m=-12,2
y. =C.F.=ce™ +(c, +c,x)e™ )

1 1 )3
Now y, =P.l.= f(D)Q(x)— (D3_3D2+4)(1+e )

= (D+1)(D21—4D+4)<1+e_sx +3e7 +3e‘x)
_ 1 . e™ . 3 . 3"
D°-3D?+4 D°-3D?+4 D°-3D’+4 (D+1\D?-4D+4)
1 e™ 3 3

0 —307)+4  (C3)-3(3F +4 (-2f 32 +4 (D+1|(1F-4(1)+4]

1 e 3 xe*

= + +
4 4 -16 3
.. The general solution of (1) is

®)

e—3x 3e—2x Xe—x
+ +
4 -16 3

_ 1
y=y,+y, =ce” +(c, +c,x)e* +Z+
wherec,, c,and c, are constants.

11. Find particular integral of (D? + 1)y = cosh 2x.
Solution: Given differential equation is
(D? + 1)y = cosh 2x

1 1 e 4 7%
Now P.I.=D2—_|_1cosh2x=D2_I_1 >

1 1 1
_ - 2x —2x

2[DZ+1€ Tyt ]
_1[ 1 2x_|_ 1 —ZX] : 1 ax — eax f ( )¢0
=3 22+1e (_2)2+1e , smcef(D)e _f(a)'l f(a
1 X 4 7% 1 h2
=z 3 —5cos X

12. Find the particular integral of (D? + a?)y = cos ax.
Solution: Given differential equation is
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(D? + a?)y = cos ax

[f(D)]y = Q(x) (1)
where f(D) = D? + a?andQ(x) = cos ax

1
Now P.IL.= f(D) ——Q(x) = Wcos ax (2)
Since elax — 1 elax — 1 [ 1 eiax]
D2 + a? (D +ia)(D —ia) (D —ia)lD +ia
1 eax
_ e ax], e = __iff(a) % 0
0~ |2 OO RAS
=ielax 1 edX — x p0X
2ia " D—a
x
= (cos ax + i sin ax)
) L X x
i.e., DIt a2 (cosax + isinax) = —i %cos ax + zsm ax
Equating real and imaginary parts, we get
1 X
mcos ax = Esin ax
1 X
msin ax = —Esin ax

Method 2: P.1I. of f( )y = Q( )When Q( ):sin ax or cosax, where ¢ a’ is constant.
sin ax ( )

1
Case I: ——sin ax = sin ax = @
(D) 7—) o)

cosax . ( )

1
Similarly, cosax cosax = 0 ¢
(D) (DZ ) #-a?)

Case I1: Let ¢(— );t 0.Then D? +a? is a factor of ¢( ) and hence it is a factor of

f(D).

Let f(D):(D2 +a2)g(D2), where g(—az)q& 0. It can be shown that

. X 1 X .
;—SInax=—-——-cosax, ———Cosax=——sinax
D°+a 2a D°+a 2a
Examples

1. Solve (D2 +3D +2)y =sin 3x.
Solution: Given differential equation is
(D? +3D+2)y =sin 3x
ie., f(D)y=0Q(x) (1)
where f(D)=D?+3D+2 and Q(x)=sin 3x
Now the auxiliary equation of (1) is f (m) =0
=m’+3m+2=0
=>m=-1-2

y,=C.F.=ce ™ +c,e™ (2)
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1 1
Now y, =P.l.=—Q(x)=— —~sin3
WY f(D)Q(X) D?+3D12

1 Ginax [Put D?=-3 :—9]
-9+3D+2
Y 3x=3Dz—+73in 3X
3D-7 9D -49
=3D—+7$in 3x [Put D? =-3? :—9]

9(—9)-49

:—i Sisin 3x+7sin 3x
130| dx

:—i[9c053x+73in 3x] 3)
130
.. The general solution of (1) is
y=Y.+y,=ce " +ce™ —$[90033x+73in 3x]

where ¢, and ¢, are constants.

2. Solve (D? —3D+2)y =cos3x.
Solution: Given differential equation is
(D? —3D+2)y =cos3x
ie., f(D)y=Q(x) (1)
where f(D)=D?-3D+2 and Q(x)=cos3x
Now the auxiliary equation of (1) is f (m) =0

=m?’-3m+2=0

=m=12
y, =C.F.=ce* +c,e” )
Now y_ =P.I —LQ(X)—;COS3X
7 (D) D?>-3D+2

=—————C0s3X [Put D?=-3 :—9]
-9-3D+2

= COS3X = COS3X = —32—_7c053x
-3D-7 3D+7 9D -49

___3D=7 cosay [Put D? = 3% = 9]

9(—9)-49

= i 3icos3x —7C0S3X
130 dx

:i[—gsin 3x—7c0s3x] 3)
130

.. The general solution of (1) is
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y=Y.ty, = ce*+c,e’ —i[Qsin 3X+ 7cos3x]
130
where ¢, and ¢, are constants.

3. Solve (D2 —4)y =2c0s* X.
Solution: Given differential equation is
(D2 —4)y =2c0s” X
ie., f(D)y=0Q(x) ()
where f(D)=D? -4 and Q(x)=2cos’ x
Now the auxiliary equation of (1) is f (m) =0

=m’-4=0
=>m=-2,2
y, =C.F.=ce ™ +c,e” )
Now y, =P.l =LQ(X)=LZCOSZX= 1 (1+cos2x)
P (D) D?-4 D?-4
e™ 1
= + COS2X 3
D?-4 D’-4 ®)
er er
Since = , |PuD=0
D2_4 02_4 [ ]
B eOX __1
0-4 4
1 1 2 )
and ———C0s2X = COS 2X [PutD =-2 :—4]
D% -4 —4-4
=—10052x
8
1 1
S (8) >y, =——-—=cos2x 4
@) =V¥Yo=-7"3 4

.. The general solution of (1) is
y=Y.+Y, =ce > +c,e” —%—%cost

where ¢, and ¢, are constants.

4. Solve (D? +4)y =e* +sin 2x+C0s2X.
Solution: Given differential equation is
(D +4)y =e” +sin 2x+cos2x
ie., f(D)y=Q(x) (1)
where f(D)=D? +4 and Q(x)=e* +sin 2x +cos 2x
Now the auxiliary equation of (1) is f (m) =0
=>m’+4=0
=>m=di2
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y. =C.F.=¢, cos2x+C, sin 2x )

Now y, = P.I.=%Q(x)= D21+4(ex +sin 2x+cost)

X

e 1 )
+ Sin 2X +

= COS2X 3
D’+4 D?+4 D?+4 @
Since — 5 , [Put D=1]
D?+4 1 +4
_ e e
1+4 5
2 ——LC082X=—§COSZX

Dirg X 2(2)

Case of failure f(— az): 0, using —; 1 5Sin ax = ~ X cosax
D" +a 2a

and%cost =isin 2X =§sin 2X
D°+4

2(2)

Case of failure f (— a’ ): 0, using %cos ax = —sin ax
D +a 2a

X

B =y, :%—gc052x+§sin 2X 4)

.. The general solution of (1) is

y=Y.+Y,=C C0S2X+C,sin 2x+%—§cost+%sin 2X

where ¢, and c, are constants.

5. Solve (D2 +1)y =sin xsin 2x.
Solution: Given differential equation is
(D2 +1)y =sin xsin 2x
ie, f(D)y=0Q(x) 1)
where f(D)=D?+1 and Q(x)=sin xsin 2x
Now the auxiliary equation of (1) is f (m) =0

=m?+1=0
=m=ti
y, =C.F.=c, cosx+c,sin x 2
1
Now y, =P.l.=——=Q ———=sin xsin 2x

[cos X —C0S 3x]

| =

= Z{Dzl 1cosx— Dzl 1cos?;x} 3)
+ +
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. 1 X . X .
since ———COS X = sin x=Esmx

D? +1 2(1)
{Case of failure f (— a’ ): 0, using %cos ax = ——sin ax}
D +a 2a
and cos3x = 953%. [Put D? =32 = 9|
+1 -9+1
_ COos3X
8
~ (3 = = Xsin x+ X cos3x 4)
' o=y 16

. The general solution of (1) is
. X . X
Y=Y, +Y, =C COSX+C,SiN X+—sin X+—C0oS3X
4 16
where ¢, and ¢, are constants.

6. Solve (D? —4D)y = €* + sin 3x cos 2x.
Solution: Given differential equation is
(D? — 4D)y = e* + sin 3x cos 2x @))
ie, [f(D)]y=0Qk)
where f(D) = D? — 4D, and Q(x) = e* + sin 3x cos 2x
Now the auxiliary equation is f(m) = 0,i.e.,, m? — 4m=0
i.e, m=0, 4
The roots are real and different.
C.F.=c1+cze4x 2

Now P.1. V(D)Q(’C) f(D)
1 1

= me +Em25‘ln 3x cos 2x

ex+1 1
3 2D%2—-4D
e 1 1 1 1

:—?+Em5m5x+2m5inx (3)
25 —4D

1 1
Since ———— sin 5x = ————— sin 5x = — in 5
Dz ap T T s —ap Y T T 25 1 ap)(25 —4D)
_ 254D 4D-25
T 6251607 YT 1025 Y

! (20 5 25 5x)
= 1075 cos 5x sin 5x

1(4 5x—5 5x) 4
=505 (4 cos 5x sin 5x 4)
R SV o 1—4D ,
and 5— > sinx = ——sinx = (1+4D)(1_4D)smx
_1-4D 4D -1
T T1-1602 Y T Ty

[e* + sin 3x cos 2x]

(sin 5x + sin x)

1
=T (4 cos x — sinx) (5)

Substituting (4) and (5) in (3), we get
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e* 1 1

P.I.= —?+m(4 cos 5x — 5 sin 5x) +ﬁ(4 cosx — sinx) (6)
Therefore the general solution of (1) is
y =C.F.+P.I.
x 1
— 4x _ ~ - _ . o _ .
y=c +ce 3+410(46055x 55m5x)+34(4cosx sin x)

Method 3: P.1. of f(D)y=Q(x)when Q(x)= x*where k is a positive integer:

Let f(D)y = x", operating by L ,we get y = L

f(D) f(D)

1 1 .
To evaluate P.I., reduce TD) to the form ———— Dby taking out the lowest degree term

1+¢(D)

from (D). Now write % as [L+#(D)]" and expand it in ascending powers of D using

Binomial theorem upto the term containing D* . Then operate x* with the terms of the expansion of

L+4(D)]".

If f(D) is resolvable into factors then split up % into partial fractions and proceed.

We frequently use the following rules:

] 1 1 2 3

i) —=1-D) =1+D+D“+D" +...
() ~5=0-D)

. 1 -1 2 3

ii) —=(1+D) =1-D+D“-D° +...
(i) —5=0+D)

1 2 2 3
i) ———=(1-D) " =1+2D+3D° +4D" +...
i) & =57 (1-D)

1

(iv) a+DY::@+D)2:1—2D+3D2—4D3+m

EL__1ID_)?::(1--D)3=1+3D+(—3D2+10D3+...
(W)——3——=41+Dy3=1—3D+6D2—1OD3+m

(1+ D)’
1. Solve (D2 +D +1)y =x°.
Solution: Given differential equation is
(D2 + D+l)y =x*
ie, f(D)y=Q(x) )
where f(D)=D?+D+1 and Q(x)=x*
Now the auxiliary equation of (1) is f (m) =0

v)

Examples
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=m’+m+1=0

~1+i3
m=
2
Y, :C.F.=e‘”2{clcos§x+czsin ?x} @)
1 1
No =Pl.=—— =— X
W Yy f(D)Q( ) D?+D+1

:[1+(D+ Dz)]flx3

_h-(0+D?)+(D+D?} - (D+D?J +..}¢

= (1— D+ D3)x3, since D4(x3): D5(x3): ..... =0

:x3—D(x3)+ D3(x3):x3—3x2 +6 (3)
.. The general solution of (1) is

V3 V3

y=Y.+Y, =ex’2[clcos7x+c2 sin 7x}x3 -3x°+6
where ¢, and ¢, are constants.

2. Solve (D3 +2D% + D)y =x°.
Solution: Given differential equation is
(D*+2D?+D)y=x°
ie., f(D)y=Q(x) ()
where f(D)=D*+2D?+D and Q(x)=x*
Now the auxiliary equation of (1) is f (m) =0
=>m’+2m*+m=0
=m(m+1)° =0

=m=0,-1-1
y.=C.F.=c, +(c, +c,x)e 2)
Now y, = P.I.:%Q(x): =5 +21[)2 = X3 = D(D1+1)2 x?
4
:ﬁjxsdxz (D-1+1)2 XT
=%[1+ D] ?x*

=%[1—2D+3D2 —4D%+5D* .. x*

=1 (x* —8x® +36x —96x +120) @3)
4

.. The general solution of (1) is
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Y=Y, +Y, = +(c, +c;x)e” +%(x4 —8x° +36x% —96x+120)

where ¢, and ¢, are constants.

3. Solve DZ(D2 + 4)y = 320(x3 + 2x2).
Solution: Given differential equation is
D?(D? +4)y =320(x° + 2x?)
ie., f(D)y=0Q(x) ()
where f(D)=D?(D? +4) and Q(x)=320(x* +2x?)
Now the auxiliary equation of (1) is f (m) =0
— m?(m? +4)=0
=m=0,0,%i2

y. =C.F.=c, +c,x+¢C,Cc082X +C, Sin 2X 2

1 1
Now yp =P.l. =mQ(X)=m320(X3 +2X2)

-1
S BT, (S ) B [1+D—2j 320(x% +2x?)
4D’ 4

2

= 1- =2 320(x% + 2¢)
aD?|" 4 16 64

=@{i—l+D—Z—D—4+..1(x3 +2x2)

4 |D* 4 16 64
5 3
=80HX—+X—J—1(X3+2x2)+i(6x+4)}
20 6 4 16

=4x° +4?0x“—20x3—40x2 +30x+20 (3)
.. The general solution of (1) is
Y=Y, +Y, =C; +C,X+C; COS2X+C, Sin 2X +4X° +4—30x4 —20x> —40x? +30x + 20

wherec,, C,, C; and ¢, are constants.

4. Solve (D3 +2D% + D)y =e® +x® + X +sin 2X.
Solution: Given differential equation is
(D®+2D? + D)y =€ + x? + X +sin 2x
ie, f(D)y=Q(x) 1)
where f(D)=D®+2D?+D and Q(x)=e"* +x? + X +sin 2x
Now the auxiliary equation of (1) is f (m) =0

= m*+2m?+m=0 =>m(m? +2m+1)=0
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=m(m+1)=0=>m=0,-1,-1

Yo ~CF.=6, (e, +opxle” @
Now y, = P"':%D)Q(ka(e“ +X? + X +sin 2X)
e” X2 +X sin 2x
= + N
D*+2D*+D D*+2D*+D D?*+2D*+D
R R i S sin 2x
S 2% 2(22 )+2 Dll+(D2 +2D)J D(— 4)+ 2(_ 4)_|_ D
(or 20 1) 2%
2Xx .
== +£b—(D2 +2D)+(D? +2D) kxz +X)_(3D—28ﬂ
18 9D’ 64
_€ +1h-(o? +2D)+4D?|x? +x)- (3D -8)sin 2x
“18 ' D 9(-4)-64
2Xx .
=L +£[1—2D+3D2Kx2+x)+w
18 100
2X .
e18 D [(X +x)-2(2x+1)+3(2)]+ [3(200821)2(;89” 2x]
2X .
_¢€ 3x+4]+ 6c0s2x —8sin 2x
- 18 100
2X 3 2 ;
_¢ +x__3i+4x+3c052x—4sm 2X @)
18 3 2 100
.. The general solution of (1) is
y=y,+y, =¢ +(c, +c,x)e™ +e2x +X_3_ﬁ+4x+3c032x—4sin 2X
T 18 3 2 100

wherec,, ¢, and c,are constants.

Method 4:P.1. of f(D)y=Q(x)when Q(x)=e**V where ais constant and V is a function of X :

We will use this method to find P.1. whenV is sin ax or cosax or x* or a polynomial of

degree k.

In this case, P.I.=%(eaXV)=eaXﬁV

Working Rule: To find P.l. for e®V , take out e*to the left of f(D) and replace every D with

with V alone by the previous
+a)

D+a sothat f(D) becomes (D +a) and now operate f(D#

methods.

Examples

1. Solve (D3 +2D? —3D)y = xe%*
Solution: Given differential equation is
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(D3 + 2D? — 3D)y = xe3* (1)
i.e., [f(D)]y = xe3*
wheref (D) = D3 + 2D? — 3D
Now the auxiliary equation is f(m) = 0,
i.e, m3+2m?—3m=0
i.e. mm—-1)(m+3)=0
i.e., m=20,1,-3
The roots are real and different.

C.F.=c; +ce* +cze™ 2)
Now P.I.= ! [xe3¥] = ! [xe3*]
ST0)! D3+ 2D2 — 3D
1
= e3¥ X,
(D+3)3+2(D+3)2%2-3(D+3)
1
since eV (x)] = e* ———V(x)
oy ¢ II= e w5y
1

— 3%

D3 +11D% + 36D + 36
e3x . D3 +11D? + 36D]
X

BT 36

e3x 36 e3x
= — _— = —— 1
36[x+36 36 X1

Therefore the general solution of (1) is
3x

e
y=C.F.4+P.1.= ¢, + c,e* + cze™3* +¥(x+ 1)

2. Solve (D? 7D +6)y =& (L+X).
Solution: Given differential equation is
(D2 -7D+6)y =e¥(1+x)
ie., f(D)y=Q(x) (1)
where f(D)=D?-7D+6 and Q(x)=e*(1+x)
Now the auxiliary equation of (1) is f (m) =0
=m’-7m+6=0
=(m-1)m-6)=0

=m=16
y, =C.F.=ce* +c,e* )
Now Yy, = P.I.=%Q(x)=mezx(l+ X)
=e” CF); —;(D Y (1+ x), since %(e%): e ﬁv
— ¥ ﬁ(ﬂ X)= e_z; m(H X)
4
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e?( D2-3D)
== |1- 7 ](1+x)

2X 2
S _3D+...J(1+x)

2x [ 2X
-= (1+x)_ﬂ:_616 (ax+1) )

.. The general solution of (1) is

(4x+1)

6x
y=Yy.+Yy,=Ce +c,e” —
c p 1 2 16
where ¢, and ¢, are constants.

3. Solve (D? —3D+2)y = xe¥* +sin 2x.
Solution: Given differential equation is
(D? —3D+2)y = xe¥* +sin 2x
ie, f(D)y=Q(x) 1)
where f(D)=D?-3D+2 and Q(x)=xe* +sin 2x
Now the auxiliary equation of (1) is f (m) =0
=m’-3m+2=0
=(m-1)m-2)=0

=>m=12
y, =C.F.=ce* +c,e”™ (2)
1 1 X
Now yp = P.I.=T[))Q(X)=m(xe3 +Sin 2X)
:;xe3X +——— sin2x
D?-3D+2 D?-3D+2
=¥ 1 X+ sin 2x
(D+3) -3(D+3)+2 —-4-3D+2
. 1 1 1 . sinax .
- axV — a¥ \Vj d — ,If fl— 2 0
since f(D)(e ) e f(D+a) an f(Dz)smax T(:) ( a );t

3x 1
X_
D?+3D+2 3D+2
e*( D?+3D)  3D-2
1+ x——— %
2 9D2 4

sin 2x

sin 2x

3x 2 _
¢ (1——D +3D+.] 3D-2 sin 2x

2 “oa)-a
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e[ 3] 3D-2..
=— | X—— |+ sin 2X
2 40

x—> +i(60052x—23in 2x)
2) 40

3 1 )
=—| X—— |+—(3c0s2Xx —sin 2x 3
2) 20( ) )

.. The general solution of (1) is
3x

e 3 1 )
=y +y =ce*+ce*+—| x—= |+—(3cos2x —sin 2x
y yc yp 1 2 2 ( 2) 20( )
where ¢, and c, are constants.

