
For digital signals, both time and amplitude are discrete.

Scanned by CamScanner

D SEQUENCE REPRESENTATION :

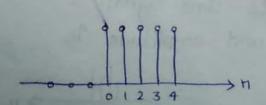
$$\chi(h) = \{1, 2, 3, 4, 3, 2, 3, 7\}$$

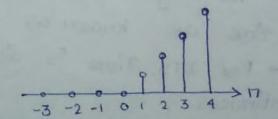
2) GRAPHICAL REPRESENTATION :

3) TABULAR METHOD:

							-		
M	-3	-2	-1	0	1	2	3	4	1
x(n)	1	2	3	4	3	2	3	7	1

4× FUNCTIONAL METHOD :


$$x(h) = \begin{cases} 1 & \text{fox } h = -3 \\ 2 & \text{fox } h = \pm 2 \\ 3 & \text{fox } h = \pm 1, 3 \\ 4 & \text{fox } h = 0 \\ 7 & \text{fox } h = 4 \end{cases}$$


STANDARD DISCRETE TIME SIGNALS:

I) UNIT STEP :

$$U(n) = \begin{cases} 1 & \text{for } n \ge 0 \\ 0 & \text{for } n < 0 \end{cases}$$

2) UNIT RAMP :

49 UNIT IMPULSE OR $p(n) = \begin{cases} n/2 & \text{for } n \ge 0 \\ 0 & \text{for otherwise} \end{cases}$ UNIT SAMPLE SEQUENCE SOME PROPERTIES OF UNIT IMPULSE : 1) U(n) - U(n-1) = 8(n) $\frac{1}{123} \longrightarrow \frac{1}{1234} \longrightarrow \frac{1}$ 2> $\delta(n-k) = \begin{cases} -t & \text{for } n=k \\ 0 & \text{for } n\neq k \end{cases}$ 3> $x(h) = \sum_{k} x(k) \delta(h-k)$ BASIC OPERATIONS OF DISCRETE TIME SIGNALS : 1> Time Stifting 2> Time Reversal/Folding 3> Time Scaling 4> Amplitude Scaling 5> Signal addition 6> Signal multiplication

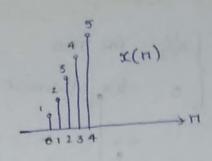
IN TIME SHIFTING :

The Time Shifting of a signal may result in time delay or time advance.

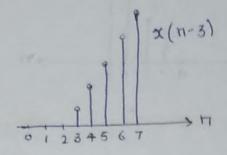
$$y(n) = x(n-k)$$

Ex:
$$x(n) = \{1, 2, 3, 4.5\}$$

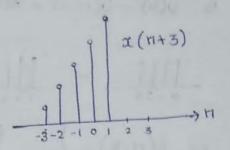
 $k=3$ $y(n) = x(n-3)$


$$y(3) = x(3-3) = x(0)$$

 $y(3) = 1$


$$y(4) = x(4-3) = x(1)$$

 $y(4) = 2$

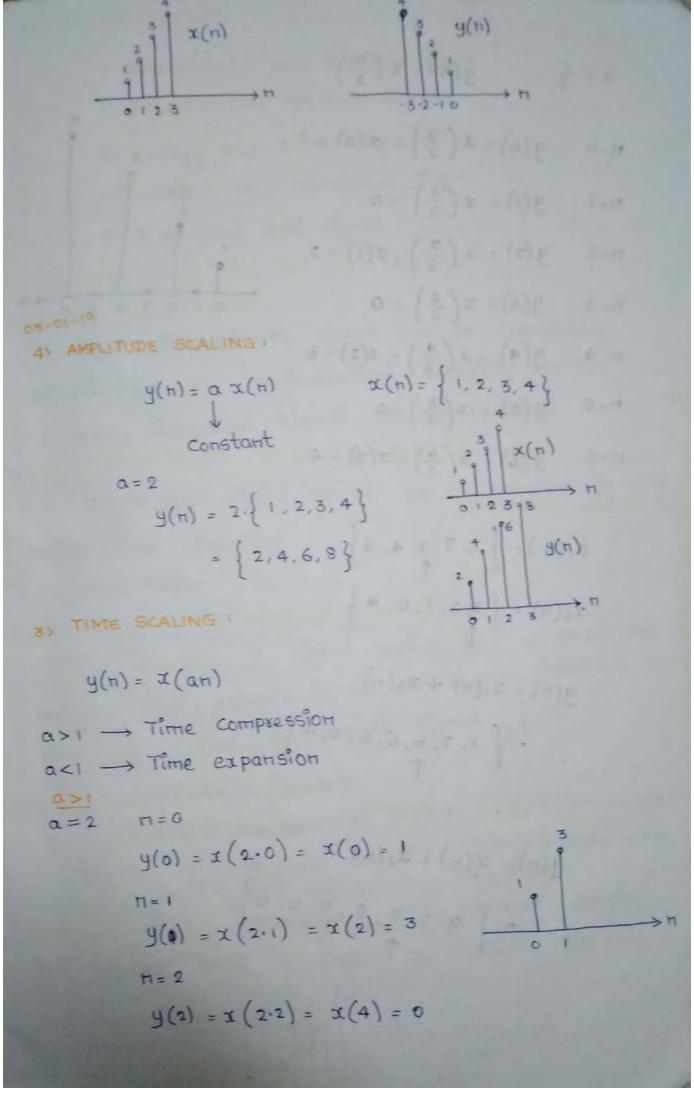

$$k = -3$$

 $y(n) = x(n+3)$

$$n+3=0$$
 $n=4$

$$y(-3) = x(-3+3) = x(0) = 1$$

 $y(-2) = x(-2+3) = x(1) = 2$


- -> If K = + ve, It is delayed and shifted to the sight side by K units.
- \rightarrow If K = -ve, It is advanced and shifted to the left. Side by K units.

2) TIME REVERSAL/TIME FOLDING :

The Time seversal signal is the reflection of the original signal and It is obtained by replacing the independent variable 'n' by '-n'.

$$x(n) = \{1, 2, 3, 4\}$$

$$y(n) = x(-n) = \{4, 3, 2, 1\}$$

Scanned by CamScanner

$$\alpha = \frac{1}{2} \qquad y(n) = x\left(\frac{n}{2}\right)$$

$$\pi=0$$
 $y(0)=x\left(\frac{0}{2}\right)=x(0)=1$

$$\pi=1 \quad y(1)=x\left(\frac{1}{2}\right)=0$$

$$\pi = 2$$
 $y(2) = x(\frac{2}{2}) = x(1) = 2$

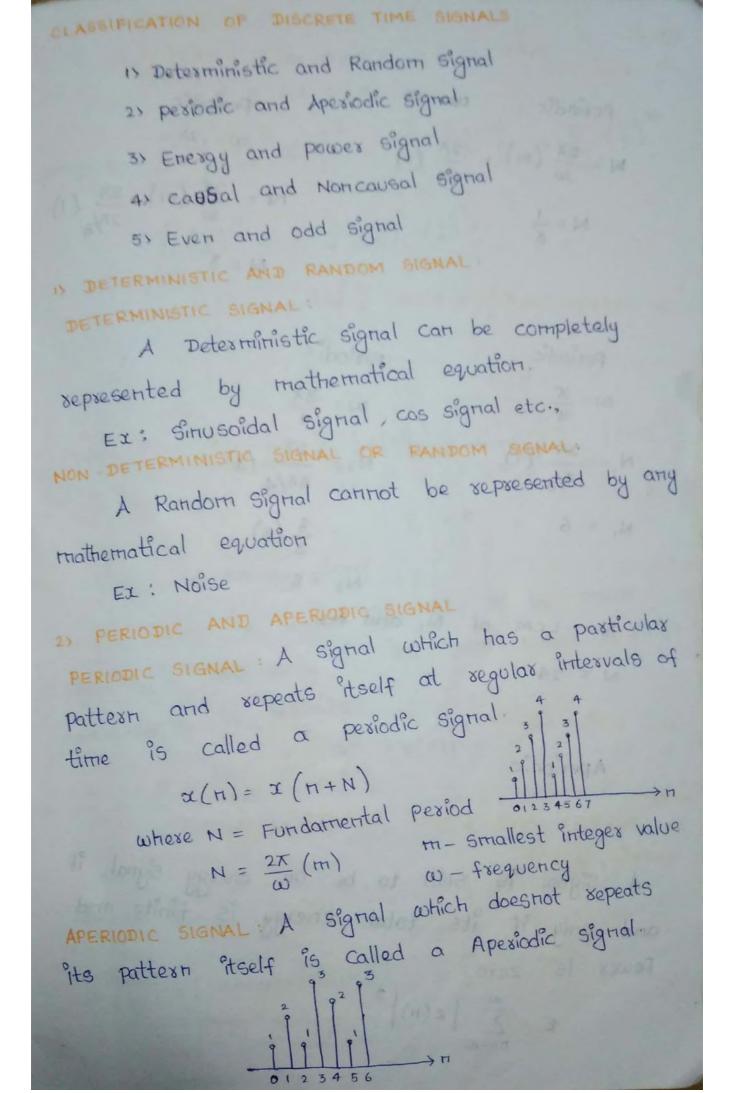
$$n=3$$
 $y(3)=x(\frac{3}{2})=0$

$$H=4$$
 $y(4) = x(\frac{4}{2}) = x(2) = 3$

$$n=5$$
 $y(5)=x\left(\frac{5}{2}\right)=0$

$$M=6$$
 $y(6) = x(\frac{6}{3}) = x(3) = 4$

5) SIGNAL ADDITION,


$$\hat{\alpha}_{2}(\Pi) = \left\{3, 2, 1, 0, 4\right\}$$

$$y(n) = x_1(n) + x_2(n)$$
= $\left\{1, 2, 6, 6, 6, 0, 4\right\}$

6) SIGNAL MULTIPLICATION :

$$g(n) = x(n) \times x_2(n)$$

$$= \{0,0,9,8,5,0,0\}$$

$n \times (n) = e^{\int 6 \times n}$ $n \times (n) = e^{\int 6 \times n} = e^{\int 6 \times$ Periodic w= 6x periodic $M = \frac{2\pi}{\omega} (m) = \frac{2\pi}{6\pi} (1) \qquad \omega = \frac{2\pi}{3}$ $N = \frac{2X}{\omega} (m) = \frac{2X}{2X/3} (1)$ N = -N = 3 3> $\chi(n) = \cos\left(\frac{\chi}{3}\right)n + \cos\left(\frac{3\chi}{4}\right)n$ periodic periodic $\omega = \frac{3\pi}{4}$ $\omega = \frac{\pi}{3}$ $N_{i} = \frac{2X}{N_{i}3} (1)$ $N_2 = \frac{2\Lambda}{3\pi/4} (3)$ N1 = 6 = 8 (3) $N_2 = 8$ N = LCM of N, and N2 N = 24Aperiodic 35 ENERGY AND POWER SIGNALS A signal is said to be an energy signal if ENERGY SIGNAL and only if its total energy is finite and Ties nighting of Power is Zevo $E = \sum_{h=-\infty}^{\infty} |x(h)|^2$

Existing
$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1}{$

Scanned by CamScanner

Power
$$P = \angle t$$
 $\frac{1}{N-\infty} \sum_{N\to\infty}^{N} |\chi(n)|^2 \angle t$ $\frac{1}{N-\infty} \sum_{N\to\infty}^{N} 2N+1 \sum_{n=N}^{N} |\chi(n)|^2 \angle t$ $\frac{1}{N-\infty} \sum_{N\to\infty}^{N} 2N+1 \sum_{n=N}^{N} |\chi(n)|^2 = \angle t$ $\frac{1}{N-\infty} 2N+1 \sum_{N\to\infty}^{N} 2N+1 \sum_{n=N}^{N} |\chi(n)|^2 = 2N+1 \sum_{N\to\infty}^{N} 2N+1 \sum_{n=N}^{N} |\chi(n)|^2 = 2N+1 \sum_{N\to\infty}^{N} 2N+1 \sum_{n=N}^{N} |\chi(n)|^2 = 2N+1 \sum_{n=N}^{N} |\chi(n)|^2 =$

$$x(n) = x_{e}(n) + x_{o}(n) \longrightarrow \emptyset$$
Replace n by -n
$$x(-n) = x_{e}(n) + x_{o}(-n)$$

$$x(-n) = x_{e}(n) - x_{o}(n) \longrightarrow \emptyset$$

$$0 + \emptyset$$

$$x(n) + x(-n) = 2x_{e}(n)$$

$$x_{e}(n) = \frac{1}{2} \left[x(n) + x(-n) \right]$$

$$x_{o}(n) = \frac{1}{2} \left[x(n) - x(-n) \right]$$

$$x(-n) = \begin{cases} 3, 1, 5, -2 \\ 1 \end{cases}$$

$$x(-n) = \begin{cases} 3, 1, 5, -2 \\ 1 \end{cases}$$

$$x(-n) = \begin{cases} -2, 3, 2, 3, -2 \\ 2 \end{cases}$$

$$x(n) = \frac{1}{2} \left[x(n) + x(-n) \right]$$

$$= \frac{1}{2} \left[-2, 3, 2, 3, -2 \right]$$

$$= \frac{1}{2} \left[-1, 4, 1, 4, -1 \right]$$

$$x_{o}(n) = \frac{1}{2} \left[x(n) - x(-n) \right]$$

$$= \frac{1}{2} \left[-2, 2, 0, -2, 2 \right]$$

$$= \left[-1, 1, 0, -1, 1 \right]$$

operation on imput signal and produces desired output signal.

* Systems are of two types

- 1> Continuous time system
- 2) Discrete time system

CLASSIFICATIONS OF DISCRETE TIME SYSTEMS :

- 1> Static and Dynamic system
- 2> causal and Non-causal system
- 3> Time Variant and Time-Invariant System
- 4> Linear and Non-linear System
- 5> Stable and Unstable System
- 6> FIR (Finite Impulse Response) and IIR (Infinite Impulse Response) system

STATIC AND DYNAMIC SYSTEM :

STATIC SYSTEM: A System is said to be Static or memory less System, if the output response depends only on present input but not on past or future imputs or Post outputs.

$$y(n) = x(n)$$

 $y(n) = 2x^{2}(n)$
 $y(n) = 3x(n)$

MINAMIC SYSTEM: A System is said to be dynamic or memory System, if the output response depends on past or future inputs or past output

$$y(n) = y(n-1) = x(n) + x(n-1)$$

 $y(n) = y(n-3) + x(n-1) + x(n) + x(n+2)$
 $y(n) = x(2n)$

2) CAUSAL AND NON-CAUSAL SYSTEMS

CAUSAL SYSTEM: A System is said to be causal, if the output of the System at instant 'n' depends on present and past values of the imput but not on future inputs.

$$y(n) = x(n) + x(n-1)$$

 $y(n) = 2x(n) + 3x(n-2)$

NON-CAUSAL SYSTEM: A System is said to be non-causal If the output of the System at instant in depends on present, past and future values of the inputs.

ent, past

$$y(n) = x(n) + x(n-1) + x(n+1)$$

 $y(n) = x(n) + 2x(n-1) + 3x(n+2)$

3) TIME INVARIANT AND TIME VARIANT SYSTEMS:

TIME INVARIANT SYSTEM: A system is said to be time invasiant if the input and output characteristics does not change with time. y(n, k) = y(n-k)

TIME VARIANT SYSTEM: A System is said to be time Variant if the imput and output characteristics change with time $y(n,k) \neq y(n-k)$

$$y(n,k) \neq y(n-k)$$

$$y(n,k) = n \times (n-k)$$

$$y(n,k) = x(n-k)$$

$$y(n,k) = x(n-k)$$

$$y(n,k) = x(n-k)$$

$$y(n,k) = x(n-k)$$

$$y(n,k) = y(n-k)$$

$$y(n,k) = y(n-k)$$

$$y(n,k) = x^{2}(n-k-2)$$

$$y(n,k) = x^{2}(n-k-2)$$

$$y(n,k) = y(n-k)$$

$$y(n,k) = y(n-k)$$

$$y(n,k) = y(n-k)$$

$$y(n,k) = y(n-k)$$

$$y(n,k) \neq y(n-k)$$

$$y(n,k) = x(\frac{n-k}{2})$$

$$y(n,k) = x(n-k)$$

$$y(n,k) = x(\frac{n-k}{2})$$

$$y(n,k$$

9(n) =
$$x_1^2(n)$$
 $y_2(n) = x_2^2(n)$
 $ag_1(n) + bg_2(n) = ax_1^2(n) + bx_2^2(n)$
 $y_3(n) = T \left[ax_1(n) + bx_2(n)\right]^2$
 $= \left[ax_1(n) + b^2x_2^2(n) + 2abx_1(n)x_3(n)\right]$

Lits $\neq R$ His

Non-Linear System

A System is stable if every bounded finput sesult in bounded output otherwise unstable system.

$$\sum_{n=-\infty}^{\infty} \left|h(n)\right| < \infty$$

Ex: $h(n) = \left(\frac{1}{2}\right)^n v(n)$

$$\sum_{n=-\infty}^{\infty} \left|\left(\frac{1}{2}\right)^n\right| < \infty$$
 $1 + \frac{1}{2} + \left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^3 + \cdots < \infty$

$$\frac{1}{1-\frac{1}{2}} < \infty$$

Stable System

2)
$$h(n) = u(n)$$

$$\sum_{n=0}^{\infty} |u(n)| < \infty$$

$$\sum_{n=0}^{\infty} 1 < \infty$$

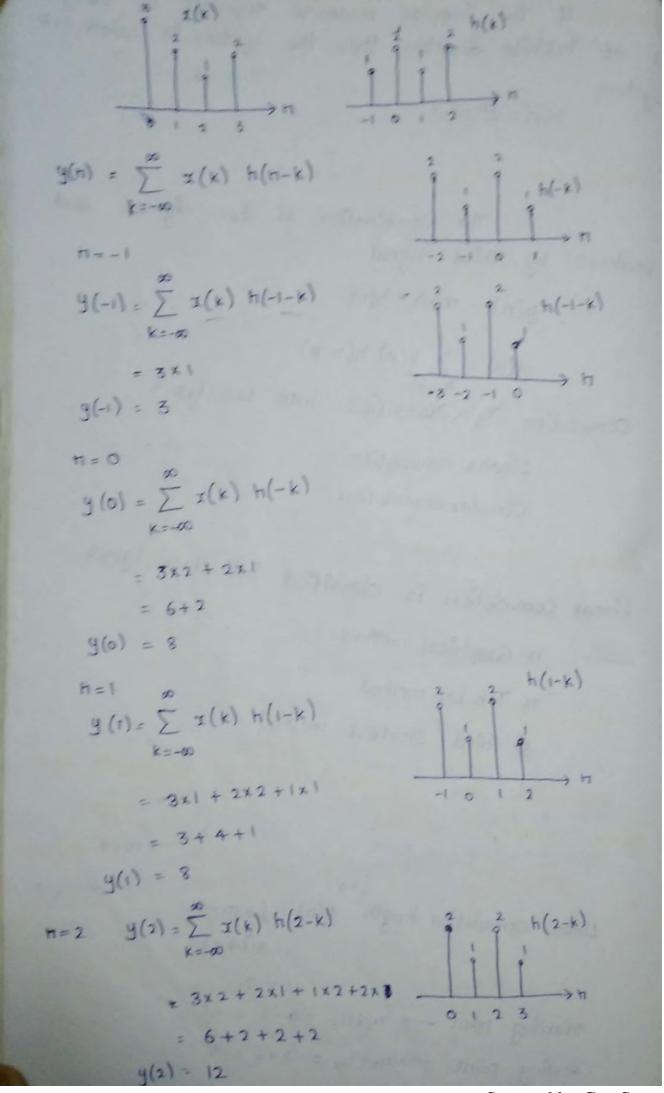
$$vonstable System$$
2) $y(n) = x(n) + \frac{1}{2}x(n-1) + \frac{1}{4}x(n-2)$

$$y(n) = h(n)$$

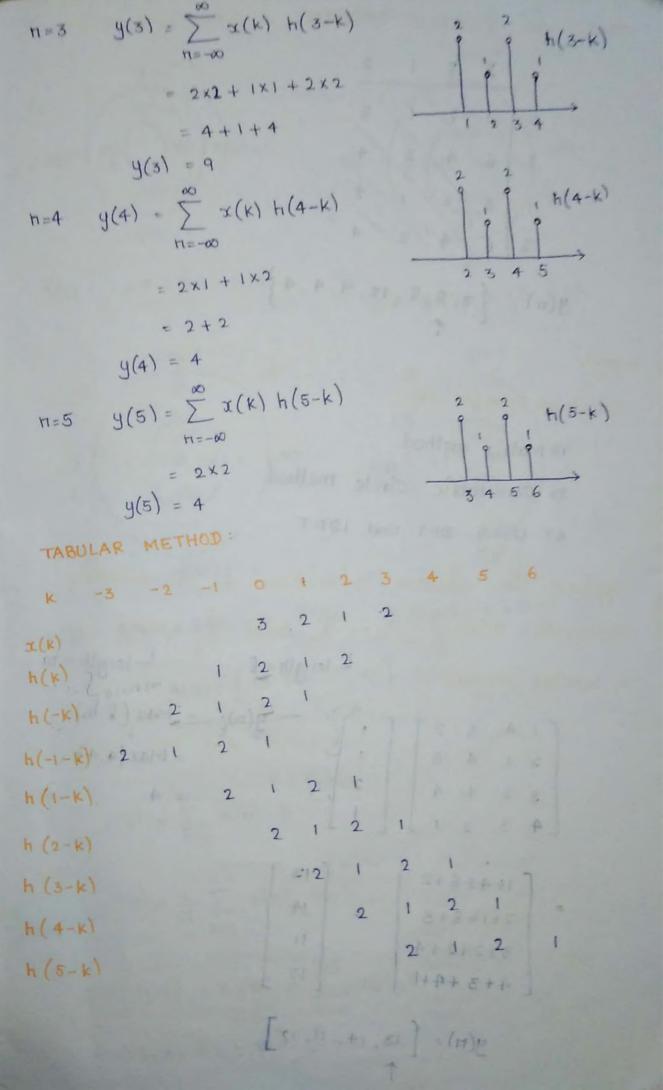
$$x(n) = \delta(n)$$

$$h(n) = \delta(n) + \frac{1}{2}\delta(n-1) + \frac{1}{4}\delta(n-2)$$

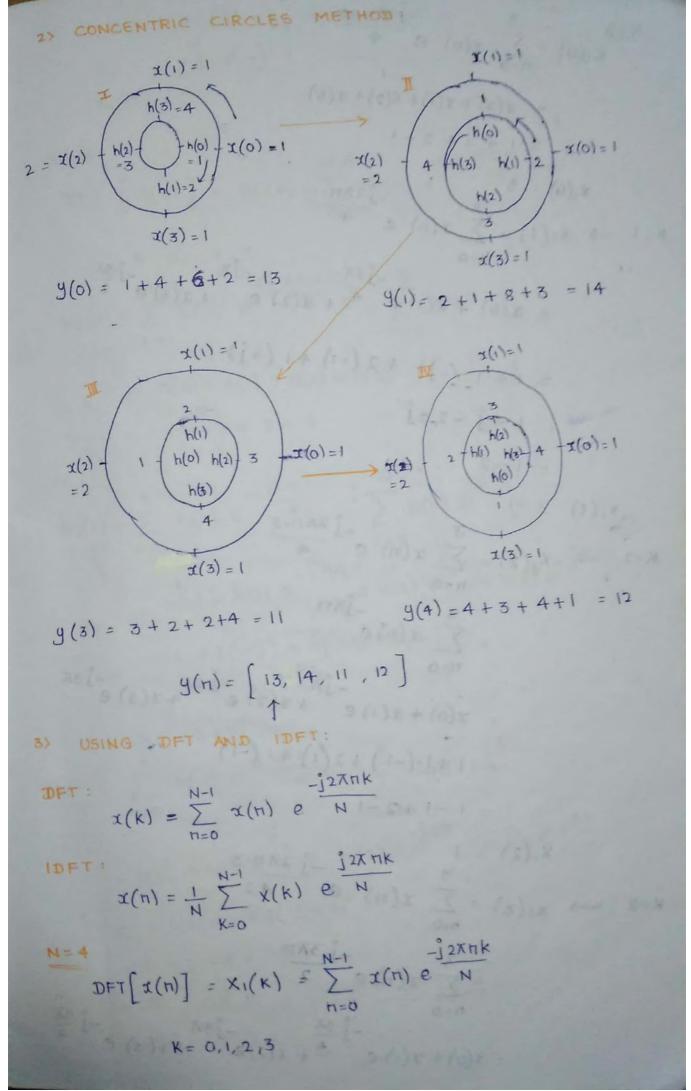
$$\sum_{n=-\infty}^{\infty} \left[\delta(n) + \frac{1}{2}\delta(n-1) + \frac{1}{4}\delta(n-2)\right] < \infty$$


$$1 + \frac{1}{2} + \frac{1}{4} < \infty$$

$$\frac{4+2+1}{3} < \infty$$


$$\frac{7}{3} < \infty$$
Stable System

6) FIR [Finite Impulse Response] and IIR [Infinite Impulse Response] Systems
$$\lim_{n \to \infty} \log n = \lim_{n \to \infty} \log$$


THE SYSTEM: If the impulse response sequence of the system is of Infinite duration, then the system is called IIR System Ex: h(n) = ah u(n) CONVOLUTION AND CORRELATION: The Combination of two signals and produces by third signal y(n) = x(n) * h(n) $y(n) = \sum_{k=0}^{\infty} x(k) h(n-k)$ Convolution is classified into two types Linear convolution Circular convolution LINEAR CONVOLUTION : Linear convolution is classified into three types 1> Graphical method 2) Tabular method 3> Third / shortcut method Determine the convolution of two sequences by Using graphical method. $x(n) = \{3, 2, 1, 2\} - \{1, 2, 1, 2\} \rightarrow m=4$ Linear convolution length y(n) = 1+m-1 = 4+4-1starting point $\rightarrow n_1+n_1=0-1=-1$ ending point $\rightarrow \pi_2 + \pi_2 = 3 + 2 = 5$

Scanned by CamScanner

Scanned by CamScanner

$$K=0 X_{1}(0) = \sum_{n=0}^{3} x(n) e^{-\frac{1}{2}X_{n}} \cdot 0$$

$$= x(0) + x(1) + x(2) + x(3)$$

$$= 1 + 1 + 2 + 1$$

$$x_{1}(0) = 5 -\frac{1}{2}X_{n} \cdot 1$$

$$= x(0) + x(1) e^{-\frac{1}{2}X_{n}} + x(2) e^{-\frac{1}{2}X_{n}} + x(3) e^{-\frac{1}{2}X_{n}}$$

$$= x(0) + x(1) e^{-\frac{1}{2}X_{n}} + x(2) e^{-\frac{1}{2}X_{n}} + x(3) e^{-\frac{1}{2}X_{n}}$$

$$= 1 + 1 + (-\frac{1}{3}) + 2 (-1) + 1 (+\frac{1}{3})$$

$$= 1 - 2$$

$$x_{1}(1) = -1$$

$$x_{1}(2) = \sum_{n=0}^{3} x(n) e^{-\frac{1}{3}X_{n}} + x(2) e^{-\frac{1}{3}X_{n}}$$

$$= x(0) + x(1) e^{-\frac{1}{3}X_{n}} + x(3) e^{-\frac{1}{3}X_{n}}$$

$$= 1 + 1 \cdot (-1) + 2(1) + 1 \cdot (-1)$$

$$= 1 - 1 + 2 - 1$$

$$x_{1}(2) = 1$$

$$x_{1}(2) = 1$$

$$x_{1}(3) = \sum_{n=0}^{3} x(n) e^{-\frac{1}{3}X_{n}} - \frac{1}{3}\frac{3}{4}\frac{7}{2}$$

$$= x(0) + x(1) e^{-\frac{1}{3}X_{n}} - \frac{1}{3}\frac{3}{4}\frac{7}{2}$$

$$= x(0) + x(1) e^{-\frac{1}{3}X_{n}} - \frac{1}{3}\frac{3}{4}\frac{7}{2}$$

$$= x(0) + x(1) e^{-\frac{1}{3}X_{n}} - \frac{1}{3}\frac{3}{4}\frac{7}{2}$$

$$= 1 + 1(j) + 2(-1) + 1(-j)$$

$$= (+j-2)^{-j}$$

$$\times_{1}(5) = -1$$

$$N = 4$$

$$DFT \left[h(n) \right] = H_{2}(K) = \sum_{n=0}^{N-1} h(n) e^{-j} \frac{2Xn \cdot K}{N}$$

$$H_{2}(0) = \sum_{n=0}^{3} h(n) e^{-j} \frac{2Xn \cdot O}{4} = \sum_{n=0}^{3} h(n)$$

$$= h(0) + h(1) + h(2) + h(3)$$

$$= 1 + 2 + 3 + 4$$

$$= 10$$

$$H_{2}(1) = \sum_{n=0}^{3} h(n) e^{-j} \frac{2Xn \cdot I}{4^{2}} = \sum_{n=0}^{3} h(n) e^{-j} \frac{Xn}{2}$$

$$= h(0) + h(1) e^{-j} \frac{X}{4^{2}} = \sum_{n=0}^{3} h(n) e^{-j} \frac{3Xn}{2}$$

$$= 1 + 2(-j) + 3(-1) + 4(+j)$$

$$= 1 - 2j - 3 + 4j$$

$$= -2 + 2j$$

$$= h(0) + h(1) e^{-j} \frac{2Xn \cdot I}{4} = \sum_{n=0}^{3} h(n) e^{-j} \frac{3Xn}{2}$$

$$= h(0) + h(1) e^{-j} \frac{3Xn \cdot I}{4} = \sum_{n=0}^{3} h(n) e^{-j} \frac{3Xn}{2}$$

$$= h(0) + h(1) e^{-j} \frac{3Xn \cdot I}{4} = \sum_{n=0}^{3} h(n) e^{-j} \frac{3Xn}{2}$$

$$= h(0) + h(1) e^{-j} \frac{3Xn \cdot I}{4} = \sum_{n=0}^{3} h(n) e^{-j} \frac{3Xn}{2}$$

$$= h(0) + h(1) e^{-j} \frac{3Xn \cdot I}{4} = \sum_{n=0}^{3} h(n) e^{-j} \frac{3Xn}{2}$$

$$= h(0) + h(1) e^{-j} \frac{3Xn \cdot I}{4} = \sum_{n=0}^{3} h(n) e^{-j} \frac{3Xn}{2}$$

$$= h(0) + h(1) e^{-j} \frac{3Xn \cdot I}{4} = \sum_{n=0}^{3} h(n) e^{-j} \frac{3Xn}{4}$$

$$= 1 + 2(-1) + 3(1) + 4(-1)$$

$$= 1 - 2 + 3 + -4$$

$$= 4 - 2 - 4$$

$$H_{2}(3) = \sum_{k=0}^{\infty} h(n) e^{-j\frac{2\pi n \cdot 3}{42}} = \sum_{k=0}^{\infty} h(n) e^{-j\frac{3\pi n}{42}}$$

$$= h(0) + h(1) e^{-j\frac{3\pi}{42}} + h(2) e^{-j\frac{3\pi}{42}} + h(3) e^{-j\frac{3\pi}{42}}$$

$$= 1 + 2 \binom{n}{3} + 3 \binom{n}{42} + 4 \binom{n}{42}$$

$$= 1 + 2 \binom{n}{3} + 3 \binom{n}{42} + 4 \binom{n}{42}$$

$$= 1 + 2 \binom{n}{3} + 3 \binom{n}{42} + 4 \binom{n}{42}$$

$$= 1 + 2 \binom{n}{3} + 3 \binom{n}{42} + 4 \binom{n}{42}$$

$$= 1 + 2 \binom{n}{3} + 3 \binom{n}{42} + 4 \binom{n}{42} + 4 \binom{n}{42}$$

$$= 1 + 2 \binom{n}{3} + 3 \binom{n}{42} + 4 \binom{n}{42} + 4$$

$$\eta_{3}(1) = \frac{1}{4} \sum_{k=0}^{3} y_{3}(k) e^{\frac{j 2 \pi k}{N_{4}}}$$

$$= \frac{1}{4} \left[y_{3}(0) + y_{3}(1) e^{\frac{j 2 \pi l}{2}} + y_{3}(2) e^{\frac{j 2 \pi l}{4}} + y_{2}(3) e^{\frac{j 2 \pi l}{4}} \right]$$

$$= \frac{1}{4} \left[50 + (2 - 2j) (e^{j}) + (-2) (-1) + (2 + 2j) (e^{j}) \right]$$

$$= \frac{1}{4} \left[50 + 2j - 2j^{2} + 2 - 2j^{2} - 2j^{2} \right]$$

$$= \frac{1}{4} \left[50 + 2 + 2 + 2 \right]$$

$$= \frac{1}{4} \left[56 \right]$$

$$y_{3}(1) = 14$$

$$\eta_{3}(2) = \frac{1}{4} \sum_{k=0}^{3} y_{3}(k) e^{\frac{j 2 \pi l}{4}} + y_{3}(2) e^{\frac{j 2 \pi l}{4}} + y_{3}(3) e^{\frac{j 2 \pi l}{4}}$$

$$= \frac{1}{4} \left[y_{3}(0) + y_{3}(1) e^{\frac{j 2 \pi l}{4}} + y_{3}(2) e^{\frac{j 2 \pi l}{4}} + y_{3}(3) e^{\frac{j 2 \pi l}{4}}$$

$$= \frac{1}{4} \left[y_{3}(0) + y_{3}(1) e^{\frac{j 2 \pi l}{4}} + y_{3}(2) e^{\frac{j 2 \pi l}{4}} + y_{3}(3) e^{\frac{j 2 \pi l}{4}} + y_{3$$

$$y_{3}(3) = \frac{1}{4} \sum_{k=0}^{3} y_{3}(k) e^{j\frac{3\pi}{4}} k$$

$$= \frac{1}{4} \sum_{k=0}^{3} y_{3}(k) e^{j\frac{3\pi}{2}} k$$

$$= \frac{1}{4} \left[y_{3}(0) + y_{5}(1) e^{j\frac{3\pi}{2}} + y_{3}(2) e^{j\frac{3\pi}{4}} + y_{5}(3) e^{j\frac{3\pi}{4}} \right]$$

$$= \frac{1}{4} \left[50 + (2 - 2j) (-j) + (-2) (-1) + (2 + 2j) (j) \right]$$

$$= \frac{1}{4} \left[50 - 2j + 2j^{2} + 2 + 2j + 2j^{2} \right]$$

$$= \frac{1}{4} \left[48 \right]$$

$$y_{3}(3) = 12$$

$$y(n) = \begin{cases} 13, 14, 11, 12 \end{cases}$$

$$y_{n} = \begin{cases} 13, 14, 11, 12 \end{cases}$$
The xelationship between two squals is called Coxselation.

Auto - Coxselation

2) Cxoss - Coxxelation

Auto - Coxrelation of given sequence
$$x(n) = \begin{cases} 1, 2, 4, 6 \end{cases}$$

$$x(n) = \begin{cases} 1, 2, 4, 6 \end{cases}$$

$$x(-n) = \begin{cases} 6, 4, 12, 1 \end{cases}$$

$$\begin{cases}
1, 2, 4, 6 \\
4, 2, 4, 6
\end{cases} * \{6, 4, 2, 1\} \\
1 & 2 & 4 & 6
\end{cases}$$

$$\begin{cases}
6 & 6 & 12 & 24 & 36 \\
4 & 4 & 8 & 16 & 24 \\
2 & 2 & 4 & 8 & 12
\end{cases}$$

$$\begin{cases}
1, 2, 4, 6
\end{cases} * \begin{cases}
4 & 8 & 16 & 24
\end{cases}$$

$$2 & 2 & 4 & 8 & 12
\end{cases}$$

$$\begin{cases}
1, 2, 4 & 6
\end{cases}$$

$$y(n) = \{6, 16, 54, 57, 34, 16, 6\}
\end{cases}$$
CROSS CORRELATION:
$$\begin{cases}
3h = x(n) * h(n) \\
3h = x(-n) * h(n)
\end{cases}$$

$$\begin{cases}
x(n) = \{1, 2, 7, 1\} \\
1, 2, 7, 1\} \\
1, 2, 7, 1\} \\
1, 2, 7, 1\}
\end{cases}$$

$$\begin{cases}
x(n) = \{1, 2, 7, 1\} \\
1, 2, 7, 1\} \\
1, 2, 7, 1\}
\end{cases}$$

$$\begin{cases}
1, 2, 7, 1 \\
1, 2, 7, 1\}
\end{cases}$$

$$\begin{cases}
1, 2, 7, 1 \\
1, 2, 7, 1
\end{cases}$$

$$\begin{cases}
1, 2, 7, 1 \\
1, 2, 7, 1
\end{cases}$$

$$\begin{cases}
1, 2, 7, 1 \\
1, 2, 7, 1
\end{cases}$$

$$\begin{cases}
1, 2, 7, 1 \\
1, 2, 7, 1
\end{cases}$$

$$\begin{cases}
1, 2, 7, 1 \\
1, 2, 7, 1
\end{cases}$$

$$\begin{cases}
1, 2, 7, 1 \\
1, 2, 7, 1
\end{cases}$$

$$\begin{cases}
1, 2, 7, 1 \\
1, 2, 7, 1
\end{cases}$$

$$\begin{cases}
1, 2, 7, 1 \\
1, 2, 7, 1
\end{cases}$$

$$\begin{cases}
1, 2, 7, 1 \\
1, 2, 7, 1
\end{cases}$$

$$\begin{cases}
1, 2, 7, 1 \\
1, 2, 7, 1
\end{cases}$$

$$\begin{cases}
1, 2, 7, 1 \\
1, 2, 7, 1
\end{cases}$$

$$\begin{cases}
1, 2, 7, 1 \\
1, 2, 7, 1
\end{cases}$$

$$\begin{cases}
1, 2, 7, 1 \\
1, 2, 7, 1
\end{cases}$$

$$\begin{cases}
1, 2, 7, 1 \\
1, 2, 7, 1
\end{cases}$$

$$\begin{cases}
1, 2, 7, 1 \\
1, 2, 7, 1
\end{cases}$$

$$\begin{cases}
1, 2, 7, 1 \\
1, 2, 7, 1
\end{cases}$$

$$\begin{cases}
1, 2, 7, 1 \\
1, 2, 7, 1
\end{cases}$$

$$\begin{cases}
1, 2, 7, 1 \\
1, 2, 7, 1
\end{cases}$$

$$\begin{cases}
1, 2, 7, 1 \\
1, 2, 7, 1
\end{cases}$$

$$\begin{cases}
1, 2, 7, 1 \\
1, 2, 7, 1
\end{cases}$$

$$\begin{cases}
1, 2, 7, 1 \\
1, 2, 7, 1
\end{cases}$$

$$\begin{cases}
1, 2, 7, 1 \\
1, 2, 7, 1
\end{cases}$$

$$\begin{cases}
1, 2, 7, 1 \\
1, 2, 7, 1
\end{cases}$$

$$\begin{cases}
1, 2, 7, 1 \\
1, 2, 7, 1
\end{cases}$$

$$\begin{cases}
1, 2, 7, 1 \\
1, 2, 7, 1
\end{cases}$$

$$\begin{cases}
1, 2, 7, 1 \\
1, 2, 7, 1
\end{cases}$$

$$\begin{cases}
1, 2, 7, 1 \\
1, 2, 7, 1
\end{cases}$$

$$\begin{cases}
1, 2, 7, 1 \\
1, 2, 7, 1
\end{cases}$$

$$\begin{cases}
1, 2, 7, 1 \\
1, 2, 7, 1
\end{cases}$$

19-01-19 LINEAR CONSTANT COEFFICIENT DIFFERENCE EQUATION:

General form of difference an nth order of LTI-DT system is

$$\sum_{k=0}^{N} a_{k} y(H-k) = \sum_{k=0}^{M} b_{k} x(H-k)$$

$$y(H) = -\sum_{k=0}^{N} a_{k} y(H-k) + \sum_{k=0}^{M} b_{k} x(H-k)$$

Total Response = Natural Response + Forced Response

Zexo imput Response zexo state Response

The Zexo 1/P response of the system depends only on the instal states of the system i.e., the imput is zero

The zero state response of the system is the response of the system due to imput alone, when the initial state of the system is zero

NATURAL RESPONSE :

Fox a DT-system, Natural Response is solution of homogenous equation.

$$\sum_{K=0}^{K=0} a_K A(\mu-K) = \sum_{K=0}^{M} p_K x(\mu-K)$$

Input is zeso

$$a_{0} y(n) + a_{1} y(n-1) + a_{2} y(n-2) + \cdots + a_{N} y(n-N) = 0$$

$$\left\{a_{0} = 1\right\}$$

$$y(n) + a_{1} y(n-1) + a_{2} y(n-2) + \cdots + a_{N} y(n-N) = 0$$

$$y(n) = \lambda^{n}$$

$$\lambda^{n} + a_{1} \lambda^{n-1} + a_{2} \lambda^{n-2} + \cdots + a_{N} \lambda^{n-N} = 0$$

$$\lambda^{n-N} \left[\lambda^{N} + a_{1} \lambda^{N-1} + a_{2} \lambda^{N-2} + \cdots + a_{N} \right] = 0$$

$$\lambda^{N} + a_{1} \lambda^{N-1} + a_{2} \lambda^{N-2} + \cdots + a_{N} = 0$$

$$\lambda^{N} + a_{1} \lambda^{N-1} + a_{2} \lambda^{N-2} + \cdots + a_{N} = 0$$

$$\lambda^{N} + a_{1} \lambda^{N-1} + a_{2} \lambda^{N-2} + \cdots + a_{N} = 0$$

$$\lambda^{N} + a_{1} \lambda^{N-1} + a_{2} \lambda^{N-2} + \cdots + a_{N} = 0$$

$$\lambda^{N} + a_{1} \lambda^{N-1} + a_{2} \lambda^{N-2} + \cdots + a_{N} = 0$$

$$\lambda^{N} + a_{1} \lambda^{N-1} + a_{2} \lambda^{N-2} + \cdots + a_{N} = 0$$

$$\lambda^{N} + a_{1} \lambda^{N-1} + a_{2} \lambda^{N-2} + \cdots + a_{N} = 0$$

$$\lambda^{N} + a_{1} \lambda^{N-1} + a_{2} \lambda^{N-2} + \cdots + a_{N} = 0$$

$$\lambda^{N} + a_{1} \lambda^{N-1} + a_{2} \lambda^{N-2} + \cdots + a_{N} = 0$$

$$\lambda^{N} + a_{1} \lambda^{N-1} + a_{2} \lambda^{N-2} + \cdots + a_{N} = 0$$

$$\lambda^{N} + a_{1} \lambda^{N-1} + a_{2} \lambda^{N-2} + \cdots + a_{N} = 0$$

$$\lambda^{N} + a_{1} \lambda^{N-1} + a_{2} \lambda^{N-2} + \cdots + a_{N} = 0$$

$$\lambda^{N} + a_{1} \lambda^{N-1} + a_{2} \lambda^{N-2} + \cdots + a_{N} y(n-N) = 0$$

$$\lambda^{N} + a_{1} \lambda^{N-1} + a_{2} \lambda^{N-2} + \cdots + a_{N} y(n-N) = 0$$

$$\lambda^{N} + a_{1} \lambda^{N-1} + a_{2} \lambda^{N-2} + \cdots + a_{N} y(n-N) = 0$$

$$\lambda^{N} + a_{1} \lambda^{N-1} + a_{2} \lambda^{N-2} + \cdots + a_{N} y(n-N) = 0$$

$$\lambda^{N} + a_{1} \lambda^{N-1} + a_{2} \lambda^{N-2} + \cdots + a_{N} y(n-N) = 0$$

$$\lambda^{N} + a_{1} \lambda^{N-1} + a_{2} \lambda^{N-2} + \cdots + a_{N} y(n-N) = 0$$

$$\lambda^{N} + a_{1} \lambda^{N-1} + a_{2} \lambda^{N-2} + \cdots + a_{N} y(n-N) = 0$$

$$\lambda^{N} + a_{1} \lambda^{N-1} + a_{2} \lambda^{N-2} + \cdots + a_{N} y(n-N) = 0$$

$$\lambda^{N} + a_{1} \lambda^{N-1} + a_{2} \lambda^{N-2} + \cdots + a_{N} y(n-N) = 0$$

$$\lambda^{N} + a_{1} \lambda^{N-1} + a_{2} \lambda^{N-2} + \cdots + a_{N} y(n-N) = 0$$

$$\lambda^{N} + a_{1} \lambda^{N-1} + a_{2} \lambda^{N-2} + \cdots + a_{N} y(n-N) = 0$$

$$\lambda^{N} + a_{1} \lambda^{N-1} + a_{2} \lambda^{N-2} + \cdots + a_{N} y(n-N) = 0$$

$$\lambda^{N} + a_{1} \lambda^{N-1} + a_{2} \lambda^{N-2} + \cdots + a_{N} y(n-N) = 0$$

$$\lambda^{N} + a_{1} \lambda^{N-1} + a_{2} \lambda^{N-2} + \cdots + a_{N} y(n-N) = 0$$

$$\lambda^{N} + a_{1} \lambda^{N-1} + a_{2} \lambda^{N-2} + \cdots + a_{N} y(n-N) = 0$$

$$\lambda^{N} + a_{1} \lambda^{N-1} + a_{2} \lambda^{N-2} + \cdots + a_{N} y(n-N) = 0$$

$$\lambda^{N} + a_{1} \lambda^{N-1} + a_{2} \lambda^{N-2} + \cdots + a_{N} y(n-N) = 0$$

$$\lambda^{N} + a_{$$

```
PROBLEM : The stand of the stan
      Find the Natural Response of the system defined
 by difference equation i.e., given by
                y(n) + 2 y(n-1) + y (n-2) = x(n) + x(n-1) 7 with initial
  conditions 4(-1) = 4(-2) = 1
         By using Homogenous equation, Imput texms
                                                                          The Homogenous equation is obtained by justing
                                                 Zero the input terms to zero. That is
  Should be
            y(n) + 2y(n-1) +y(n-2) =0 -> 1
           The homogenous solution is of the form
                         Substituting eqn(2) in eqn(2)
\lambda^{H} + 2\lambda^{H-1} + \lambda^{H-2} = 0
                            \lambda^{\Pi-2} \left[ \lambda^2 + 2\lambda + 1 \right] = 0
                                                       \lambda^2 + 2\lambda + 1 = 0
                                                         \lambda^2 + \lambda + \lambda + 1 = 0
                                                          \lambda(\lambda+1)+1(\lambda+1)=0
                                                                 (\lambda+1)(\lambda+1)=0
                                                                          \lambda_1 = -1, \lambda_2 = -1
                    Roots are repeated then the general form of
                                     yh(n) = (c1+c2n) (-1) n → 3
             Substituting n=0 in eqn 3
                                       9h (0) = (c1+c2 (0)) (-1)0
                                            y_h(0) = c_1 \longrightarrow 4
             substituting n=1 in eq. 17 (3)
                                        9h(1) = (c_1 + c_2)(-1)
                                            y_h(1) = -c_1 - c_2 \longrightarrow 6
```

Substituting
$$n=0$$
 in eqn(2)
$$y(0) + 2 y(-1) + y(-2) = 0$$

$$y(0) = -3 \longrightarrow 6$$
Substituting $n=1$ in eqn(2)
$$y(1) + 2 y(0) + y(-1) = 0$$

$$y(1) + 2 (-3) + 1 = 0$$

$$y(1) - 6 + 1 = 0$$

$$y(0) = C1$$

$$C_1 = -3$$
from eqn(3)
$$y(1) = -C1 - C2$$

$$5 = -(-3) - C2$$

$$5 = 3 - C2$$

$$C_2 = -2$$
Substituting c_1, c_2 values in eqn(3)
$$y(n) = (-3 - 2n)(-1)^{n}$$

$$y(n) = (-3 - 2n)(-1)^{n}$$
Find the Natural Response of the System defined by difference equation i.e. given by
$$y(n) - 4 y(n-1) + 4 y(n-2) = x(n) - x(n-1)$$
 with initial conditions $y(-1) = y(-2) = 1$

$$y(n) - 4 \ y(n-1) + 4 \ y(n-2) = x(n) - x(n-1) \rightarrow 0$$

$$y(-1) = y(-2) = 1$$
By using homogeneous equation, input terms

Should be zero
$$y(n) - 4 \ y(n-1) + 4y(n-2) = 0 \longrightarrow 0$$

$$y(n) = \lambda^{n}$$

$$\lambda^{n} - 4 \lambda^{n-1} + 4\lambda^{n-2} = 0$$

$$\lambda^{n-2} \left[\lambda^{2} - 4\lambda + 4 \right] = 0$$

$$\lambda^{2} - 2\lambda + 4 = 0$$

$$\lambda^{2} - 2\lambda - 2\lambda + 4 = 0$$

$$\lambda(\lambda - 2) - 2(\lambda - 2) = 0$$

$$(\lambda - 2) (\lambda - 2) = 0$$

$$\lambda_{1} = 2, \quad \lambda_{2} = 2$$
Roots are repeated, then
$$y_{n}(n) = (c_{1} + c_{2}n)(2)^{n} \longrightarrow \emptyset$$
substituting $n = 0$ in eqn \emptyset

$$y(0) = (c_{1} + 0) 2^{0}$$

$$y(0) = c_{1} \longrightarrow \emptyset$$
substituting $n = 0$ in eqn \emptyset

$$y(1) = (c_{1} + c_{2})(2)$$

$$y(1) = 2c_{1} + 2c_{2} \longrightarrow \emptyset$$
substituting $n = 0$ in eqn \emptyset

$$y(0) = 0 \longrightarrow \textcircled{b}$$

$$y(0) = 0 \longrightarrow \textcircled{b}$$

$$y(0) = 0 \longrightarrow \textcircled{b}$$

$$y(1) = 0 \longrightarrow \textcircled{b}$$

$$y(1) = 0 \longrightarrow \textcircled{b}$$

$$y(1) = -4 \longrightarrow \textcircled{d}$$

$$y(1) = -4 \longrightarrow \textcircled{d}$$

$$y(1) = -4 \longrightarrow \textcircled{d}$$

$$y(0) = 0 \longrightarrow \textcircled{d}$$

$$y(0) = 0 \longrightarrow \textcircled{d}$$

$$y(0) = 0 \longrightarrow \textcircled{d}$$

$$0 \longrightarrow \textcircled$$

4) A h M

A cos wh h Cos which the simulation of the system described affecting eqn
$$2$$
 in eqn 3

Substituting eqn 2 in eqn 3
 $1 + 2 \cdot \frac{1}{2} \cdot K + 1 \cdot K = \frac{1}{4} \cdot 0(2) + \frac{1}{2} \cdot 0(1)$
 $1 + 2 \cdot \frac{1}{2} \cdot K + 1 \cdot K = \frac{1}{4} \cdot 0(2) + \frac{1}{2} \cdot 0(1)$
 $1 + 2 \cdot \frac{1}{4} \cdot K + \frac{3}{4} \cdot \frac{3}{4}$
 $1 + 2 \cdot \frac{1}{4} \cdot K + \frac{3}{4} \cdot \frac{3}{4}$
 $1 + 2 \cdot \frac{1}{4} \cdot K + \frac{3}{4} \cdot \frac{3}{4}$
 $1 + 2 \cdot \frac{3}{4} \cdot K + \frac{3}{4} \cdot \frac{3}{4}$
 $1 + 2 \cdot \frac{3}{4} \cdot K + \frac{3}{4} \cdot \frac{3}{4} \cdot \frac{3}{4}$
 $1 + 2 \cdot \frac{3}{4} \cdot K + \frac{3}{4} \cdot \frac{3}$

$$y_{h}(n) = ?$$

$$y(n) + 2y(n-1) + y(n-2) = 0$$

$$y(n) = \lambda^{n}$$

$$\lambda^{n} + 2\lambda^{n-1} + \lambda^{n-2} = 0$$

$$\lambda^{n-2} \left[\lambda^{2} + 2\lambda + 1 \right] = 0$$

$$\lambda^{2} + 2\lambda + 1 = 0$$

$$\lambda^{2} + \lambda + \lambda + 1 = 0$$

$$\lambda (\lambda + 1) + 1(\lambda + 1) = 0$$

$$(\lambda + 1) (\lambda + 1) = 0$$

$$\lambda = -1, -1$$
Roots as expeated, then
$$y_{h}(n) = (c_{1} + c_{2}n) (-1)^{n} \longrightarrow \mathfrak{A}$$

$$y_{f}(n) = y_{p}(n) + y_{h}(n)$$

$$y_{f}(n) = \left(\frac{1}{2}\right)^{n} \cdot \frac{1}{3} + \left(c_{1} + c_{2}n\right) \left(-1\right)^{n} \longrightarrow \mathfrak{A}$$

$$y_{g}(n) = \frac{1}{3} + c_{1} \longrightarrow \mathfrak{A}$$

$$y_{g}(n)$$

Substituting
$$n=0$$
 in eqn 0
 $y(0) + 2y(-1) + y(-2) = (\frac{1}{2})^{0} y(0) + (\frac{1}{2})^{0-1} y(0-1)$
 $y(0) = 1 + 0$
 $y(0) = 1 + 0$
 $y(0) = 1 \longrightarrow 3$