4. Solve (D? +1)y =e™ +x* +¢”sin X.
Solution: Given differential equation is
(D2 +1)y =™ +x* +e”sin x
ie., f(D)y=0Q(x) ()
where f(D)=D? +1 and Q(x)=e* + x* +€*sin x
Now the auxiliary equation of (1) is f (m) =0
=m’+1=0
=>m’=-1=i°

= m=xdi
y, =C.F.=c, cosx+c,sin x 2
Now yp:p,|_—_ Q(x ) (e +X° +€"sin x)

D)
S

== X+ e*sin x
D+1 D°+1 D°+1

e oYl 3y 1 .
= 1+D°) x°+e"——sin X
—1)2+1+( +D)x’+ (D+1)° +1
( 24 D% - )x +e Z;Sinx
D°+2D+2
+(x3 6x)+ex— sin x
-1+2D+2
+(x3 6x)+eX sin x
2D+1
+(x3 6x)+ e~ 4D2_—1$m X
+(x3 6x)+e (_DT)__llsin X
+(x3 6x)—— 2C0S X —Sin X) A)
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.. The general solution of (1) is
=X X

+(x* - 6x)—%(2 COS X —sin X)

: e
y=Y,+Y,=C COSX+C,Sin X+
where ¢, and c, are constants.

Method 5: P.I. of f(D)y=Q(x) when Q(x)=x"V, mbeing a positive integer and Vis any
function of X :

Here V is either sin ax or cosax only. It should not be of the form x" or e®.

If Vis x"then x™ V=x™" and P.l. can be evaluated by the short method discussed in
Method 3.

If Vis ™ then x™ V=x"e® and P.l. can be evaluated by the short method discussed in

Method 4.
But V is of the form sin ax or cosax, P.l. can be evaluated as follows.

Working Rule for finding P.1. of f(D)y = x" sin ax or x™ cosax :

1
f(D)
=|.P.of ix”‘e""‘X

f(D)

(i) P.l.= _L1 " cosax = Real Part (R.P.) of _L ymgie
t(D) f(D)
Now P.I. can be evaluated by the short method discussed in Method 4.
Method6: Alternative method for finding P.I. of f(D)y=Q(x) when Q(x)=x"V (when m=1)

where V is any function of X :

x" sin ax = Imaginary Part (I.P.) of Lx”“(cosax+i sin ax)

f(D)

(i) P.I.=

Let f (D)y = XV where V is a function of X . Operating with % ,Weget y= %(XV) :

P.|.=L(xv)

f(D)
Consider D(xV)=x DV +V; D?(xV)=x D?V +2DV
Similarly D"(xV)=x D"V +nD"*V
~(D"+a,D" +2,D"? +..+a,,D+a, [xV)=x(D" +8,D"* +a,D" +...+a, ,D+a, V
+(nD"™ +a,(n-1)D"? +...+a, ,

=[f(D)(xv)=x[f(DV+[f D)V ()
Let [f(D)|V=V, :>V=%D)vl @)

f(D f(D)

1
Operating with ——on both sides, we get

f(D)

~[f (D)](xi)vlj =xV,+f '(D)ivl, from (1) and (2)
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xmv1 =W(XV1)+TD)f (D)TD)Vl

= o™ 0% 1) e

:f%w:[x—%f M%w
oy )ty

1.Solve (D*—1)y = xe*sinx.
Solution: Given differential equation is
(D? — 1)y = xe*sinx €))
i.e. [f(D)]y = xe*sinx
wheref (D) = D? — 1
Now the auxiliary equation is f(m) = 0,i.e.,, m? — 1=0

i.e., m=-—1, 1
The roots are real and different.
C.F.=cie™ +c,e* (2)
1 1
Now P'I'zf(D) [xe*sin x] = D7 1[xexsinx]

= ex;[xsin x] since ! [V (x)] =ea";V(x)

Db+1)2-1 ’ f(D) f(D+a)

1
=exm[x5inx]
2D + 27 1 1 /()] 1
=e*|x — inx, ince —— [xV =|lx-—2—v
e |x D7 12D, D2+2Dsmx smcef(D) [xV (x)] [x D) | 7D (x)

o 2D + 27 1 ) ) 1 ) _ sinax
=e _x_D2+2D_ (_1+2D)smx, smcemsmax—m

[ 2D+272D+1
— ¢ [* " Dpzy2plapz —1M*
e 2D+2](2 + sin®)
=~ |¥ ~pzggp| @cosx+sinx
_ ex'(2 + sinx) 2D+2(2 +si )]
= - |¥@cosx+sinx) - ——— (2 cosx + sinx

e*| 2D +2)(2D + 1
=-= x(2 cosx+sinx)—( 4132(—1 )(2 cosx+sinx)]

eX [ 1
==z x(2 cos x + sinx) +§(4D2 + 6D +2)(2 cos x +sinx)]

e* [ N .
==z x(2 cos x + sinx) +§(2 cos x — 14 smx)]

Therefore the general solution of (1) is

e* 1
y=C.F.+P.1.= cie ™ + c,e* —?[x(Z cos x + sinx) +§(2 cos x — 14 sinx)]
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2.Solve (D? —4D + 4)y = 8x*e**sin 2x.
Solution: Given differential equation is
(D? — 4D + 4)y = 8x%e?*sin 2x @))
e, [fD]y=0Qx
wheref (D) = D? — 1 and Q(x) = 8x2%e?*sin 2x
Now the auxiliary equation is f(m) = 0 = m? — 4m + 4=0
>m-2)(m-2)=0=> m=2, 2
The roots are real and equal.
C.F.=(c; + cx)e?* 2)
Here P.1. can be found out using the above case twice which is laborious. We will find P.1. in another
way.

Now P.I.= Q(x) _m[sz ZxSlTLZX]

f (D)
1

— 2Xx 2 i 2
Be (D+2)2—4(D+2)+4[x sin2x],

[eaxv(x)] = ea¥

since V(x)

1 1
f(D) f(D+a)
1 1 .
= 8e** — 2 > [x?sin 2x] = Imaginary Part of 8e** o2 [x2ei?%]

1
=[.P.of8 2x i2x 2
(e i2)2x

= .P.of8e**e?¥ —
4i2 (1 + D)

D
= I.P.of(—2e?*)e’?* (1 + )

D 2
= I.P. of(—2e%¥)e'?* (1 - —2 + ,,,)xz

2_
3
= L.P.of(—2e%¥)e'?* | x2 ——+—,)
2i2
) 3
= L.P.of(—2e?*)e'?* (xz +i2x — E)

3
= L.P.of(—2e?*)(cos 2x + i sin 2x) [(xz - E) + i2x]

= (—2e%) [Zx cos 2x + (xz — 3) sin Zx] (3)
Therefore the general solution of (1) is

3
y=C.F.4+P.1.= (c; + cyx)e?* — 2e?* [Zx cos 2x + (xz - E) sin Zx]

3.Solve (D% +9)y = x sin 2x.
Solution: Given differential equation is
(D? +9)y = x sin 2x 1)
i.e., [f(D)]y = x sin 2x
wheref (D) = D? +9
Now the auxiliary equation is f(m) = 0,i.e.,, m? + 9=0
i.e., m = +i3
The roots are real and different.
C.F.=cycos 3x + c,5in 3x 2
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1
Now P.I.= m[x sin 2x] = D2—+9[x sin 2x]
2D 1 1 /)] 1
[x DT 1ol DT+ 9sm x, smcef(D) [xV (x)] [x f(D)]f(D) V(x)
2D 1 ] ] 1 ) sin ax
= [X — D2 19 (_4 n 9) sin 2x , smcemsm ax = fm
_xsin2x 2D -
T s 502 +9) 7
X sin 2x 2D ) ] 1 ) sin ax
= 5 — 5(_4 n 9) sin 2x, smcemsm ax = m
_xsin2x 2D )
= c 25 sin 2x
_xsin 2x 4 ) 3
= c o% cos 2x 3)

Therefore the general solution of (1) is

xsin2x 4

— —cos 2
5 25COS X

y=C.F.+P.1.= cicos 3x + c,sin 3x +

Method of Variation of Parameters:
Wronskian:Wronskian of two functions u(x) and v(x) is denoted by W(u,v) and is defined by

u v
W (u,v)=|du dv|or :u%—vg—u
dx dx] YV X X
. d’y _dy -
Working Rule:To solve d_2+ Pd—+ Qy = R by the method of variation of parameters, follow
X X

these steps

1. Reduce the given equation to the standard form , if necessary.
2

d y+de

2. Find the solution of —-+ P —=+Qy =0and let the solution be
dx dx

C.F.=y, =cu(x)+c,v(x)
3. Take P.l.=y, = Au(x)+Bv(x), where Aand B are functions of X.

4, FindW(u,v)zuﬂ—vd—u.
dx  dx

5. Find Aand B using

A= —_[de , B :jidx
W(u,v) W(u,v)
6. Write the general solution of the given equation as
y=Y.+Y,

Examples
1. Solve (D? + a?)y = tan ax by method of variation of parameters.
Solution: Given differential equation is
(D? + a?)y = tan ax (1)
i.e., [f(D)]ly =R

Dr.K.V.Nageswara Reddy, AITS(Autonomous) Page 35



wheref (D) = D? + 3D + 2 and R = tan ax
Now the auxiliary equation is f(m) = 0,i.e., m? + a?=0

i.e., m = +ia
The roots are complex.
C.F.=cycos ax + csin ax 2
Consider P.I.= A cos ax + B sin ax 3)
Here u = cos ax,v = sin ax
dv du ) )
Then W(u,v) = ua — va = cos ax (a cos ax) — sinax (-asinax) = a
Where A and B are given by
vR sin ax tan ax 1 1 — cos?ax
A=— dx = — —dx=—] —
W (u,v) a a cos ax
1 1 [log(sec ax + tan ax) sinax
=——| (secax —cosax)dx =—— —
a a a a
= — [sin ax — log(sec ax + tan ax)]
a
uR cos ax tan ax 1 . 1
B = ———dx = ———dx=—-| sinaxdx = ——cos ax
W(u,v) a a a?

1 1
~(3)> P.I= Py [sin ax — log(sec ax + tan ax)] cos ax — ?cos ax sin ax

= —— cos ax .log(sec ax + tan ax)
a

Hence the general solution of (1) is
y =C.F.+P.I.

Y = €1€0S ax + c,Sin ax — — cosax .log(sec ax + tan ax)
a

2.Solve (D? — 2D)y = e*sin x by the method of variation of parameters.
Solution: Given differential equation is
(D? — 2D)y = e*sinx (1)
ie, [f(D)]y=R

wheref (D) = D? — 2D and R = e*sin x
Now the auxiliary equation is f(m) = 0,i.e., m? —2m =0

i.e., mim—2)=0,i.e, m=0,2
The roots are real and different.

C.F.=c; + cye?* )
By the method of variation of parameters
Consider P.I.=A + Be?* (3)
Hereu =1,v = e?*
dv du
Then W,v)=u——-v— =1 (2e%) —e?*(0) = 2e?*
dx dx
Where A and B are given by
VR e?*e*sin x 1 .
A=— W(u,v)dxz_f Zerx=_§f e*sinx dx

=-2 [e*sin x — e*cos x]
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uR 1l.e*sinx 1 .
B:f mdx':f dezzf e *sinxdx

1
=1 [—e™*sinx — e ™ cos x]
1 . 1 .
~(3)> P.I= ~2 [e*sin x — e*cos x] + 2 [—e™*sinx — e *cos x].e?*
_ e'sinx
B 2
Hence the general solution of (1) is
y=C.F.+P.1I.
.y  €7SinX
y=0C + ce - 2

3. Solve the equation using method of variation of parameters: (D% + 3D + 2)y = e* + x2.
Solution: Given differential equation is
(D? + 3D + 2)y = e* + x? (1)
i.e., [f(D)]y = e* + x?
wheref (D) = D? + 3D + 2
Now the auxiliary equation is f(m) = 0,i.e., m? + 3m + 2=0

i.e., m=-1,-2
The roots are real and different.
C.F.=cie™ +c,e ¥ 2
Consider P.l.=Ae*+Be ?* (3)
Hereu = e *,v = e 2%
dv du L o B
Then W,v) =u——v—=—-2e%e ?* +e e ¥ = — 3
dx dx

Where A and B are given by
vR e 2*(e* + x?) o x2
A——f de——f de—f (e +ex)dx

2x

e
=T+(x2—2x+2)ex

uR 3 e *(e* + x?)
wWv) f

B e3"_|_x2 x+1 ox
-3 2 271%)°

B = dx = —f (e3* + e?*x%) dx

—e—3x

3)= P.I er+(2 2x +2)e*|e™* e3x+ - L o)z |em

o = .= 1— — — | — _ —

3 > x x e*|e 3 > otz)e|e
e* e* [(x* x 1
=—+@-2x+2)—-——|=——-=+-

7 T2 =3 (2 2 4)
e* 1
=?+Z(2x2—6x+7)
Hence the general solution of (1) is
y=C.F.+P.I.

X

e 1
y=ce™* +ce” +? + Z(sz —6x+7)
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4.Solve (D% + 1)y = cosec x by method of variation of parameters.
Solution: Given differential equation is
(D? + 1)y = cosec x (1)
ie, [fD)]y=R
wheref (D) = D? + 1 and R = cosec x
Now the auxiliary equation is f(m) = 0, i.e,, m? + 1=0

i.e., m= =i
The roots are complex.
C.F.=cycosx + cysinx 2
Consider P.l.=Acosx+Bsinx 3)
Here u = cos x,v = sinx
Then W(u,v) = u@ —v—=-cosx (cosx) —sinx (-sinx) =1
dx dx
Where A and B are given by
sin x cosec x x
W(uv)dx__f fdx——
cos x cosec x ]
f W(u 2 ——dx = f fdx = f cot x dx = log(sin x)
%~ (3) > P.I.= —x cos x + sin x.log(sin x) 3)
Hence the general solution of (1) is
y=C.F.+P.I.

Y = ¢;1¢08 x + ¢,5in x — x cos x + sin x.log(sin x)

ELECTRICAL CIRCUIT PROBLEMS
L -C - R Circuit: Cinsider the discharge of a condenser C through an induction L and the

2
resistance R . Since the voltage drop across L, C and R respectively Lccleq ﬂand R 3?
c

2
. By Kirchoff’s law, L((jqu+ R— dq a_ 0

dt C
1. A condenser of capacity C discharged through an inductance L and resistance R in series

2
and the charge gat time tsatisfies the equation LZT3+ RZ—?+ﬂ:O . Given that L=0.25
c

henries, R=2500hms, C =2x10"°farads, and that when t =0, charge g=0.002 coulombs

and the current 2—? =0, obtain the value of qintermsof t.

Solution: Given differential equation is

2 2
d_g d_q q O or d_q+5d_q+ q _0
dt d c dt> Ldt Lc
Substituting the given values in (1), we get
d?q 250 dq q
>+ —+ — =
dt® 0.25dt 0.25x2x10

2

or 894100099 4 210° g =0
dt dt
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or (D? +1000D +2x10°)q =0 )
Its auxiliary equation is m* +1000m+2x10° =0
_ —1000++/10° —8x10°

2
Thus the solution of (1) is

q=e""(c, cos1323t +c, sin 1323t) )
when t =0, q=0.002 ¢, =0.002

= -500+i 5007 =—500+i1323

(:i? 500 67" (¢, cs1323t + ¢, sin 1323t)
+e7°%" x1323(—c, sin 1323t + ¢, cos1323t)  (3)
when t =0, 2—?:0302 =0.0008
Hence the required solution is q = e *°* (0.002 cos1323t +0.0008 sin 1323t)

2

2. The charge q(t) on the capacitor is given by the D.E.,10 C(Ijth +120;|_(;I +1000g=17sin 2t . at

time zero the current is zero and the charge on the capacitor is

coulomb. Find the charge

on the capacitor for t >0.

dg

Solution: Given differential equation is 10 th +120— ot +1000g=17sin 2t

99,1599 1000 sin
dt dt 10
) 17 .
= +12D+100)q:55|n 2t o)

Its auxiliary equation is m? +12m+100=0
~12+ /144400
B 2
-.C.F.=e"*(c, cos8t +c, sin 8t) )
1 17

Now P.I.=— —sin 2t
D°+12D+10010

:E[ L sin Zt]Put D?=-4

=—6+i8

10 -4+12D +100

w1 ]
=—|——=5Sin2t
10{12(D+8)

Db g

sin 2t |, Put D?=—4
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_ L {%(ZCOSZI—BSM 2t)}

T 120( -
= i(4sin 2t —cos 2t) 3)
240
Thus the solution of (1) is g =C.F.+ P.1.
q=e"(c,cos8t +c,sin 8t)+ 2%0(48“1 2t —cos2t) (4)
1 1 1 7
whent=0, = = =c, - =C=——
2000 2000 240 1500
99 _ _ge-s (c, cos8t +c, sin 8t )+e~*(~8c, sin 8t + 8¢, cos8t)
dt - 1 2 1 2

1 )
+——(8cos2t + 2sin 2t 3
240( ) ®
when t =0, 99 0= _6c, +8¢, + - =0
dt 30

1 7 1 -4 -1
=8c,=6C,—— =8¢, =———=—=C, =——
30 250 30 750 1500

Hence the required solution is
—6t

1500

. 1 .
q (7 cos8t —sin 8t)+27,o(43'n 2t —cos 2t)

.y dg e™ : 1 :
andi(t)= Pl —E(cos& +3sin 8t)+ﬁ(4cos 2t +sin 2t)

here the current is a sum of two parts, namely transient part and steady state part.
e—6t
Transient part = _E(COS& +sin 8t)

It is named so, because it decreses as ‘1’ increases.