Substituting $n=1$ in eqn 0
 $y(1) + 2y(0) + y(-1) = (\frac{1}{2})^{1} y(1) + (\frac{1}{2})^{1-1} y(1-1)$
 $y(1) + 2y(0) + y(-1) = (\frac{1}{2})^{1} y(1) + (\frac{1}{2})^{1-1} y(1-1)$
 $y(1) + 2 = \frac{3}{2}$
 $y(1) = -\frac{1}{2} \longrightarrow 3$

from eqn 0
 $y(0) = \frac{1}{3} + C1$
 $y(0) = \frac$

Fox ced Response

$$y_{1}(n) = \frac{1}{2} \cdot \frac{1}{6} + \frac{1}{6} \cdot \frac{1}{6} + \frac{1}{6} \cdot \frac{1}{6} \cdot \frac{1}{6} + \frac{1}{6} \cdot \frac{1}{$$

$$\lambda^{n-2} \left[\lambda^2 - 4\lambda + 4 \right] = 0$$

$$\lambda^2 - 4\lambda + 4 = 0$$

$$\lambda^2 - 2\lambda - 2\lambda + 4 = 0$$

$$\lambda \left(\lambda - 2 \right) - 2 \left(\lambda - 2 \right) = 0$$

$$\left(\lambda - 2 \right) \left(\lambda - 2 \right) = 0$$

$$\lambda = 2, 2$$

Roots axe xepeated, then
$$y_h(n) = \left(c_1 + c_2 n \right) \cdot 2^n \longrightarrow \textcircled{3}$$
forced Response $y_f(n) = (-1)^n \cdot \frac{2}{q} + (c_1 + c_2 n) \cdot 2^n$

$$y(0) = 1 \cdot \frac{2}{q} + (c_1 + 0) \cdot 11$$

$$y(0) = \frac{2}{q} + c_1 \longrightarrow \textcircled{3}$$

$$y(1) = -1 \cdot \frac{2}{q} + (c_1 + c_2) 2$$

$$y(1) = -\frac{2}{q} + 2c_1 + 2c_2 \longrightarrow \textcircled{9}$$
Substituting $n = 0$ in eq. $n = 0$

$$y(0) - 4 \cdot y(-1) + 4 \cdot y(-2) = (-1)^0 \cdot 0(0) + (-1)^{-1} \cdot 0(0-1)$$

$$y(-1) = y(-2) = 0$$

$$y(0) = 1 \longrightarrow \textcircled{3}$$

substituting
$$n=1$$
 in eqn ()

 $g(1)-4 \cdot 1+0=1-1$ {: $u(n)=1$ for $n \ge 0$ }

 $g(1)-4 \cdot 1+0=-1-1$ {: $u(n)=1$ for $n \ge 0$ }

 $g(1)=-2+4$ o for $n < 0$ }

 $g(1)=2 \longrightarrow \emptyset$

from eqn (6)

 $g(0)=\frac{2}{9}+C1$
 $1=\frac{2}{9}+C1$
 $C_1=1-\frac{2}{9}$
 $C_1=\frac{1}{9}$

from eqn (7)

 $g(1)=-\frac{2}{9}+2\cdot\frac{7}{9}+2\cdot\frac{7}{9}$
 $g(1)=-\frac{2}{9}+2\cdot\frac{7}{9}+2\cdot\frac{7}{9}$
 $g(1)=-\frac{2}{9}+2\cdot\frac{7}{9}+2\cdot\frac{7}{9}$
 $g(1)=-\frac{2}{9}+2\cdot\frac{7}{9}+2\cdot\frac{7}{9}$
 $g(1)=-\frac{2}{9}+2\cdot\frac{7}{9}+2\cdot\frac{7}{9}$
 $g(1)=-\frac{2}{9}+2\cdot\frac{7}{9}+2\cdot\frac{7}{9}+2\cdot\frac{7}{9}$
 $g(1)=-\frac{2}{9}+2\cdot\frac{7}{9}+2\cdot\frac{7}{9}+2\cdot\frac{7}{9}$
 $g(1)=-\frac{2}{9}+2\cdot\frac{7}{9}+2\cdot\frac{7}{9}+2\cdot\frac{7}{9}$
 $g(1)=-\frac{2}{9}+2\cdot\frac{7}{9}+2\cdot\frac{7}{9}+2\cdot\frac{7}{9}+2\cdot\frac{7}{9}+2\cdot\frac{7}{9}$
 $g(1)=-\frac{2}{9}+2\cdot\frac{7}{9}+2\cdot\frac{7}{9}+2\cdot\frac{7}{9}+2\cdot\frac{7}{9}$
 $g(1)=-\frac{2}{9}+2\cdot\frac{7}{9}+2\cdot\frac{7}{9}+2\cdot\frac{7}{9}+2\cdot\frac{7}{9}+2\cdot\frac{7}{9}$
 $g(1)=-\frac{2}{9}+\frac{7}{9}+2\cdot\frac{7}{$

Sub H=0 in eq.H 1

$$y(0) + 2 y(-1) + y(-2) = (\frac{1}{2})^{0} u(0) + (\frac{1}{2})^{0-1} u(0-1)$$

$$y(0) = -2$$

Sob n=1 in eqn()

$$y(1) + 2y(0) + y(-1) = (\frac{1}{2})^{1} \cdot 0(1) + (\frac{1}{2})^{1-1} \cdot 0(1-1)$$

$$y(1) + 2(-2) + 1 = \frac{1}{2} + 1$$

$$y(1) - 3 = \frac{3}{2}$$

$$y(1) = \frac{9}{2}$$

$$4 \text{ from eqn()} \qquad \text{from eqn()}$$

$$-2 = \frac{1}{3} + C1 \qquad \frac{9}{2} = \frac{1}{6} + \frac{7}{3} - C2$$

$$C_1 = -2 - \frac{1}{3} \qquad \frac{9}{2} = \frac{1 + 14}{6} - C2$$

$$C_2 = \frac{15}{6} - \frac{9}{2}$$

$$C_2 = \frac{15}{6} - \frac{9}{2}$$

$$C_1 = -\frac{1}{3} \qquad C_2 = -2$$

$$y_{+}(n) = (\frac{1}{2})^n \cdot \frac{1}{3} + (c_1 + c_2 n)(-1)^n \qquad C_2 = -2$$

$$y_{+}(n) = (\frac{1}{2})^n \cdot \frac{1}{3} + (\frac{1}{3} - 2n)(-1)^n \qquad C_2 = -2$$

$$y_{+}(n) = (\frac{1}{2})^n \cdot \frac{1}{3} + (\frac{1}{3} - 2n)(-1)^n \qquad C_2 = -2$$

$$y_{+}(n) = (\frac{1}{2})^n \cdot \frac{1}{3} + (\frac{1}{3} - 2n)(-1)^n \qquad C_2 = -2$$

$$y_{+}(n) = (\frac{1}{2})^n \cdot \frac{1}{3} + (\frac{1}{3} - 2n)(-1)^n \qquad C_3 = -2$$

$$y_{+}(n) = y_{+}(n) + y_{+}(n)$$

$$y_{+}(n) = y_{+}(n) + y_{+}(n)$$

$$y_{+}(n) = y_{+}(n) + y_{+}(n)$$

$$y_{+}(n) = (-1)^n \cdot k + 4(-1)^{n-2} \cdot k = (-1)^n \cdot 0(n) - (-1)^{n-1} \cdot 0(n-1)$$

$$(-1)^n \cdot k + 4(-1)^{n-1} \cdot k + 4(-1)^{n-2} \cdot k = (-1)^n \cdot 0(n) - (-1)^{n-1} \cdot 0(n-1)$$

$$n = 2$$

(-1)² k -4 (-1) 'k +4.1. k' = (-1)² U(2) + (-1) U(1)

$$k +4k +4k = 1+1$$

$$qk = 2$$

$$K = \frac{2}{q}$$

$$y_{h}(n) = ?$$

$$y(n) -4y(n-1) +4 y(n-2) = 0$$

$$y(n) = \lambda^{n}$$

$$\lambda^{n} -4 \lambda^{n-1} +4 \lambda^{n-2} = 0$$

$$\lambda^{n-2} \left[\lambda^{2} -4\lambda +4 \right] = 0$$

$$\lambda^{2} -4\lambda +4 = 0$$

$$\lambda^{2} -4\lambda +4 = 0$$

$$\lambda^{2} -2 \cdot 2\lambda +2^{2} = 0$$

$$\lambda = 2, 2$$

$$Roots ase sepeated, then
$$y_{h}(n) = (c_{1} + c_{2}\pi) 2^{n}$$

$$y(n) -4 y(-1) +4 y(-2) = (-1)^{n} \cdot \frac{2}{q} + (c_{1} + c_{2}\pi) 2^{n}$$

$$y(n) -4 \cdot 1 +4 \cdot 1 = 1 - 0$$

$$y(n) = 1$$

$$y(n) = (-1)^{n} \cdot 2 + (-$$$$

$$y(1) - 4\sqrt{1} + 4\sqrt{1} = -1 - 1$$

$$y(1) = -2$$

$$f_{XOTT} e_{YT}(3)$$

$$1 = \frac{2}{q} + C1$$

$$c_{1} = \frac{7}{q}$$

$$c_{1} = \frac{7}{q}$$

$$-2 = -\frac{7}{q} + 2\frac{7}{q} + 2e_{2}$$

$$c_{2} = -1 + \frac{1}{q} - \frac{7}{q}$$

$$c_{2} = \frac{-9+1-7}{q}$$

$$c_{2} = \frac{-16+1}{q}$$

$$c_{2} = \frac{-15}{q}$$

$$c_{3} = \frac{7}{q} + \frac{7}{q} + \frac{7}{q} = \frac{7}{q}$$

$$f_{1}(n) = (\frac{7}{q} - \frac{5}{3}n) 2^{n}$$

$$g_{1}(n) = g_{1}(n) + g_{1}(n)$$

$$g_{2}(n) = \frac{2}{q} (-1)^{n} + (\frac{7}{q} - \frac{5}{3}n) 2^{n}$$

Determine the impulse response of the gyptem

$$y(n) = 0.6 \ y(n-1) - 0.08 \ y(n-2) + x(n)$$
 $y(n) = 0.6 \ y(n-1) - 0.08 \ y(n-2) + x(n)$

From Lineas time invasiant discrete time system

 $\sum_{k=0}^{M} a_k \ y(n-k) = \sum_{k=0}^{N} b_k \ x(n-k)$
 $M \neq N$
 $y(n) = y_p(n) + y_h(n)$
 $y_p(n) = 0$
 $y(n) = 0 + y_h(n)$
 $y(n) = y_h(n)$

By using homogenous solution. Imput texms must be $y(n) = 0.6 \ y(n-1) - 0.03 \ y(n-2) + 0$
 $y(n) = \lambda^n$
 $y(n) = \lambda^n - 0.6 \ \lambda^{n-1} + 0.08 \ \lambda^{n-2} = 0$
 $\lambda^n - 0.6 \ \lambda^{n-1} + 0.08 \ \lambda^{n-2} = 0$
 $\lambda^2 - 0.6 \ \lambda + 0.08 = 0$
 $\lambda_1 = 0.4 \quad \lambda_2 = 0.2$

$$y_{h}(n) = C_{1}(0.4)^{n} + C_{2}(0.2)^{n}$$

$$foxced xesponse$$

$$y(n) = 0 + C_{1}(0.4)^{n} + C_{2}(0.2)^{n} \longrightarrow \emptyset$$

$$substituting n = 0 in above equation$$

$$y(0) = C_{1} + C_{2} \longrightarrow \emptyset$$

$$substituting n = 1 in eqn ①$$

$$y(1) = 0.4 C_{1} + 0.2 C_{2} \longrightarrow \emptyset$$

$$y(0) = 0.6 y(-1) - 0.08 y(-2) + x(0)$$

$$y(0) = 0.6 y(-1) - 0.08 y(-2) + x(0)$$

$$y(0) = 0 - 0 + 1$$

$$y(0) = 1 \longrightarrow \emptyset$$

$$substituting n = 1 in eqn ①$$

$$substituting n = 1 in eqn ①$$

$$y(1) = 0.6 y(0) - 0.03 y(-1) + x(1)$$

$$y(1) = 0.6 y(0) - 0.03 y(-1) + x(1)$$

$$y(1) = 0.6 y(0) - 0.03 y(-1) + x(1)$$

$$y(1) = 0.6 y(0) - 0.03 y(-1) + x(1)$$

$$y(1) = 0.6 y(0) - 0.03 y(-1) + x(1)$$

$$y(1) = 0.6 y(0) - 0.03 y(-1) + x(1)$$

$$y(1) = 0.6 y(0) - 0.03 y(-1) + x(1)$$

$$y(1) = 0.6 y(0) - 0.03 y(-1) + x(1)$$

$$y(1) = 0.6 y(0) - 0.03 y(-1) + x(1)$$

$$y(1) = 0.6 y(0) - 0.03 y(-1) + x(1)$$

$$y(1) = 0.6 y(0) - 0.03 y(-1) + x(1)$$

$$y(1) = 0.6 y(0) - 0.03 y(-1) + x(1)$$

$$y(1) = 0.6 y(0) - 0.03 y(-1) + x(1)$$

$$y(1) = 0.6 y(0) - 0.03 y(-1) + x(1)$$

$$y(1) = 0.6 y(0) - 0.03 y(-1) + x(1)$$

$$y(1) = 0.6 y(0) - 0.03 y(-1) + x(1)$$

$$y(1) = 0.6 y(0) - 0.03 y(-1) + x(1)$$

$$y(1) = 0.6 y(0) - 0.03 y(-1) + x(1)$$

$$y(1) = 0.6 y(0) - 0.03 y(-1) + x(1)$$

$$y(1) = 0.6 y(0) - 0.03 y(-1) + x(1)$$

$$y(1) = 0.6 y(0) - 0.03 y(-1) + x(1)$$

$$y(1) = 0.6 y(0) - 0.03 y(-1) + x(1)$$

$$y(1) = 0.6 y(0) - 0.03 y(-1) + x(1)$$

$$c_{1}+c_{2}=1$$

$$c_{1}-1=1$$

$$c_{1}=2$$

$$y_{h}(n) = c_{1} (o.4)^{n} + c_{2} (o.2)^{n}$$

$$y_{h}(n) = 2 (o.4)^{n} - 1 (o.2)^{n}$$
Determine impulse represe described by the different equation $y(n) + y(n-1) - 2y(n-2) = x(n-1) + 2x(n-2) = 0$

$$y(n) + y(n-1) - 2y(n-2) = x(n-1) + 2x(n-2) = 0$$

$$y(n) + y(n-1) - 2y(n-2) = x(n-1) + 2x(n-2) = 0$$

$$y(n) = y_{h}(n) + y_{h}(n)$$

$$y(n) = y_{h}(n) + y_{h}(n)$$

$$y(n) = y_{h}(n)$$

$$y(n) + y(n-1) - 2y(n-2) = 0$$

$$y(n) + x^{n-1} - 2x^{n-2} = 0$$

$$x^{n} + x^{n-1} - 2x^{n-2} = 0$$

$$(x+2) (x-1) = 0$$

$$x = -2, 1$$

Roots ase distinct
$$y(n) = C_1(1)^n + C_2(-2)^n \longrightarrow \emptyset$$
Here $M = N$. Then impulse response is added to the homogeneous solution
$$y_h(n) = C_1(1)^n + C_2(-2)^n + A \delta(n) \longrightarrow \emptyset$$
Sub $n = 0$ in eqn \emptyset

$$y(0) = C_1 + C_2 + A \longrightarrow \emptyset$$
Substituting $n = 1$ in eqn
$$y(1) = C_1 - 2C_2 + 0$$

$$y(1) = C_1 - 2C_2 + 0$$

$$y(2) = C_1 + C_2 \cdot A + 0$$

$$y(2) = C_1 + AC_2 \longrightarrow \emptyset$$
Substituting $n = 0$ in eqn \emptyset

$$y(0) + y(-1) - 2 y(-2) = x(-1) + 2 x(-2)$$

$$y(0) + 0 - 0 = 0$$

$$y(0) = 0$$
Substituting $n = 1$ in eqn \emptyset

$$y(1) + y(0) - 2y(-1) = x(0) + 2x(-1)$$

$$y(1) + 0 - 0 = 1 + 0$$

$$y(1) = 1$$

Substituting
$$n=2$$
 in eqn (1)

$$y(x) + y(1) = 2y(0) = x(1) + 2x(0)$$

$$y(2) + 1 - 0 = 0 + 2$$

$$y(2) = 1$$

$$y(2) = 1$$
from eqn (2)
$$c_1 + 2c_2 = 1$$

$$c_1 - 2c_2 = 1$$

$$c_1 + 4c_2 = 1$$

$$c_1 + 4c_2 = 1$$

$$c_2 = 0$$

$$A = -1$$

$$y(n) = 1 \cdot (1)^n + 0 \cdot (-2)^n + (-1) \cdot \delta(n)$$

$$y(n) = (1)^n - \delta(n)$$

$$y(n) = 0 \cdot (n-1)$$

$$y(n) = 0 \cdot (n-1)$$

FREQUENCY RESPONSE ANALYSIS OF DISCRETE TIME SYSTEM: The output y(n) of any LTI-DT's to an input x(n) can be obtained by convolution sum $y(n) = \sum_{k} h(k) x(n-k)$ h(n) -- Impulse response of system Let us consider a complex exponential input signal $x(n) = e^{j\omega n}$ y(h) = \sum h(k) \cdot e \in \omega(h-k) zejwh \sum h(k)e -jwk $y(n) = e^{j\omega n} \cdot H(e^{j\omega})$ Imput signal frequency response $\left[\chi(e^{j\omega}) = \sum_{n=0}^{\infty} \chi(n) \cdot e^{-j\omega n}\right]$ $H(e^{j\omega}) = |H(e^{j\omega})| e^{j\theta(\omega)}$ Magnitude phase response response Determine and plot the magnitude and phase response

Determine and plot the magnitude and phase response of $y(h) = \frac{1}{2} \left[x(h) + x(h-2) \right]$ $y(h) = \frac{1}{2} \left[x(h) + x(h-2) \right]$ $y(e^{j\omega}) = \sum_{n=0}^{\infty} y(n) e^{-j\omega n}$

$$= \sum_{n=-\infty}^{\infty} \frac{1}{2} \left[x(n) + x(n-2) \right] e^{-j\omega n}$$

$$= \frac{1}{2} \sum_{n=-\infty}^{\infty} x(n) e^{-j\omega n} + \frac{1}{2} \sum_{n=-\infty}^{\infty} x(n-2) e^{-j\omega n}$$

$$= \frac{1}{2} \left[x(e^{j\omega}) + \frac{1}{2} e^{-j2\omega} \right] \times (e^{j\omega})$$

$$= \frac{1}{2} \left[x(e^{j\omega}) + \frac{1}{2} e^{-j2\omega} \right]$$

$$= \frac{1}{2} \left[x(e^{$$

phase response
$$\left(H(e^{j\omega}) = \tan^{-1}\left(\frac{b}{a}\right)\right)$$

$$= \tan^{-1}\left[\frac{-\sin \omega}{1 + \cos 2\omega}\right] = \tan^{-1}\left[-\frac{2}{5}\sin \omega \cos \omega\right]$$

$$= \tan^{-1}\left[\frac{-\sin \omega}{\cos \omega}\right] = \tan^{-1}\left[-\tan \omega\right]$$

$$= -\omega \quad \text{for } H(e^{j\omega}) > 0$$

$$= -\omega + \pi \quad \text{for } H(e^{j\omega}) < 0$$

$$= -\omega + \pi \quad \text{for } H(e^{j\omega}) < 0$$

$$= -\omega + \pi \quad \text{for } H(e^{j\omega}) < 0$$

$$= -\omega + \pi \quad \text{for } H(e^{j\omega}) < 0$$

$$= -\omega + \pi \quad \text{for } H(e^{j\omega}) < 0$$

$$= -\omega + \pi \quad \text{for } H(e^{j\omega}) < 0$$

$$= -\omega + \pi \quad \text{for } H(e^{j\omega}) < 0$$

$$= -\omega + \pi \quad \text{for } H(e^{j\omega}) < 0$$

$$= -\pi / 6 \quad -\pi / 4 \quad -\pi / 3 \quad \pi / 2 \quad \pi / 4 \quad 0$$

$$= -\pi / 6 \quad -\pi / 4 \quad -\pi / 3 \quad \pi / 2 \quad \pi / 4 \quad 0$$

$$= -\pi / 6 \quad -\pi / 4 \quad -\pi / 3 \quad \pi / 2 \quad \pi / 4 \quad 0$$

$$= -\pi / 6 \quad -\pi / 4 \quad -\pi / 3 \quad \pi / 2 \quad \pi / 4 \quad 0$$

$$= -\pi / 6 \quad -\pi / 4 \quad -\pi / 3 \quad \pi / 2 \quad \pi / 4 \quad 0$$

$$= -\pi / 6 \quad -\pi / 4 \quad -\pi / 3 \quad \pi / 2 \quad \pi / 4 \quad 0$$

$$= -\pi / 6 \quad -\pi / 4 \quad -\pi / 3 \quad \pi / 2 \quad \pi / 4 \quad 0$$

$$= -\pi / 6 \quad -\pi / 4 \quad -\pi / 3 \quad \pi / 2 \quad \pi / 4 \quad 0$$

$$= -\pi / 6 \quad -\pi / 4 \quad -\pi / 3 \quad \pi / 2 \quad \pi / 4 \quad 0$$

$$= -\pi / 6 \quad -\pi / 4 \quad -\pi / 3 \quad \pi / 2 \quad \pi / 4 \quad 0$$

$$= -\pi / 6 \quad -\pi / 4 \quad -\pi / 3 \quad \pi / 2 \quad \pi / 4 \quad 0$$

$$= -\pi / 6 \quad -\pi / 4 \quad -\pi / 3 \quad \pi / 2 \quad \pi / 4 \quad 0$$

$$= -\pi / 6 \quad -\pi / 4 \quad -\pi / 3 \quad \pi / 2 \quad \pi / 4 \quad 0$$

$$= -\pi / 6 \quad -\pi / 4 \quad -\pi / 3 \quad \pi / 2 \quad \pi / 4 \quad 0$$

$$= -\pi / 6 \quad -\pi / 4 \quad -\pi / 3 \quad \pi / 2 \quad \pi / 4 \quad 0$$

$$= -\pi / 6 \quad -\pi / 4 \quad -\pi / 3 \quad \pi / 2 \quad \pi / 4 \quad 0$$

$$= -\pi / 6 \quad -\pi / 4 \quad -\pi / 3 \quad \pi / 2 \quad \pi / 4 \quad 0$$

$$= -\pi / 6 \quad -\pi / 4 \quad -\pi / 3 \quad \pi / 2 \quad \pi / 4 \quad 0$$

$$= -\pi / 6 \quad -\pi / 4 \quad -\pi / 3 \quad \pi / 2 \quad \pi / 4 \quad 0$$

$$= -\pi / 6 \quad -\pi / 4 \quad -\pi / 3 \quad \pi / 2 \quad \pi / 4 \quad 0$$

$$= -\pi / 6 \quad -\pi / 4 \quad -\pi / 3 \quad \pi / 4 \quad 0$$

$$= -\pi / 6 \quad -\pi / 4 \quad -\pi / 3 \quad \pi / 4 \quad 0$$

$$= -\pi / 6 \quad -\pi / 4 \quad -\pi / 3 \quad \pi / 4 \quad 0$$

$$= -\pi / 6 \quad -\pi / 4 \quad -\pi / 3 \quad \pi / 4 \quad 0$$

$$= -\pi / 6 \quad -\pi / 4 \quad -\pi / 3 \quad \pi / 4 \quad 0$$

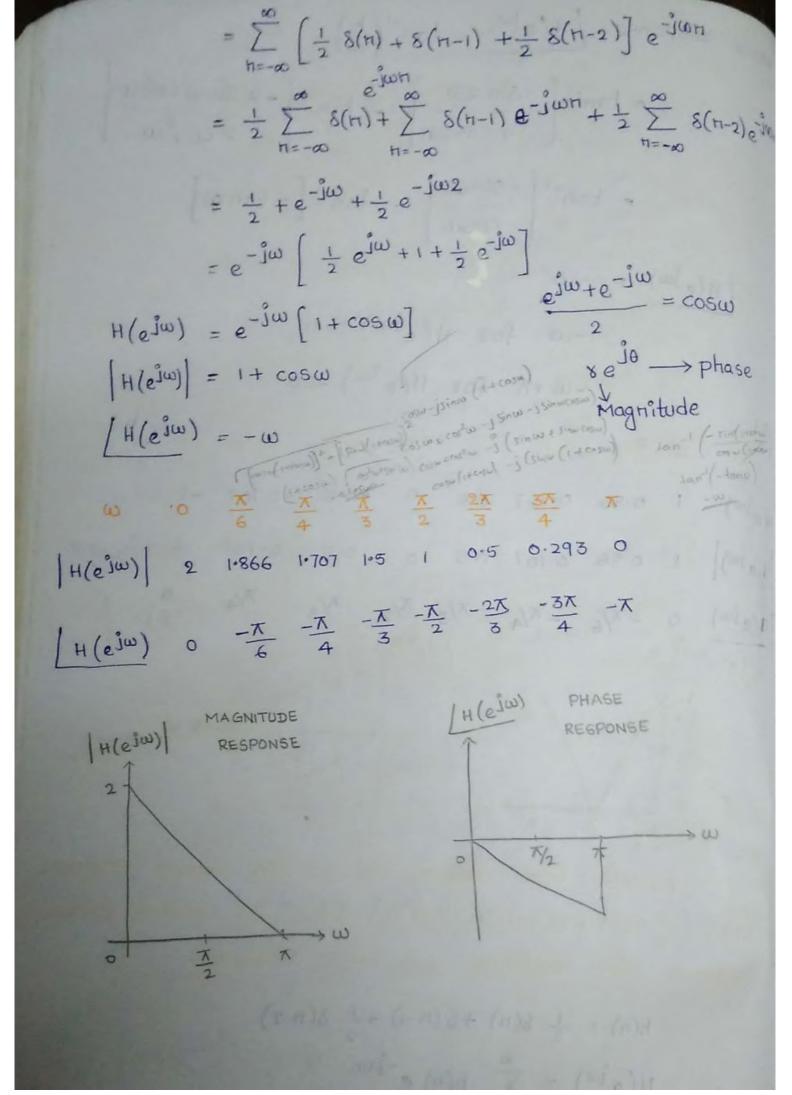
$$= -\pi / 6 \quad -\pi / 4 \quad -\pi / 3 \quad \pi / 4 \quad 0$$