1 .
Steady state part= 120 (4cos 2t +sin 2t)

. . t
3. An uncharged condenser of capacity Cis charged by applying an e.m.f. Esin [ﬁj,
through leads of self-inductance L and negligible resistance. Prove that at any time t, the charge

on one of the plates is EC sin( ¢ J— t COS( ¢ j
2 Jic ) Jic T \Jie )|

Solution: Let ( be the charge on the condenser, the differential equation of the circuit is

2
d q+E:Esin

dt> C (%)

L

dt> LC L vLC

1 E . t
D?+— |g=—sin| —— 1
:{ +Lc}q Lsm[ TCJ 1)
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.

- o 1
Its auxiliary equation is m? tE= 0=m=

1
Jic
~CF.=¢ cos[%} +C,sin (%} 2

1 E ( t j
Now P.l.=—— —sin| ——
D2+ 1 I— ‘\jLC

LC

1 . t ) 1 .
sin , Put D° =———, we get denominator as zero
D2 .+ 1 (,/ LC j LC
LC

_E| -t cos| --;sin at = ——cosat
L ) [1 JL ’ " D%?+a? 2a
LC

:_E Ecos(Lj (3)
2 VL JLC

Thus the solution of (1) is g =C.F.+ P.1.

q=c cos(Lj+c sin[Lj—E ECOS[LJ (4)
A e ) e ) 2 VL T \JLe

when t=0, g=0=¢, =0

q=c,sin _t —E\/gcos _t (5)
Jic) 2VL \JLec

Differentiating with respect to t, we get

9__¢5 cos( t ]—E\/E cos[ ! j— t sin( t j (6)
d JLC (JLC) 2VL JLc) Jie o \JLe
d c E |C EC
Whent:O,d—('.j:0:>\/|_2_c——\/E=O:>C2:T

Substituting C, in (5), we get the required solution is

s
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Unit-111
PARTIAL DIFFERENTIAL DIFFERENTIAL EQUATIONS

Introduction:

Partial differential equations arise in geometry, physics and in engineering branches
when the number of independent variables in the given problem under discussion is two or
more. In such cases any dependent variable is likely to be a function of more than one
variables, so that it possesses not ordinary derivatives with respect to a single variable but
partial derivatives with respect to several variables. For example, in the study of thermal

effects in a solid body the temperature u may vary from point to point in the solid as well as

. . . . ou du oJu oJu oy
from time to time, and, as a consequence, the derivatives 9x '3y '3z ' 3t will, in general, be
0%u  0%u  03u

— ,—— ,—, etc.
dx2 " 9xoy ' 9x3

non zero. In general it may happen that higher derivatives of the types

may be of physical significance.

When the laws of physics are applied to a problem of this kind, we may sometimes
obtain a relation between the derivatives of the kind

ou ou 0%u 0%u\ 0
ox 'dy "ox?’ T "0xdy

Such an equation relating partial derivatives is called a “Partial Differential
Equation”.

Simply, a partial differential equation is an equation involving a function of two or
more variables and some of its partial derivatives. Therefore a partial differential equation
contains one dependent variable and more than one independent variable. Hence the main
difference between partial and ordinary differential equations if the number of
independent variables involved in the equations.

Examples:
2%u  ou . . .
1. Fyeie 5Whereu- dependent variable; x, y-independent variables.
ou\3 Jdu . . .
2. (5) + 3y = Owhereu- dependent variable; x, y-independent variables.
u du . Ju . . .
3. x—+y o to,= Owhereu- dependent variable; x, y-independent variables.
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The order of a partial differential equation is the order of the highest partial
derivative occurring in the equation.

In the above, example 1 is a second order equation in two variables, example 2 is a
first order equation in two variables and example 3 is first order equation in three
variables.

Now the students are able to understand what a partial differential equation is and
how to identify whether a given differential equation is a partial differential or ordinary
differential equation.

Now we are going to see how a partial differential equation is formed by using a
given equation. Actually there are two methods to form a partial differential equation as
given below.

Formation of Partial Differential Equations:
In practice, there are two methods to form a partial differential equation.
(i) By elimination of arbitrary constants
(ii) By elimination of arbitrary functions
Formation of Partial Differential Equations by Elimination of Arbitrary Constants:
Let f(x,y,z,a,b) =0 (D

be an equation which contains two arbitrary constants ‘a’ and ‘b’. We know that, to
eliminate two constants we need atleast three equations. Therefore partially differentiating
equation (1) with respect to x and y we get two more equations. From these three
equations we can eliminate the two constants ‘a’ and ‘b’. Similarly, for eliminating three
constants we need four equations and so on.

Note 1: If the number of arbitrary constants to be eliminated is equal to the number of
independent variables, elimination of constants gives a first order partial differential
equation. If the number of arbitrary constants to be eliminated is greater than the number
of independent variables, then the elimination of constants gives a second or higher order
partial differential equations.

Note 2: In this chapter we use the following notations.

0z 0z 0%z 0%z dt_(')zz
p_ax'q_ay'r_axz's_axayan ~ 0y?
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EXAMPLES
1. Form the partial differential equation by eliminating the arbitrary constants from
z = ax + by + a? + b?,
Solution: Given z = ax + by + a? + b? (1)

Partially differentiating (1) with respect to ‘x’ and ‘y’, we get

_02_ )
p_ax_a ()
_Oz_b 3

From equations (2) and (3), we get
a=pandb =q
Substituting these values of a and b in (1), we get
z=px +qy+p*+q*

This is the required partial differential equation.
2. Form the partial differential equation by eliminating the arbitrary constants from

z=((x-a)*+(y—-h)?*+1.
Solution: Givenz = (x —a)? + (y —b)? + 1 (1)
Partially differentiating (1) with respect to x’ and ‘y’, we get

0z

P=a=2(x—a) (2)

0z 2( ) 3
q=73, =<V b (3)
From equations (2) and (3), we get

a=x—§andb=y—g

Substituting these values of a and b in (1), we get
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= () )

4z=p*>+q* +4
This is the required partial differential equation.
3. Form the partial differential equation by eliminating the arbitrary constants from
z=(x%?+a)(y?+b).
Solution: Given z = (x? + a)(y? + b) (1)

Partially differentiating (1) with respect to ‘x’ and ‘y’, we get

0z
— — 2
P= 2x(y* + b) (2)

0z
_ _ 2
=5, =G e @)

From equations (2) and (3), we get

p
yi+b = (4)
q
andx? +a =— 5
2y (5)

Substituting (4) and (5) in (1), we get

z= (2%) (;—y) or pq = 4xyz

This is the required partial differential equation.

4. Find the differential equation of all spheres of radius 5 having their centre’s in the xy-
plane.

Solution: The equation of the given spheres is
(x—a)*+(y—-b)>+2z2=25 (D

Partially differentiating (1) with respect to ‘x’ and ‘y’, we get
2c—a)+2zp=0> x—a=—zp (2)

2(y—b)+22g=0=> y—b =—2zq 3)
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Substituting (2) and (3) in (1), we get
z°p? + z%q* + 7z = 25
z2(p?+q*+1) =25
This is the required partial differential equation.
5. Form the partial differential equation by eliminating the constants from
z = axe’ + iazezy + b.
Solution: Given z = axe” + %azezy +b (1)

Partially differentiating (1) with respect to ‘x’ and ‘y’, we get

az_ _ P
a— = ae 3a—e—y (2)
az_ B y+1 2,2 (7
ay—q—axe Sa‘e (2)
0z 2
i.e.,a = ;iyxey + (e%) e?Y ,using (1)

i.e., q =px+p?
This is the required partial differential equation.

6. Form the partial differential equation by eliminating the constants ‘a’ and ‘b’ from

b(y —1)
1-x |

z=alog[

Solution: Given z = alog [M] (D

1-x

Partially differentiating (1) with respect to x’ and ‘y’, we get

0z 1—x -1
§=p=a[m]-b(y_1)[m](_l)

ie, p=1—— =a=pl-x) 2)
62_ _ 1—x b _a
@_q_ab(y—l) 1-x y-—-1
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ie., a=qly—1) 3)
From (2) and (3), we get
p(1—x) =q(y —Dor px+qy=p+q
This is the required partial differential equation.
7. Form the partial differential equation by eliminating the constants ‘a’ and ‘b’ from
2z=(x+a)"?+ (y—a)'/? + b.
Solution: Given 2z=(x+a)'?+(y—a)"?+b (1D

Partially differentiating (1) with respect to ‘x’ and ‘y’, we get

0z 1 1
0x 2Jx+a 2Vx +a
1
i.e, Vx+a=— (2)
4p
0z 1 1
2—=—— = 2¢qg=
dy 2J/y—a 2\)y—a
. 1 3
i.e., VY a—4q 3)
F 2) + 1 1 4
= — = —_——
rom(2), x+a 16p2 a 16p2 X (4)
1
From(3), y—a= 1642 =y-— 1642 (5)
From (4) and (5), we get
1/1 1 1 1
x+y=E<F+?>orF+?=16(x+y)

This is the required partial differential equation.

8. Form the partial differential equation by eliminating the constants ‘a’ and ‘b’ from

(x — a)? + (y — b)? = Z*cot?a.
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Solution: Given (x + a)? + (y — b)? = z%cot?a (1)

Partially differentiating (1) with respect to x’ and ‘y’, we get

0z

2(x —a) =2z acotza = x—a=zpcot’a (2)
0z

2(y —b) =2z @cotza = y—b=zqcot’?a (3)

Using (2) and (3) in (1), we get
z?p?cot*a + z2q?cot*a = z?cot?a = p?+q? = tan’a

This is the required partial differential equation.

9. Find the partial differential equation of all planes having equal intercepts on the x andy

axis.
Solution: The equation of such plane is

X y z
—+=+-=1 1
a+a b D

Partially differentiating (1) with respect to ‘x’ and ‘y’, we get

1+p_0 => p= b 2
1+q_0 = q= b 3
From (2) and (3), we get p=q

This is the required partial differential equation.

10. Form the partial differential equation by eliminating the constants ‘a’ and ‘b’ from
z = ax™ + by™.

Solution: Given z = ax™ + by™ (D

Partially differentiating (1) with respect to ‘x’ and ‘y’, we get

0z o1 p
pzazanx = GZW (2)
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0z q

:—:b n-1 = —
4=y = b = b —— (3)

Substituting (2) and (3) in (1), we get

P . q
x
nxn-1 nyn-1

yn

z= %(px +qy)
This is the required partial differential equation.
11. Form the partial differential equation by eliminating the constants ‘a’ and ‘b’ from
(x—a)?>+ (y—b)®>+2z* =1.
Solution: Given (x+a)?+ (y—b)?+2z%2=1 (1)

Partially differentiating (1) with respect to ‘x’ and ‘y’, we get

0z
2(x—a)+22a=0 > x—a=-zp (2)

0z
2(y—b)+225=0 > y—b=-zq (3)

Substituting (2) and (3) in (1), we get

z?p? +z%q* + 2z =1

1
p2+q2+1=;

This is the required partial differential equation.

12. Derive a partial differential equation by eliminating the constants from the equation

2 2

x- 0y
2z = ? + ﬁ .
xZ yZ
Solution: Given 2z = P + 72 (D)

Partially differentiating (1) with respect to ‘x’ and ‘y’, we get
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262_2x:> 1 10z p 5
dx  a? a? xdx «x 2)
dz 2y
dy b2

R 1 10z ¢ 3

b2 ydy 'y )
Substituting (2) and (3) in (1), we get
2z =xp +yq

This is the required partial differential equation.

13. Find the differential equation of all spheres of the same radius ‘c’ having their centres on
the yz-plane.

Solution: The equation of spheres whose radius is ‘c’ and the centres (0, a, b) lies on yz-
plane is

x2+(y—a)*+(z—b)?=c? (1)
Differentiating (1) partially with respect to ‘x’ and ‘y’, we get

20— Z =0 = g-p=_7 2
x z o= z = (2)

9]
2y —a) +2(z—- b)é =0 = y—a= %(3) (using(2))
Substituting (2) and (3) in (1), we get

x\? x\?
x% + (q?) + (—£> =c? ie, x*(1+p*+q?) =c?p?

This is the required partial differential equation.

14. Find the differential equation of all spheres whose centres lie on the z-axis.
Solution: The equation of such spheres is

x2+y?+(z—c)=r? (1)

wherer, ¢ are constats

Differentiating (1) partially with respect to ‘x’ and ‘y’, we get
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2x + 2( )62_0 > = 2
x z=0)o-= z—c= (2)

(3)

Q< =R

0z
2y+2(z—c)@=0 > z—c=—

From (2) and (3), we get

,l.e., gqx =py

TR
Q|

This is the required partial differential equation.

15. Derive a partial differential equation by eliminating the constants a and b from
loglaz—1)=x+ay+b.

Solution: Given log(az—1)=x+ay+b (D

Partially differentiating (1) with respect to ‘x’ and ‘y’, we get

a

=1 2
717 (2)

a

andaZ_1q=a 3)

From (2) and (3), we get
- (4)and 1= 5
a=_— - and az =q (5

Substituting (4) in (5), we get

q:

Z
Z_p—lorq(z—p)=p or p(g+1) = zq

This is the required partial differential equation.

16. Form the partial differential equation by eliminating the constants from the equation

2 2

X y
a2 T pET T

x2 y2 Z2
Solution: Given —+5+—=1 @Y
a c

Partially differentiating (1) with respect to ‘x’ and ‘y’, we get
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ztazr= (2)
2y 2z
2tz a=0 (3)

Partially differentiating equation (2) with respect to x, we get

2 2
;+§(zr+p2) =0

2
c
;+ (zr+p?) =0 (4)

From equation (2), we get

c? pz

— = (5)

a? x

Substituting (5) in (4), we get
pz 2Y — Ni 2 —
—7+(zr+p)—01.e., zxr + xp*—zp =0

This is the required partial differential equation.

Formation of partial differential equations by elimination of arbitrary functions:

Formation of partial differential equations by elimination of arbitrary functions
from the given relation is explained in the following examples.

Note: The elimination of one arbitrary function from a given relation gives a partial
differential equation of first order while elimination of two arbitrary functions from a given
relation gives a second or higher order partial differential equations.

EXAMPLES
17. Form the partial differential equation by eliminating the arbitrary function ‘f’ from

z = e™*bY f(ax — by).
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Solution: Given  z = e®™**PY f(ax — by) (1)
Differentiating (1) partially with respect to x’ and ‘y’, we get

d
p= £ = etV f'(ax — by) .a + ae®**bY f(ax — by)

p = ae®™*PY f'(ax — by) + az

p—az

= f'(ax—bY)=aeaTby (2)
0z
and q= 3y = e**bYf'(ax — by) .(—b) + be®™*PY f(ax — by)
q=-b (p — az) + bz using (2)

aq = —pb + abz + abz
pb + aq = 2abz
This is the required partial differential equation.
18. Form the partial differential equation by eliminating the arbitrary function from
z=(x+y) p(x* —y?).
Solution: Given  z = (x +y) ¢(x% — y?) (1)

Differentiating (1) partially with respect to ‘x’ and ‘y’, we get

)
p= é =@ +y)¢p'(x* —y?) 2x + p(x* — y?)
>p=2x (x+y>¢'(x2—y2)+%
=>p- =2x (x +y)p'(x* —y?) (2)

xX+y
aZ ’ 2 2 2 2
and q=@=(x+y)¢(x —y%) .2y + p(x* —y?)

Z
:_2 ! 2 _ A2
=q y(x+yo'(x y)+x+y
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Sg-—— =2y (x+ PP 2=y (3)

x+y
£
. . p x+y X
Division gives - = ——
T x4y

= [pe+y) —zly+lglx +y) —z]x =0
= (x+y)py +qx) —z(x +y) =0
=>pyt+qgx =z
This is the required partial differential equation.
19. Form the partial differential equation by eliminating the arbitrary functions from
z=f(x+ at) + g(x — at).
Solution: Given z=f(x+at) +g(x—at) (D

Differentiating (1) partially with respect to ‘x’ and ‘t’, we get

0z _ 'x+at)+ g'( t) 0% _ "(x+at)+ g"( t) 2
ax—fx a g x—a 'axz_f x+a g'(x—a (2)
9]
a—i=af’(x+at)—ag’(x—at)
0%z 0%z
— 211 2 I _ — 2
and—at2 a’f"(x+at) +a*g"(x —at) =a 2 From(2)

thus the required partial differential equation is

0%z o 0%z

otz % ox?
Which is an equation of the second order and (1) is its solution.
20. Form the partial differential equation by eliminating the arbitrary function ‘f’ from
z= f(x*-y?).
Solution: Given  z = f(x? — y?) (1)

Differentiating (1) partially with respect to ‘x’ and ‘y’, we get
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0z

P=§=f'(x2—y2)2x

LT
5o = 2 = y?) @
0
and q=go=fl -y 2y

> —% = F1(% = y?) 3)

From (2) and (3), we get

2%:—% = py+qx=20

This is the required partial differential equation.

21. Form the partial differential equation by eliminating the arbitrary functions from
z=f(x) +e’g(x).

Solution: Given z=f(x)+eYg(x) (D)

Differentiating (1) partially with respect to ‘x’ and ‘y’, we get

d

p=52=f()+e’g'(0) @
9]

q =£= e?g(x) 3)

From (3), we get

0%z Y () = 0z . 3
ayz—e gx =3y rom(3)

2
Therefore the required partial differential equation is 2—; = 2—;

22. Eliminate fiandf,fromz = f,(x)f,(y).
Solution: Given z = f; (x)f,(y) (D)

Differentiating (1) partially with respect to ‘x’ and ‘y’, we get
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0z
= = f1 () (2)

T ox
0z
6_ = L()f' () 3)
Differentiating (3) with respect to ‘x’ we get

62
ax dy

2)x(3) = pq=fi'LW. L )
= pq =sz, Using (1) and (4)

f1 (x )fz ) 4)

This is the required partial differential equation.

23. Form the partial differential equation by eliminating f and¢from z = f(y) + ¢(x +
y + z).

Solution: Given z = f(y) + ¢p(x +y + 2)(1)

Differentiating (1) partially with respect to ‘x’ and ‘y’, we get

0
p=o=¢'Gc+y+2).(14p) @
0z , ,
q=@=f(y)+¢(x+y+2)-(1+q) 3)
0%z
r=ﬁ=qb’(x+y+z).r+<l>”(x+y+z).(1+p)2 (4)
— aZZ — 1A 144
—axay—¢>(x+y+z).s+¢ x+y+2).(1+p)A+q) (5)
02
t= a—yi =f"WP+d'(x+y+2).t+¢"(x+y+2z).(1+q)? (6)
From (4), rll—¢'(x+y+2)]=0A+p)?¢"(x+y+2) (7)
From (5), s[l—¢'(x+y+2)]=0A+p)A+qp"(x+y+2) (8)
Now (—7) = r- 1*p

(8) s 1+g¢
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This is the required partial differential equation.

24. Eliminate the arbitrary function f fromz = f (%) and form the partial differential

equation.

Solution: Given z = f (ﬂ) (D

Z

Differentiating (1) partially with respect to x’ and ‘y’, we get

0z ,(XY\ ZY — XY.D
i = e
0z ,(XY\ ZX — XY.q
1555~ (7)T (3)
N (2) p_zy—xy.p B
ow = D—-—=-— px =qy

3) q zx—xy.q
This is the required partial differential equation.

25. Form the partial differential equation by eliminating the arbitrary functions f and gfrom
z=fQ2x+y)+gBx—y).

Solution: Given z=f(2x+y)+gBx—y) (1)
Differentiating (1) partially with respect to ‘x’ and ‘y’, we get

0z
p=a=2f’(2x+y)+3g’(3x—y)

Or) p=2f"+3g (2)

Where f’ means f'(2x + y) and g’ means g'(3x —y)
0z , ,

and  q=zo=f (2x+y)—g'Bx—y)

Or) q=f"-g (3)
0%z
From(2), r=o32= 4f"+9g" (4)

Where " means f"(2x + y) and g" means g"(3x —y)
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0%z

From(2), s = 3y =2f"-3g (5)
azz n n
From(3), t= pe =f"+g (6)

Eliminating f" and g" from (4), (5) and (6), we get

4 9 r
2 —3 s|=0 [Using determinant]
1 1 ¢t

i.e., 4(=3t—5)—9R2t—s)+r(2+3)=0

i.e., —12t —4s—18t+9s+5r=0
i.e., 5+ 5s—-30t=0
0%z 0%z 0%z

=0

-6
d0x? + dx dy dy?
This is the required partial differential equation.

26. Form the partial differential equation by eliminating the arbitrary function g from the
relationz =y? +2g G + log y).

Solution: Given z=y%+2g G + log y) (1)

Here we have to eliminate the only arbitrary function g.

For, differentiating partially (1) with respect to ‘x” and ‘y’ we get

_62_2 ’<1+l )(—1)
P=5,"°9\;79Y) 2
, -2 /1
i.e., P=_379 (;+l0gy>
1
i.e., 2 g’(;+ log y) = —px? (2)

0z (1 1
and q=@=2y+2g<;+logy>.<§>

2 1
i.e., q=2)’+;g’<;+logy> (3)
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2

. px- .
i.e., q=2y— TUsmg (2)

i.e., px%+qy=2y?
This is the required partial differential equation.
27. Form the partial differential equation by eliminating the arbitrary function ¢ from
xyz = ¢p(x* + y* — z%).
Solution: Given xyz = ¢(x? + y? — z2) (1)
This equation contains only one arbitrary function ¢ and we have to eliminate it.
For, differentiating (1) partially with respect to ‘x” and ‘y’ we get
yz + xyp = ¢'(x? + y? — z2).(2x — 2zp)

andxz + xyq = ¢'(x? + y? — z2). 2y — 2zq)

5 @ltyt-o = @
and¢’(x? + y? — z%) = JZC;-I__—;}Z]Z 3)

From (2) and (3), we get

yZ+xyp _ xzZ+xyq

2x —2zp 2y —2zq

i.e. (yz + xyp)(2y — 22zq) = (xz + xyq) (2x — 2zp)
i.e., y(z+xp)ly—2zq) =xz+yq)(x—zp)

i.e., px (y2 +2z%) —qy (x* +2z2) =z (x? —y?)

This is the required partial differential equation.

28. Form the partial differential equation by eliminating the arbitrary functions from
z=xf1(x+t)+ fo(x+1).

Solution: Given z=xfi(x +t) + fL(x +t) (D)

Differentiating (1) partially with respect to ‘x’ and ‘y’ we get
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0z

a=xf1'(x+t)+f1(x+t)+f2'(x+t) (2)
Y XRG04 G+ 3)
RGO GO L D @)
T R G+ O+ x4 D) ©)
azZ rn 1A n
axat=xf1 x+t)+filx+t)+f, (x+1t)
92z o2
e o gt=a—tf+f1'(x+t)[Using (5)] 6)

Substituting (5) in (4), we get

Py ATo

oxz gz T2h

_ azz_azz+2 0%z 0%z Using(6)
Bl xz T 9z T %loxar ac [Using(6)]
_ 0%z 0%z 0%z

i.e.,

o0x = “axat a2

This is the required partial differential equation.

29. Form the partial differential equation by eliminating arbitrary function from
z=e"f(x—y).

Solution: Given z = e™ f(x — y) (D)

Differentiating (1) partially with respect to ‘x” and ‘y’ we get

0z

p=o=emf(x-y) @
d
q= % =—e™f'(x—y)+me™f(x—y)

i.e., gq=—-p+me™f(x—y) [Using(2)]
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i.e., +qg=mz Using (1)]
p+q [Using (

This is the required partial differential equation.

30. Form the partial differential equation by eliminating the arbitrary functions ‘f’ and ‘g’
from z = x%f(y) + y?g(x).

Solution: Given z = x?f(y) + y2g(x) (1)

Differentiating (1) partially with respect to ‘x” and ‘y’ we get

0z .
p=£=2xf+yg (2)
0z -
q=@=xf+2yg (3)
0%z -
r=oa2=2f+tyg (4)
=7 prayg 5
S_axay_ xf yg ()
0%z .
t=a—yz=xf +2g (6)
, _q—2gy
3) = f=Tg (7)
, pP—2fx
@ = g = yzf ®)

Substituting (7) and (8) in (5), we get
q—2gy P—2fx
s=2x[ 22 ]+2y[ 57 ]

. 3 Iy(q—Zgy)+x(p—2fx)
i.e., s=2
xy

i.e., xys=2[qy+px—20*f+y?g)]

i.e., xys=2[px+qy—2z] From (1)
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This is the required partial differential equation.

31. Obtain the partial differential equation by eliminating ‘f’ from xy + yz+zx = f (L)

x+y

Solution: Given xy +yz+zx =f (L) (D

x+y

Here we have to eliminate the only one arbitrary function ‘f’. For differentiating (1)
partially with respect to x’ we get

y+yp+z+xp=f (xiy){(";_{)ﬁ)lz}

(x + y)?
(x+y)p—2z

PG+ )+ 0+ 21 = f (55 @

Differentiating (1) partially with respect to ‘y’ we get

x+yq+z+xq =f'(xjy){("(:i)j;z}

(x + y)?
(x+y)g—2z

lgCe+3) + Ge+2)] = £ (55 3)

From (2) and (3), we get
[p(x+y) + v+ D[ +y)q —z] = [qix + ) + (x + 2)][(x + y)p — 2]
i.e., px+y)(x+22)—qlx+y)(y+2z) =z(x—y)
This is the required partial differential equation.
32. Obtain the partial differential equation by eliminating the arbitrary functions f and
ffrom z=xf G) + y ¢(x).

Solution: Given z =x f (%) + vy ¢(x) (D)

Here we have to eliminate two arbitrary functions fand 4.

Differentiating (1) partially with respect to ‘x’ and ‘y’ we get

2 -2 Qv @)
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anda— =f' ( ) + ¢(x) (3)

Partially differentiating (3) with respect to ‘y’ and ‘x’, we get

ik 1
523" () )

0%z

andaxay xzf”( )+¢( ) ()

Still we are unable to eliminate the two arbitrary functions. Hence we find one more
partial derivatives i.e., third derivatives.

Differentiating (4) partially with respect to ‘y’ and ‘x’ we get
03z
357 = ¥ ~f () (6)

0°z Lo N_Y e (Y
gy =l GG o
Substituting (4) and (6) in (7), we get

0’z 1 62 y( ,0°z
oxdy? 6y o \” dy3

0°z  1[0%z 03z 03z N 0%z N 03z
dxdy?  x|ay? Y53 dy?3 or x dxdy? = 0dy? y ay3

=0

This is the required partial differential equation.

Formation of partial differential equations by elimination of arbitrary function f from
f(u, v) = 0 where u and v are functions of x, y and z.

Let f(u, v) =0 (D)

be a given function of u and v, where u and v are functions of x, y and z.
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Differentiating (1) partially with respect to x and y, we get

af 6u+6f v _ 0 )

ou ‘d0x ' ov ox 2)
of @ aof 0@

ana 2L 0L v _, 3)

du dy Jv dy

To eliminate f it is enough we ellmlnate and of from (2) and (3). Elimination of — and

5 L from (2) and (3) gives

Ju 0Jv
Ox O0Ox
ou ov|=0 4
dy 0dy

6u 6u 617 8v
ax 6y ox oy
x,y and z.

Where — are to be determined from uand v, where u and v are functions of

EXAMPLES
33. Form the partial differential equation by eliminating the function f from the relation

f(x? +y*+ 2% xyz) =0

Solution: Given f(x? + y? + z2, xyz) =0 (1)
Let u=x?+y2+2? (2)
V= Xxyz 3)
Equation (1) becomes f(u, v) =0 (4)

This is of the above type. We know that elimination of f from (4) gives

jou Jv
0x 0x
du av| =0 ()
dy 0y
ou
From (2), we get Pl 2x + 2zp (6)
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Ju
— =2y +2zq (7)

dy
dv
From (3), we get il +yz (8)
% o tyq + 9
dy YAtz 9

Substituting (6), (7), (8) and (9) in (5), we get

2x + 2zp 2y +2zq| _
xyp +yz xyq+xz|

i.e., (2x + 2zp)(xyq + xz) — 2y + 2zq)(xyp + yz) = 0
i.e., px(z? —y?) + qy(x? — z%) = z(y? — x?)
This is the required partial differential equation.

34. Form the partial differential equation by eliminating the function f from the relation

f(%,x2 +y2+zz) =0

Solution: Given f (% x2+y%+ zz) =0 (1)
Let u=y/x (2)
v=x%+y?+ 22 (3)
Equation (1) becomes f(u, v) =0 (4)

This is of the above type. We know that elimination of f from (4) gives

jou Jvj

dx Ox

ou ov|~ 0 )

dy 0y

ou y oJu 1

From (2), we get %= X 3y x (6)
F (3) t av—z +2 av—z +2 7
rom (3),we ge ax X zZp, 6y_ y zq (7)

Substituting (6) and (7) in (5), we get
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y 1

x? x |=0
2x+ 2zp 2y +2zq

. y 1
i.e. —2 2y + 2zq) — ;(Zx +2zp) =0

i.e., xzp + yzq + x2 +y? =0

This is the required partial differential equation.
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VECTOR CALCULUS
Unit-1VvV
Vector Differentiation

INTRODUCTION

The main objective is to introduce vector calculus to the engineering student
which consists of differentiation and integration of vector functions. This,
naturally, leads to the study of new concepts like gradient, divergence and curl of
scalar and vector respectively, which in turn will facilitate the study of
solenoidal, conservative and irrotational fields. These are important to
engineering branches like electrical and electronics engineering and mechanical
engineering.  Finally, vector integration with useful theorems like Green;s
Stokes; and Gauss’ divergence theorems are introduced.

We have studies the differential and integral calculus of functions of a single
variable and several variables. We are also familiar with the study of vectors.
All these topics together form a branch of engineering mathematics known as
vector calculus.

Vector calculus is used to model a vast range of engineering problems. For
example, it is used in electrostatic charges, electromagnetic fields, air flow
around air craft, cars and other solid objects, fluid flow around ships and heat
flow in nuclear reactors. One can appreciate the actual use of vector calculus
while dealing with different topics in it.

VECTOR FUNCTIONS

If to each value of a scalar variable t, there corresponds a value of vector 7, then
ris called a vector function of a scalar variable t and we write ¥ = 7 (t) or r =
f(®.

For example the position vector 7 of a particle moving along a curved path is a
vector function of time ¢, a scalar.

Since every vector can be uniquely expressed as a linear combination of three
fixed non co-planar vectors, therefore, we may write
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f@® = AT+ LOT + f:(Dk
where 7,7,k  denote unit vectors along the axes of x,y,zrespectively,

f1@®), () andf;(t) are called the components of the vector f(t) along the
coordinate axes.

SCALAR AND VECTOR FIELDS

Consider a regionR of space such that every point P in this region is connected
with some physical property. Let the physical property be expressed by a
quantity which has a definite value at every such point, P. The region in which
the physical property is specified is called a field.

Now, fields are of two kinds Scalar and Vector, according to the quantity
expressing the physical property being the scalar or a vector.

Thus a scalar field is one where the physical property in guestion is given by a
scalar quantity. This scalar quantity will have different values at the different
points of the region. In the other words, its value at a point P in R will depend on
the coordinates of P.Hence this variable quantity is a function of position. It is
known as the scalar point function.

For example, in the study of temperature distribution is a heated body, the region
occupied by that body will be a scalar field and the temperature at any point
within it is a scalar point function. Other examples of scalar fields are
distribution of density, electric potential or of any other non- directed and the
pressure in the atmosphere.

?(x,y,z) = x* + y? — z? — 3xyz define a scalar field.

If the physical property of a region is represented by a vector quantity, it is said
to constitute a vectorfield.

A typical example of a vector field is the distribution of velocity at all points of a
moving fluid.

The velocity at every point will be represented by a continuous vector function.
At a particular point, the function is specified by a vector of certain magnitude
and direction, both of which change continuously from point to point throughout
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the field. Such a function which represents the physical property by a vector
guantity is known as vector point function.

Examples of vector fields are the velocity at any point in moving field,
gravitational force on a particle in space and the earth’s magnetic field.
Fx,y,2)= (y—2)T+ (z—20)J+ (x —y)k
defines a vector field, where 1, j, k are unit vectors along x, y, z.

THE VECTOR DIFFERENTIAL OPERATOR DEL
The vector operator V (read del) is defined as V=1 z— + j— 3y o 4 k—

The vector operator possesses properties analogous to those of ordinary vectors.
It is useful in defining their quantities which arise in practical applications and
are known as the gradient, the divergence and the curl.

By its definition, V is a symbolic vector consisting of three symbolic components
a @
e

along the axes 1, J, k the symbolic magnitudes of them being%
So V is a vector operator. It is also a differential operator, just as % is an operator

in the differential calculus.

Thus V0 = (17 + o>+ k3) 0 = (15 + 75, + k5)

So V acts both as a differential operator and as a vector.

Note: The symbol V(del) was originally called “nabla” an also “atled” which is
“delta” (A) reversed. It is called ‘del’

GRADIENT OF A SCALAR FUNCTION

Let @(x,y,z) be a scalar function of position throughout some region of space.

_09

Then the vector function i% + I3y + k— is known as the gradient of @ and is

denoted by @ . In forming this new vector, it is assumed that the partial
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a0 090 8
derivatives %, %, £ are exists. Such a vector exists corresponding each point

of the region in which @(x, y, z) is continuous and differentiable.

_ 790 09 2% _ (79
Hencegrad¢—16x+] +k (l +Ja+k )(Z) Vo

It is to be noted that V@ defines a vector field.

Note : If @ is constant, then —f = % ag = 0, so that grad® = 0.

IMPORTANT DEDUCTIONS
1. Gradient of the sum of the functions:

Let u and v be two scalar point functions
6(u+v) u+v) _o(u+v)
+ k

Vu+v) =1 O0x T dy 0z
__au _du E6u+_6v+_6v Ea ey
o Tyt e Tlar Tyt g T ut W
2. Gradient of the product of the functions V(uv) = uVv + vVu
3. Gradient of a function:
Let = f(u), Vv =Vf(@W) = (1= + J= + k=) f(u)
- " \oax tJ ay 9z
du _du
_f(U)<l$+]$+ k—) f(u)Vu

Thus, as a differential operators, the operator V, follows the ordinary
rules of calculus

EXAMPLES

1. If 7 is the positive vector joining the origin 0 of a coordinate system and
any point (x,y,z). Prove that V(r™) = nr" %7 where op = 7 = xT+
yji+zkandr? = x? + y? + z2,

. P .8
Solution: Hence 2r <= = 2x ,ie, = =%
dx dx r

Similarly, Z—; = % and Z—Z == Also 7 = xi+ yJ+zk
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2. If V@ = yzi + zxj + xyk, find @.

. _09  _0p — 0@ _ _ -
Solution: Let V@ = (la + ]£+ ka_z) =yzi + zxj + xyk

Equating the corresponding coefficients of the unit vectors, we get

09
i )
00
@ = zX (II)
00
& =Xy (III)

Partially  integrating (D, (II)and (11I)  with  respect
x, y, zrespectively, we get

@ = xyz + a constant independent of x

@ = xyz + a constant independent of y

@ = xyz + a constant independent of z
Hence a possible form of @ is @ = xyz + a constant.

OPERATIONS INVOLVINGV:

to

The vector character of the operator V suggests that V can operate scalarly or
vectorially on a vector point function, say F. The dot product V - F and the cross
product V x Fare known respectively as the divergence and curl of the vector

function F and they are great importance in vector analysis.
THE DIVERGENCE OF A VECTOR

Let F(x,y, z)be definedand differential at each point (x,y, z) in some region of
space. i.e., F defines a differentiable vector field. Then the scalar product of the
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vector operator VandF gives a scalar which is called the divergence of F . Thus
the divergence of F written divF or V - Fis defined as

Fe(72 4 79 4+ 5 2. F= (7% L 79F , pOF
VIF_(l6x+ ]6y+ kaz) F_(lax+]6y+ kaz)
We can find the value of V - F in terms of the components of F.

Let F = Fii+ F,j+ F;k, where Fy, F,, F5 are functions of x, y, z.

= _a _0 - 0 _ _ -
Then V- F = (1= + Tat EZ)-(FT+ FJ+ FE)

79, 0B OB - - - - _T.T—
—lax+]ay+kaz(-1 i=7jJ=k-k=1)

This formula enables us to compute the divergence of F when it is given in the
form

Fii+ F,j+ F;k. Clearly, the divergence of F. i.e., V- F is a Scalar.

THE CURL OF A VECTOR

Let 7(x, y, z)be defined and differentiable at each point (x, y, z) in some region
of space. i.e., ¥ defines a differentiable vector field. Then the vector product of
the vector operator Vandvgives a vector which is called the curlofvwritten
curlv or rotvorV x v is defined as

_ _ _ad _ad _0
curly = VX = (la“a* k) 7
__0v _ v
R TRE A R

We can find the value of the curlv in terms of its components. Let ¥ = v;7+
v,j + vsk. where vy, v,, v5 are function of x, y, z.

T

(o5
Q
Q X

curlv=Vxv = |- — __
ox dy 0z
V1 VUV U3
Note:grad® = V@ = vector
divv = V-v = scalar

curlv = VX v = vector
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3. Ifr=xt+ yj+ zk, then prove that
(DV-7=3 and(ii))Vx7 =0
Solution: V-7 ==~ (x) + %(y) +2(@)=1+1+1=3

vxi=(Z1+ Jaot ko) x (xt+y] +2k) =0

SOME GEOMETRICAL CONSIDERATIONS

From the three dimensional analytic geometry, we recall that the equation of a
plane is of the form

?(x,y,z) = constant,csay )

where @(x,y, z) is a linear function of x,y,z. Let S be the surface represented
by (1), since @(x,y,z) = c,oconstantonS, we have d@ = 0 onS. Thus d@ =
V@ - dr = 0 onS. 2

Let P(x,y,z) be a point on the surface S and Q(x + dx,y + dy,Z + dz) be a
neighbouring point on S. then PQ = 0Q — OP = dxI + dyj + dzk = dr

Expression (2) implies that at a point P on a surface S, the vector V@ is
perpendicular to every directed line segment PQ that is tangential to S. This
means that V@ is along the normal to the surface S at the point P.

O

Figure.10.1 Figure.10.2

UNIT NORMAL.: we denote the unit vector directed along V@ by 7. Thus,

SV
n_IV(Z)I 3)
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The vector 7 is referred to as the unit vector to the surface S at the point
P(x,y,2).

Directional Derivative: consider a vector a inclined at an angle 6 to the direction
of V@. thus the components of V@ along a, namely V@ -

a(wheredisunitvectora), is called the directional derivative of @ along a.
This is denoted by

do N N
1 V@ -a= |V@l|lalcosd = |VD|cosb (4)
In particular, the directional derivative of @ along 7l
do \%0) Ve |2
—=V0-A=|VO| — = = |V 5
= =V0- ol Vol =~ Vol Vol (5)

This is called the normal derivative of @.

Since cosO assumes the maximum value, when 8 = 0, it follows from
(4) and (5) that

09 ol
maxﬁ =|V@| cos(0) = |V@| = 3 (6)
Thus, the directional derivative % is maximum when a is directed along 7, and

the maximum is equal to the normal derivative. This means that @ varies most
rapidly along V@ and |V@| gives the maximum rate of variation.

4.  Find the unit normal to the surface yz + zx + xy = cat the point
P(-1,2,3).

Solution: The equation of the given surface is @(x, y, z) = ¢, where @ = yz +
zx + xy.

Thisgives%=z+y; %zz+x; %:x+y;
“VO=(z+y)iI+@Z+x)]+ (x +y)k
At the point P(—1, 2, 3), this gives V@ = 5T+ 2j + k
and |[V@| = V52 4+ 22 + 12 = /30
Accordingly, the unit normal to the given surface at the given point P is

\Y{0)} 1 _
A=——=—(5T+2]+k).
AT m(‘ J+k)
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5. Find the angle between the directions of the normals to the surface
x%yz = 1 at the points P(—1,1,1) and Q(1,—1, 1).