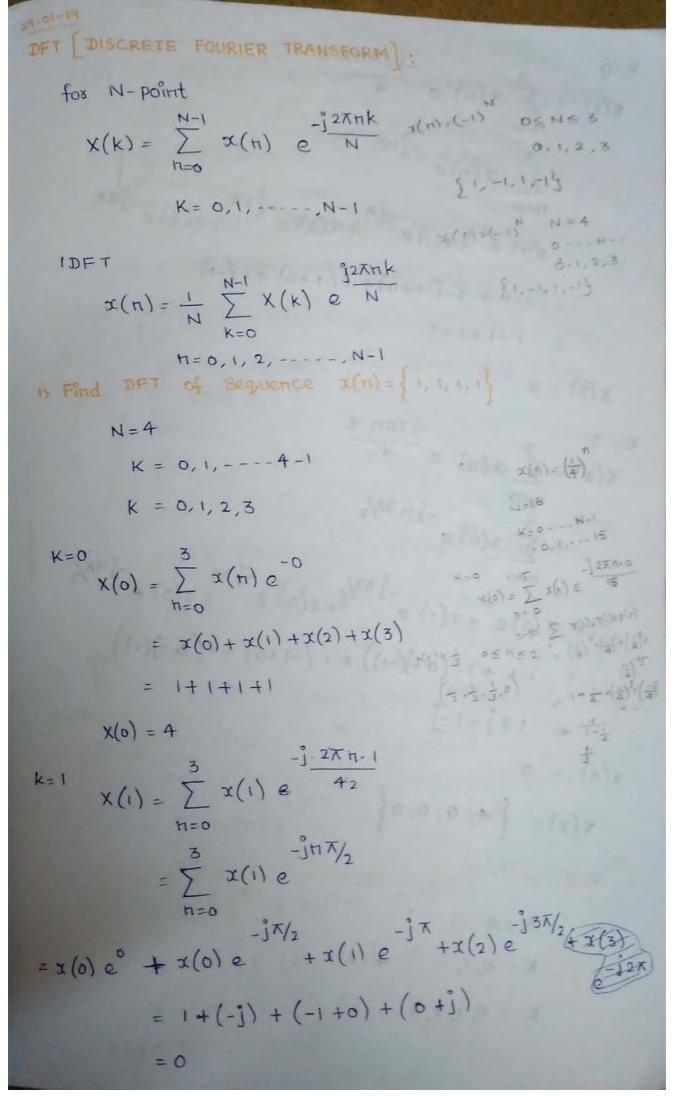
$$= -\pi / 6 \quad -\pi / 4 \quad -\pi / 3 \quad \pi / 4 \quad 0$$

$$= -\pi / 6 \quad -\pi / 4 \quad -\pi / 3 \quad \pi / 4 \quad 0$$

$$= -\pi / 6 \quad -\pi / 4 \quad -\pi / 3 \quad \pi / 4 \quad 0$$

$$= -\pi / 6 \quad -\pi / 4 \quad -\pi / 3 \quad \pi / 4 \quad 0$$


$$= -\pi / 6 \quad -\pi / 4 \quad -\pi / 3 \quad \pi / 4 \quad 0$$


$$= -\pi / 6 \quad -\pi / 4 \quad -\pi / 3 \quad \pi / 4 \quad 0$$

$$= -\pi / 6 \quad -\pi / 4 \quad -\pi / 3 \quad \pi / 4 \quad 0$$

$$= -\pi / 6 \quad -\pi / 4 \quad -\pi / 3 \quad \pi / 4 \quad 0$$

$$= -\pi / 6 \quad -\pi / 4 \quad -\pi /$$

Scanned by CamScanner

$$K=Q$$

$$X(2) = \sum_{h=0}^{3} x(h) e^{-\frac{1}{2}xh} \frac{2}{4}$$

$$= \sum_{h=0}^{3} x(h) e^{-\frac{1}{2}xh} \frac{2}{4}$$

$$= x(0) e^{0} + x(1) e^{-\frac{1}{2}xh} + x(2) e^{-\frac{1}{2}xh} + x(3) e^{-\frac{1}{2}xh}$$

$$= x(1+1) \cdot (-1+0) + x(1+0) + x(-1)$$

$$= x(2) = 0$$

$$K=3$$

$$X(3) = \sum_{h=0}^{3} x(h) e^{-\frac{1}{2}xh} \frac{2}{42}$$

$$= \sum_{h=0}^{3} x(h) e^{-\frac{1}{2}xh} \frac{2}{42}$$

$$= x(0) e^{0} + x(1) e^{-\frac{1}{2}xh} \frac{2}{42}$$

$$= x(0) e^{0} + x(1) e^{-\frac{1}{2}xh} \frac{2}{42} e^{-\frac{1}{2}xh} \frac{2}{42}$$

$$= x(0) e^{0} + x(1) e^{-\frac{1}{2}xh} \frac{2}{42} e^{-\frac{1}{2}xh} \frac{2}{42} e^{-\frac{1}{2}xh} \frac{2}{42}$$

$$= x(0) e^{0} + x(1) e^{-\frac{1}{2}xh} \frac{2}{42} e^{-\frac{1}{2}xh} \frac{2}$$

$$\begin{aligned}
K &= 3 \\
X(3) &= \sum_{h=0}^{3} x(h) e^{-\int_{1}^{3} \frac{2\pi h \cdot 3}{42}} \\
&= \sum_{n=0}^{3} x(n) e^{-\int_{1}^{3} \frac{3\pi}{2}} \\
&= x(0) e^{0} + x(1) e^{-\int_{1}^{3} \frac{3\pi}{2}} + x(2) e^{-\int_{1}^{3} \frac{3\pi}{2}} \\
&= x(1) + 1 \cdot (0 - \int_{1}^{3} (-1)) + 0 + 0
\end{aligned}$$

$$\begin{aligned}
X(3) &= x(1) + 1 \cdot (0 - \int_{1}^{3} (-1)) + 0 + 0
\end{aligned}$$

$$X(4) &= x(1) + 1 \cdot (0 - \int_{1}^{3} (-1)) + 0 + 0
\end{aligned}$$

$$X(5) &= x(1) + 1 \cdot (0 - \int_{1}^{3} (-1)) + 0 + 0
\end{aligned}$$

$$X(6) &= x(1) + 1 \cdot (0 - \int_{1}^{3} (-1) + 1 \cdot (0 - \int$$

$$x(3) = \frac{1}{4} \sum_{k=0}^{3} x(k) e^{j\frac{2x}{3}k}$$

$$= \frac{1}{4} \sum_{k=0}^{3} x(k) e^{j\frac{3x}{2}k}$$

$$= \frac{1}{4} \left[x(0) e^{0} + x(1) e^{-j} + x(2) e^{-j\frac{3x}{2}k} + x(3) e^{j\frac{3x}{2}k} \right]$$

$$= \frac{1}{4} \left[2 \cdot 1 + (1 - j) (0 - j) + 0 + (1 + j) (0 + j) \right]$$

$$= \frac{1}{4} \left[2 - 1 - 1 \right]$$

$$= \frac{1}{4} \left[2 - 2 \right]$$

$$x(3) = 0$$

$$x(n) = \begin{cases} 1, 1, 0, 0 \end{cases}$$

$$x(n) = \begin{cases} 1, 0, 0 \end{cases}$$

$$x(n) = \begin{cases} 1,$$

Scanned by CamScanner

$$x(0) + x(1) + x(2) + x(3)$$

$$= 1 + 1 - 1 - 1$$

$$x(0) = 0$$

$$x = 1$$

$$x(1) = \sum_{n=0}^{3} x(n) e^{-\frac{1}{2}x\pi n \cdot 1}$$

$$= x(0) e^{0} + x(1) e^{-\frac{1}{2}x\pi n \cdot 2}$$

$$= x(0) e^{0} + x(1) e^{-\frac{1}{2}x\pi n \cdot 2}$$

$$= x(1) + 1 \cdot (0 - j(1)) + (-1) (-1 - j(0)) + (-1) (0 - j(-1))$$

$$= (-\frac{1}{2} + 1 - j)$$

$$x(1) = 2 - 2j$$

$$x(2) = \sum_{n=0}^{3} x(n) e^{-\frac{1}{2}x\pi n \cdot 2}$$

$$= x(0) e^{0} + x(1) e^{-\frac{1}{2}x\pi n \cdot 2}$$

$$= x(0) e^{0} + x(1) e^{-\frac{1}{2}x\pi n \cdot 3}$$

$$= x(1) + 1 \cdot (-1 + 0) + (-1) (1 - 0) + (-1) (-1 - 0)$$

$$= (-1 - 1 + 1)$$

$$x(2) = 0$$

$$= x(3) = \sum_{n=0}^{3} x(n) e^{-\frac{1}{2}x\pi n \cdot 3}$$

$$= x(0) e^{0} + x(1) e^{-\frac{3}{1}5\pi/2} + x(2) e^{-\frac{3}{1}5\pi/2} + x(3) e^{-\frac{3}{1}9\pi/2}$$

$$= 1 \cdot 1 + 1 \cdot (0 \cdot j(-1)) + (-1)(-1 - 0) + (-1)(0 - j(1))$$

$$= 1 + j + 1 + j$$

$$x(3) = 2 + 2j$$

$$x(k) = \left\{0, 2 - 2j, 0, 2 + 2j\right\}$$
5) Find DFT of the Sequence $x(n) = x(n) + x(n-1)$

$$x(k) = \sum_{n=0}^{N-1} x(n) e^{-\frac{3}{2}2\pi nk}$$

$$= \sum_{n=0}^{N-1} \left[5(n) + 5(n-2)\right] e^{-\frac{3}{2}2\pi nk}$$

$$= \sum_{n=0}^{N-1} \left[5(n) + 5(n-2)\right] e^{-\frac{3}{2}2\pi nk}$$

$$= \sum_{n=0}^{N-1} \left[5(n) + \frac{3}{2}(n-2)\right] e^{-\frac{3}{2}2\pi nk}$$

$$= x(n) e^{-\frac{3}{2}2\pi nk} + x(n) e^{-\frac{3}{2}2\pi nk}$$

$$= 1 \cdot e^{0} + x(n) e^{-\frac{3}{2}2\pi nk}$$

$$= 1 \cdot e^{0} + x(n) e^{-\frac{3}{2}2\pi nk}$$

$$= x(n) = x(n) e^{-\frac{3}{2}2\pi nk}$$

$$= x(n)$$

$$\begin{array}{lll}
K_{=0} & & & & & & & & & \\
 & \times (0) & = \sum_{n=0}^{3} & \times (n) & e^{n} & & & & \\
 & = \sum_{n=0}^{3} & \times (n) & e^{n} & & & \\
 & = & \times (0) & + \times (1) & + \times (2) & + \times (3) & & \\
 & = & & & & & & & & \\
 & \times (0) & = & 3 & & & & & \\
 & \times (1) & = \sum_{n=0}^{3} & \times (n) & e^{n} & & & \\
 & = & & & & & & & & \\
 & = & & & & & & & & \\
 & = & & & & & & & & \\
 & = & & & & & & & & \\
 & = & & & & & & & & \\
 & \times (1) & = & & & & & & & \\
 & = & & & & & & & & \\
 & = & & & & & & & & \\
 & \times (1) & = & & & & & & & \\
 & = & & & & & & & & \\
 & = & & & & & & & & \\
 & \times (1) & = & & & & & & & \\
 & = & & & & & & & & \\
 & = & & & & & & & & \\
 & \times (1) & = & & & & & & \\
 & = & & & & & & & & \\
 & = & & & & & & & & \\
 & = & & & & & & & & \\
 & \times (1) & = & & & & & & \\
 & = & & & & & & & & \\
 & = & & & & & & & & \\
 & = & & & & & & & & \\
 & = & & & & & & & & \\
 & = & & & & & & & & \\
 & = & & & & & & & & \\
 & = & & & & & & & & \\
 & = & & & & & & & \\
 & = & & & & & & & \\
 & = & & & & & & & \\
 & = & & & & & & & \\
 & = & & & & & & & \\
 & = & & & & & & & \\
 & = & & & & & & & \\
 & = & & & & & & & \\
 & = & & & & & & & \\
 & = & & & & & & & \\
 & = & & & & & & & \\
 & = & & & & & & & \\
 & = & & & & & & & \\
 & = & & & & & & & \\
 & = & & & & & & & \\
 & = & & & & & & & \\
 & = & & & & & & & \\
 & = & & & & & & \\
 & = & & & & & & & \\
 & = & & & & & & \\
 & = & & & & & & \\
 & = & & & & & & \\
 & = & & & & & & \\
 & = & & & & & & \\
 & = & & & & & & \\
 & = & & & & & & \\
 & = & & & & & & \\
 & = & & & & & & \\
 & = & & & & & & \\
 & = & & & & & & \\
 & = & & & & & & \\
 & = & & & & & & \\
 & = & & & & & & \\
 & = & & & & & & \\
 & = & & & & & & \\
 & = & & & & & & \\
 & = & & & & & & \\
 & = & & & & & & \\
 & = & & & & & & \\
 & = & & & & & & \\
 & = & & & & & & \\
 & = & & & & & & \\
 & = & & & & & & \\
 & = & & & & & & \\
 & = & & & & & & \\
 & = & & & & & & \\
 & = & & & & & & \\
 & = & & & & & & \\
 & = & & & & & \\
 & = & & & & & & \\
 & = & & & & & & \\
 & = & & & & & & \\
 & = & & & & & & \\
 & = & & & & & & \\
 & = & & & & & \\
 & = & & & & & \\
 & = & & & & & & \\
 & = & & & & & & \\
 & = & & &$$

$$K = 3 \implies X(3) = \sum_{n=0}^{3} x(n) e^{-\frac{1}{3}\frac{2\pi n \cdot 3}{42}}$$

$$= \sum_{n=0}^{3} x(n) e^{-\frac{1}{3}\frac{3\pi}{2}}$$

$$= x(0) e^{0} + x(1) e^{-\frac{1}{3}\frac{3\pi}{2}}$$

$$= x(1) + 1 \cdot (0 - \frac{1}{3}(-1)) + 1 \cdot (-1 - 0) + 0$$

$$= (1 + \frac{1}{3} - 1)$$

$$X(3) = \frac{1}{3}$$

$$X(4) = \left\{3, 1, 1, 1\right\}$$

$$X(5) = \left\{3, 1, 1, 1\right\}$$

$$X(6) = \left\{3, 1, 1, 1\right\}$$

$$X(8) = \left\{0, -\frac{\pi}{2}, 0, \frac{\pi}{2}\right\}$$

$$X(9) = \sum_{n=0}^{7} x(n) e^{-\frac{1}{3}\frac{2\pi n \cdot 0}{N}}$$

$$= \sum_{n=0}^{7} x(n) e^{-\frac{1}{3}\frac{2\pi n \cdot 0}{N}}$$

$$X(0) = 3$$

$$X(0) = 3$$

$$X(1) = \sum_{n=0}^{7} x(n) e^{-\frac{1}{3}\frac{2\pi n \cdot 1}{N}}$$

$$= \chi(0)e^{0} + \chi(1)e^{-\frac{1}{2}X} + \chi(2)e^{-\frac{1}{2}2X} + 0 + 0 + 0 + 0$$

$$= 1 \cdot 1 + 1 \cdot (-1 - \frac{1}{2}(0)) + 1 (1 - \frac{1}{2}(0)) + 0$$

$$= 1 \cdot 1 + 1$$

$$\chi(4) = 1$$

$$\chi(4) = 1$$

$$= \frac{7}{2} \chi(n) e^{-\frac{1}{2}\frac{2X}{4}}$$

$$= \frac{7}{2} \frac{2X}{4} + \frac{7}{4}$$

$$= \chi(0)e^{0} + \chi(1)e^{-\frac{1}{2}\frac{5X}{4}} + \chi(2)e^{-\frac{1}{2}\frac{5X}{4}} + 0 + 0 + 0 + 0 + 0$$

$$= 1 \cdot 1 + 1 (-0.707 - \frac{1}{2}(-0.707)) + 1 (0 - \frac{1}{2}(1))$$

$$= 1 \cdot 0.707 + 0.707 - \frac{1}{2}$$

$$\chi(5) = 0.293 - 0.29$$

TWIDDLE FA	CTOR: $N-1 = \sum_{i=1}^{N-1} \alpha(r_i)$	-j 2XHK	→ 0	01
			9	(H)
MN	$h=0$ $-\int_{1}^{2x}$ $-\int_{1}^{2x}$	1000 11-11		=] -(4)
٧	$= e$ $\int_{N}^{2X} N$ $\int_{N}^{2X} = e$ $\int_{N}^{2X} N$	now page 1	smarrie o	
h	IN = 6 N	1 1 0/0-0	I MAC.	5 } = [(a)
Let	HK = 8			0 1 14 1
from $eA(2)$ $W_N = e^{-j\frac{2XX}{N}}$				
	MN = 6	N		
Fox N	$=8$ $W_8 = e$	2X8 - j X8 8 = e	Magnitude	phase
nk= 8	M8 = 6		1	0
0	$W_{8} = 1$ $W_{0} = 0$	于一点一点	1	-×/4
2	$W_8^2 = e^{-\frac{1}{3}\frac{7}{4}}$		(-T/2
Buseries	W8 = e-j	平=元づた	1014716 at	-3X/ ₄
4 15	W8 = e	X = -1	dollar and	sof- Timula
25 910	W8 = e	新 → = -1/2 + j -1/2	1	-57/4
1 1 3 3 4 1 1	W8 = e		Transport o	-37/2
7	W8 = 2	· j 7x = - 1/2 + j 1/2	Bananasa 1	-7 T/4
8	M8 = 6	-jox = 1	1	-21

Scanned by CamScanner

T nk= x	We = e = e + magnitude phase			
9	W8 = 0 4 = 1 - 1 1 - 9X			
10	$W_8 = e^{-\frac{1}{2}\frac{6X}{2}} - \frac{1}{2}$			
(1	$W_8'' = e^{-\frac{1}{4}\frac{11}{4}} = -\frac{1}{\sqrt{2}} - \frac{11}{\sqrt{2}}$			
ghagard 12	$W_8 = e^{-j3x} = -1$			
13	$W_8 = e^{-\frac{1}{3}\frac{3x}{4}} = -\frac{1}{52} + \frac{1}{52}$			
14 100	$W_8^{14} = e^{-j\frac{7X}{2}} = j$			
15	$W_8 = e^{-\frac{1}{4}\frac{5x}{4}} = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = $			
16	$W_8 = e^{-j4x} = 1$			
$W_8 = W_8^{13} = -\frac{1}{12} + \frac{1}{12}$ $W_8 = W_8^{13} = \frac{1}{12} + \frac{1}{12}$ $W_8 = W_8^{13} = \frac{1}{12} + \frac{1}{12}$ $W_8 = W_8^{13} = \frac{1}{12} + \frac{1}{12}$				
$W_{8} = W_{8}^{2} = I - Re \left\{ \begin{array}{c} (H)_{e} \times (H)_{e} \times$				
	$ S = -\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}$ $ S $			
	in general the othered version atti			
{(e-u)	x(s-u)x, $(s)x(t)x(t)x(t)x = (n)x$			

PROPERTIES OF THIRDIN CPACTOR 1) Wg = Wa = Wg = 1 $W_8' = W_8' = W_8'^7 = \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}$ WN = WN X+N = WN X+2N --- Periodic Property $W_8^2 = -W_8^5$ $W_N = -W_N$ $W_N = -W_N$ Symmetric Property DET PROPERTIES: 1 51+ 5 F SH 1) LINEARITY PROPERTY ! If two finite dusation Sequence x1(11) and x2(11) are $x_3(\mu) = \alpha x_1(\mu) + \beta x_2(\mu)$ linearly combined by Then $DFT \left[x_3(h) \right] = X_3(k) = a X_1(k) + b X_2(k)$ DET $\left[x_1(h) \right] = X_1(k) = \sum_{i=1}^{N-1} x_1(h) e^{-i \frac{2x_1k}{N}}$ DFT $\left[x_2(n) \right] = x_2(k) = \sum_{n=1}^{N-1} x_2(n) e^{-\frac{n}{2} \frac{2Xnk}{N}}$ DFT $\left[ax_1(h) + bx_2(h)\right] = \sum_{n=1}^{N-1} \left[ax_1(n) + bx_2(n)\right] e^{-\frac{i}{2}\frac{2x_1k}{N}}$ $= a \times_1(k) + b \times_2(k)$ DFT $\left[x_3(n) \right] = x_3(k) = ax_1(k) + bx_2(k)$ In general the shifted Version x(n)

 $x(n) = \{ x(0), x(1), x(2), \dots, x(N-2), x(N-1) \}$

$$x((n-1))_{N} = \left\{x(N-1), x(0), x(1), x(2), \dots, x(N-2)\right\}$$

$$x((n-2))_{N} = \left\{x(N-2), x(N-1), x(0), x(1), x(2), \dots, x(N-3)\right\}$$

$$x((n-k))_{N} = \left\{x(N-k), x(N-k+1), \dots, x(N-k+1)\right\}$$

$$x((n-k))_{N} = \left\{x(0), x(1), x(3), \dots, x(-1)\right\}$$

$$x((n) = x((n-n))_{N} = x(N+n-m)$$

$$x((n-m))_{N} = x(n-m)$$

$$x((n-m))_{N} = x(n-m)$$

$$x((n-m))_{N} = x(n-m)$$

$$x$$

STIME PEVERAL:

STMT

DET
$$\left[x(n)\right] = x(k)$$

DET $\left[x((-n))_{N}\right] = DET \left[x(N-n)\right] = x(N-k) = x((-k))_{N}$

PROOF

$$DET \left[x((-n))_{N}\right] = \sum_{h=0}^{N-1} x((-n))_{h}, e^{-\frac{j}{2}xhk}$$

$$= \sum_{h=0}^{N-1} x(N-n) \cdot e^{-\frac{j}{2}xhk}$$

$$= \sum_{h=0}^{N-1} x(N-n) \cdot e^{-\frac{j}{2}xhk}$$

$$= \sum_{h=0}^{N-1} x(1) \cdot e^{-\frac{j}{2}xhk} \cdot e^{-\frac{j}{2}xhk}$$

$$= x(N-k)$$

$$= x((-n))_{N} = x((-n))_{N}$$

$$= x((-n))_{N} = x((-n))_{N}$$

CIRCULAR FREQUENCY SHETT

STMT:

$$DFT \left[x(n) \right] = X(k)$$

$$DFT \left[x(n) e^{\frac{j2x^2n}{N}} \right] = X((k-1))_N$$

PROOF:
$$DFT \left[x(n) e^{\frac{j2x^2n}{N}} \right] = \frac{\sum_{n=0}^{N-1} x(n) e^{\frac{j2x^2n}{N}} e^{\frac{j2$$

$$= \sum_{n=0}^{N-1} \left[x(n) e^{\frac{1}{2} \frac{2 \pi n k}{N}} \right]^{\frac{1}{2}}$$

$$= \sum_{n=0}^{N-1} \left[x(n) e^{\frac{1}{2} \frac{2 \pi n k}{N}} e^{-\frac{1}{2} \frac{2 \pi n k}{N}} \right]^{\frac{1}{2}}$$

$$= \sum_{n=0}^{N-1} \left[x(n) e^{\frac{1}{2} \frac{2 \pi n k}{N}} e^{-\frac{1}{2} \frac{2 \pi n k}{N}} \right]^{\frac{1}{2}}$$

$$= x^{\frac{1}{2}} (N-k)$$

$$= x^{\frac{1}{2}}$$

Scanned by CamScanner

$$= \sum_{m=0}^{N-1} x_{1}(m) e^{-\frac{1}{N} \frac{2Xmk}{N}} \cdot x_{2}(k)$$

$$= X_{1}(k) X_{2}(k)$$

$$\therefore DFT \left[x_{1}(n) * x_{2}(n) \right] = X_{1}(k) X_{2}(k)$$

$$DFT \left[x_{1}(n) x_{2}(n) \right] = \frac{1}{N} \left[x_{1}(k) * x_{2}(k) \right]$$

$$= \sum_{n=0}^{N-1} x_{1}(n) x_{2}(n) = \sum_{n=0}^{1} x_{1}(n) x_{3}(n) e^{-\frac{1}{N} \frac{2Xnk}{N}}$$

$$= \sum_{n=0}^{N-1} x_{1}(n) x_{2}(n) e^{-\frac{1}{N} \frac{2Xnk}{N}}$$

04-01-19 PARSEVALS THEOREM PROPERTYS STMT: If DFT [x(n)] = x(k)DFT (Y(n)) = Y(K) $\sum_{k=1}^{N-1} x(k) y^{*}(k) = \frac{1}{N} \sum_{k=1}^{N-1} x(k) y^{*}(k)$ then PROOF : $\sum_{N-1} x(u) y^{*}(u) = \sum_{N-1} \frac{1}{N} \sum_{N} x(k) e^{-\frac{1}{N} N} y^{*}(u)$ $= \frac{1}{N} \sum_{k=0}^{N-1} x(k) \sum_{n=0}^{N-1} y^*(n) e^{-N}$ $= \frac{1}{N} \sum_{k=0}^{N-1} x(k) \sum_{h=0}^{N-1} \left[y(h) e^{-\frac{1}{N} 2 \pi h k} \right]^{\frac{1}{N}}$ $=\frac{1}{N}\sum_{k=0}^{N-1}x(k).y^{*}(k)$ $\sum_{N-1} x(u) y^*(u) = \frac{1}{N} \sum_{k=1}^{N-1} x(k) y^*(k)$ FILTERING LONG DURATION SEQUENCE: Suppose x(n) is long duration sequence and it is to be processed with a system having impulse response of finite duration by convolving two Sequences Because of length of input sequence it we not be practical to Store it all before performing Linear convolution. Therefore, the input sequence must be divided into be

The Successive blocks are processed separately and the results are combined to desired output sequence which is identical to the sequence obtained by linear convolution

Two methods commonly used are

- * overlap Save method
- * Overlap Add method

Find the output y(n) of a filter to the whose impulse response $h(n) = \{1,1,1\}$ and input $x(n) = \{3,-1,0,1,3,2,0,1,2,1\}$ using overlap save method and overlap add method.