Solution: The given surface is Q(x,y,z) = x?yz = 1.
At any point (x, v, z) of this surface, the normal is along the vector
VO = 2xyzi + x%z] + x*yk

At the point P(—1, 1, 1) the normal is along the vector @ = [V@], = 21—
J+ k

If 6 is the angle between the directions of these normals, we have
a-b —6
lallb] ~ V6v6

This gives 8 = m as the required angle. Thus, at the given points the normals to
the given surface are in opposite direction.

cosf =

6.  Find the angle between the surfaces x> + y2+2z2 =9 and z = x? +
y? — 3 atthe point (2,—1, 2).

Solution: The angle between two surfaces at a common point P is defined to be
equal to the angle between the normal to the surfaces at the point P.

Here, the given surfaces are S;, whose equation is
O(x,v,z) =x*+y>+2z2—-9=0 (1)

and S,, whose equation is

Y(x,y,z) =x*+y2+-3-3=0 2)
. g 0 _ B _ ., .
These gives Pl 2x, v 2y, 5, = 27 ;

W_gy W W
ax—2x, ay_zy’az_ 1

VO = 2xT + 2yj + 2zk and Vi = 2x1+ 2yj — k (3)
At the given point P(2,—1, 2) these become

VO =41—2]+4kand Vi = 41— 2j— k (4)
Sothatat P, |V@| = 6 and |Vy| = V21 (5)

We note that V@is along normal to surface S; and Viis along normal to surface
S, Therefore , if 6 is angle between V@ and Vipat point P. As such we have at P,
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Vo -V = |VQ||Vi| cos 6
using equations (4) and (5), this gives

Vo-Vy  (41—-2j+4k)-(41-27—-k) 8

cos = =
Vo[Vl (6)(v21) 3v21
sothat @ = cos™?! (3%5) This is the required angle.

7. Find the equation of the tangent plane to the surface x3 + y3 + 3xyz =
3 at the point (1, 2,—1).

Solution: The equation of the given surface S is @(x,y,z) = 3. Where
B(x,y,z) = x>+ y* + 3xyz.
e ivec 99 _ .2 9 _ 4 2 99 _

This gives P 3x* + 3yz, 3y 3y“ + 3zx, P 3xy

Vo =3{(x% + y2)T+ (2 + z0)] + (xy)k}

At point P(1, 2,—1), this becomes

V@ = 3(—T+ 3] + 2k)

This vector is directed along the normal to the given surface S at the
given point P. The direction ratio’s of this vector are (—1, 3,2)

The tangent plane to the given surface S at the given point P =
(1,2,—1) is the plane through P which is perpendicular to the normal to S at P,
whose direction ratio’s are (—1, 3, 2).

Hence the equation of this tangent plane is
(—D(x—-1)+ 3(y—2)+ 2(z+ 1) = 0 which implies to x — 3y —
2z+3=0.

8.  Find the constants a and b so that the surfaces x? + ayz = 3x and
bx?y + z3 = (b — 8)y are orthogonal at the point P = (1,1, —2).

Solution: The given surfaces are S;, whose equation is

O(x,y,z) =x*+ ayz—3x =0 1)
and S,, whose equation is ¥ (x,y,z) = bx*y + z3(b — 8)y = 0 2)
9 _ o, o 00 _ 00 _
Then Pl 2x — 3, 3y az,—=ay;
W _ M _ .2 W _ o2
ax—Zby, ay—bx b+8’az_32
VO = —T—2aj + ak and Vi = 2bT+ 8] + 12k (3)
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The Surfaces S;and S, are orthogonal at the point P if V@ and Vi given by (3)
are orthogonal. That is if V@ - Vip = 0 this yields

—2b —16a + 12a = 0 (or) 4a + 2b = 0(4)

Further, the point P must be common to the surfaces S;and S,. That is
the coordinates (1,1, —2) of P must satisfy equations (1) and (2). This yields
a = —1 consequently, (4) yields b = 2.

Thus, when a = —1 and b = 2, the given surfaces cut orthogonally at
the point (1,1, -2).

9. Find the directional derivative of @ = x?yz+ 4z at the point
P(1,-2,—1) along the vector @ = 21 — j — 2k.

Solution: For the given @, we have

99 _ 9 _ 2,9 _ 2
ax—nyz, ay—x z,5 =X y+ 8z
VO = 47— j + 10k (1)
Next, we find that for the given vector @, |a| = 3
. ~~ A a 1 — — T
The unit vector along @ is @ = -~ = 5(21 —J—2k) (2)

From (1) and (2), we get V@ - @ = %(8 +1+420) = 23_9
This is the directional derivative of the given function @ along the given

vector aat the given point P.

10. Find the directional derivative of @ = xyz along the tangent vector to
the curve x = t,y = t%,z = t3atthe point P(—1,1, —1).
Solution: For the given @, we find that
VO = yzi + zxj + xyk (1)
The vector equation of the givenis 7 = tT+ t?j + t3k )
This givesZ—:_ =1+ 2tj+ 3t’k = a
And |al = (1+ 4t2 + 9t*) /2
a T+ 2tJ+ 3t2%k

Therefore the unit tangent vector to the curve is @ = == —————-
al  (1+4t2+ 9t%) /2
®)

From (2), we verify that the given point P(—1,1,—1) corresponds to
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t = —1. Hence at P, we get from (1) and (3),
_ 1
V1
Hence the required directional derivative of @ = x3 —y? + z at the
point (—1,1,—1)
We first recall that |[V@| is the maximal directional derivative of @.
For the given @, we find that V@ = 3x271— 2yj + k

At the point (—1, 1, —1), this yields V@ = 37— 2j + k and |V@| = V14

Vo =—-1+j—k,a (—1— 27+ 3k)

Thus v14is the required maximum directional derivative.

11. Find the directional derivative of @ = x?yz + 4xz?> at the point
P(1,—2,—1) along the vector @ = 2T — j — 2k.
Solution: For the given @ we find that vector V@ = (2xyz + 4z%)T+ x%z j +
(x%y +8zx)k
At the point P(1, —2, —1), this becomes
Vo =81—j—10k
Next, we find that for the given vector a, we have |a| = 3. Therefore, the unit

a _ 1. _ .F
5—3(21 Jj—2k)

vector along @ is @ = |

1 37
Vo-a=5(16+1+20) = —

This is the directional derivative of the given function @ along the given vector @
at the given point P.

12.  Find the direction from the point P(3, 1, —2) along which the directional
derivative of @ = x2y?z* is maximum. Find also the magnitude of this
maximum.

Solution: For the given @ we find that V@ = 2xy?z*T + 2x%yz*] + 4x%y?z3k

At the point P(3, 1, —2), this becomes
VO =961+ 288 —288k =96(1+ 3j— 3k
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13.

Since the directional derivative of @ along the vector ¢ is maximum
when ¢ is along V@, it follows that the directional derivative of the given
function @ at the given point P is maximum along the direction of the
vector  96(1+ 3j—3k. Also the magnitude of this maximum

directional derivative is |96(T + 3] — 3 k| = 96v19.

If thetemperature at any point in space is given by T = xy + yz + zx
find the direction in which temperature changes most rapidly with
distance from the point (1,1,1) and determine the maximum rate of
change.The greatest of increase of T at any point is given in magnitude
and direction by VT.

ion: (2,72, 0
Solution: Here VT = (lax + gt k az) (xy +yz + zx)

14.

=(y+2DT+@Z+x)j+ (x +y)k
= 21U 4+ 2j + 2k at the point (1,1,1).
Magnitude of this vector = VT =12 = 2+/3.
Hence at the point (1,1,1), the temperature changes most rapidly in the
direction given by the vector 27 + 2j + 2k and the greatest rate of

increase 2+/3.

Prove that thedirectional derivative of @ = x3y?z at (1,2,3) is
maximum along the direction 97+ 37+ k. Also find the maximum
directional derivative.

Solution: Letd = x3y?z,

VQ = (Zaa—x+ jaa—y+ I_c%) (x3y?2)
= 361 + 12] + 4k at the point (1,2,3)

We know that the directional derivative of @ is maximum along the

direction V@

Hence, it is maximum along the direction of 4(97 + 37+ k)

The magnitude of this vector is 4v91 and this is the maximum
directional derivative.
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PHYSICAL INTERPRETATION OF DIVERGENCE

Let us consider the case of a fluid flow. Consider a small rectangular
parallelepiped of dimensions dx, dy, dz parallel to x, y and z axes respectively.

ZA
C A’
562
I
B — 1o, .
. -IP/|_>7____ B,.V ay
U\' 7 5y
S ox
A &
) 55,
4
X
Figure 10.3

Let V = V,T+ V,J + V,k be the velocity of the fluid at p(x, y, z)

Mass of fluid flowing in through the face ABCper unit time = velocity X
area of the face = V,(dy dz)

Mass of fluid flowing out across the face PQRS per unit time= V,., 4, (dy dz) =
(V}C + % dx ) dy dz

Net decrease in the mass of fluid in the parallelepiped corresponding to
the flow along the x axis per unit time

oV,
V. dydz — (V;C + a)dydz
Vx . .
= x dxdydz (—ve sign shows decresing )

Similarly the decrease in mass of fluid to the flow along the y axis =

avy
rm dxdydz
Decrease in mass of fluid to the flow along the z axis = % dx dy dz

Total decrease of the amount of the fluid per unit time

ov, dv, 9V,
=(=—+ —+——|dxdyd
<6x dy + 0z x4y az
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Thus the rate of loss of fluid per unit volume
v, oV, oV,

+ ==+ (‘a+‘a+l€a)(7+v+12v)
ax * ay "oz \ox oy ag) W T I T KR

dx
=V-V=divV

If the fluid is incompressible, there can be no gain or no lose in the
volume element. Hence divV =0 (1)and V is called a Solenoidal vector
function. Equation (1) is also called the equation of continuity.

PHYSICAL INTERPRETATION OF A CURL

We know that V = w x 7, where w is the angular velocity, V is the linear
velocity and 7 is the position vector of a point on the rotating body.

Result:IfV = @ x 7, prove that

1 = _ . _ . ..
w= 3 curl V, where @ is constsant vector and 7 is the position vector .

X Let @ = w,T+ w,] + wsk,since @is constant vector and w;, w,, wsare

constants

~ T J k
T=xt+y/+zkoo X 7= |w; w, w3

X y Z
w X 7= (wz—w3y)i+ (w3x — w,2)j+ (WY — wyx )k
T 7 k
o X 7) = 0 0 0

curl ( X 7) = /ax /Oy /aZ

W2Z — W3y W3X — W1Z W1y — WX

d
= T{a_y (w1y — wax ) — 3 (w3x — wﬂ)}

0 0
+ ]'{— (wyz — w3y ) — — (W1y — wyx )}

0z 0x
—(0 d
+ k{& (w3x — wyz) — @(wzz — w3y )}

= 2(1)1T+ 2(1)2]_+ 20)3k
= 2w

1 p—
Hence w = 3 curlV.
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Thus, the angular velocity at any point is equal to half the curl of the
linear velocity at that point of the body.

Definition: A vector is said to be solenoidal if its divergence is zero and
irrotational if its curl is zero.

EXPANSION FORMULAE FOR OPERATORS INVOLVING V:

Let @ be a scalar point function and @, ¥ be vector point functions. We can form
the following products between these point functions: @u(Vector), u -
v(Scalar), u x v(Vector). Operating with V Scalarlly or vectorially we get the
expressions:V - @u,V x @u, V(u-v),V- (u x v),V X (U X 7).

1. Toprovethatdiv (@u) = @divu +u-grad @
o V-Qu=:0V-u+ u-vVo
By definition,

. - _ OF oF _ OF
divF=1-—+ j-—+ k-—
ox

oy 0z
Hence div (%) =1 6(6‘2:7) + 7 3<@u) 4 k- E’(Ejzizu)
_ ou 510} ou 510 _ o1 0
=1 (¢a+ua)+]<®a—+ua) k(®6_+u£)

= (25{‘ a_a+7 6_u+ k- au}+a{r a®+]_@+ E-@}
d0x dy 0z dx dy 0z
=QV-u+u-vo
ie, div(@u) = @divu+u-grad @

2. To prove that Curl (@u) = V@ X u+ @ Curl u
< By definition

Curl F = Xaﬁ+'xaﬁ+]_cxaﬁ
ur T ax ] ay aZ
Hence Curl (@u) = T X a(f) + X 6<®u) + kX a(f)wzm

((Z)—+ ‘a@)+1x(®—+ aa®)+ kx((z)—+ ‘ZQ’)

z
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—Q){‘xaﬁ+_xaa+l€xaa}+‘{‘xa®+‘xa®+l€xa®}
P T Ty az) "M T ax T %5y 9z

= @Curlu+ (Grad ®) X u

3. Toprovethatdiv(u X v) = v-Curlu— u-Curl v
¢+ By definition,
divF =T 6F+ _ aﬁ+ i oF
WEEU 9T gy 9z

a(ﬁxﬁ)+]__a(ﬁxﬁ)+ E_a(ﬁxﬁ)

Hence div(u x v)=1"

ox ady 0z
_(_ OV Ou \ _ (_ 0V Ou \ _ (_ 0V o0u _
=1-(uxa+axv)+]-(ux$+$xv)+k-(uxa—z+£xv>
_ _ 0V ou _ 0V ou _
=1 uxa+1 a—><v+]-u><@+} a—xv+k
_ 0v  _ odu _
UXE-FIC'&XU
_ov _ _ou _ _o0v _ _ou _ _
=—L-axu+1-a><v—]-@xu+]-$><v—k
ov _  _ ou _
-£Xu+k-a><v

Now in each of the triple products in the right side, the dot and the cross can be
interchanged.

Hence
o _ov _  _ ou _ _ ov _ _ odu _ -
dlv(u><v)=—l><g-u+lxa-v—]xa-u+1xa-v—k
o u
Xg'uﬁ'kXE'U
~ou _ ou - ouy _ [ Oov _ o0v _ Ov] _
=[1X5+1X@+k><£'U—[lXaﬁ']X@‘FkXE'u

=(Curlw) - v— (Curlv)- u

div X v) = v-Curlu— u-Curlv
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SECOND ORDER DIFFERENTIAL OPERATORS

1. To find the result of the operation V - (V@) = div(grad @)
. _ 98, _ 030 , . 00
<> D1vgrad(b=v-(vq))=v-(l-a+1.5+ k'a_z)

- 56 5(5) 56

R a%_(az 92 aZ>®

ootz o Tt
2

2 d . . .-
37 toz 08 called the Laplacian operator and it is

2 | 9
The operator i

2
denoted by
5 0?2 0?2 0?2
=9 T oyz o2
Hence we have V.VQ = V¢
The divergence of the gradient of a function is its Laplacian.
We notice that we can use the notation V - V = V2, Similar to the notation
a-a=a’

2. To prove the identity :Curl (grad @) = 0, V X (VQ)

. _ @, 20, g0
» Grad @ = lax+]6y+ kaz
_ _ 09 , 00 , 109
Hence Curl (grad @) = VX V@ =V X (la-l- It kg)
T 7 k
o a0 0
= |[0x dy o0z
op 09 0J9
dx 0dy 0z
[ 9%0 %@ [ 9%0 %0 %0 R0)
=sil|l—-—|tjl=——— )t k|— -
dy dz 0zdy 0z0x 0x0z dx dy 0yodx
=0+0+0=0

The identity Curl (grad @) = 0 is true for all values of @ and is very
important. If Curl F = 0, then the vector Fis calledirrational. From the
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above, we have the result that Curl (gradient) = 0. Hence if Curl F = 0,
then the vector F can be expressed an the gradient of a scalar function.

To prove the identity : div Curl F = 0,i.e, V- (VXF) =0

3.
% LetF = Fii+ F,j + F3k

T J k
Curl F= VXF= 9 0 9
dx 0dy 0z
F, F, F

0F; OF. 0F; OF. _(0F, OF

— <_3__2)+]—(_1__3)+k(_2__1)
dy o0z dz Ox dx dy

0F3 0F\ , 0 (0F, 0F\ , 0 (0F, 0F
Hence div Curl F = ax(ay_az)+a (az ax)+az(ax ay)
02F; 0%F, 0%F, 0%F; 9%F, 0%F,

dzdy

dx 0y 0x0z + dydz 0dyodx 0zdx
The identity div Curl F = 0, i.e., V- (V x F) = 0 is true for any vector F.

4.  To proveCurl Curl F = grad divF — V?F
T J k
. =_ L. . =_la o o
% LetF = Fll + sz + F3k , then Curl F = —x 5 5
Fi F, Fs
_ _(0F3 0F,\ _(0F, 0F;\ _(0F, O0F
CurlF_l(ay az)+](6z ax) k(ax ay)
T 7 k
- d 0 0
Hence Curl Curl F = /OX /(?y /62
dF;  OF, dF,  0F; dF, OF
G-%) G-%) G-3)
[ (c?F2 aFl) d (aF1 6F3)]
dy dy 0z\0z O0x
[ (8F3 aFZ) d (an (’)Fl)]
7 0z 0z dx\dx OJy
- [ (apl 8F3) d (6F3 (’)Fz)]
dx\dz Ox dy\dy o0z
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_ |, 9% 0%F; | OR], L[0°R 0%
=oyox tazax| 1/ azay T oxay 9x 0z ' dy 0z
0%F, 0°F. 0%F, 0°%F,| _[0%F; 0°F
1 + 1 J_ 2 2 —k 3 + 3
0 0z2 0z% = 0x? ox? = dy?

y?
0

__[9%F, . 62F2 2F, o aze 62F3 92F,
=Uoxz Tayox Tozox| T |oy2 Tazay T oxay
T 62F3+ 2F1 0%F; 02 F1 a F1 62F1
022 Taxaz Toyaz| a2 Toy2 T o2
0%F, 0°F, 0°%F,| _[0%F. a F 0%F
_ 2+ 2+ 2 _ 3+ 3+ 3
ox? = dy?  0z? ox? = dy?  0z?
_ 0 [0F, OF, OF d [0F, OF, OF d [0F, OF, OF
= — 2+ ||+ =+ = +k [ 1+—2+—3]
ax dx Jdy o0z dylox dy 0z azl ox dy 0z
92 92
~axz T 5y7

92 _
+ﬁ] (FiT+ F,j + F3k)
J0F, O0F, OF.
[ 1, 92 Of3
dzllox dy 0z
= grad div F — V2F
HenceCurl Curl F = grad divF — V?F

—[‘a+‘a+k ] V2F
“'ox 7%

MEANING OF THE OPERATION (u - V)v:

Vis a vector operator. Hence we first express the dot product -V as a
scalar operator.

_ _ _ _ a _0 _0
u-v= (u11+u2] +u3k).(l—+]—+k—)

Hence (u - V)7 = (u1%+u25+u3:—2)ﬁ
v ov ov
= (u1&+u2$+u3£)

Now (u - V)wis written without the brackets asu - Vi but since - V& has no
meaning, u - Vv means that uassociated with V operates on v.

Similarly we shall now prove that (u - V)@ =u - V@
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o
0z

_ . a ]
u -V as before gives the scalar operator u, PR 3y + ug

_ d d a a0 09 a0
Hence (u - V)@ = (”15“‘25“‘3@_2) @=(u1a+u2£+u3 )

az
o (109) | j09) | kK@D _ 99 29
Now # V@ = (ux + uyy + usz) (ax + ™ Bz)_ulax+uzay+
20
u3a_z
Hence (u - V)@ =u - V@
TWO MORE EXPANSION FORMULAS
1. ToprovethatCurl(i X ) =v-Vu —u Vo + udivv — v div
. it By _ s O 4 i O L OF
% By the definition Curl(F) =T x 5, T I X P + k% o
_ N -, 0(uxD) __ 0(uxv) - 0(uxv)
Hence Curl (u X ¥) =T X — 1 X_ay + kx—az
=1X (‘xaﬁ+aﬁx ‘>+ ‘x(‘xaﬁ+aax ‘)+Ex(‘xaﬁ+aﬁx ‘)
_l”axax"]”ayay” ”azaz”

ou _

=Tx (ﬁxg)+fx(3—zxﬁ)+jx(ﬁxz—z)+}'x($><v)

ol P e (B
+ x(ux£)+ X(EXU)

But we knowthata x (bx¢) = (a-é&)b—(a-b)é

Hence Curl(@x 7) = (1-2)a— - W) 2+ @ D) = (1 Z) 5 +

r)a-gog+ ¢Gag-(5)o+(k-3)a-(k-a)32+

- _\0u - ou\ —

(k-v a—:—(k-a—Z)v

_( v 97 617)

_ N +E ou - c’)ﬁ)
Poax dy 0z

U _(_ aﬁ+_ +k
vt dy 0z

o7 o7 N1
—((ﬁ-i)a—z+(ﬁ-j)£+(ﬁ-k)a—z>

ot ot _, 01
+<(ﬁ-i)a—z+(ﬁ-j)£+(ﬁ-k)a—z> (4)
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Now (- 1) = (w T+ upJ + ugk) - T= uy
Similarly, (@-)) =uy, (i-k)=us, @D =v,(@-)) =v,, (0 k) =v;
T _ou _ .
A|SOZl'a =divvand Y1 0 =divu
Hence (A) becomes
av v 617)

Curl (@ x 7) = (div )i — (div )7 — (u1 5x Tl g,
N ( ou N ou N aa)
Vigx T V25, T V3G,

— (i1 5V VG o 9 LAY 9 o

—(dwv)u—(dwu)v—(ulax+u2 ay+u3 aZ)v+ (vl T V2 ay+
v3;—z)ﬂ

= [divd)u— div)o— @-Vo+ (- V)i

={divo)u—([diva)v—u-Vo+ v-Vu

=v-Vu—u-Vo+ (divo)u — (diva)v

2 ToProvethatgrad (u-v) =v-Vu+u-Vi+v X curlu+u X curl v

% g = (12272152 w-v
¢+ By the definition grad (u - ¥) = (1 5 T ay+k 62) (u-v)

s (_ 617+611 _)+_ (_ 617+6ﬁ ‘)+E

_l”ax ax” J dy ay”

v 0
(u 6z+a U)(l)
_ _ __om, __du K 5 _ou
Now, ¥ X curluzvx(lxa+]><$+ kx—Z)
__(._0u _ _ ou _ 0u
=vx(1x—)+vx(x—)+vx(k><—)
x dy 0z
_(_ 617) I (5 _)6ﬁ+(_ 617) e _)c’)ﬁ_l_(_ c’)ﬁ) r
_”ax‘”lax”ayfvfay”az
_ -\ o0u
v 0z
_(_ 817) o 6ﬁ+(_ 617) o 6ﬁ+(_ c’)ﬁ) e
_”axlvlaxvay]vzay”az Vs
Ju
-a( U1 =7, etc)

Dr.K.V.Nageswara Reddy, AITS(Autonomous), Kadapa



dy " 9z
_ouy\ _ AN _oouy —  _
=<v —) L+<v-—)-]+(v —) k—v
x y 0z
Vit (2)
Similarly,axaurlﬁ=(a-g)-i+(a-g—j)-j+(a-g)-12—ﬁ-
Vit 3)

Adding (2) and (3), we get

vX curlu+uXcurlv

_(_ 617+_ 612) _+<_ 617+_ aa) _+(_ 617+_ aa) Vi
T\ TV ) T\ ey T Gy T M2 TV g, vVt
—u-vVu
=grad(@-v)—v-Vu—u-Vo [from(1)]

grad(UW-v)=v-Vu+u-Vi+v X curlu+uXcurlv

SOLENOIDAL AND IRROTATIONAL FIELDS

We shall mention here only two kinds of vector fields, having different
associations of Curl and Divergence:

(i) If the divergence of a vector is zero, everywhere in a field, that field is
termed Solenoidal.

Suppose div v = 0 (1)

Then v determines a solenoidal field, we have the identity
div Curl F =0 (2

Hence from (1) & (2) , we have ¥ = Curl F

i.e., the solenoidal field ¥ can be expressed as the curl of another vector F.
This is an important characteristic of a solenoidal field.

In the motion of an incompressible field, the divergence of the velocity
vector is zero. Hence the velocity field is solenoidal.
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(ii) If the curl of a vector is zero everywhere in a field, that field is termed
irrotational or lamellar. Suppose Curl v =0 3
We have the identity that, if @ is a scalar function. Then curl grad @ = 0
From (3) & (4), we get v = grad @

i.e., the irrotational field ¥ can be expressed as the gradient of a scalar function.
This is an important characteristic of an irrotational field. Since v = grad @, the
vector field v can be derived from a scalar field @. v is called a Conservative
vector field and @ is called the scalar potential.

15. Show that the wvector ©v=(x+3y)i+ (y—32)j+ (x—
22)k is solenoidal.

Solution: Let 7 = (x + 3y)i+ (y —32)] + (x —22)k
o I R
divF=V-F= (la+ ]$+ k&)
. {(x+3y)i+ (y—-32)j+ (x—ZZ)I_c}

d d d
= (a(x+3y)+ @(y—32)+ &(x—22)>

=141-—2=0v issolenoidal

16. ShowthatV f(r) = —(af)and Vi@ x7r=0
Solution: Where |7| = |xi + yj + zk | ,72 = x? + y? + 22 ,Z—; ==

VF@r) _( af(r)_|_]—af(r)_|_ kag(zr))

afar afar _afar
tjo—+
Yor ox aray ar 0z

7d 9 _
{Vf(r)}xf=(;a—/:) 7= %a—/:(fxf)=0

17.  Show that div (r™*7) = (n + 3)r™ and Curl (r™v) = 0.

. _ . . or x Or
Solution: where7 = xi+yj+zk, 2= x2+y2 422, L= T -2
ox r oy r
or_z
9z 1
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div (r"r) = div (rn(xi +yj+zk)) =V (r"(xi+yj+zk))
0 d d
— (41 (T (M
ax(r x) + ay(r y) + aZ(r z)
_gpny nl{ar +6r +6r}
r* + nr 3% ayy z
x? +y? + 722

=3r" + nrtt <
r

) =3r"+ nr* lr = 3r" + "
=(n+3)r"

18. If A and B are irrotational, show that A x B is solenoidal.

Solution: Let A and B are irrotational

CurlA =0and Curl B =0,i.e.,V X A =0andVx B =0(1)
div(A XxB)=V-AXxB=B -(VxA) —A4 - -(VxB)
=B-0—-4-0=0 using (1)

By the definition, a vector is solenoidal if its divergence is zero.
A X B is solenoidal if A and B are irrotational.

19. Show that r™r is an irrotational vector for any value of n,but it is
solenoidal only ifn = —3.

Solution: V x (r*7) = 0,r™r is an irrotational vector for any value of n,V-
") =m+3)r"

But the vector is solenoidal, V- (r"*r) = 0

>n+3=0>n= -3

20. Determine the constant a so that the vector F = (x+3y)i+
(y —32)] + (x — az)kis solenoidal

Solution:V-F=1+ 14+a=a+2

For a solenoidal field, V- F = 0
i.e., a+2=00ra= -2

21. If @and ¥ are differential scalar fields, prove that (V@-:V¥) is
solenoidal.

Solution: div (V@ -V¥) = V¥ - curl @ — V@ - curl V¥ (1)
But curl (gradient ) = 0 identically
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Hence curl grad @ = 0 = curl grad ¥
So (1) becomes div (V@ - V¥) = 0, V@ X V¥ is solenoidal.

22.  Show thatV?r™ =n (n + 1)r"2
Solution: We have Vr™* = n ™27 (1)
Vr = V-Vr", since V-VQ = V%@
=V-nr"2r= nr" 2V + V(r"2) -7
Butv-r=3
V2rt =3nr"2 4+ nV(@E"?) - F (2)
Changing n into n — 2 in (1), we have
V:-r"2=(n-2)r""*r
Substituting in (2), we have
Virt =3nr" 2 4+nn-2)r"*r- 7
=3nr" 2 +n(n—2)r"?
=n@B+n—-2)r"?2=nn+1)r"?2

23. Prove that curl (p V@) = 0.
Solution: V x (V@) = @(V X V@) + VO x V@ = 0

24. A Vector field is given by F = (x? —y% + x)i— (2xy + y)j show that
the field is irrotational and find its scalar potential.

1 j k
Solution:SinceV X F = a/ax a/ay a/az
x>—y2+x —-2xy—vy O

=10-0)+j(0—-0)+k(=2y— +2y) =0

F is irrotational field and the vector F can be expressed as the gradient of
a scalar potential. i.e., F = V@.

_ - d0_ 00
2 .2 - - _00_ 00
(% =y*+ x)i— Qxy+y)j 6x1+6y]
o a0
X Ty X (1), 9y —2xy —y (2)

Integrating (1)w.r.t. x, keeping y constant, we get
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3 2

X X
Q)=?—y2x+7+f(y) 3)

Integrating (2)w.r.t. y, keeping x constant, we get
2

0= —xy? _y7 + g(x) (4)

Equating (3) & (4), we get x;—yzx +"72+f(y) = —xy? _y2_2+ g(x)
oy _x o x?

f(y)——2 andg(x)—3+2

_x3 2 x2 y2
Hence(Zﬁ—3 yox+ 5 =3

25.  Afluid motion is givenby F = (y + 2)T+ (z + x)] + (x + y)k. Is this
motion irrotational? If so, find the scalar potential.

Solution:
1 j k
d d d
/ax /ay /az
x+y z+x x+y

=11-D+jA1-D+k(1-1)=0

This motion is irrational and if @ is the scalar potential then F = V@

curl F =V X F =

e, (v + 2T+ 2+ 0]+ ( + Nk = T2+ Joo + k5
99 90 )
W PG @)

Integrating these, we get

0= O+2x+ 10,2 (4

= (z+x)y+fa(z,x) 5)

0= (x+y)z+f3(x,y) (6)

Equating (4), (5) & (6), we get f1(y,2) = ¥z, f2(z,x) = zx, f3(x,y) =
xy

Hence @ = yz + zx + xy
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Unit-vV
Vector Integration

INTEGRATION OF A VECTOR FUNCTIONS

Let £(t) andF(t) be two vector functions of a scalar variable t such thatdm)

f(t),thenF(t) is called an integral of f(t) with respect to t and we write
Jf®dt= F(®).

If ¢ is any arbitrary constant vector independent of t, thenw

f @)
This is equivalent to [ f(t) dt = F(t) + c.

F(t) is called the indefinite integral of f(t) . The constant vector ¢ is called the
constant of integration and can be determined if some initial conditions are
given.

The definite integral of £(t) between the limits t = a and t = b is written as

b
f Ft)dt = [FQOL = Fb) — Fa)

Note 1: If f(t) = ()T + £L,(t)] + f5(t)k , then
[F@ac=1[ pwar+s [ p@a+k [ fwa

Thus in order to integrate a vector function, integrate the components.

Note 2: we can obtain some standard results for integration of vector functions
by considering the derivatives of suitable vector functions. For example,

. d(@s) df _  _ d§ dr _ 3 _
Q) g St = (E S+7 t)dt—r-s+c
Here c is a scalar quantity. Since the integrand is a scalar.
.. dr? _ dr
(i) — =2 =>f(2r —)dt—r +c
Here c is a scalar quantity. Since the integrand is a scalar.
(i) L(Fx) =2l pxll = fx LT
dt dt dt t dt? dt?

d
=>j xdz_ t—_xdf+_
r dt? BEAPTI

Here ¢ is a vector quantity. Since the integrand is a vector.
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(iv) If @ is a constant vector, then

d(_x_)_dax_ . ar__ dr
gr X =g rrtax g =axy
__dar o
:f(ax—)dt=axr+c
dt

Here ¢ is a vector gquantity. Since the integrand is a vector.

1. The acceleration of a particle at time t is given by @ = 18 cos 3t1 —
8sin 2t j + 6t k . If the velocity vand displacement # are zero at t = 0,
find vand 7 at any point t .

2.5 —
Solution: Given a = % = 18cos3t1—8sin2tj+ 6tk

Integrating, we get

dr _
b= = f(18cos3tt—85m2tj+ 6t k) dt

=If18cos3t dt —]'f8$in2t dt + Ef6t dt

=6sin3t1+4cos2tj+3t?k+¢
Att=0,7=0 >0=4j+C or c= —4f
~ ¥ =6sin3tT+ 4 (cos 2t — 1)j + 3t%k
Integrating again, we get

7= f(6sin3tf+ 4 (cos 2t — 1)J + 3t%k) dt

=ff6sin3t dt —jf4(c052t—1) dt + Ej3t2 dt

= —2cos3tT+ (2sin2t — 4t)j + t3k + d
Att=0,7f=0 20=-27+d ord= 21
7 =2(1—cos3t)l + (2sin2t — 4t)] + t3k

2. I f(t) = (Bt? —2t)1+ (6t — 4)j + 4t k , evaluate f23 f(t) dt.
Solution: f; f()dt= f23(3t2 —2t)T+ (6t —4)j + 4tk dt

= [t — )T+ 3¢2 — 4t)] + 262k]]
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=141+ 11j+ 10k

LINE INTEGRAL OF A VECTOR FUNCTION

Any integral which is to be evaluated along a curve is called a line integral.
Consider a vector f defined over a region R in three dimensional space. Let C be
curve in this region and let its vector equation be ¥ = x(£)T + y(£)] + z(t) k(1)

Where t is a real parameter. Let A and B be end points of C, which corresponds
to t = a and t = b respectively, where a < b. Then, as t increases atob, a
variable point P (x,y,z) describes the curve C from the initial point A to the
terminal point B. If C is a closed curve, then the point B becomes coincident with
the point A.

Figure 10.4

We note that %is along the tangent vector to the curve C at the point
P (x,y, z)and that the unit vector to C, at P is given by

t= -4 (2)

. . - dr . = . .
Now, consider the scalar function f -d—: , since f is a function of x,y, z

and x,y,z are functions of the parameter t on C, and % is a function of ¢, it

follows that f-Z—:_ is a function of t on C. Suppose we integrate this function
with respect to t from t = a tot = b. The resulting integral is called the scalar

line integral of f along the curve C and is denoted by [. f.dr.

Thus, we have by definition

Dr.K.V.Nageswara Reddy, AITS(Autonomous), Kadapa



Lf.w:f:(‘%) dt 3)

If Cis a closed curve, then the integral sign [ ¢ isreplaced by gﬁc

Circulation: In fluid dynamics, if ¥ represent s the velocity of a fluid particle

and C is a closed curve then the integral [ ¢ U -dr is called the circulation of v

around the curve C.

If the circulation of varound every closed curve in a region R vanishes

then 7 is said to be irrotational in R.

Remarks:

1.

While defining fc f .dr through the relation (3) it is customary to take
the curve C as positively oriented. A space curve C is said to be
positively oriented if its projection on the xy — plane is described in the
anti-clockwise sense. The sign of the integral fc f .dr changes, when

the sense of description of C is reversed.
In Cartesians, expression (3) becomes

[ Far= [ Gax +pay+ fan)
C C

—fb< dx+ dy+ dz)dt 4

- a fl dt f2 dt f3 dt ( )

In the special case where R is a region in the xy — plane so that C is a
plane curve (in this region), expression (4) becomes

[ naxvnay=[ (R pD)a  ©

If £ represents a force under which a particle moves from one end of

curve C to the other end (along the curve), then fc f .dr represents the
corresponding total work done by f.
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3. If f = (5xy- 6x*)+ (2y — 4x)j, evaluate [. f.drwhere C is the
curve y = x3, from the point(1, 1) to the point(2, 8).

Solution: The given curve C is a curve in the xy — plane. Therefore, z = 0 at
every point of the curve. Setting x =t in the equation of C, we get y = t3.
Thus, the parametric equations of the given curve C may be takenas x = t,y =
t3,z = 0.Since C is from the point (1, 1)to the point (2, 8), the x- coordinate of
a point on the curve from 1 to 2. Thus, since we have set x =t on C, we have
1< t<2

We find that , on C,
_ — dr
r = xT + yj + zk = tT +¢3]+ 0k, E=T+3t21‘
and f = (Gt = 6t?)r+ (2t3 — 41)j,
sothat f.20 = (5t* — 6t2) + 3t2(2t3 — 4t) = 6t° + 5t* — 1263 —
6t2.

Therefore,

2
2 g
f f.dr= f (f.d—:)dt= f(6t5+ 5¢4 — 1263 — 6¢2)de = 35
c 1
1

4.  Evaluatef f.dr along the circlex? + y? = a® wheref = 3xyi —
yj + 2zk.

Solution: The parametric equations of the given curve C can be taken as x =
acost, y = asint, z=0, 0 <t < 2m Hence, on C,

_ _ — B B dr
r = xt + yj + zk = (acost)t + (asint)j + Ok, —

dt
= a(—sintT + costj),
and f = 3(acost)(asint)t — (asint)j + 2 - 0k
so that f.% — _3a3sin’t cost — alsint cost = —a?(3a sint +

sint ) cost
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Therefore,

21
f f. dr—f (f . )dt— f{ a?(3a sin®t + sint ) cost}dt

= —a?[asin3t + Esin t]d" =0

5. If f = Q2y+3)+xz/+ (yz—x)k, evaluate the integral [ f.dr,
where C is the curve x = 2t2, y = t,z = t3 from the point (0,0,0) to
the point (2,1,1).

Solution: The vector equation of the given curve C is
r = xl + yJ + zk =2t*T1+tj + t3k,
sothat o =4t +]+3t%k.
Also on C, we have
f = Qt+3)T+2t5+ (t* — 2t?)k.

Therefore, on C,

dr
f'% = 4t(2t + 3) + 2t° + 3t2(t* — 2t?)
= 3t® + 2t° — 6t* + 8t + 12t.

Since, the curve C is from the point (0,0,0) to the point (2,1,1) andy = t
on C, we note that, on the curve C,y = t varies from 0 to 1. Hence,

1
Loodr 288
ff.drzf(f.—)dtzf(3t6+2t5—6t4+ 8t + 12t) dt = —
. o U dt J 35

6. If f = (3x*+6y)i—14yzj+ 20xz’k, evaluate [ f.dr, from
(0,0,0) to the point (1,1,1) along the curve C given by x =t, y =
t?,z = t3.
Solution: The vector equation of the given curve Cis r = ti+ t?j+ t3k, so
that

dr _ T+ 2t7+ 3t%k
dt_l ] .