OVERLAP SAVE METHOD:

Given
$$h(n) = \{1, 1, 1\}$$
 $\longrightarrow M = 3$ $oc(n) = \{3, -1, 0, 1, 3, 2, 0, 1, 2, 1\}$

Assume l=3

$$\alpha_{1}(h) = \left\{\begin{array}{c} 0.0.3, -1.0 \right\}$$
 $(M-1)$ o's are first M data

added Points.

$$\alpha_2(n) = \{-1, 0, 1, 3, 2\}$$

last (M-1) data

Points of Previous

block

$$\alpha_{3}(n) = \left\{3,2,0,1,2\right\}$$

$$y_{4}(n) = \begin{cases} 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 &$$

$$h(n) = \{1, 1, 1\}'$$

$$h(n) = \{1, 1, 1, 0, 0\}'$$

$$y_1(n) = x_1(n) \text{ (i) } h(n)$$

$$\begin{cases}
1 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 1
\end{cases}$$

$$\begin{cases}
1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1
\end{cases}$$

$$\begin{cases}
1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1
\end{cases}$$

$$\begin{cases}
1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1
\end{cases}$$

$$\begin{cases}
1 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 1
\end{cases}$$

$$\begin{cases}
1 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 & 0
\end{cases}$$

$$\begin{cases}
1 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 & 0
\end{cases}$$

$$\begin{cases}
1 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 & 0
\end{cases}$$

$$\begin{cases}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 & 0
\end{cases}$$

$$\begin{cases}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 & 0
\end{cases}$$

$$\begin{cases}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 & 0
\end{cases}$$

$$\begin{cases}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 & 0
\end{cases}$$

$$\begin{cases}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 & 0
\end{cases}$$

$$\begin{cases}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 & 0
\end{cases}$$

$$\begin{cases}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 & 0
\end{cases}$$

$$\begin{cases}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 & 0
\end{cases}$$

$$\begin{cases}
1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1
\end{cases}$$

$$\begin{cases}
1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1
\end{cases}$$

$$\begin{cases}
1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1
\end{cases}$$

$$\begin{cases}
1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1
\end{cases}$$

$$\begin{cases}
1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1
\end{cases}$$

$$\begin{cases}
1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1
\end{cases}$$

$$\begin{cases}
1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1
\end{cases}$$

$$\begin{cases}
1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1
\end{cases}$$

$$\begin{cases}
1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1
\end{cases}$$

$$\begin{cases}
1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0
\end{cases}$$

$$\begin{cases}
1 & 0 & 0 & 0 & 0 & 0
\end{cases}$$

$$\begin{cases}
1 & 0 & 0 & 0 & 0 & 0
\end{cases}$$

$$\begin{cases}
1 & 0 & 0 & 0 & 0 & 0
\end{cases}$$

$$\begin{cases}
1 & 0 & 0 & 0 & 0 & 0
\end{cases}$$

$$\begin{cases}
1 & 0 & 0 & 0 & 0 & 0
\end{cases}$$

$$\begin{cases}
1 & 0 & 0 & 0 & 0 & 0
\end{cases}$$

$$\begin{cases}
1 & 0 & 0 & 0 & 0 & 0
\end{cases}$$

$$\begin{cases}
1 & 0 & 0 & 0 & 0 & 0
\end{cases}$$

$$\begin{cases}
1 & 0 & 0 & 0 & 0 & 0
\end{cases}$$

$$\begin{cases}
1 & 0 & 0 & 0 & 0 & 0
\end{cases}$$

$$\begin{cases}
1 & 0 & 0 & 0 & 0 & 0
\end{cases}$$

$$\begin{cases}
1 & 0 & 0 & 0 & 0 & 0
\end{cases}$$

$$\begin{cases}
1 & 0 & 0 & 0 & 0
\end{cases}$$

$$\begin{cases}
1 & 0 & 0 & 0 & 0
\end{cases}$$

$$\begin{cases}
1 & 0 & 0 & 0 & 0
\end{cases}$$

$$\begin{cases}
1 & 0 & 0 & 0 & 0
\end{cases}$$

$$\begin{cases}
1 & 0 & 0 & 0 & 0
\end{cases}$$

$$\begin{cases}
1 & 0 & 0 & 0 & 0
\end{cases}$$

$$\begin{cases}
1 & 0 & 0 & 0 & 0
\end{cases}$$

$$\begin{cases}
1 & 0 & 0 & 0 & 0
\end{cases}$$

$$\begin{cases}
1 & 0 & 0 & 0 & 0
\end{cases}$$

$$\begin{cases}
1 & 0 & 0 & 0 & 0
\end{cases}$$

$$\begin{cases}
1 & 0 & 0 & 0 & 0
\end{cases}$$

$$\begin{cases}
1 & 0 & 0 & 0 & 0
\end{cases}$$

$$\begin{cases}
1 & 0 & 0 & 0 & 0
\end{cases}$$

$$\begin{cases}
1 & 0 & 0 & 0 & 0
\end{cases}$$

$$\begin{cases}
1 & 0 & 0 & 0 & 0
\end{cases}$$

$$\begin{cases}
1 & 0 & 0 & 0 & 0
\end{cases}$$

$$\begin{cases}
1 &$$

$$y(n) = \left\{ 3, 2, 2, 0, 4, 6, 5, 3, 3, 4, 3, 1 \right\}$$

$$Pind the cutput $y(n) = \{ 0, 1, 2, \dots, 3, 2, 2, 3, 3, 2, 3, 3, 4, 3, 1 \}$

$$Pind the cutput $y(n) = \{ 0, 1, 2, \dots, 3, 4, 3, 1 \}$

$$Pind the cutput $y(n) = \{ 0, 1, 2, \dots, 3, 4, 3, 1, 3, 2, \dots, 3, 2, \dots,$$$$$$$

$$\begin{cases} 1 & 0 & 2 \\ 2 & 1 & 0 \\ 0 & 2 & 1 \end{cases} = \begin{cases} 0 + 0 + 4 \\ 0 + 1 + 0 \\ 0 + 2 + 2 \end{cases} = \begin{bmatrix} 4 \\ 1 \\ 4 \end{bmatrix}$$

$$y_{1}(n) = \begin{cases} 4 + 1 & 4 \\ 4 \end{bmatrix}$$

$$y_{2}(n) = \chi_{2}(n) \text{ (N)} \quad h(n)$$

$$\begin{cases} 1 & 0 & 2 \\ 2 & 1 & 0 \\ 0 & 2 & 1 \end{bmatrix} = \begin{cases} 2 \\ -1 \\ 2 \end{cases} = \begin{cases} 2 + 0 + 4 \\ 4 - 1 + 0 \\ 0 - 2 + 2 \end{cases} = \begin{bmatrix} 6 \\ 3 \\ 0 \end{cases}$$

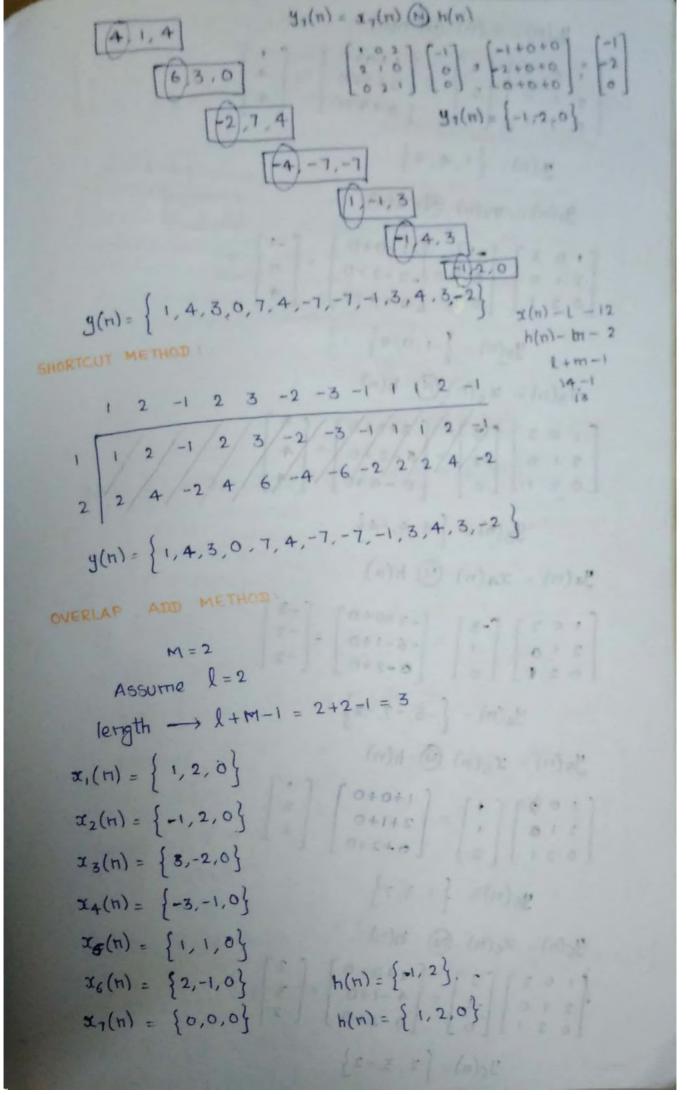
$$y_{2}(n) = \begin{cases} 6, 3, 0 \\ 2 \\ 1 & 0 \\ 0 & 2 \end{cases} = \begin{cases} 2 + 0 - 4 \\ 4 + 3 + 0 \\ 0 + 6 - 2 \end{cases} = \begin{bmatrix} -2 \\ 1 \\ 4 \end{bmatrix}$$

$$y_{3}(n) = \chi_{3}(n) \text{ (N)} \quad h(n)$$

$$\begin{cases} 1 & 0 & 2 \\ 2 & 1 & 0 \\ 0 & 2 & 1 \end{cases} = \begin{cases} -2 + 0 - 2 \\ -4 - 3 + 0 \\ 0 - 6 - 1 \end{cases} = \begin{bmatrix} -4 - 7 \\ -7 \end{bmatrix}$$

$$y_{3}(n) = \begin{cases} -4, -7, -7 \\ 1 \\ 2 & 1 & 0 \\ 0 & 2 & 1 \end{cases} = \begin{bmatrix} -1 + 0 + 2 \\ -2 + 1 + 0 \\ 0 & 2 + 1 \end{cases} = \begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix}$$

$$y_{5}(n) = \chi_{5}(n) \text{ (N)} \quad h(n)$$


$$\begin{cases} 1 & 0 & 2 \\ 2 & 1 & 0 \\ 0 & 2 & 1 \end{cases} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ -2 + 1 + 0 \\ 0 & 2 + 1 \end{cases} = \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix}$$

$$y_{5}(n) = \chi_{6}(n) \text{ (N)} \quad h(n)$$

$$\begin{cases} 1 & 0 & 2 \\ 2 & 1 & 0 \\ 0 & 2 & 1 \end{cases} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ -1 + 3 \end{bmatrix}$$

$$y_{5}(n) = \begin{cases} 1 \\ 2 + 2 + 0 \\ 0 + 4 - 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 4 \\ 3 \end{bmatrix}$$

$$y_{6}(n) = \begin{cases} -1, 4, 3 \end{cases}$$

Scanned by CamScanner

$$y_{1}(n) = x_{1}(n) \quad \text{(i)} \quad h(n)$$

$$\begin{cases}
1 & 0 & 2 \\ 2 & 1 & 0 \\ 0 & 2 & 1
\end{cases} \begin{cases}
1 & 1 \\ 2 & 1 & 0 \\ 0 & 1 & 1
\end{cases} = \begin{bmatrix} 1+0+0 \\ 2+2+0 \\ 0+4+0 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \\ 4 \end{bmatrix}$$

$$y_{2}(n) = \{x_{2}(n) \quad \text{(i)} \quad h(n)$$

$$\begin{cases}
1 & 0 & 2 \\ 2 & 1 & 0 \\ 0 & 2 & 1
\end{cases} \begin{cases}
-1 \\ 2 \\ 0 & 1
\end{cases} = \begin{bmatrix} -1+0+0 \\ -2+2+0 \\ 0+4+0
\end{cases} = \begin{bmatrix} -1 \\ 0 \\ 4 \end{bmatrix}$$

$$y_{2}(n) = \{-1,0,4\}$$

$$y_{3}(n) = x_{3}(n) \quad \text{(i)} \quad h(n)$$

$$\begin{bmatrix}
1 & 0 & 2 \\ 2 & 1 & 0 \\ 0 & 2 & 1
\end{bmatrix} \begin{bmatrix} 5 \\ -2 \\ 0 \end{bmatrix} = \begin{bmatrix} 3+0+0 \\ 6-2+0 \\ 0-4+0
\end{bmatrix} = \begin{bmatrix} 3 \\ 4 \\ -4 \end{bmatrix}$$

$$y_{3}(n) = \{3,4,-4\}$$

$$y_{4}(n) = x_{4}(n) \quad \text{(i)} \quad h(n)$$

$$\begin{bmatrix}
1 & 0 & 2 \\ 2 & 1 & 0 \\ 0 & 2 & 0
\end{bmatrix} \begin{bmatrix} -3 \\ -1 \\ 0 \end{bmatrix} = \begin{bmatrix} -3+0+0 \\ -6-1+0 \\ 0-2+0
\end{bmatrix} = \begin{bmatrix} -3 \\ -7 \\ -2 \end{bmatrix}$$

$$y_{4}(n) = \{-3,-7,-2\}$$

$$y_{5}(n) = x_{5}(n) \quad \text{(i)} \quad h(n)$$

$$\begin{bmatrix}
1 & 0 & 2 \\ 2 & 1 & 0 \\ 0 & 2 & 1
\end{bmatrix} \begin{bmatrix} 4 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1+0+0 \\ 2+1+0 \\ 0+2+0 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \\ 2 \end{bmatrix}$$

$$y_{5}(n) = x_{5}(n) \quad \text{(i)} \quad h(n)$$

$$\begin{bmatrix}
1 & 0 & 2 \\ 2 & 1 & 0 \\ 0 & 2 & 1
\end{bmatrix} \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2+0+0 \\ 4-1+0 \\ 0-2+0 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ -2 \end{bmatrix}$$

$$y_{6}(n) = x_{6}(n) \quad \text{(i)} \quad h(n)$$

$$\begin{bmatrix}
1 & 0 & 2 \\ 2 & 1 & 0 \\ 0 & 2 & 1
\end{bmatrix} \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2+0+0 \\ 4-1+0 \\ 0-2+0 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ -2 \end{bmatrix}$$

$$y_{6}(n) = x_{6}(n) \quad \text{(i)} \quad h(n)$$

$$y_{7}(n) = x_{7}(n) \text{ (A) } h(n)$$

$$\begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & 0 \\ 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 + 0 + 0 \\ 0 + 0 + 0 \\ 0 + 0 + 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 4 & 4 \\ \hline & & & \\ &$$

$$X(K) = W_{N} \times (\pi)$$

$$= W_{1} \times (\pi)$$

$$= W_{1} \times (\pi)$$

$$= W_{2} \times (\pi)$$

$$= W_{1} \times (\pi)$$

$$= W_{1} \times (\pi)$$

$$= W_{2} \times (\pi)$$

$$= W_{1} \times (\pi)$$

$$= W_{1} \times (\pi)$$

$$= W_{2} \times (\pi)$$

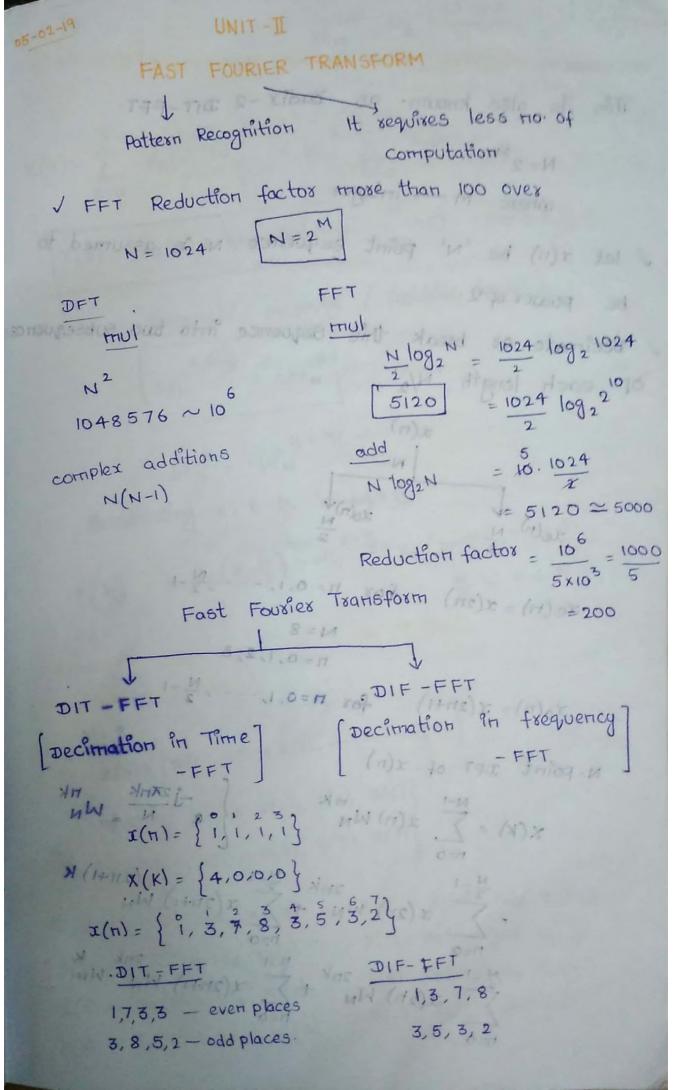
$$= W_{1} \times (\pi)$$

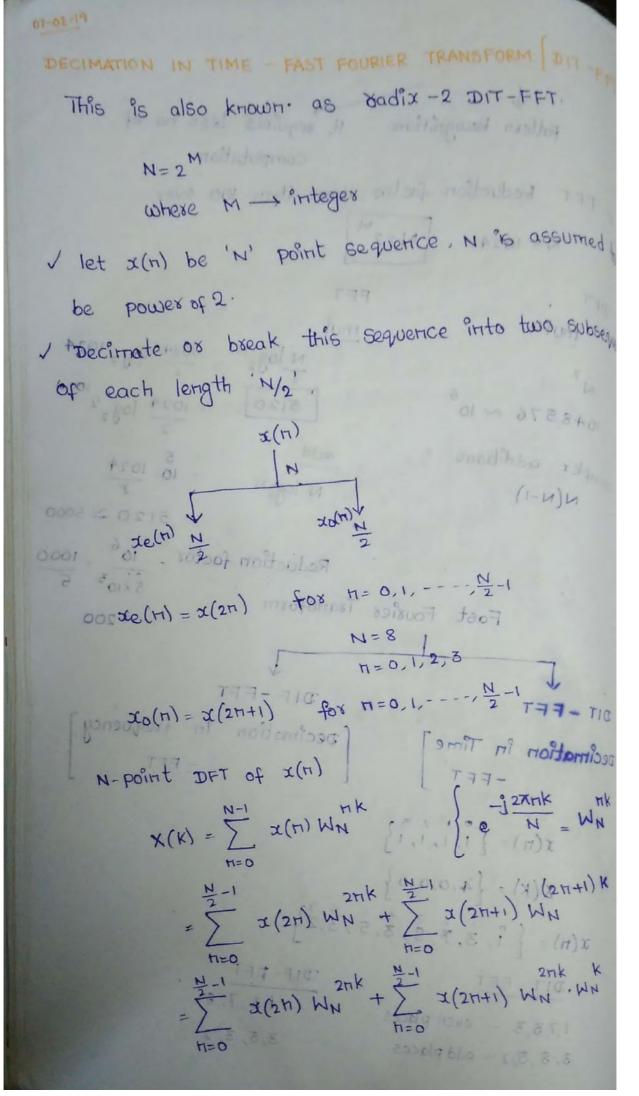
$$= W_{2} \times (\pi)$$

$$= W_{1} \times (\pi)$$

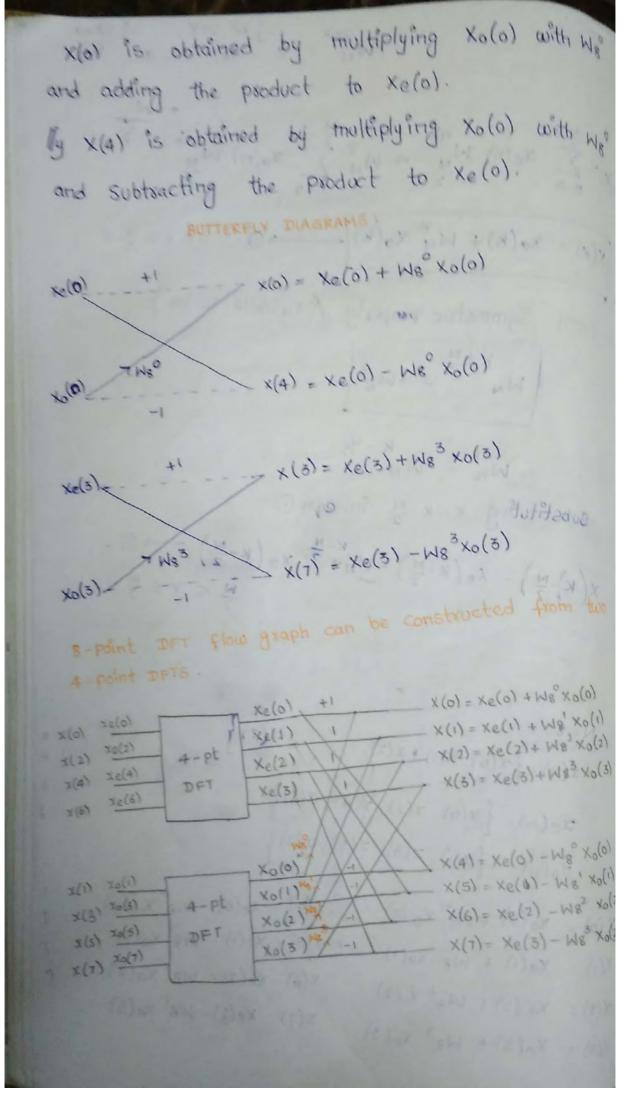
$$= W_{2} \times (\pi)$$

$$= W_{2} \times (\pi)$$


$$= W_{3} \times (\pi)$$


$$= W_{4} \times (\pi)$$

$$= W_{4}$$


Scanned by CamScanner

RELATIONSHIP OF DET TO OTHER TRANSFORM TO THE Z-TRANSFORM : IN RELATIONSHIP $\chi(z) = \sum_{N-1} \chi(\mu) z_{-\mu}$ 1DFT $x(H) = \frac{1}{N} \sum_{k=1}^{N-1} x(k) e^{\frac{j2xHk}{N}}$ $X(z) = \sum_{i=1}^{N-1} \frac{N-1}{N} \times (K) e^{iN} z^{-1}$ $=\frac{1}{N}\sum_{k=1}^{N-1}\chi(k)\sum_{k=1}^{N-1}\left[e^{\frac{j2xk}{N}}.z^{-1}\right]^{\frac{N}{N}}$ $= \frac{1}{N} \sum_{k=0}^{N-1} x(k) \left[\frac{1 - (e^{j\frac{2\pi k}{N}} \cdot z^{-1})^{N+1}}{1 - e^{j\frac{2\pi k}{N}} \cdot z^{-1}} \right] \sum_{k=0}^{N-1} a^{k} = \frac{a^{N+1} - 1}{a - 1}$ $= \frac{1}{N} \sum_{k=0}^{N-1} x(k) \left[\frac{1 - e^{j\frac{2\pi k}{N}} \cdot x^{-1}}{1 - e^{j\frac{2\pi k}{N}} \cdot z^{-1}} \right] \sum_{k=0}^{N-1} a^{k} = \frac{1 - a^{N+1}}{1 - a}$ $X(Z) = \frac{1}{N} \sum_{K=0}^{N-1} \chi(K) \left[\frac{1-Z^{N}}{1-Z^{N}} \right]$ 27 RELATIONSHIP TO THE DIFT : $X(e^{j\omega}) = \sum_{h=0}^{N-1} x(h) e^{-j\omega h}$ $x(k) = \sum_{N-1} x(n) e^{-j 2\pi n k}$ $X(K) = X(e^{j\omega})$ $\omega = \frac{2\pi k}{N}$ K = 0, 1, --- N-1

$$\begin{array}{c} X_{1} = \sum_{k=0}^{N-1} X_{2} = \sum_{k=0$$

Scanned by CamScanner

```
12-02-19
  STEPS TO FOLLOW IN RADIX-2 DIT-FFT:
  1> No. of input samples N = 2th
  2> Imput sequence is bit reversal or shuffled and output
   Sequence is natural order.
                                BIT REVERSAL
   N=8 0 \rightarrow 000 \rightarrow 000 \rightarrow 0
             1 \longrightarrow 001 \longrightarrow 100 \longrightarrow 4
             2 \rightarrow 010 \rightarrow 010^{\circ} \rightarrow 2, m expels to our circ
             g \rightarrow 011 \rightarrow 110 \rightarrow 6
       4 \rightarrow 100 \rightarrow 001 \rightarrow 1
          115 -> 101 -> 5 etalana gata Hora en
             6 \rightarrow 110 \rightarrow 011 \rightarrow 3
             7 \longrightarrow 111 \longrightarrow 111 \longrightarrow 7
                                    CT = E - P = 2 (PO) 8 =
  N=4 0,1,2,3
                             BIT REVERSAL
                                   lostibles religion to our siv
         0 \longrightarrow 00 \longrightarrow 00 \longrightarrow 0
         0 \longrightarrow 01 \longrightarrow 10 \longrightarrow 2
0 \longrightarrow 01 \longrightarrow 1
         2 \longrightarrow 10 \longrightarrow 01 \longrightarrow 1
         3 \longrightarrow 11 \longrightarrow 11 \longrightarrow 3
   No. of stages in flow graph M = log_2 N
4) Each stage consists of \(\frac{N}{2}\) butterflies
5) No. of complex multiplications \(\frac{N}{2}\log_2N\)
   No. of complex additions N log2N
75 Twiddle factor exponents are a function of a stage
"index 'm' is given as
      K = Nt , t = 0,1,2, --- 2 m-1
                                                            M-m
8) No of sets of butterflies in each stage is 2
9) Exponent Repeat factor (ERF) = 2 M-m
```