Also on C, we have
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f = 9t?1— 14t5] + 20t’k.
Therefore, on C,

dr
f.% = 9t2 — 28t° + 60t°

We note that along the curve C is from the point (0,0,0) to the point (1,1,1)
the parameter t increases from 0 to 1. therefore,

_ 1 _ar 1
f f.dr = f (f.—)dt = f(9t2—28t6+ 60t%) dt = 5.
c 0 dt .

7. Find the total work done by a force f = 2xyt — 4zj + 5xk along the
curve by x=t? y=2t+1, z= t> from the point t = 1 to the
point t = 2.
Solution: On the given curve C, we have

r =t +Qt+1)j+ t3k,
T=or+27+3%k  and f = 2022t + DT - 463 + 5t7k,

So that
_dr
f'E: 4t3(2t + 1) — 8t3 + 15t* = 23t* — 4¢3, 1<t <2

Hence, the required work is

2
2
fcf.dr: L(f.%)dtzf(23t4—4t3)dt=62—8.
1

8. Find the total work done by a forcef = (2y —x®)i+ 6yzj—
8xz2kfrom the point (0,0,0) to the point(1,1,1) along the straight line
joining these points.

Solution: Here the path (curve) € along which the work is done is the straight

line from the origin (0,0,0) to the point (1,1,1).The Cartesian equations of this
straight line are == > = % = ¢ (say).These equations yield x =¢, y = t,z =
t,0 <t <1 asthe parametric equations of the path C. Thus, here,

r=t@+j+k), E=i+]_+ﬁ
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Hence on C, f = Qt—t)i+ 6t%] — 8t3k,
and F.oo=(@t—t2) + 6t -8t = —8t3 + 5t2 + 2.
Therefore, the required work is g

1
_ L _ar 2
f f.dr = f (f.—)dt=f(—8t3+ 5t2 +2t) dt = —.
. o 7 dt J 3

SURFACE INTEGRAL OF AVECTOR FUNCTION
Any integral which is to be evaluated over a surface is called a surface integral.

Consider a surface S in a three dimensional region. Suppose we setup an
orthogonal coordinate system (u, v)on S. Let P(x,y, z) be any point on S. Then
x,, z are functions are u and v,so that on S,

7 = x(u,v)T +yW,v)j +zu,v)k = 7(u,v),say (D

This expression for 7 holds for any P(x,y, z); therefore, this is (taken as) the
vector equation of S, with u and v as parameters. As (x,y,z)vary over S; the
parameter pair (u,v) varies over region S in the uv — plane.

Figure 10.5

Now consider a vector function f defined over the region R. Then on S,

f isauand v. Let fibe the unit normal vector to S. Then it can be proved that 7
ic alona th tor 27 x 2T
is along the vector —— x —.

o7
av
the plane region S. This double is called the scalar surface integral of f over S

and is denoted by [, f .7 ds.

Suppose we the double integral of the scalar function f - (% X ) over
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Thus we have by definition

f ff ﬂ X ﬁ) du dv 2

The term (EX%) dudv present in the integral on the R.H.S of the

above expression is referred to as the vectorial area element on S and is denoted

by 7 dS. Thus by definition
or or
fids= (— x —) dudv 3)
du Jv

Remark: Integrals of the form fs f .7 ds arise in many physical situations. In

fluid flow problems the integral fs f.AdS gives the flux across S(= mass of
fluid crossing S per unit time) when f = p#, where p is the density of the fluid
and v is the velocity vector of the flow for this reason, the integral fs f.ndSis
often referred to as the flux integral of the vector f( across S).

CARTESIAN EXPRESSION

Suppose the Cartesian equation of S is of the form z = f(x,y). Then x and y
serve as parameters definingS. Consequently, the region S on which these
parameters vary is the projection of S on the xy —plane, and expression (3)
yields

R or or 0z - 0z _
fids = (axa) dxdy:(l+ak)x(]+@k)dxdy
_ 0z 0z
:{k—(alﬁ'@ )}dx (4)

Thus, if the equation of the surface S is of the form z = z(x,y), we have

f f.Ads= ﬂ — —l+2yj)}dxdy (5)

From (4), we findk - (A ds) = dxdy (6)

We note thatk - (A ds) is the projection of the vectorial area elements
(fi ds) on the xy —plane, and (6) shows that this projection is equal to dxdy,
which is the area element in the xy —plane.
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Similarly, we can show that the projections of (7 ds) on yz — and zx —
planes are dydz and dzdx respectively. That is,

i~ (fids) =dydzj- (ids) = dzdx (7)

In view of (6) and (7), we obtain the following Cartesian expression for the
vectorial area element.

(i ds) = (dydz)T + (dzdx)j + (dxdy)k (8)

9.  If S denotes that the part of the plane 2x + y + 2z = 6 which lies in
the positive octant, and f = 4x1 + yj + zkevalute[, f .7 ds.

Solution: The intercepts of the given plane on the positive x-, y- and z-axes are 3,
6 and 3 respectively. Therefore, in the first octant, we have 0 < x <3,0<y <
6,0<z <3.

With (X, y) as parameters, the parametric equations of S are x =x, y =
1
V,3—x— 5V

Therefore, at a point of S,

1
T = xf+y]'+(3—x——y)k

or _ = or _ 1~
anda—l—k, E_j_ik'
or _
so that — x @—l+ E]+k
Therefore

_(arxar>—4 +1 +z=+4 +1 +(3 ! )—3( +1)
f'ax ay—xzyZ—xzy x—sy)=3kx .

According to the virtue of expression (2), we have

ands ﬂ ﬁ><—)dxdy—.U 3(x + Ddxdy

Hence S is the projection of S on the xy — plane; this projection is the
triangular area having vertices 0 = (0,0), A = (3,0), B = (0,6). See
figure. Thus
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Figure 10.6

3 6 —2x 3
f f.fids = f f 3(X+1)dydx=3f (x+ 1)(6 — 2x)dx = 54.
s x=0Jy 0

=0

10. Evaluate fs f .Ads, where S is the part of the surface of the sphere
x? + y?+ z2 = a?inthe first octant, and f = yz T + zxj + xyk.
Solution: The given surface S has the Cartesian equation

z2=a?—-x*>—-y? x>0,y>0,z>0

)
. . 0z 0z x x
From this, we find 2z—= —2x, SO that x- Tz Jaaie
Similarl 0z _ x _ Yy
milarly, 5= = 2= ~ e

Therefore, if S is the projection of S on the xy — plane, we have
[ rnas= [ 7 fr-(Gre Fllaxe
.nas = . —|=1 - X
s S dx dy y

_ (= xt+yj
=ﬂ f.{k+<—y]>}dxdy
3 /az_xz_yz
On S, the given vector is
— o - T — 2 _ 2 _ 2| [ YXHXy
f =yzi+zxj + xyk = [[g {( a?—x2—y )(m)}dxdy

= [z Bxy)dx dy
Since S is the part of spherical surface x? + y? + z? = a? in the first octant, its
projection S on the xy -plane is the area bounded by the circle x* + y? = a? in
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the first quadrant. As such, changing to polar coordinates, expression (iii)
becomes

a /2
f f.Aids= f o 3((rcos8)(rsin®)(rdrde)

a /2 a4 1
=3f r3dr xf sinfcosfdf = 3 -— == —a*.
0 0 4 2

Thus, the given surface integral is evaluated.

VOLUME INTEGRAL OF A VECTOR FUNCTION

Any integral which is to be evaluated over a volume is called a volume integral.
Consider a vector field f defined over region of volume V in three dimensional
space. If f = fiT+ fo] + f3k, then f,, f>, f5 are scalar functions of x,y,z over

region. The vector whose x—, y—, z — components of the volume integrals of
f1. >, frespectively over V is called the vector volume integral of f over V; it is

denoted by [, fdV.
Thus, we have by definition

fvde=fV(f1Z+f2j+ fsk)dv = ifvfldv+jfvf2dv+i¥fvf3dv

11. Iff = 2xzi—xj+ y?k, evaluate [, fdV, where V is the volume of
the region bounded by the surfaces x = 0,x = 2,y = 0,y = 6,z =
x%,z=4.

Solution: Here f; = 2xz, f, = —x, f5 = y2. Therefore,

= 3_[x(16 —x*) dx = 64 )
0
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4 16
fxdzdydx= ffx(l}—xz)dydx
00

2

[ av - f

xX=

o

\N g\c\

y zZ=X

x(4 —x2) dx =24 (1)

y2dV = y?dzdydx = 2(4 —x®)dydx
) ff | ff

x=0y=0 z=x2
=72 f(4 — x2) dx = 384. (V)
0
Putting (1), (111), and (IV) into (I), we get

f fdvV =1281— 24j + 384 k.
14

12. If f =(Qx% - 32)i—2xy] —
4kevaluatef, divfdV and [, curlfdV where V is the volume of the

region bounded by the surfaces x=0, y=0, z=0 and 2x+2y+z=4.
Solution: For the given f,we find that div f = 2x. Therefore,

f divfdV = f 2x dV
2—x

2x— 2
f xdzdydx:fj x(4 —2x —2y)dy dx
220 00

x 4

g

=2 f{x(4 —2x)(2 —x) —x(2 — x)?*}dx
0

2
8
=2f(x3—4x2+4x)dx=§ )
0
Next, we find that, for the given f, we have curl f = j — 2yk.Therefore,

[ ewtpar = { [ W},_z{ fydv}k -

%4 14 14
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22-x4-2x-2y 2
Nowde:ff f dzdydx=f
14 00 0 0

2
- f{(4 — 202 —x) — (2 — )?}dx
0

2—x

f (4 —2x —2y)dy dx
0

2

8
=f(x2—4x+4)dx=§ (iii)
0
2 2—x 4=2x-2y 22-x
fde=ff f ydzdydx:ff y(4 —2x —2y)dy dx
v 00 0 00
1 7 4
- = V3 g — .
3.’.(2 x)3dx 3 (iv)
0

Putting (iii) and (iv) into (i), we get

fcurlde= g(i—k).

14
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GREEN’S THEOREM IN THE PLANE

Let P(x, y) and Q(x, y) be two functions defined in a region R in the xy-plane
with a simple closed curve C as its boundary.

Then §de+Qdy:H (%—%)dx dy

EXAMPLES

1. (@) If Cis a simple closed curve in the xy-plane, prove by using Green’s
theorem that the integral j%(x dy — ydx) represents the area A
C
enclosed by C.
(b) Hence find the areas enclosed by the following curves:

X2 2 2 2 2
(i) The ellipse : —2+b—=1 (i) The asteroid : x3 +y? =a?

QD

Solution:

(@) According to Green’s theorem
0Q oP
Pdx+Qdy = (———]dx dy
| oy

Take P = -y and Q = x in this result, we get
f(— y)dx +(x)dy = ”2 dx dy = Zﬂdxdy =2A
R A

C

or A= J%(x dy —ydx) This proves the required result.

C
(b) (i) The parametric equations of the given ellipse are
X=acosd, y=bsin0,0<0<2x
The area bounded by this curve is

1 1 27
A={Z(xdy—ydx)==ab[ do=rab
(J;Z(xy y dx) 2a_c[ ra
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(if) The parametric equations of the given asteroid are
x=acos’d, y=asin®0,0<6<2rx
Hence, the area enclosed by this curve is

27
A= J%(xdy— ydx)= gaz | (cos* Osin2 6+sin* O cos? 0)de
C 0

2 %
= gaz j (cos? 0 +sin? @)cos? Osin? 0 do = 6a2I cos® @sin’ 0 do
0

0

2. By using Green’s theorem, evaluate I [(3X + 4y)dx + (ZX - 3y)dy]
c

where C is the circle. x> +y® =4 .

Solution: If A is the area enclosed by the given circle, we have, by Green’s
theorem

I [(3x+4y)dx+(2x—3y)dy]zj;j [%(Zx—3y)—%(3x+4y)}dxdy

C

=-2[[dx dy = -2A=-2(47) =8
R

3. By using Green’s theorem, evaluate J. [(X2 + xy)dx + (X2 + yz)dy]
c

where C is the squire formed by the lines X=+1 y=+1.
Solution: Here the region bounded by C is the square region in which both x and
y increase from -1 to +1, therefore by taking P = x* +xy andQ = x* + yZin

the Green’s theorem, we get
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j [x +xy)dx+ X +y2)dy]

0
:.[RJ' {ax(x +y?) ——x +xy}dxdy
:jjxdxdyzj jxdxdy:O
R -1 -1
y

e ,v

Figure 10.7

4. By using Green’s theorem, evaluate j [(y —sin X)dX + (COS x)dy]
C
where C is the triangle in the xy-plane bounded by the lines
y=0x= E andy = Q

T

Solution: By using Green’s theorem, we get

[ [(y—sin x)dx+(cos x)dy] = J'J' [ cosx)—%(y sin x)}dx dy

C

V4 2X
” 1+sin x) dx dy = — j% ]E (1+sin x)dy dx——(z+£j
R x=0 y=0 4 r
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A
(7/2,1)
q;&\f.wj',
Pl et BT
s
5 5 =
Figure 10.8

5. By using Green’s theorem evaluate J. [(ZXZ - y2 )dX + (X2 + y2 )dY]
Cc
where C is the boundary of the region in the xy-plane enclosed by the x

axis and the upper half of the circle x> +y* =a’ .
Solution: By using Green’s theorem, we get

I[( —y )dx+(x +y dy] J.J'[ x> +y? —%(sz—yz)}dxdy

C

=2jj(x+ y)dx dy (1)

R

Where R is the region shown in figure above, in this region r various
from 0 to a and ©various from 0 to m, where (r, 8) are the plane polar coordinates.

Alsodx dy =r dr dé.

II(X+Y)dey jj c059+5|n¢9)rdrd9_§

0=0 r=0

Putting this into equation (1), we get

(J; [(2x2 - yz)dx+(x2 + yz)dy]: gas
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Figure 10.9

6.  Using the Green’s theorem, find the area enclosed between the parabolas
y> =4ax and x* =4ay

Solution: The region between the given the parabolas is shown in figure below.

"t
2% = day
-------------- 7 y* =dax
o/
4a 5 '
0 4a - A
Figure 10.10

Let us denote the parabola x> = 4ay by C, and the parabola
y2 =4axby C, . Then the boundary C of the region is made up of
C,and C, .

2
OnC,x increases from 0 to 4a, and y = x sothatdy = X dx
4a 2a

2

OnC,y increases from4ato 0, and X = y—(sothat dx = ZL dyj
a

4a

Now, by virtue of the green’s theorem, we find that the required area is
given by
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7. Using Green theorem, evaluate j (xyzdy —x%y dX) where C is the
C

cardioids, r =a(l—cosé) .
Solution:

By using Green’s theorem we find
i(xyzdy - xzydx): !(— X%y dx + xy? dy): J:ﬂ%(xyz)—%(— xzy)}dx dy

= ” [y2 + xz] dx dy where A is the area bounded by the given cardioids
A

= ” r? [r dr d@] on changing over to polar coordinates.

27 a(l-cosd) —a(l-cosd)
—j Irdrd&' I[ ]d&'

0

4 27 4 27 [ 0 4 2 H
:__[ [1-coso]* :—I Zsinz(—ﬂ d9:4a4j sing(—jde
L 2 6=0 2

T

2
=16a4j sin®t dt where t =

6=0
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6ai 1531 7 _35
8642 2 16

=1

Figure 10.11

8.  Verify Green’s theorem for “(3X2 —8y? )dX + (4y - 6xy)dy]
c

where C is the boundary of the region enclosed by the line x = 0, y =0,
and x+y =1

Solution:The given region is shown in figure below
We note that the boundary curve C is made up of three parts:

M The line OP on which y = 0 and x increases from 0 to 1
(i) The line PQ on which y = 1-x, and x varies from 1 to 0 and
(iii)  The line QO on which x = 0 and y varies from 1 to 0

Therefore taking P = 3x* —8y* and Q =4y —6xy, we find the given

integral is

I(de +Qdy)= I(de +Qdy)+ _[(de +Qdy)+ j(de +Qdy)

- Jl.3x2dx +jl[(3x2 ~8(1—x)’ )dx +[4(1— x)—-6x(1— x)[- dx)]+ j‘4y dy = g
(1)

on evaluating the integrals.

On the other hand, we find that
1-x

”(@_@jdxdy ”lOydxdy 1oj jydydx 10]{ 2} dx

x=0 y=0 0
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)

Figure 10.12

9.  Verify Green’s theorem for H(xy+ y2 )jX + de)/] where C is the
C

closed curve made up of the line y = x and the parabola, y = x2.

Solution: The two parts C; and C; of the given curve C and the region bounded
by the C are shown in figure below.

We note that along Ci: 'y = x? and x varies from 0 to 1 and

along C,: y = x and x varies from 1 to 0.

Therefore taking P = xy+ y® and Q = x*, we find that given integral is

I(de +Qdy) :J.(de + Qdy)+I(de +Qdy)

c (o C,
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_I Pdx + Qdy) =.l[ [( )ix+x XZ))],becauseyzx2

on Cy

= I [(x2 + x* Jx + x> (2xlx)| = J: [3x® + x* x| = % 1)

And

I Pdx + Qdy) =T [x +X )dx+ )dx)] , because y = x on C,
C, 1

[3x dx] =-1 @)

I—"—.O

Adding (1) and (2) we get the integral as

l(de+Qdy) 20" 26" 20 -
We find that
H[@—@]dxdy JJlc-2y)axay = [ ] (c-2y)ayax
xny
-1
= X.[O [— xZ — XS]dX = 2—0 ()

From (3) and (4), we note that

(P ﬁ(—_gjdxdy

Thus, the Green’s theorem is verified for the given integral.
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(1,1)
C, ~

Figure 10.13

10. Verify Green’s theorem for H(e’x sin y)dx + (e’x cos y)dy] where C is
c

the rectangle whose vertices are (0, 0), (=, 0), (r, n/2), (0, ©/2) .

Solution: Here the given rectangular boundary C is made up of the four lines
OA, AB, BC, CO shown in figure below.

Therefore taking P=esin y and Q =e " cosy, we find that given integral
is [ (Pdx+Qdy) = [ (Pdx+Qdy)+ [ (Pdx+Qdy)+ [(Pdx+Qdy)+ [(Pdx+Qdy)

C

OA AB BC co

Along OA:y =0, dy = 0, x varies from0 to

Along AB: x =r, dx = 0, y varies from 0 to n/2

Along BC: y =n/2, dy = 0, x varies from nto 0

Along CO: x =0, dx =0, y varies from /2 t0 0

[ (Pdx+Qdy)=0 1)

OA

I(de +Qdy)= _[e‘” cosydy=e™” )
AB 0

0
I(de +Qdy)= je’xdx —e" -1 3)
BC V4

0
j(de+Qdy)= Jcos ydy =-1 4
CcO Vg

2
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Adding equations (1), (2), (3) and (4)we get the given integral
[(Pdx-+Qdy)=0+e +(e" 1)+ (-1)=2(e ™ -1) (5)

C

We find that

H{———Jd dy = H Ze‘xcosy)dxdy——ZT f (e cos y )dy dx

x=0 y=0
= Z(e’” —1)
From (5) and (6), we note that

I(de +Qdy) Ij'(aa—g - %de dy

Thus, the Green’s theorem is verified for the given integral.

(6)

Y4
(7?', 7/2)
(0,7r/2) . -
A
o (Ua 0) (’.’F,O) d
Figure 10.14
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STOKE’S THEOREM
If ‘S be an open surface bounded by a closed curve C and

F= F1i+F2]+ F3E be vector point function having continuous first order
partial derivatives, then I F.dr= ” curl F-nds where n is a unit normal

vector at any point of S drawn in the sense in which a right in the sense of
description of C.

EXAMPLES

1. Using Stoke’s theorem, evaluate ” curl f-nds for

f=(y—z+2)i+(yz+4)j—xzk where S is the cubical surface
formed by the planes x=0, y=0, x =2, y = 2 and z= 2.

Solution: The rim C of the given surface is the square OPQR in the xy-plane,
where O(0, 0), P(2, 0), Q(2, 2), R(0, 2) we note that z=0 on the whole of C, x =
constant on PQ and RO, and y=constant on OP and QR.

.. By using Stoke’s theorem, we get

_[ curl f-n ds=_ﬁ-d?
S C

_jfdx+jfdy+jfdx+jfdy
PQ QR

_J' —z+2)dx+J.(yz+4)dy+.[( —z+2)dx+_|'(yz+4)dy

PQ QR RO

0 0
dy+ [4dx+ [4dy =4
2 2

o'—.m
o'—-.v\.:

Dr.K.V.Nageswara Reddy, AITS(Autonomous), Kadapa



2. Evaluate J. f. &by Stoke’s theorem, where f= y2i+ XZ] —(X + Z)R
C
and C is the boundary of the triangle with vertices at (0,0, 0), (1, 0, 0)
and (1, 1, 0).

Solution: Since z- coordinates of each vertex of the triangle is zero, therefore,
the triangle lies in the xy-plane and n-k

curl f=j+2(x-yk

curl f-n= G+2(x— y)E)-E =2(x-y)

The equation of the line OB is y=x

.. By using Stoke’s theorem, we get

IT-dT:jjcurl f-nds
C S

X

1 X 1 2
= [ [2x-y)ydx=2] {xy—y dx
x=0

x=0 y=0 2 o

11

1 2 1 3
:ZI x2 - X dx:szdx=x— =
x=0 2 x=0 3

o

Wl

3. Using Stoke’s theorem, evaluate J. [(x+ y)dx +(2x — z)dy + (y + z)dz]
c

where C is the boundary of the triangle with vertices at P(1, 0, 0), Q(0,
2, 0)and R(0, 0, 3).

Solution: We have

[ syl 2x=2)iy-+(y 2= [ oce )i (2x-2)j(y + ko

c
= If .dr = .“‘ curl f-nds by Stoke’s theorem.
c s

Where  f =(x+y)i+(2x—z)j+(y+2)k and S is any surface
having C as its rim.
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We may take the plane bounded by the given triangle PQR itself as S.

X z
The equation of this plane is I+%+§ =1, so that the direction ratios of its

it

normal are (1, %2, 1/3).

(1)

w |

Therefore ﬁ =

k
j =%(6i+3]+2k)

/1+1+1
4 9
i i k
Hence Curl f = 9 9 9 =2i+k
OX oy 0z
X+Yy 2X—-2 y+12

Therefore curl T -n = (2i + k)- %(ei +3]+2K)= %(12 +2)=2

Hence _U curl f-nds = H 2ds = 2 Awhere A is the area of the triangle PQR.
S S

l=x =5 7
We note that the area of the triangle PQR, A = E‘PQ X PR‘ = 3

Therefore J [(x+ y)dx +(2x —z)dy + (y + z)dz] = 2(9 =7

C

4.  Verify Stoke’s theorem for f= yi + z] +xk for the upper part of the

sphere x> +y*+z° =a’

Solution: The rim C of the given surface is the circle x> + y* =a® in the xy-

plane. Therefore the parametric equation C are
Xx=acost, y=asint, z=0;0<t<2x

Hence, If .dr = H y dx because z=0onC.
C C
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z
2

2
I(asint—acost)dt:—4azj'sin2t dt = -ra’ )
0 0

The given surface, S for which C is the rim is the upper part of the sphere
x*+y*+2° =a’

Thereforeon S, z> =a* - x* —y? z>0 )
0z oz —X - X
From this we find, 2— =—X,sothat — = — = ————
OX OX Z [az_x‘z_y2
- oz -y -y
Similarly, — = — = ——=——,
oy Z /az —x2—y?
chrl?-ﬁds:ﬂcurl?- K| Y geay (3)
: - a2 —x2—y2

Here S is the projection of s on the xy-plane which is the area bounded
by the circle x* +y* =a’.

For the given f, we find that

i j k
curl £ =& 2 i:—(i+j+k)
oXx oy oz
y z X
Using this in the r.h.s of (3), we get

[ (curt £)-nds=—[f (1+$}dxdy @)
J i 2 2 2
S S a —X -y

Changing to polar coordinates (r, 6) and noting that, in the circular area S, r
varies from 0 to a and 6 varies from 0 to 2, expression (4) reads

a

[ (curt f)-nds=- T

S r=0 =0

[1+ r(cosé +sin 0)

Jar-r?

jr dr d@
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a

— | 2frolr de{i %drjx@f (cos 6 +sin e)deﬂ

| r=0 6=0

o
= 272'?+0}:—7ra2 (5)

From (1) and (5), we note that _[1_“ -dr = Icurl f-nds
C S

Thus, stokes’ theorem is verified in the given case.

Figure 10.15

5.  Verify Stokes theorem for the vector field

?=(2x—y)i—(y22)j—(y22)ﬁ over the upper half surface of

x> +y? +2? =1 bounded by its projection on the xy-plane.

Solution: Let S be the upper half surface of x>+ y®+2z° =1 . The boundary
C of S is a circle in the xy-plane of radius unity and centre O (or origin).

Figure 10.16
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The equation of Care x> +y® =1, z=0.

Therefore the parametric equations of C are
x=cost, y=asint, z=0;0<t<2x

Hence, If -dr = ” [(2x - y)dx — yz?dy — y®z dz] because z = 0 on C.
C C

2z 27 2z
'[(Zcost—sin t )%dt = I(Zcost—sin t )(sin t)dt = I(—Zsin tcost+sin’t )t
0 0 0

27 2z

= I(—sin 2t+l(l—c052t))dt: lcosthLE(t—lsin ZtJ =7 (1)
2 2 2 2

0 0

Also Curl f =k

Curl f-n=k-n
[[ourt T-nds = [[ n-k ds = [[ (n-k) =% where
s S R ‘n‘k‘
R is the projection of x on xy-plane.
1 12 1 1
:”dxdy: I _[ dydx:zj \/1—x2dx:4j V1-x%dx
R x=-1y__1_x2 -1 0

1
= 4{2\/1— xzdx+%sin * x} = 4F Z} =r
0

)
From (1) and (2) we get

J'f-dF:”.curlT-ﬁds
C S

Therefore Stokes theorem verified.
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2

6.  If C is the circle of intersection of the sphere X* +y* +z° =a® and

the plane x+z=a, prove that I ydx+2dy + xdz = T
C

J2

Solution: We note that

.[ydx+2dy+xdz__|.(y|+21+xk) ”curlf -nds

C
where f = yi + z] +xk (1)
by stokes theorem. Here S is any, surface for which C is the rim. We can take

the portion of the plane x+z=a bounded by C itself as S. for this plane, the
direction ratios of the normal are (1, 0, 1). Therefore,

__i: —
n_\/z(|+k) )
Also, curl?=—(i+]+i) (3)

Putting (2) and (3) into (1), we get
[T-dr ==[[li+F+k)-(i+K)ds =—2[[ds=—2A @
C S \/E S

Where A is the area of the plane x+z=a bounded by C.
Since C is the circle of inter section of the sphere X + y* +z° = a”and

the plane x+z=a the radius of C is R =+/a® — p® , where p is the length of the
perpendicular from the centre of the sphere onto the plane. Since the origin is the

a

77

(The length of the perpendicular from the origin onto the plane ax+by+cz+d =0
d

VXa®

centre of the sphere, we note that p =

is

)
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22
~R= (az _a J =— consequently, the area bounded by C is

2

A—;sz—g(iJz—”az Putting this into (4), we get
J2 2 ' ’

- - ra® -—ra’

f-dr=-vJ2"—=

i RN

DIVERGENCE THEOREM

Let ‘S’ be the enclosed boundary surface of a region of volume V. Then, for a

vector field f defined inVandonS, I f.nds= .[div fdv. (1)
S \Y

Here ﬁ is the unit outward normal to S.

Note: If we take f = fli + fzj + f3E and use expression
n ds = (dy dz)i + (dz dx)j + (dx dy)k, we get

f.nds=fdydz+ f,dz dx+ f,dy dxthen equation (1) stated above as

follows:

([ 6, of, | Oy
.U(fldydz+ f,dz dx+ f3dxdy)__[\./”(§+g+a dxdy dz  (2)
This is the Cartesian form of the divergence theorem.

Remark: Whereas Stoke’s theorem converts a surface integral taken on an open
surface into the line integral over its boundary curve (rim), the divergence
theorem converts a surface integral on a closed surface into the volume integral
over the region enclosed by the surface.

EXAMPLES

1.  Forany closed surface S, prove that H curl f-nds=0.
S

Solution: By the divergence theorem, we have
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I curl f-nds= Jﬂ(div curl ?)dv =0 (sin ce div curl ?): 0
\%

S

Where V is the volume enclosed by S.

2. Evaluate _Ucurl r-nds whereS is a closed surface.
S

Solution: By the divergence theorem, we have

_Ucurl r-nds= m.(div F)dv , where V is the volume enclosed by S.
S \%

=[[[3 dv=3v (divr=3)
\
3. Use divergence theorem to show that J' Vr2.ds=6v, whereS is any
S

closed surface enclosing a volume V.
Solution: By the divergence theorem, we have

ISJV(rz)d§=ij(div av

zw(g%%}w [ffoav o

where V is the volume enclosed by S.

4. Evaluate _[J. f-nds, where T =(2x+32)i —(xz+y)j+(y? +2zk
S

where S is the surface of the sphere having centre at (3, -1, 2) and radius
3.

Solution: Let T = (2x+32)i — (xz+y)j +(y? + 2z , we have div f =3

Let V be the volume enclosed by the surface S. Then by the divergence theorem,
we have
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H?-ﬁds:ij(div?)dv::sjvﬂdv Y

S

But V is the volume of a sphere of a radius 3.

%;:(3)3 =367

Hence jj f.nds=3x367=1087
S

5. Evaluate J.J. f.nds, where f =xi+ y]+ zk and S is the surface of
S

the sphere X* +y* +2°> =a’.
Solution: Let f = xi + y] +zk we have div f =3

Let V be the volume enclosed by the surface S. Then by the divergence theorem,
we have_” fonds= ”J.(div?)dv = BIJ.IdV =3V
S \ \Y

4 4
But V is the volume of a given sphere = §7r(a)3 = gzzas
Hence ” Tonds=3x2za’ = 4ra’
S 3
6. If Sis a closed circuit enclosing a volume V and f=axi+ by] +czk,

where a, b, ¢ are constants. Prove that H fonds=(a+b+c)v
S

Solution: Let f =axi+ by]+ czk wehave divf =a+b+c

Let V be the volume enclosed by the surface S. Then by the divergence theorem,
we have

”T.ﬁ ds:_m(divT)dv:(a+b+c)H dV =(a+b+c)V

S \
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7. Using the divergence theorem, evaluate J.'[ fn ds, where
S

f =4xzi— yZ] + yzE and S is the surface of the cube bounded by
x=0,x=1,y=0,y=1 z=0, z=1.

Solution: Let f = 4xzi — yzi + yzE we have div f =4z — y.

Now, the divergence theorem yields
[ F-nds=[[[ldivF)av = [[[ (42 y)av
S \Y \Y

Where V is the volume of a given cube

1

Hence .U f-nds= jo jo ZJ'O(4z — y)dz dy dx

- | _io [222—yz](1)dy}dx== j [j [2—y]2dy}dx

x=0 | y=0

N A

8.  IfSisthesphere x* +y* +2° =a’, prove that

12
J;I (XdedZ +y3dzdx + z°dx dy) - EﬂaS

Solution: We recall that f = f1i+ f2]+ fsk

ﬂ?-ﬁ ds:jj(fldy dz + f,dz dx+ f,dx dy) 1)
S S

According we can write

ﬂ fonds= jj(x3dy dz + y*dz dx + z%dx dy) )
S S
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By taking f, = x%, f, =y?, f, =2z% orequivalently
f=x%i+y°j+2%k ()

Now if V is the volume of the given sphere, the divergence theorem

J;j?-ﬁds:j\ﬂdivTdv:B_U.[(xz+y2+zz)dV )

Over the given sphere we have 0<r <a=1,
0<0<r7z and 0<¢<27

yields

Where (r, 0, ¢) are spherical polar coordinates. Also dV =r?sin @dr dé d¢

..Equation (4) becomes

Hf nds= 3I ]E j r SInGdrd0d¢) —7ra using this in

r=0 6=0 =0
expression (2) we get the required results.

9. IfSisthesphere x* +y* +2° =k?, prove that

J;I (ax? +by? + 22 )ds— 3 ” (a+b+c)k*

Solution: Here the given surface S is ¢(X, y, z)= (X2 +yi+ 22)<2 =0, s0
that the unit outward normal to this surface is
Vo 2(xi+ y]+zE) B Xi + y]+zE
Vg 2 x* +y? + 22 k

M)

Here we consider vector f = fli + fzj + f3E then we have
— -1
f -n:E(x f+yf,+z1,)

According we can write

“?-ﬁds=_|:[(ax2+by2+czz)ds )
S S
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By taking f, =kax, f, =kby, f, =kcz orequivalently
= k(axi + by] + CZR) (3)
Thus, with f given by equation (3), we find that, div f = k(a+b+c)

Now the divergence theorem yields

[[ -nds={[[divfdv=k[[[(a+b+c)dV =k(a+b+c)

:k(a+b+c)gzk3 :%”(a+b+c)k4

4
(Since volume of the sphere, V = §7r k)

10.  Evaluate J. (yzi + zx] + xyR)- ds where S is the surface of the sphere,
S

prove that x* +y* +z° = a” in the first octant.

Solution: The surface of the region OABC is piece wise smooth and is
comprised of four surfaces

M S; — circular quadrant OBC in the yz-plane
(i) S, — circular quadrant OCA in the zx-plane
(iii) Sz - circular quadrant OAB in the xy-plane
(iv) S —surface ABC of the sphere in the first octant.

VA
C

Figure 10.17

Also in the yz-plane f= yzi + zx] + XyR by divergence theorem
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jdiv?dv:j?-d§+ﬁ-d§+ﬁ-d§+ﬁ-d§ (1)
Vv S, S, S, S

Now div f = %(y2)+ %(zx)+§(xy) =0 for the surface S, x =0

2 2 2 2

o _ a ar-y B a ar-y a4
I f-ds:f I (yzi)-(—dydzi):—j J' (yz)dydz = —2
S, 0 0 0 0 8
_ _ a4 _ _ a4
Similarly [ fas==" [ fas=="
S, 8 S, 8
: -3a’
Thus equation (1) becomes 0= 3 +'[f ds
_ _ 4
Hencejf -ds:3i
g 8
11.  Verify the divergence theorem for

= (x2 - yz)i + (y2 - zx)] + (22 - xy)l? over the rectangular
parallelepiped 0 < x < a, 0<y<b, 0<z<c.

Solution: For the given f = (x2 - yz)i + (y2 - zx)] + (z2 - xy)z , we have
div f =2(x+y+12).

.. If V is the volume of the given parallelepiped, we have

a b ¢
[div fdv=[2x+y+z)dv=2[ [ [ (x+y=+z)dzdydx
\ \ x=0 y=0 z=0 (1)
—abc(a+b+c)

Next, we note that the boundary surface S of the given parallelepiped is made up
of the following six faces:

S1: OABC, Sz OPQA, Ss3: OCSP, Si: PQRS, Ss: CSRB, Se: ABRQ

The unit outward normals to these faces are: — k, — J,—i, R, ] and i
respectively.
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[ Tonos= [[T-(Rbs= [Pyoxay=| [ryayox=22" @

Sy OABC OABC x=0 y=0 4

Similarly we find that

2,42

- - c’a
_g f-nds= 2 (3)
- b%c?
{3 f.nds= . (4)
Next,
[ f-nds= ”?-(—E)ds=— _U(c2 — xy)dxdy = j' i (c? — xy) dy dx
Sy PQRS PQRS x=0 y=0
=abc® — a’b’ (5)
Similarly find that
”T-ﬁ ds:abzc—ﬁ (6)
5, 4
H?-ﬁ ds:azbc—b202 (7)
Se 4
Adding expression (2) to (7), we get
_[[T-ﬁ ds = abc? +ab?c +a’bc = abc(a+b +¢) (8)

S

From equations (1) and (8) we obtain
Jdiv fav=[f.nds
\Y S

Thus for the given f and for the given region, the divergence theorem is
verified.
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Y
<

F o B

X

Figure 10.18

12.  Verify divergence theorem for f =4xi— 2y2] +2%k taken over the
region bounded by the cylinder x* +y* =4, z=0, z=3..

Solution: For the given div f =4 —4y +2z.

Jaxz 3

m.dlvfdv _m _[4 4y +27) dxdydz:j. IX J' (4—4y+2z)dzdy dx

x=-2 y__\[a_x22=0
2 ax? 2
- J' I 21dydx = I 424 — x? dx = 84{ Ja—x? +3sin 1—}
X=—2 y_ \/72 2 2 0
y=—4—
= 84sin *1]= 84{2 x ﬂ =847 1)

zZh 2-3

i

22+x2=4 0
\""
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Figure 10.19

To evaluate the surface integral, divide the closed surface S of the cylinder into 3
parts.

Si: The circular base in the plane z=0

Sz The circular top in the plane z=3

Ss: The curved surface of the cylinder given by the equation x* + y? = 4
Also

IT-F\ ds = ”?-ﬁds+ ﬂ?-ﬁds+ ”?-ﬁds

S S, S, S3

On S; (z=0), we have n=—k, f

Sothat f-n=(axi—2y*j)-(-k)=0
[[ f-nds=0 @)

Sy

On S; (z=3), we have n=k, f= 4xi—2y2]+9E

Sothat f-n= (4xi—2y2]+9E)-(E): 9
j f.nds :jjgdx dyzgﬂdxdy
S S, S,
= 9 x area of surface S, = 9(7r - 22)= 367 ?)
onSs x°+y*=4

A vector normal to the surface Ss is given by
V(x2 + y2)= 2Xi+2yj
~. N = aunit vector normal to the surface S

B 2xi +2yj B 2xi +2yj ( X2 4y :4)

eyt Liyg)
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?.ﬁ:(4X| 2y2j+z k)(xw;yj] 2x2 —y®

Also,onSs i.e, X*+y> =4, x=2c0s0, y = 2sind and ds = dx dy = 2d6 dz

To cover the whole surface Ss, z varies from 0 to 3 and 0 varies from 0 to 2=«

[ Tnas j j[z 2c0s0) — (2sin 6 Rdzdo
S3

0=0 z=0

_16j I[cos 0 —sin H]dzde 16I [cos 0 —sin 0] [ ,d

0=0 z=0

—48j [cos 0 —sin 9]d9 48“cos 0do - jsm 0deo

6=0 6=0

7l2
:48[4I Coszd9—0}248x4x%x%:48ﬂ' 4)

6=0
Adding expression (2), (3) and (4), we get
j f-nds=0+367+487 =84r (5)
S

From equations (1) and (5) we obtain

jdiv ?dv:ﬁ-ﬁds
\Y S

Thus for the given f and for the given region, the divergence theorem is
verified.
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