D Find DFT of Sequence I(n) = 1 1, 2, 5, 4, 4, 4, x(n) = {1,2,3,4,4,3,2,1} "> $N=8=2^3 \longrightarrow No.$ of input samples "> "/p -> Bit reversal order ofp - Natural order "is No. of stages in flowgraph is M = log 2 N = log 2 8 = 3 iv) Each stage consists of $\frac{N}{2} = \frac{8}{2} = 4$ butter flies VI NO. of complex multiplications are \frac{N}{2} log_2 N $=\frac{8}{2}\log_2 8 = 4.3 = 12$ Vi> No of complex additions are Nlog2N = 8 10928 = 8.3 = 24 Vii> Twiddle factor $K = \frac{Nt}{2m}$ where $t = 0, 1, 2, ---- 2^{m-1}$ stage 1: m=1

t=0,1,2,---2-1 $K = \frac{8(0)}{2!} = 0 \longrightarrow W_8$ stronger which alkalist 1- 1 - 1 1 0 - 3 | Std - 31 Stage 2: 17 = 2 t=0,1,2,----2-1 ediffication to also to the t=0 \Rightarrow $K=\frac{8(0)}{3^2}=0 \longrightarrow Wg$

$$t = 1 \implies K = \frac{8(1)}{2^{2}} = 2 \implies W_{8}^{2}$$

$$stage 3: m = 3$$

$$t = 0, 1, 2, ---- 2^{-1}$$

$$k = \frac{8(0)}{2^{3}} = 0 \implies W_{8}^{2}$$

$$t = 1 \implies K = \frac{8(1)}{2^{3}} = 1 \implies W_{8}^{2}$$

$$t = 2 \implies K = \frac{8(2)}{2^{3}} = 2 \implies W_{8}^{3}$$

$$t = 3 \implies K = \frac{8(2)}{2^{3}} = 3 \implies W_{8}^{3}$$

$$t = 3 \implies K = \frac{8(2)}{2^{3}} = 3 \implies W_{8}^{3}$$

$$t = 3 \implies K = \frac{8(2)}{2^{3}} = 3 \implies W_{8}^{3}$$

$$t = 3 \implies K = \frac{8(2)}{2^{3}} = 3 \implies W_{8}^{3}$$

$$t = 3 \implies K = \frac{8(2)}{2^{3}} = 3 \implies W_{8}^{3}$$

$$t = 3 \implies K = \frac{8(2)}{2^{3}} = 3 \implies W_{8}^{3}$$

$$t = 3 \implies K = \frac{8(2)}{2^{3}} = 3 \implies W_{8}^{3}$$

$$t = 3 \implies K = \frac{8(2)}{2^{3}} = 3 \implies W_{8}^{3}$$

$$t = 3 \implies K = \frac{8(2)}{2^{3}} = 3 \implies W_{8}^{3}$$

$$t = 3 \implies K = \frac{8(2)}{2^{3}} = 3 \implies W_{8}^{3}$$

$$t = 3 \implies K = \frac{8(2)}{2^{3}} = 3 \implies W_{8}^{3}$$

$$t = 3 \implies K = \frac{8(2)}{2^{3}} = 3 \implies W_{8}^{3}$$

$$t = 3 \implies K = \frac{8(2)}{2^{3}} = 3 \implies W_{8}^{3}$$

$$t = 3 \implies K = \frac{8(2)}{2^{3}} = 3 \implies W_{8}^{3}$$

$$t = 3 \implies K = \frac{8(2)}{2^{3}} = 3 \implies W_{8}^{3}$$

$$t = 3 \implies K = \frac{8(2)}{2^{3}} = 3 \implies W_{8}^{3}$$

$$t = 3 \implies K = \frac{8(2)}{2^{3}} = 3 \implies W_{8}^{3}$$

$$t = 3 \implies K = \frac{8(2)}{2^{3}} = 3 \implies W_{8}^{3}$$

$$t = 3 \implies K = \frac{8(2)}{2^{3}} = 3 \implies W_{8}^{3}$$

$$t = 3 \implies K = \frac{8(2)}{2^{3}} = 2 \implies W_{8}^{3}$$

$$t = 3 \implies K = \frac{8(2)}{2^{3}} = 2 \implies W_{8}^{3}$$

$$t = 3 \implies K = \frac{8(2)}{2^{3}} = 2 \implies W_{8}^{3}$$

$$t = 3 \implies K = \frac{8(2)}{2^{3}} = 2 \implies W_{8}^{3}$$

$$t = 3 \implies K = \frac{8(2)}{2^{3}} = 2 \implies W_{8}^{3}$$

$$t = 3 \implies K = \frac{8(2)}{2^{3}} = 2 \implies W_{8}^{3}$$

$$t = 3 \implies K = \frac{8(2)}{2^{3}} = 2 \implies W_{8}^{3}$$

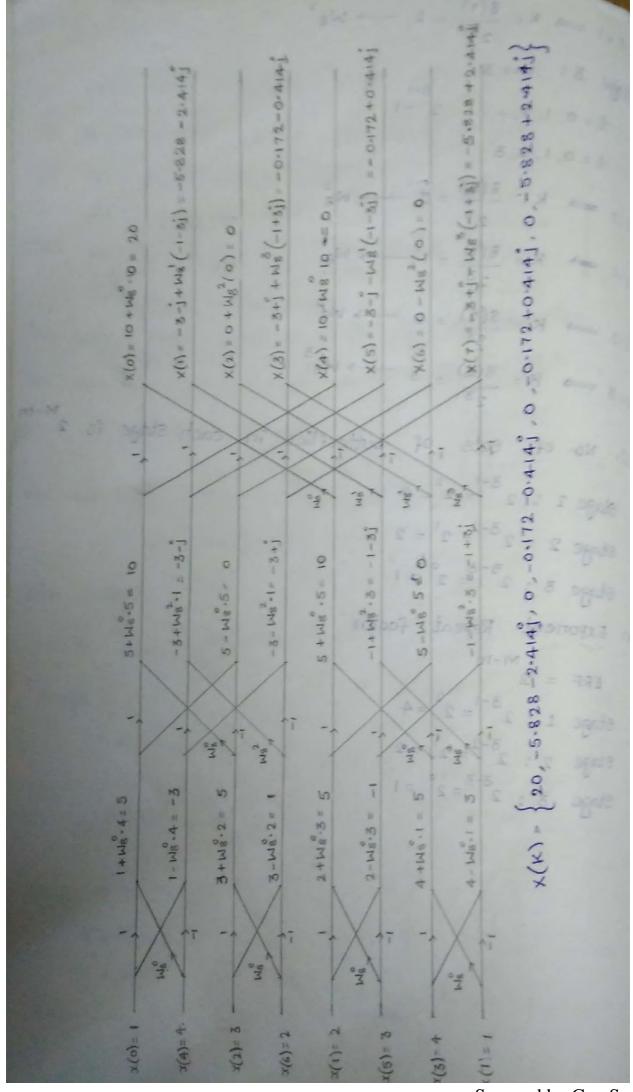
$$t = 3 \implies K = \frac{8(2)}{2^{3}} = 2 \implies W_{8}^{3}$$

$$t = 3 \implies K = \frac{8(2)}{2^{3}} = 2 \implies W_{8}^{3}$$

$$t = 3 \implies K = \frac{8(2)}{2^{3}} = 2 \implies W_{8}^{3}$$

$$t = 3 \implies K = \frac{8(2)}{2^{3}} = 2 \implies W_{8}^{3}$$

$$t = 3 \implies K = \frac{8(2)}{2^{3}} = 2 \implies W_{8}^{3}$$


$$t = 3 \implies K = \frac{8(2)}{2^{3}} = 2 \implies W_{8}^{3}$$

$$t = 3 \implies K = \frac{8(2)}{2^{3}} = 2 \implies W_{8}^{3}$$

$$t = 3 \implies K = \frac{8(2)}{2^{3}} = 2 \implies W_{8}^{3}$$

$$t = 3 \implies K = \frac{8(2)}{2^{3}} = 2 \implies W_{8}^{3}$$

$$t = 3 \implies K = \frac{8(2)}{2^{3}} = 2 \implies W_{8$$

Scanned by CamScanner

13-02-19 Find DFT of the Sequence x(n) = {0.5,0.5,0.5,0.5,0.0,0.0} Using x(n) = {0.5,0.5,0.5,0.5,0,0,0,0} "> No. of Imput Samples N = 8 = 2" "i'> "/P -> Bit seversal order O/P - Natural order ""> No. of stages in flow graph is M = log2N = log28 = 3 iv Each stage consists of $\frac{N}{2} = \frac{8}{2} = 4$ buttexflies v> No. of complex multiplications are $\frac{N}{2}\log_2 N$ $=\frac{8}{2}\log_2 8 = 4.3 = 12$ Stogo & : 25-2 2 vi> No. of complex additions are Nlog2N $= 8 \log_2 8 = 8.3 = 24$ vii) Twiddle factor widdle factor $K = \frac{Nt}{2^{m}} \text{ where } t = 0, 1, 2, -----2$ $K = \frac{8(0)}{2!} = 0 \longrightarrow W8$ $t = 0, 1, 2, ---- 2^{1-1}$ t = 0Stage 1: m=1 Stage 2: 11 = 2 t = 0, 1, --- 2 - it = 0,1 $t=0 \implies K = \frac{8(0)}{2} = 0 \longrightarrow W8^{\circ}$ $t=1 \implies K = \frac{8(1)}{2^2} = 2 \longrightarrow W_8^2$

Stage 8:
$$m = 3$$
 $t = 0, 1, ---2^{3-1}$
 $t = 0, 1, 2, 3$
 $t = 0 \implies K = \frac{8(0)}{2^{5}} = 0 \implies W8^{0}$
 $t = 1 \implies K = \frac{8(1)}{2^{5}} = 1 \implies W8^{2}$
 $t = 2 \implies K = \frac{3(2)}{2^{3}} = 2 \implies W8^{2}$
 $t = 3 \implies K = \frac{8(3)}{2^{5}} = 3 \implies W8^{3}$

Viii) No. of Sets of buttexflies in each stage is 2^{m-m}

Stage 1: $2^{m-m} = 2^{m-m}$

Stage 3: $2^{3-2} = 2^{1} = 2$

Stage 3: $2^{3-3} = 2^{0} = 1$

Stage 1: $2^{3-1} = 2^{2} = 4$

Stage 2: $2^{3-2} = 2^{1} = 2$

Stage 3: $2^{3-3} = 2^{0} = 1$

x(0) 20-6	1 0.5+W8(0)=0.5 1 0.5+W8(0.5)=1 /	X(0)=1+We·1=2
x(4)= 0	Wie	x(1,0.5-0.5j+W2 (0.5-0.5j) =0.6-1-2j
3(2)=0.5	0.5-W8(0)=0.5	MA:0 + W8:0 =0
x(9)= 0		(s)=0.5+0.5] +W& (0.5+0.5]) =0.6-0.2]
Z 0:0:0 Z	1 = (5.0) 8M+5.0 1 5.0=(0) 9M+5.0 1	1 x(4):1 - WB.1 = 0
	We 120-50 = (5.0) = 0.5+We (0.5) = 0.5+0.5]	[5.0.5-0.5] - W8 (0.50.5]) = 0.5+0.2]
	0= (0-0) = 0.5 0.5 - 10 0.5 - 148 (0.5) = 0.5 188 (0.5) = 0.	0=0=0=M80=0=0
14	To and	1-1 (x0)0.5+0.61 - Ws (0.6+0.61) = 0.5+1.2 j
	100 - 100 -	THE REAL PROPERTY OF THE PARTY
ed by C	$x(k) = \begin{cases} 2, 0.5 - 1.2, 0, 0.5 - 0.2, 0, 0.5 + 0.2, 0.0 \end{cases}$	0.5 + 1-2, }
<i>y</i>	H Brill	7

Scanned by CamScanner

The appeared
$$x(m) = \{1, -1, 1, -1\}$$

To No. of imput samples $N = 4 = 2^k$

To $\sqrt{p} \longrightarrow \text{Bit}$ several order

of $p \longrightarrow \text{Natural oxles}$

of $p \longrightarrow \text{Natural oxles}$

iii) No of stages in flowgraph is

 $M = \log_2 N = \log_2 4 = 2$

iv) Each stage consists of $\frac{N}{2} = \frac{4}{2} = 2$ butterfies

v) No. of complex multiplications are $\frac{N}{2} \log_2 N$
 $= \frac{4}{2} \log_2 4 = 2 \cdot 2 = 4$

vi) No. of complex additions are $N \log_2 N$
 $= 4 \log_2 4 = 4 \cdot 2 = 8$

vii) Twiddle factor

 $K = \frac{Nt}{2^m}$ where $t = 0, 1, 2, \dots, 2^{m-1}$
 $t = 0$
 $t = 0, 1, 2, \dots, 2^{m-1}$
 $t = 0, 1, 2, \dots, 2^{m-1}$
 $t = 0$
 $t = 0, 1, 2, \dots, 2^{m-1}$
 $t = 0$
 $t = 0, 1, 2, \dots, 2^{m-1}$
 $t = 0$
 $t = 0, 1, 2, \dots, 2^{m-1}$
 $t = 0, 1, 2, \dots, 2^{m-1}$

viii) No. of sets of butterflies in each stage is 2 M-m Stage 1: 2 2-1 = 2 Stage 2: 2 2-2 = 1 solsof slebios chy ix > Exponent Repeat factor ERF = 2 M-H Stage 1: 22-1 = 2 Stage 2: 22-2=1 x(0) = 2 + W8 (-2) = 0 $x(1) = 0 + W_4^{\dagger}(0) = 0$ x(0) = 1x(2) = 1x(2)=2-W4(-2) = 4 x(1)=-1 X(3)=0-Wa (0) =0 x(3)=-1 X(K) = { 0,0,4,0} DFT of the sequence a(n) = {5,0,1-1,0,1+1,0} 14-02-19 Find DIT-FFT. $x(H) = \{5,0,1-\hat{j},0,1,0,1+\hat{j},0\}$ is No. of Imput Samples N=8=2+ "> 1/P -> Bit Reversal Order O/P -> Natural order 911) No. of stages in flowgraph is M = log2 N = log2 8 = 3 iv) Each stage consists of $\frac{N}{2} = \frac{8}{2} = 4$ butterflies V> No. of complex multiplications of N log2N $=\frac{8}{2}\log_2 8 = 4.3 = 12$

Vi) No of complex additions are Nlog 2N

R log, 8 = 8.3 = 24

Vii) Twiddle factor

$$K = \frac{Nt}{2^m} \quad \text{where } t = 0, 1, 2, -2 - 2 - 2 - 1$$

$$t = 0, 1, 2, -2 - 1 - 1$$

$$t = 0, 1, 2, -2 - 1 - 1$$

$$t = 0, 1, 2, -2 - 2 - 1$$

$$t = 0, 1, 2, -2 - 2 - 1$$

$$t = 0, 1, 2, -2 - 2 - 1$$

$$t = 0, 1, 2, 3$$

$$t = 0 \rightarrow K = \frac{8 \cdot 0}{2^3} = 0 \rightarrow W_8$$

$$t = 0, 1, 2, 3 \rightarrow W_8$$

$$t = 0 \rightarrow K = \frac{8 \cdot 0}{2^3} = 0 \rightarrow W_8$$

$$t = 0 \rightarrow K = \frac{8 \cdot 0}{2^3} = 0 \rightarrow W_8$$

$$t = 0 \rightarrow K = \frac{8 \cdot 0}{2^3} = 0 \rightarrow W_8$$

$$t = 0 \rightarrow K = \frac{8 \cdot 0}{2^3} = 0 \rightarrow W_8$$

$$t = 0 \rightarrow K = \frac{8 \cdot 0}{2^3} = 0 \rightarrow W_8$$

$$t = 0 \rightarrow K = \frac{8 \cdot 0}{2^3} = 0 \rightarrow W_8$$

$$t = 0 \rightarrow K = \frac{8 \cdot 0}{2^3} = 0 \rightarrow W_8$$

$$t = 0 \rightarrow K = \frac{8 \cdot 0}{2^3} = 0 \rightarrow W_8$$

$$t = 0 \rightarrow K = \frac{8 \cdot 0}{2^3} = 0 \rightarrow W_8$$

$$t = 0 \rightarrow K = \frac{8 \cdot 0}{2^3} = 0 \rightarrow W_8$$

$$t = 0 \rightarrow K = \frac{8 \cdot 0}{2^3} = 0 \rightarrow W_8$$

$$t = 0 \rightarrow K = \frac{8 \cdot 0}{2^3} = 0 \rightarrow W_8$$

$$t = 0 \rightarrow K = \frac{8 \cdot 0}{2^3} = 0 \rightarrow W_8$$

$$t = 0 \rightarrow K = \frac{8 \cdot 0}{2^3} = 0 \rightarrow W_8$$

$$t = 0 \rightarrow K = \frac{8 \cdot 0}{2^3} = 0 \rightarrow W_8$$

$$t = 0 \rightarrow K = \frac{8 \cdot 0}{2^3} = 0 \rightarrow W_8$$

$$t = 0 \rightarrow K = \frac{8 \cdot 0}{2^3} = 0 \rightarrow W_8$$

$$t = 0 \rightarrow K = \frac{8 \cdot 0}{2^3} = 0 \rightarrow W_8$$

$$t = 0 \rightarrow K = \frac{8 \cdot 0}{2^3} = 0 \rightarrow W_8$$

$$t = 0 \rightarrow K = \frac{8 \cdot 0}{2^3} = 0 \rightarrow W_8$$

$$t = 0 \rightarrow K = \frac{8 \cdot 0}{2^3} = 0 \rightarrow W_8$$

$$t = 0 \rightarrow K = \frac{8 \cdot 0}{2^3} = 0 \rightarrow W_8$$

$$t = 0 \rightarrow K = \frac{8 \cdot 0}{2^3} = 0 \rightarrow W_8$$

$$t = 0 \rightarrow K = \frac{8 \cdot 0}{2^3} = 0 \rightarrow W_8$$

$$t = 0 \rightarrow K = \frac{8 \cdot 0}{2^3} = 0 \rightarrow W_8$$

$$t = 0 \rightarrow K = \frac{8 \cdot 0}{2^3} = 0 \rightarrow W_8$$

$$t = 0 \rightarrow K = \frac{8 \cdot 0}{2^3} = 0 \rightarrow W_8$$

$$t = 0 \rightarrow K = \frac{8 \cdot 0}{2^3} = 0 \rightarrow W_8$$

$$t = 0 \rightarrow K = \frac{8 \cdot 0}{2^3} = 0 \rightarrow W_8$$

$$t = 0 \rightarrow K = \frac{8 \cdot 0}{2^3} = 0 \rightarrow W_8$$

$$t = 0 \rightarrow K = \frac{8 \cdot 0}{2^3} = 0 \rightarrow W_8$$

$$t = 0 \rightarrow K = \frac{8 \cdot 0}{2^3} = 0 \rightarrow W_8$$

$$t = 0 \rightarrow K = \frac{8 \cdot 0}{2^3} = 0 \rightarrow W_8$$

$$t = 0 \rightarrow K = \frac{8 \cdot 0}{2^3} = 0 \rightarrow W_8$$

$$t = 0 \rightarrow K = \frac{8 \cdot 0}{2^3} = 0 \rightarrow W_8$$

$$t = 0 \rightarrow K = \frac{8 \cdot 0}{2^3} = 0 \rightarrow W_8$$

$$t = 0 \rightarrow K = \frac{8 \cdot 0}{2^3} = 0 \rightarrow W_8$$

$$t = 0 \rightarrow K = \frac{8 \cdot 0}{2^3} = 0 \rightarrow W_8$$

$$t = 0 \rightarrow K = \frac{8 \cdot 0}{2^3} = 0 \rightarrow W_8$$

$$t = 0 \rightarrow K = \frac{8 \cdot 0}{2^3} = 0 \rightarrow W_8$$

$$t = 0 \rightarrow K = \frac{8 \cdot 0}{2^3} = 0 \rightarrow W_8$$

$$t = 0$$

stage	1 :	2	5-2 =		= 2		sign				
stage stage	3 :	2	5-3 =	20 =	1	0 /			10 4		9/1 8
d							1 ,			707	-0-101j
	1						Q	a gol	5 70		0
00	22	4	9 11	00	0 = 2	4=0	- 63			-37/4 = 0.101-	0 1
6.97	MS O	0.2M	Mg S	8- We .o	-Ma-	-MBZ	0-8M-9=		11	17 1/4 1	1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
0-317+8=(0)X	X(1) = 1+M8 -0	X(2) = 4+Mg-0	X(8)=6+Wg20	X(4)= 8	X(5)=2-W8'-0=	x(6)=4-W8-0=	×(1) =	TSIG	-	10	27.2 27.3 8
X	×C	×6	X	×	×	10	1	-1 2XK	107	010	0 0
	1	1	8	8	8	24	Ebn		173	M S M	Mg2 Mg3
	1	1		S. C.	1 2 mar	of in	No. No.	F	Z 3	A :	
00	7 "	14	1 10			3	-34	_			
13	4+46 -29	W8-2 =	35						4,6		
5+14°.	4+Mg	M-9	4-ME	0	0	0	0		,	797	
	1	X	1.5)		120		00		
	//	- F	1			100	K		4,6,		
			11-2				nini		2,2		4 - 4
•	424	1-1+48(1+1)=2	1-3-W2 (1+1) 2W- E-1					,			
* 44 0 - 1	S- 148.4	-1- V	12-	0	0		1		X(K)=		
tur.	XI		X		X		X		,		
	100	1	3	1	130		13				

Scanned by CamScanner

```
DECIMATION IN FREQUENCY - FAST FOURIER TRANSFORM
19-02-19
-> In this algorithm a(n) is divided into two parts
of length N.
 \rightarrow The first \frac{N}{2} Samples exert x(H) is x_1(H)
\rightarrow The second \frac{N}{2} Samples of \chi(n) is \chi_2(n)
           x_i(n) = x(n), n = 0, 1, 2, ---, \frac{N}{2} - 1
              x_2(n) = x(n), \quad n = \frac{N}{2}, ----N-1
     N-point DFT of x(n)
          \chi(K) = \sum_{n=1}^{N-1} \chi(n) e^{-\frac{n}{2} \frac{2\pi n}{N}}
          X(K) = \sum_{N-1} x(H) M_N \longrightarrow 0
```

$$X(k) = \sum_{n=0}^{N-1} x(n) W_{N} + \sum_{n=0}^{N-1} x(n) W_{N}$$

$$2^{nd} \text{ texm} \mod_{\text{ried}}^{n} \text{ as}$$

$$n = m + \frac{N}{2}$$

$$n = \frac{N}{2} \longrightarrow m = 0$$

$$n = N - 1 \longrightarrow m = \frac{N}{2} - 1$$

$$X(k) = \sum_{n=0}^{N-1} x(n) W_{N}^{nk} + \sum_{n=0}^{N-1} x(m + \frac{N}{2}) W_{N}$$

$$X(k) = \sum_{n=0}^{N-1} x(n) W_{N} + \sum_{n=0}^{N-1} x(n + \frac{N}{2}) W_{N}$$

$$X(k) = \sum_{n=0}^{N-1} x(n) W_{N} + \sum_{n=0}^{N-1} x(n + \frac{N}{2}) W_{N}^{nk} W_{N}^{N}$$

$$= \sum_{n=0}^{N-1} x(n) W_{N}^{nk} + \sum_{n=0}^{N-1} x(n + \frac{N}{2}) W_{N}^{nk} W_{N}^{N}$$

$$= \sum_{n=0}^{N-1} x(n) W_{N}^{nk} + e \sum_{n=0}^{N-1} x(n + \frac{N}{2}) W_{N}^{nk}$$

$$X(k) = \sum_{n=0}^{N-1} x(n) W_{N}^{nk} + e \sum_{n=0}^{N-1} x(n + \frac{N}{2}) W_{N}^{nk}$$

$$X(k) = \sum_{n=0}^{N-1} x(n) W_{N}^{nk} + e \sum_{n=0}^{N-1} x(n + \frac{N}{2}) W_{N}^{nk}$$

$$X(k) = \sum_{n=0}^{N-1} x(n) W_{N}^{nk} + e \sum_{n=0}^{N-1} x_{2}^{n} W_{N}^{nk}$$

$$X(k) = \sum_{n=0}^{N-1} x_{1}^{n} W_{N}^{nk} + e \sum_{n=0}^{N-1} x_{2}^{n} W_{N}^{nk}$$

$$X(k) = \sum_{n=0}^{N-1} x_{1}^{n} W_{N}^{nk} + e \sum_{n=0}^{N-1} x_{2}^{n} W_{N}^{nk}$$

$$X(k) = \sum_{n=0}^{N-1} x_{1}^{n} W_{N}^{nk} + e \sum_{n=0}^{N-1} x_{2}^{n} W_{N}^{nk}$$

$$X(k) = \sum_{n=0}^{N-1} x_{1}^{n} W_{N}^{nk} + e \sum_{n=0}^{N-1} x_{2}^{n} W_{N}^{nk}$$

$$X(k) = \sum_{n=0}^{N-1} x_{1}^{n} W_{N}^{nk} + e \sum_{n=0}^{N-1} x_{2}^{n} W_{N}^{nk}$$

$$X(k) = \sum_{n=0}^{N-1} x_{1}^{n} W_{N}^{nk} + e \sum_{n=0}^{N-1} x_{2}^{n} W_{N}^{nk}$$

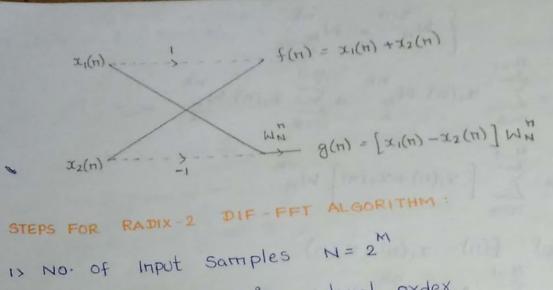
$$X(k) = \sum_{n=0}^{N-1} x_{1}^{n} W_{N}^{nk} + e \sum_{n=0}^{N-1} x_{2}^{n} W_{N}^{nk}$$

$$X(k) = \sum_{n=0}^{N-1} x_{1}^{n} W_{N}^{nk} + e \sum_{n=0}^{N-1} x_{2}^{n} W_{N}^{nk}$$

$$X(k) = \sum_{n=0}^{N-1} x_{1}^{n} W_{N}^{nk} + e \sum_{n=0}^{N-1} x_{2}^{n} W_{N}^{nk}$$

$$X(k) = \sum_{n=0}^{N-1} x_{1}^{n} W_{N}^{nk} + e \sum_{n=0}^{N-1} x_{2}^{n} W_{N}^{nk}$$

$$X(k) = \sum_{n=0}^{N-1} x_{1}^{n} W_{N}^{nk} + e \sum_{n=0}^{N-1} x_{2}^{n} W_{N}^{nk}$$


$$X(k) = \sum_{n=0}^{N-1} x_{1}^{n} W_{N}^{nk} + e \sum_{n=0}^{N-1} x_{2}^{n} W_{N}^{nk}$$

$$X(k) = \sum_{n=0}^{N-1} x_{1}^{n} W_{N}^{nk} + e \sum_{n=0}^{N-1} x_{2}^{n} W_{N}^{nk}$$

$$X(k) = \sum_{n=0}^{N-1} x_{1}^{n} W_{N}^{nk} + e \sum_{n=0}^{N-1} x_{2}^{n} W_{N}^{nk}$$

$$X(k) = \sum_{n=0}^{N-1} x_{1}^{n} W_{N}^{nk} + e \sum_{n=0}^{N-1} x_{2}^{n}$$

$$\chi(2k) = \sum_{n=0}^{\frac{M-1}{2}} \chi_{1}(n) \ \bigcup_{N=1}^{\frac{M-1}{2}} + \sum_{n=0}^{\frac{M-1}{2}} \chi_{2}(n) \ \bigcup_{N=1}^{\frac{M-1}{2}} = \sum_{n=0}^{\frac{M-1}{2}} \left[\chi_{1}(n) + \chi_{2}(n) \right] \ \bigcup_{N=1}^{\frac{M-1}{2}} \left[\chi_{1}(n) + \chi_{2}(n) \right] \ \bigcup_{N=1}^{\frac{M-1}{2}} \chi_{1}(n) \ \bigcup_{N=1}^{\frac{M-1}{2}} \chi_{1}(n) \ \bigcup_{N=1}^{\frac{M-1}{2}} \chi_{2}(n) \ \bigcup_{N=0}^{\frac{M-1}{2}} \chi_{2}(n) \ \bigcup_{N$$

- 2> Input Sequence is Natural order output sequence is Bit reversal order
- 3> No. of Stages in flowgraph M = log_N
- Each Stage consists of ½ butterflies
- No. of complex multiplications are 1/2 log2
- No. of Complex additions are N log N
- 7> Twidde factor exponents are functions of stage index 'm' and is given by

$$K = 2$$
 $\frac{Nt}{K = 2}$ $t = 0, 1, ----2$ -1

- 8> No. of sets of butterflies in each stage is 2"
- 9> Exponent Repeat factor ERF = 2 m-1

Find DFT of sequence x(n)= {1,2,3,4,4,3,2,1}

15 No. of Input Samples
$$N = 8 = 2^3$$

25 Input \longrightarrow Noticeal order

26 output \longrightarrow Et reversal order

27 output \longrightarrow Et reversal order

28 No. of stages in flowgraph is

29 No. of complex multiplications are $\frac{N}{2} \log_2 N$

29 No. of complex multiplications are $\frac{N}{2} \log_2 N$

20 No. of complex multiplications are $\frac{N}{2} \log_2 N$

20 No. of complex multiplications are $\frac{N}{2} \log_2 N$

21 No. of complex multiplications are $\frac{N}{2} \log_2 N$

22 No. of complex multiplications are $\frac{N}{2} \log_2 N$

23 No. of complex multiplications are $\frac{N}{2} \log_2 N$

24 No. of complex multiplications are $\frac{N}{2} \log_2 N$

25 No. of complex multiplications are $\frac{N}{2} \log_2 N$

26 No. of complex multiplications are $\frac{N}{2} \log_2 N$

27 No. of complex multiplications are $\frac{N}{2} \log_2 N$

28 No. of complex multiplications are $\frac{N}{2} \log_2 N$

29 No. of complex multiplications are $\frac{N}{2} \log_2 N$

20 No. of complex multiplications are $\frac{N}{2} \log_2 N$

21 No. of complex multiplications are $\frac{N}{2} \log_2 N$

22 No. of complex multiplications are $\frac{N}{2} \log_2 N$

23 No. of complex multiplications are $\frac{N}{2} \log_2 N$

24 No. of complex multiplications are $\frac{N}{2} \log_2 N$

25 No. of complex multiplications are $\frac{N}{2} \log_2 N$

26 No. of complex multiplications are $\frac{N}{2} \log_2 N$

27 No. of complex multiplications are $\frac{N}{2} \log_2 N$

28 No. of complex multiplications are $\frac{N}{2} \log_2 N$

29 No. of complex multiplications are $\frac{N}{2} \log_2 N$

20 No. of complex multiplications are $\frac{N}{2} \log_2 N$

21 No. of complex multiplications are $\frac{N}{2} \log_2 N$

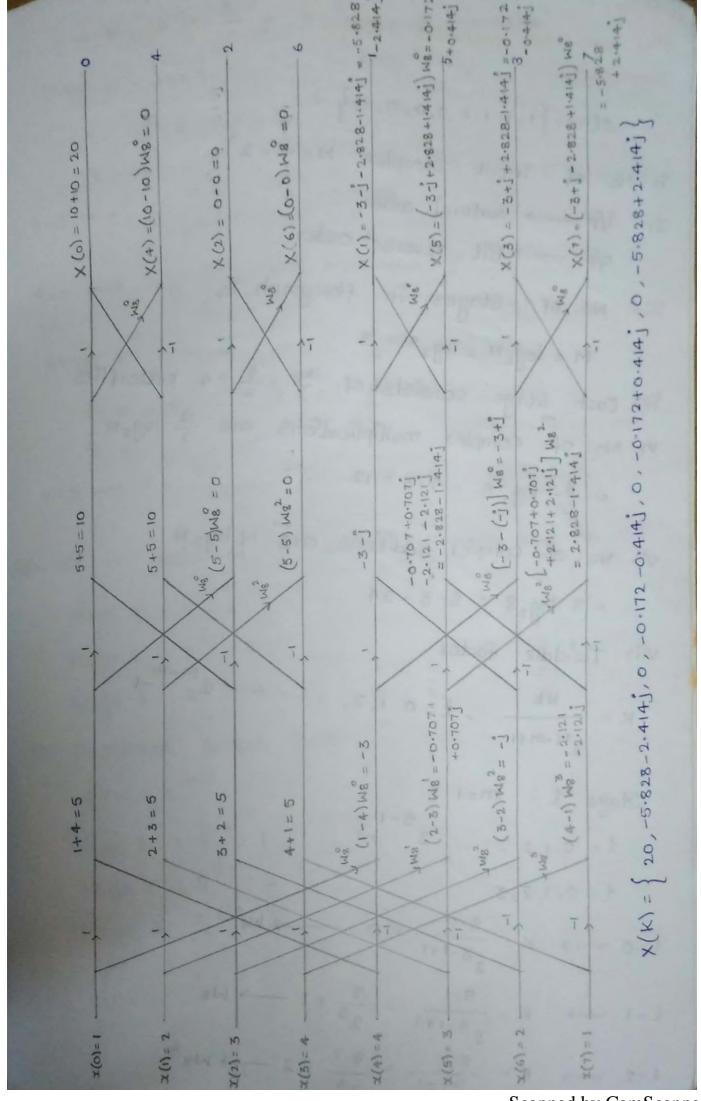
22 No. of complex multiplications are $\frac{N}{2} \log_2 N$

23 No. of complex multiplications are $\frac{N}{2} \log_2 N$

24 No. of complex multiplications are $\frac{N}{2} \log_2 N$

25 No. of complex multiplications are $\frac{N}{2} \log_2 N$

26 No. of complex multiplications are $\frac{N}{2} \log_2 N$


27 No. of complex multiplications are $\frac{N}{2} \log_2 N$

28 No. of complex multiplications are $\frac{N}{2} \log_2 N$

29 No. of complex multiplications are $\frac{N}{2} \log_2 N$

20 No. of complex multiplications are $\frac{N}{2} \log_2 N$

21 No.

Scanned by CamScanner

Find DET of the Sequence x(n)= { 1,-1,1,-1} using DIF-FFT 1> No. of Imput Samples N = 4 = 22 Imput -> Natural Order output -- Bit Reversal order ""> No. of stages in flow graph is $M = \log_2 N = \log_2 4 = 2$ Piv> Each stage consists of $\frac{N}{2} = \frac{4}{2} = 2$ butterfies V> No. of complex multiplications are N log2N $=\frac{4}{2}\log_2 4 = 2 \cdot 2 = 4$ vi) No. of complex additions are N log2 N $=4\log_2 4 = 4.2 = 8$ viix Twiddle factor $K = \frac{Nt}{M-m+1}$, t = 0, 1, 2, ----2Stage 1 : m=1 t=0,1,2,---2²⁻¹ $t=0 \longrightarrow K = \frac{4.0}{2-1+1} = 0 \longrightarrow W4$ $t=1 \implies K = \frac{4 \cdot 1}{2^{2-1+1}} = \frac{4}{4} = 1 \implies W4$ Stage 2: 11 = 2 2 + 11 salgeres signi jo our 11 $t=0 \longrightarrow K = \frac{4\cdot 0}{2-2+1} = 0 \longrightarrow W4$

```
viii> No. of sets of butterflies in each stage is 2m-
      Stage 1 : 2'=1
      Stage 2 : 22-1 = 2
  ix > Exponent Repeat Factor
                                 ERF =
      Stage 1 : 21-1 = 1
      Stage 2: 22-1 = 2
                                     W2 X(2) = (2+2) H4 = 4
  x(1)=-1
                  W4 (1-1) W4 = 0
                                    1 X(1) = 0+0 =0
                  M4 (-1+1) M8 = 0
            X(K)= 0,0,4,0}
 Find IDFT of Sequence X(K)= } 7, -0.707 - 10.707, -1,
0.707-j 0.707.13, +0.707 +j.0.707, j, -0.707+j 0.707}
 by using DIF-FFT!
X(K) = {7, -0.707-30.707, -3, 0.707-30.707, 1, 0.707+30.707,
             1, -0.707 + 30-707}
X^*(K) = \begin{cases} 7, -0.707 + j0.707, j, 0.707 + j0.707, l, 0.707 - j0.707 \end{cases}
            -j, -0.707 -j 0.707}
   No. of Input Samples N = 8 = 23
  Input -> Natural Order
   output -> Bit Reversal Order
   No. of stages in flowgraph is
           M = 1092 N = 109 8 = 3
```

Each stage consists of
$$\frac{N}{2} = \frac{2}{2} = 4$$
 butterflies

5> No. of complex multiplications are $\frac{N}{2} \log_2 N$
 $= \frac{8}{2} \log_2 8 = 4 \cdot 3 = 12$

6. No. of complex additions are $\frac{N}{2} \log_2 N$
 $= 8 \log_2 8 = 8 \cdot 3 = 24$

The Twiddle factor

 $K = \frac{Nt}{2^{M-m+1}}$, $t = 0, 1, 2, \dots, 2^{M-m}$

Stage 1: It = 1

 $t = 0, 1, 2, 3$
 $t = 0 \implies K = \frac{8 \cdot 0}{2^{3-1+1}} = 0 \implies M8^{\circ}$
 $t = 1 \implies K = \frac{8 \cdot 1}{2^{3-1+1}} = \frac{8}{2^{5}} = 1 \implies M8^{\frac{5}{2}}$
 $t = 2 \implies K = \frac{8 \cdot 2}{2^{3-1+1}} = \frac{8 \cdot 3}{2^{\frac{5}{2}}} = 1 \implies M8^{\frac{5}{2}}$

Stage 2: $m = 2$
 $t = 0, 1, 2, \dots, 2^{M-2}$
 $t = 0, 1$
 $t = 0 \implies K = \frac{8 \cdot 0}{2^{3-2+1}} = 0 \implies M8^{\circ}$

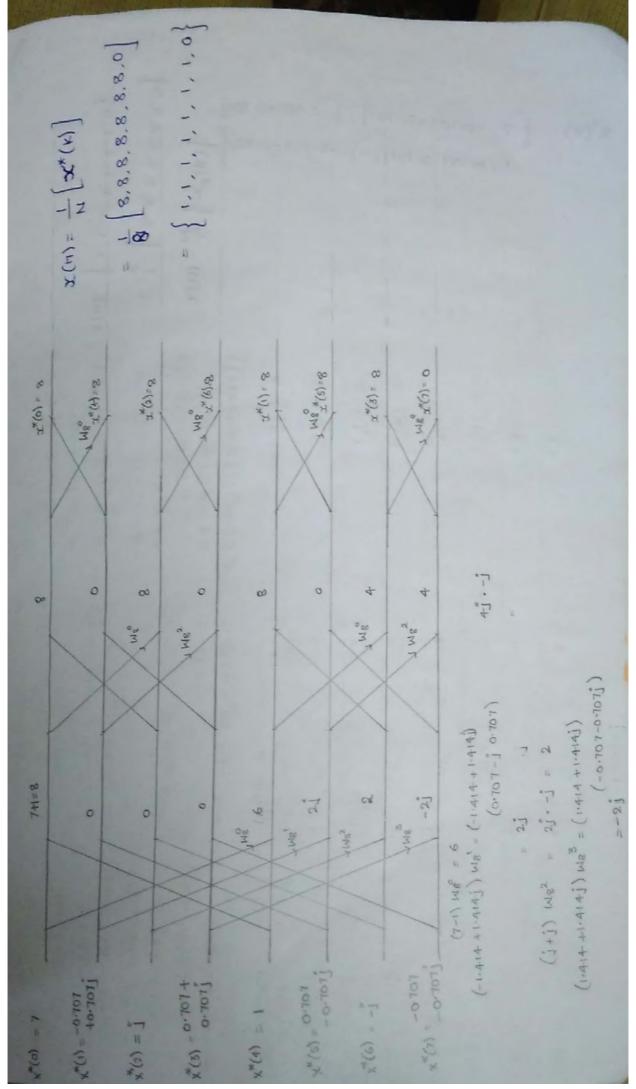
Stage 3: $m = 3$
 $t = 0, 1, 2, \dots, 2^{M-2} = 0 \implies M8^{\circ}$

$$K = \frac{8.0}{2^{3-5+1}} = 6$$
 $\rightarrow M8^{\circ}$
 $V^{\circ}ii^{\circ}$ No. of sets of botterfles in each stage:

 $2m^{-1}$

Stage 1: $2^{1-1} = 1$

Stage 2: $2^{2-1} = 2$


Stage 3: $2^{3-1} = 4$
 (x) Exponent Repeat factor

 $ERF = 2^{m-1}$

Stage 1: $2^{1-1} = 1$

Stage 2: $2^{2-1} = 2$

Stage 3: $2^{3-1} = 4$

Scanned by CamScanner

SPLIT - RADIX :

The Computation Process of FFT algorithm can be further reduced by combining two radix algorithms i.e., Radix-2 and Radix-4.

Radix -2 DIT-FFT, the even number of Samples of upoint DFT are given by

$$x(2k) = \sum_{n=0}^{\frac{N}{2}-1} \left[x(n) + x(n+N/2) \right] W_{\frac{N}{2}}^{nk}$$

Radix-4 DIT-FFT algorithm, odd number of samples of N-point DFT are given as

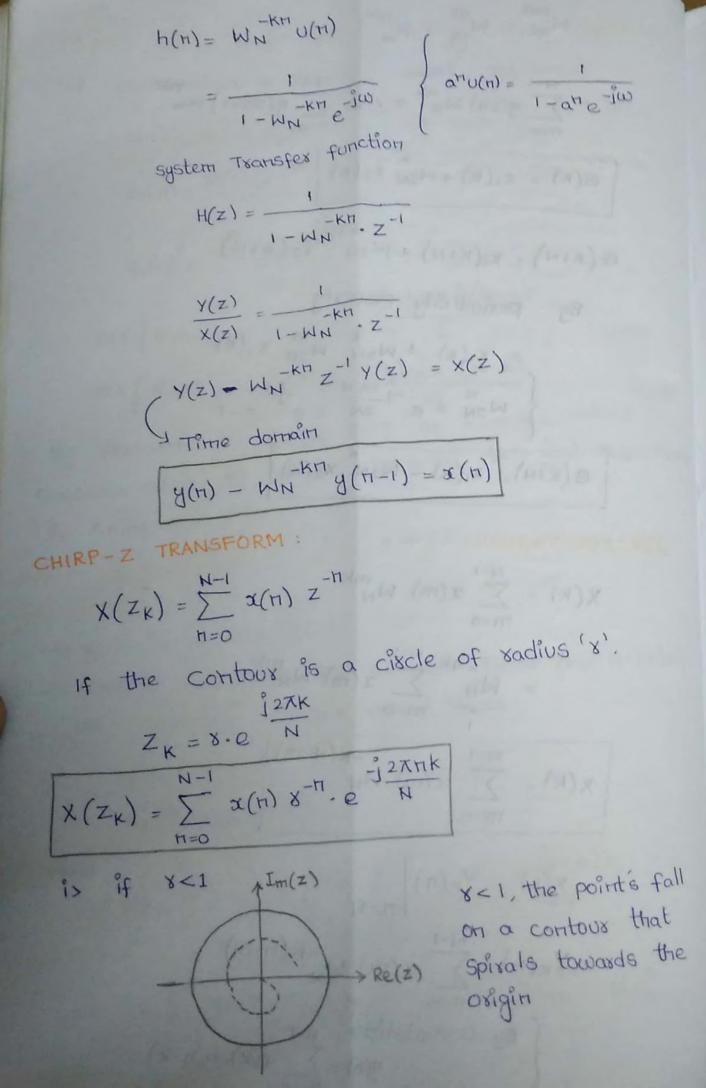
$$\chi(4K+1) = \sum_{h=0}^{\frac{N}{4}-1} \left[\left(\chi(h) - \chi(h+\frac{N}{2}) \right) - j \left(\chi(h+\frac{N}{4}) - \chi(h+\frac{3N}{4}) \right) \right]$$

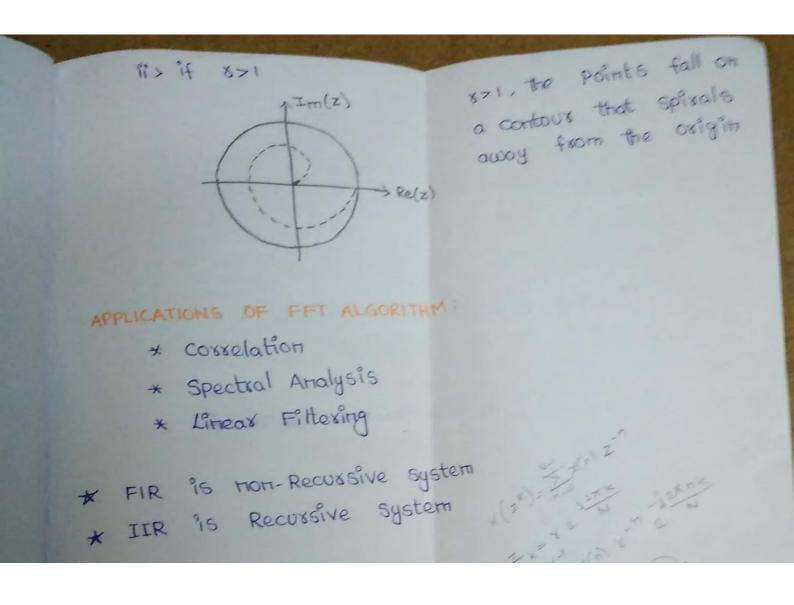
$$\cdot W_{\frac{N}{4}} \circ W_{\frac{N}{4}}$$

$$X(4k+3) = \sum_{n=0}^{\frac{N}{4}-1} \left[\left(x(n) - x(n+\frac{N}{2}) \right) + j \left(x(n+\frac{N}{4}) - x(n+\frac{3N}{4}) \right) \right]$$

$$X(K) = \sum_{n=0}^{N-1} x(n) W_{N}^{nK}$$

$$= \sum_{n=0}^{N-1} x(n) W_{N}^{nK} + \sum_{n=N-2}^{N-1} x(n) W_{N}^{nK} + \sum_{n=N-2}^{N-1} x(n) W_{N}^{nK} + \sum_{n=N-2}^{N-1} x(n) W_{N}^{nK} + \sum_{n=N-2}^{N-1} x(n) W_{N}^{nK}$$


$$\begin{array}{c} \sum\limits_{n=0}^{N-1} x(n) \, M_{N} + \sum\limits_{n=0}^{N-1} x(n+\frac{N}{4}) \, M_{N} \\ = \sum\limits_{n=0}^{N-1} x\left(n+\frac{3N}{4}\right) \, M_{N} \\ = \sum\limits_{n=0}^{N-1} \left[x\left(n+\frac{3N}{4}\right) \, M_{N} + x\left(n+\frac{N}{4}\right) \, M_{N} \cdot M_{N} + x\left(n+\frac{N}{2}\right) \, M_{N} \cdot M_{N} \right] \\ = \sum\limits_{n=0}^{N-1} \left[x(n) \, M_{N} + x\left(n+\frac{N}{4}\right) \, M_{N} \cdot M_{N} + x\left(n+\frac{N}{2}\right) \, M_{N} \cdot M_{N} \right] \\ + x\left(n+\frac{3N}{4}\right) \, M_{N} \cdot M_{N} \cdot M_{N} \\ + x\left(n+\frac{3N}{4}\right) \, M_{N} \cdot M_{N} \cdot M_{N} \\ = \left(-i\right)^{K} \\ = \left(-i\right)^{K} \\ = \left(-i\right)^{K} \\ = \left(-i\right)^{K} \\ \times \left(4K+1\right) = \sum\limits_{n=0}^{N-1} \left[x\left(n\right) + x\left(n+\frac{N}{4}\right)\left(-i\right)^{K} + x\left(n+\frac{N}{2}\right)\left(-i\right) + x\left(n+\frac{3N}{4}\right)\left(-i\right)^{K} \right] \\ + x\left(n+\frac{3N}{4}\right) \left(-i\right) + x\left(n+\frac{N}{4}\right) \left(-i\right) + x\left(n+\frac{N}{4}\right) \left(-i\right) \\ = \left(-i\right)^{K} \cdot M_{N} \\ \times \left(4K+1\right) = \sum\limits_{n=0}^{N-1} \left[x\left(n\right) + x\left(n+\frac{N}{4}\right)\left(-i\right) + x\left(n+\frac{N}{2}\right)\left(-i\right) + x\left(n+\frac{N}{4}\right) \left(-i\right) \right] \\ = \left(-i\right)^{K} \cdot M_{N} \\ \times \left(4K+1\right) = \sum\limits_{n=0}^{N-1} \left[x\left(n+\frac{3N}{4}\right) \left(-i\right) + x\left(n+\frac{N}{4}\right) \left(-i\right)$$


$$\chi(4K+3) = \sum_{n=0}^{N} \left[\chi(n) - j \chi(n+\frac{N}{4}) - \chi(n+\frac{N}{2}) + j \chi(n+\frac{3N}{4}) \right] M_{N}^{N} M_{N}^{N} M_{N}^{N}$$

$$= \chi(4K+3) = \sum_{n=0}^{N-1} \left[\chi(n) + \chi(n+\frac{N}{4}) (-j) + \chi(n+\frac{N}{2}) (-i) + \chi(n+\frac{N}{2})$$

EFFICIENT COMPUTATION OF DET OF TWO REAL SEQUENCES us consider a complex valued sequence Let $x(n) = x_1(n) + jx_2(n) \qquad \left[0 \le n \le N - 1 \right]$ $\alpha_1(n) = \frac{\alpha(n) + \alpha^*(n)}{2}$ $x_2(n) = \frac{x(n) - x^*(n)}{2i}$ DFT $\left[x_{i}(n)\right] = x_{i}(k) = \frac{x(k) + x^{*}(n-k)}{2}$ $DFT\left[x_2(n)\right] = X_2(K) = \frac{X(K) - X^*(N-K)}{2^n}$ By perform a single DFT in complex valued sequence x(n) to obtain DFT of two real sequences ire, XI(K) and X2(K). EFFICIENT COMPUTATION OF DET OF A 2N-POINT REAL → g(n) is a 2N-point -> obtain 2N-point DFT of g(n) from one N-point DFT involving complex valued data x(n)=g(2n) x2(11) = 9(211+1) $G(K) = \sum_{n=0}^{N-1} g(2n) W_{2N} + \sum_{n=0}^{N-1} g(2n+1) W_{2N}$ Now. $= \sum_{n=0}^{N-1} g(2n) W_{2N}^{2nk} + \sum_{n=0}^{N-1} g(2n+1) W_{2N}^{2nk} \cdot W_{2N}^{k}$

$$|A|_{2N}^{2Nk}| = |A|_{2N}^{Nk} = |A|_{2N}^{$$

STRUCTURES FOR THE REALIZATION OF DISCRETE-TIME SYSTEM

FIR is NOTI- RECUYSIVE

present output depends on present input and

Past Inputs

$$y(n) = x(n) + x(n-1)$$

IIR is Recussive

Present output depends on present input, past Input and past outputs

FIR

cascade form

Lattice Realization

11R 11R

Direct form - I

Direct form-I

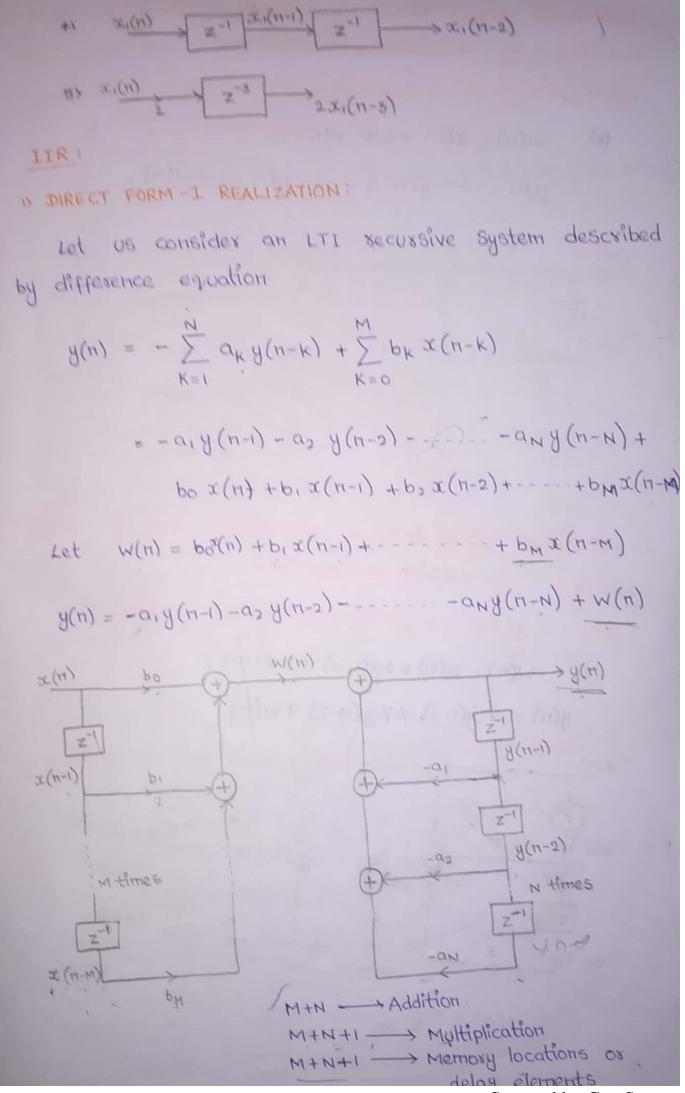
Signal flow graph

cascade form

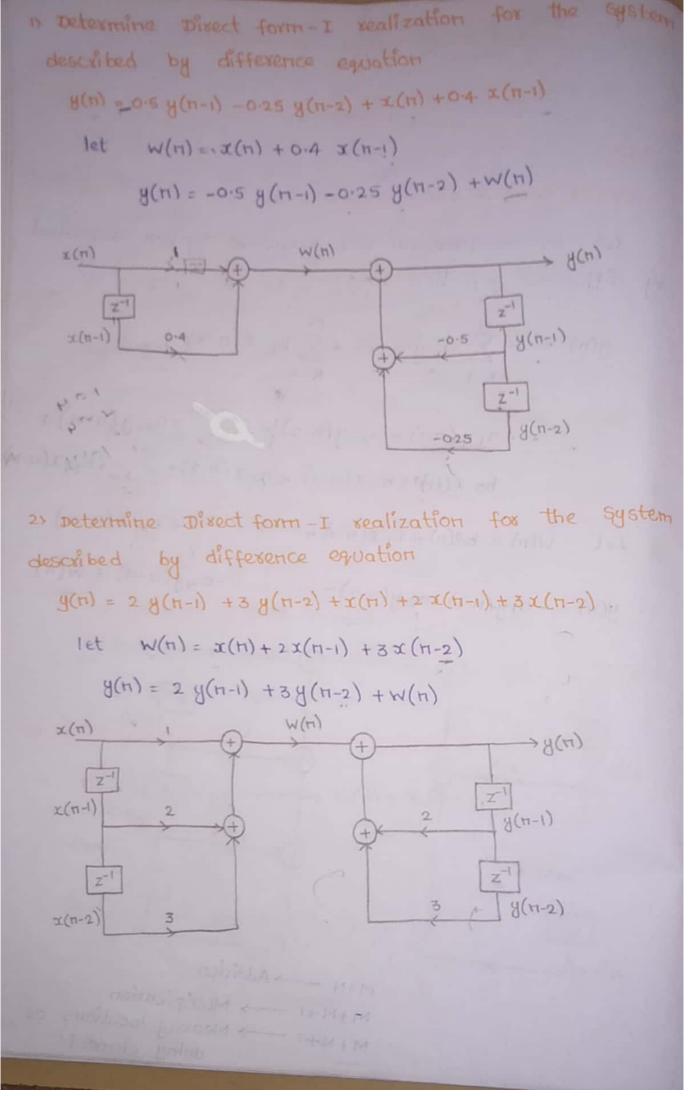
Paxallel form

Lattice - Laddex

INTRODUCTION:


Realizations of discrete time systems are

classified into two types

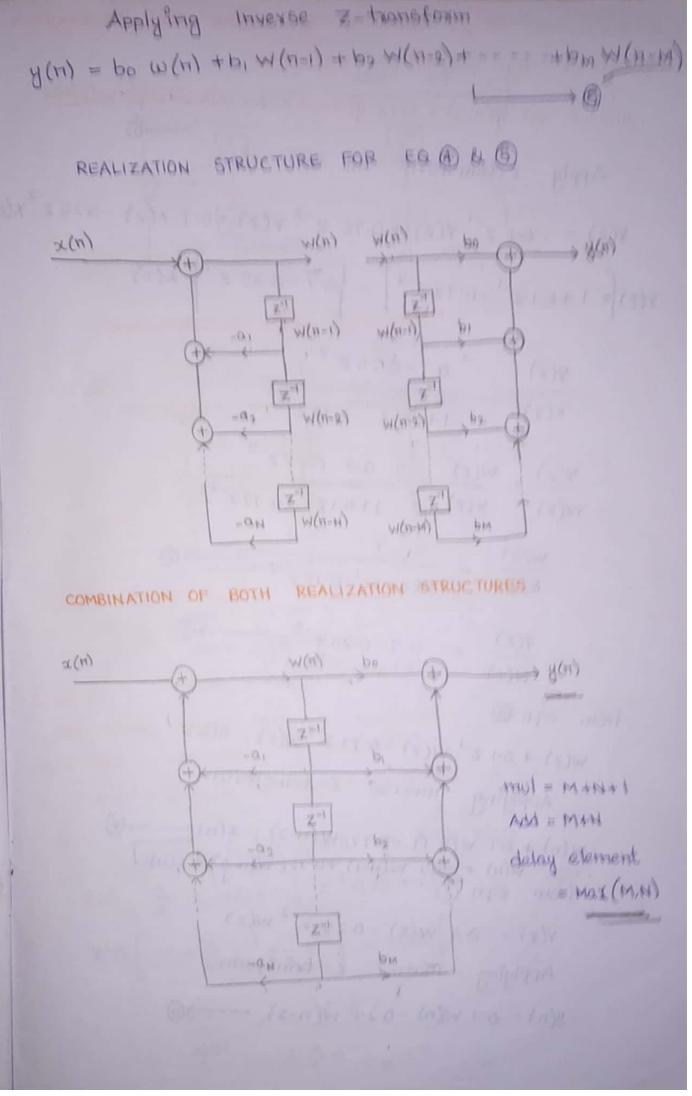

1> FIR Realization

2) IIR Realization

FIR is a Non-Recursive Realization in which Present output depends on present input and past Import IIR is a Recursive Realization in which present output depends on present Input, Past Inputs and Past outputs IIR can be sealized in many forms 1) Direct form - I realization 21 Direct form- I realization 3x Transpose direct form realization 4> Cascade form realization 5> parallel form realization 6) Lattice ladder realization FIR can be realized in many forms 1) Direct form realization 2> cascade form realization 3> Lattice realization BASIC ELEMENTS $\rightarrow x_1(n) + x_2(n)$ 13 x,(n) (+) 3 21(H-1) 1/201 211 15

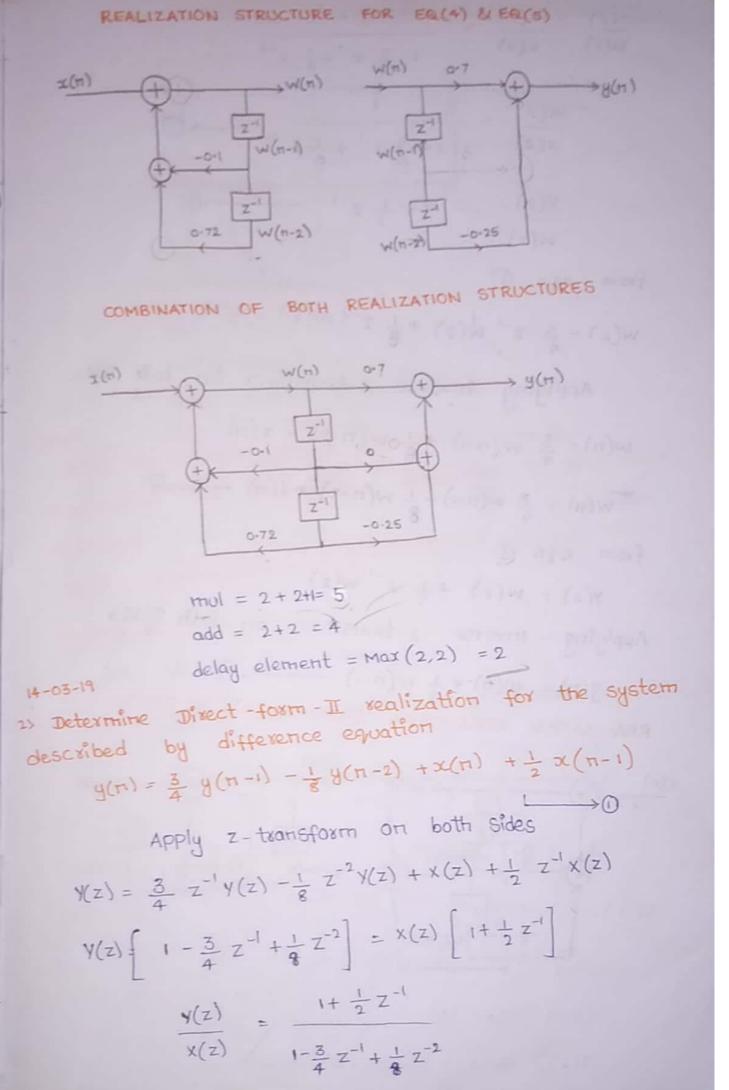
Scanned by CamScanner

Scanned by CamScanner


$$\frac{V(z)}{X(z)} = \frac{\sum_{k=0}^{M} b_{k} z^{-k}}{\sum_{k=1}^{M} a_{k} z^{-k}}$$

$$\frac{V(z)}{W(z)} = \frac{\sum_{k=0}^{M} b_{k} z^{-k}}{\sum_{k=1}^{M} a_{k} z^{-k}}$$

$$\frac{W(z)}{W(z)} = \frac{\sum_{k=0}^{M} b_{k} z^{-k}}{\sum_{k=1}^{M} a_{k} z^{-k}}$$


$$\frac{V(z)}{W(z)} = \sum_{k=0}^{M} b_{k} z^{-k} = \sum_{k=1}^{M} a_{k} z^{-k}$$

$$\frac{V(z)}{W(z)} = \sum_{k=1}^{M} a_{k} z^{-k} = \sum_{k=1}^{M} a_$$

Scanned by CamScanner

1) Determine Direct form - I sealization for the System described by difference equation y(n) = -0.1 y(n-1) + 0.72 y(n-2) +0.7 x(n) -0.25 x(n-2) Apply z-transform on both sides $Y(z) = -0.1 z^{-1} Y(z) + 0.72 z^{-2} Y(z) + 0.7 x(z) - 0.25 z^{-2} X(z)$ Y(z) $\left[-1 + 0.1 z^{-1} - 0.72 z^{-2} \right] = \left[0.7 - 0.25 z^{-2} \right] \times (z)$ $\frac{Y(z)}{X(z)} = \frac{0.7 - 0.25 z^{-2}}{1 + 0.1 z^{-1} - 0.72 z^{-2}}$ $\frac{Y(z)}{W(z)} \cdot \frac{W(z)}{X(z)} = \frac{0.7 - 0.26 z^{-2}}{1 + 0.1 z^{-1} - 0.72 z^{-2}}$ $\frac{W(z)}{X(z)} = \frac{1}{1+0.1z^{-1}-0.72z^{-2}} \longrightarrow 0$ $\frac{y(z)}{z(z)} = 0.7 - 0.25 z^{-2} \longrightarrow \odot$ from egn @ W(z) + 0-1 Z-1 W(z) -0-72 Z-2 W(z) = X(Z) Applying Inverse z-transform W(n) + 0-1 W(n-1) -0-72 W(n-2) = I(n) -0 W(n) = -0.1 W(n-1) +0.72 W(n-2) +x(n) from eqn (3) Y(z) = 07 W(z) -0.25 Z-2 W(z) Applying inverse z-transform

$$|z| = |z| + \frac{1}{2} z^{-1}$$

$$|w(z)| = |z| + \frac{1}{4} z^{-1}$$

$$|w(z)| = \frac{3}{4} z^{-1} |w(z)| + \frac{1}{8} |z|^{-2} |w(z)| = |x(z)|$$

$$|w(z)| = \frac{3}{4} |w(z)| + \frac{1}{8} |w(z)| = |x(z)|$$

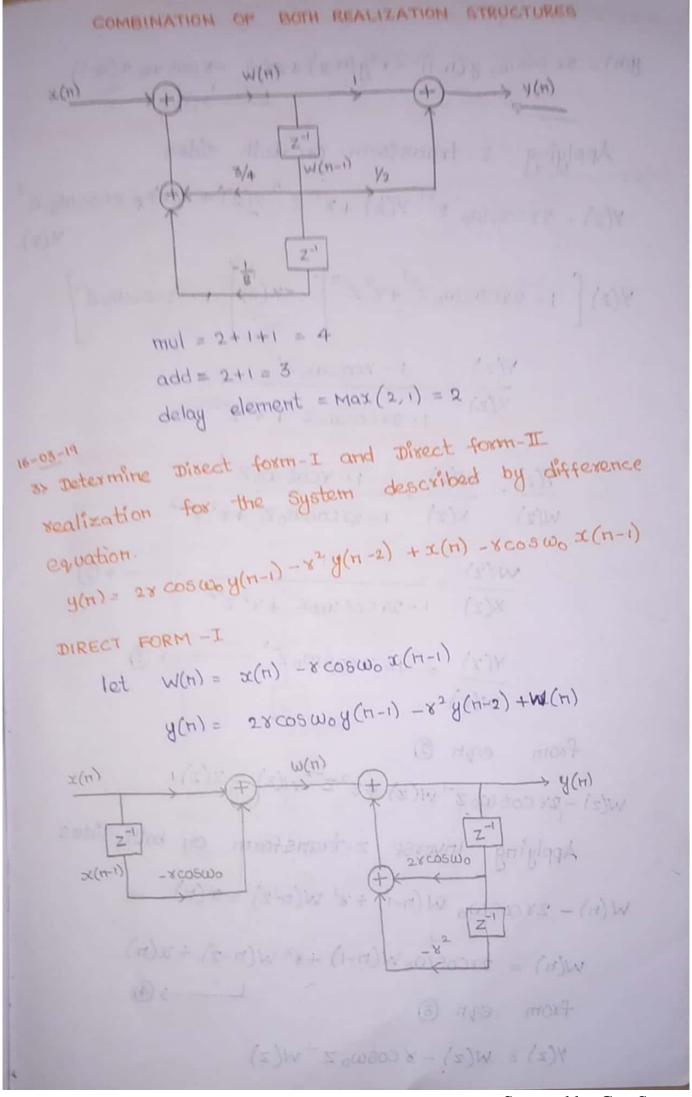
$$|w(z)| = \frac{3}{4} |w(z)| + \frac{1}{8} |w(z)| + |x(z)|$$

$$|w(z)| = \frac{3}{4} |w(z)| + \frac{1}{4} |w(z)| + |x(z)|$$

$$|w(z)| = |w(z)| + \frac{1}{4} |z|^{-1} |w(z)|$$

$$|x(z)| = |w(z)| + \frac{1}{4} |z|^{-1} |w(z)|$$

$$|x(z)| = |x(z)| + \frac{1}{4} |z|^{-1} |z|$$


$$|x(z)| = |x(z)| + \frac{1}{4} |z|^{-1} |z|$$

$$|x(z)| = |x(z)| + \frac{1}{4} |z|^{-1} |w(z)|$$

$$|x(z)| = |x(z)| + \frac{1}{4} |z|^{-1} |z|$$

$$|x(z)| = |x(z)| + \frac{1}{4} |z$$

Scanned by CamScanner

Scanned by CamScanner

Sirect FORM - II

$$y(n) = 2x \cos \omega_0 \ y(n-1) - x^2 y(n-2) + x(n) - x \cos \omega_0 \ x(n-1)$$

$$- 0$$

$$Applying z - txansform on both sides$$

$$y(z) = 2x \cos \omega_0 z^{-1} y(z) - x^2 z^{-2} y(z) + x(z) - x \cos \omega_0 z^{-1}$$

$$y(z) = 1 - x \cos \omega_0 z^{-1} + x^2 z^{-2}$$

$$\frac{y(z)}{x(z)} = \frac{1 - x \cos \omega_0 z^{-1}}{1 - 2x \cos \omega_0 z^{-1} + x^2 z^{-2}}$$

$$\frac{y(z)}{x(z)} = \frac{1 - x \cos \omega_0 z^{-1}}{1 - 2x \cos \omega_0 z^{-1} + x^2 z^{-2}}$$

$$\frac{y(z)}{x(z)} = \frac{1 - x \cos \omega_0 z^{-1}}{1 - 2x \cos \omega_0 z^{-1} + x^2 z^{-2}}$$

$$\frac{y(z)}{x(z)} = \frac{1 - x \cos \omega_0 z^{-1}}{1 - 2x \cos \omega_0 z^{-1} + x^2 z^{-2}}$$

$$\frac{y(z)}{x(z)} = \frac{1 - x \cos \omega_0 z^{-1}}{1 - 2x \cos \omega_0 z^{-1} + x^2 z^{-2}}$$

$$\frac{y(z)}{x(z)} = \frac{1 - x \cos \omega_0 z^{-1}}{1 - 2x \cos \omega_0 z^{-1} + x^2 z^{-2}}$$

$$\frac{y(z)}{x(z)} = \frac{1 - x \cos \omega_0 z^{-1}}{1 - 2x \cos \omega_0 z^{-1} + x^2 z^{-2}}$$

$$\frac{y(z)}{x(z)} = \frac{1 - x \cos \omega_0 z^{-1}}{1 - 2x \cos \omega_0 z^{-1}}$$

$$\frac{y(z)}{x(z)} = \frac{1 - x \cos \omega_0 z^{-1}}{1 - 2x \cos \omega_0 z^{-1}}$$

$$\frac{y(z)}{x(z)} = \frac{1 - x \cos \omega_0 z^{-1}}{1 - 2x \cos \omega_0 z^{-1}}$$

$$\frac{y(z)}{x(z)} = \frac{1 - x \cos \omega_0 z^{-1}}{1 - 2x \cos \omega_0 z^{-1}}$$

$$\frac{y(z)}{x(z)} = \frac{1 - x \cos \omega_0 z^{-1}}{1 - 2x \cos \omega_0 z^{-1}}$$

$$\frac{y(z)}{x(z)} = \frac{1 - x \cos \omega_0 z^{-1}}{1 - 2x \cos \omega_0 z^{-1}}$$

$$\frac{y(z)}{x(z)} = \frac{1 - x \cos \omega_0 z^{-1}}{1 - 2x \cos \omega_0 z^{-1}}$$

$$\frac{y(z)}{x(z)} = \frac{1 - x \cos \omega_0 z^{-1}}{1 - 2x \cos \omega_0 z^{-1}}$$

$$\frac{y(z)}{x(z)} = \frac{1 - x \cos \omega_0 z^{-1}}{1 - 2x \cos \omega_0 z^{-1}}$$

$$\frac{y(z)}{x(z)} = \frac{1 - x \cos \omega_0 z^{-1}}{1 - 2x \cos \omega_0 z^{-1}}$$

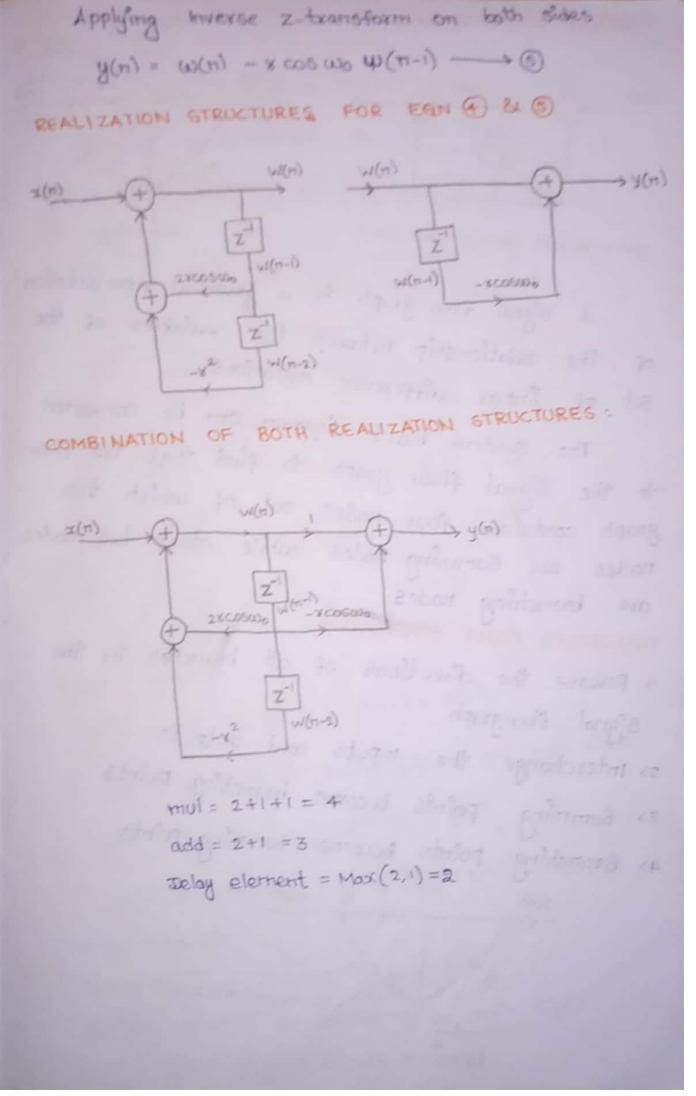
$$\frac{y(z)}{x(z)} = \frac{1 - x \cos \omega_0 z^{-1}}{1 - 2x \cos \omega_0 z^{-1}}$$

$$\frac{y(z)}{x(z)} = \frac{1 - x \cos \omega_0 z^{-1}}{1 - 2x \cos \omega_0 z^{-1}}$$

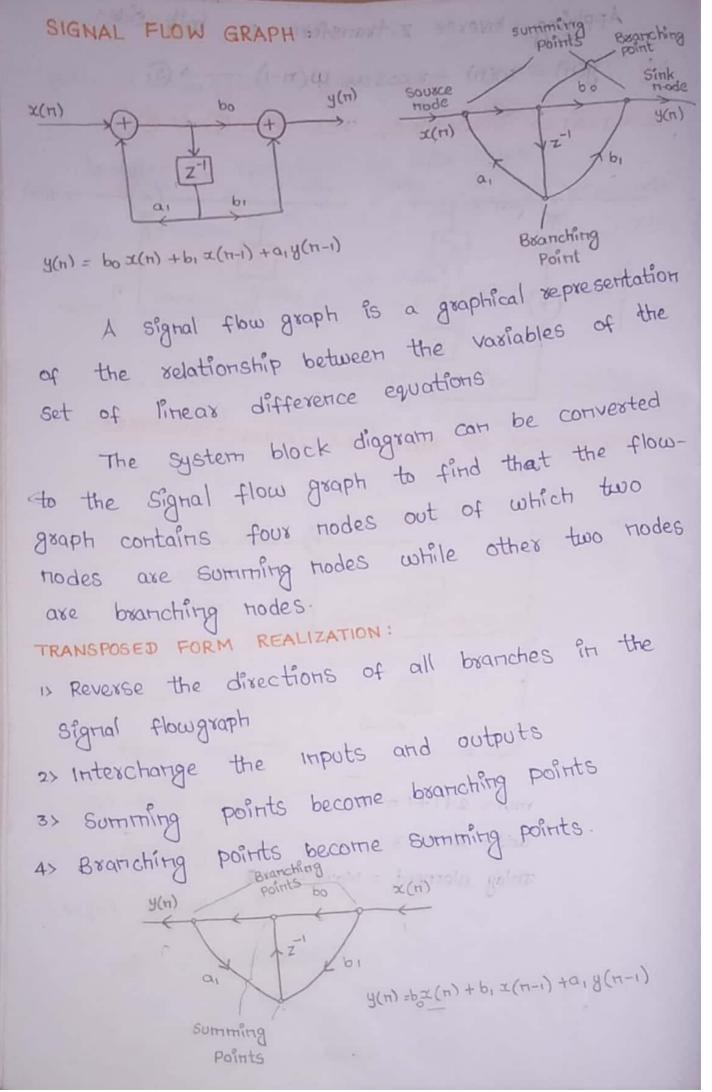
$$\frac{y(z)}{x(z)} = \frac{1 - x \cos \omega_0 z^{-1}}{1 - 2x \cos \omega_0 z^{-1}}$$

$$\frac{y(z)}{x(z)} = \frac{1 - x \cos \omega_0 z^{-1}}{1 - 2x \cos \omega_0 z^{-1}}$$

$$\frac{y(z)}{x(z)} = \frac{1 - x \cos \omega_0 z^{-1}}{1 - 2x \cos \omega_0 z^{-1}}$$


$$\frac{y(z)}{x(z)} = \frac{1 - x \cos \omega_0 z^{-1}}{1 - 2x \cos \omega_0 z^{-1}}$$

$$\frac{y(z)}{x(z)} = \frac{1 - x \cos \omega_0 z^{-1}}{1 - 2x \cos \omega_0 z^{-1}}$$


$$\frac{y(z)}{x(z)} = \frac{1 - x \cos \omega_0 z^{-1}}{1 - 2x \cos \omega_0 z^{-1}}$$

$$\frac{y(z)}{x(z)} = \frac{1 - x \cos \omega_0 z^{-1}}{1 - 2x \cos \omega_0 z^{-1}}$$

$$\frac{y(z)}{x(z)} = \frac{1 - x \cos \omega_0 z^{-1}}{1 - 2x \cos \omega_0 z^{-1}}$$

Scanned by CamScanner

Property in the direct form-II and Transposed direct form-II for the given system

$$y(n) = \frac{1}{2} y(n-1) - \frac{1}{4} y(n-2) + x(n) + x(n-1) \longrightarrow 0$$

Applying z -transform on both sides

$$y(z) = \frac{1}{2} z^{-1} y(z) - \frac{1}{4} z^{-2} y(z) + x(z) + z^{-1} x(z)$$

$$y(z) \left[1 - \frac{1}{2} z^{-1} + \frac{1}{4} z^{-2} \right] = x(z) \left[1 + z^{-1} \right]$$

$$\frac{y(z)}{x(z)} \cdot \frac{w(z)}{x(z)} = \frac{1 + z^{-1}}{1 - \frac{1}{2} z^{-1} + \frac{1}{4} z^{-2}}$$

$$\frac{y(z)}{w(z)} \cdot \frac{w(z)}{x(z)} = \frac{1 + z^{-1}}{1 - \frac{1}{2} z^{-1} + \frac{1}{4} z^{-2}}$$

$$\frac{y(z)}{w(z)} = \frac{1 + z^{-1}}{1 - \frac{1}{2} z^{-1} + \frac{1}{4} z^{-2}}$$

$$\frac{y(z)}{w(z)} = \frac{1 + z^{-1}}{1 - \frac{1}{2} z^{-1} + \frac{1}{4} z^{-2}}$$

$$\frac{y(z)}{w(z)} = \frac{1 + z^{-1}}{1 - \frac{1}{2} z^{-1} + \frac{1}{4} z^{-2}}$$

$$\frac{y(z)}{w(z)} = \frac{1 + z^{-1}}{1 - \frac{1}{2} z^{-1} + \frac{1}{4} z^{-2}}$$

$$\frac{y(z)}{w(z)} = \frac{1 + z^{-1}}{1 - \frac{1}{2} z^{-1} + \frac{1}{4} z^{-2}}$$

$$\frac{y(z)}{w(z)} = \frac{1 + z^{-1}}{1 - \frac{1}{2} z^{-1} + \frac{1}{4} z^{-2}}$$

$$\frac{y(z)}{w(z)} = \frac{1 + z^{-1}}{1 - \frac{1}{2} z^{-1} + \frac{1}{4} z^{-2}}$$

$$\frac{y(z)}{w(z)} = \frac{1 + z^{-1}}{1 - \frac{1}{2} z^{-1} + \frac{1}{4} z^{-2}}$$

$$\frac{y(z)}{w(z)} = \frac{1 + z^{-1}}{1 - \frac{1}{2} z^{-1} + \frac{1}{4} z^{-2}}$$

$$\frac{y(z)}{w(z)} = \frac{1 + z^{-1}}{1 - \frac{1}{2} z^{-1} + \frac{1}{4} z^{-2}}$$

$$\frac{y(z)}{w(z)} = \frac{1 + z^{-1}}{1 - \frac{1}{2} z^{-1} + \frac{1}{4} z^{-2}}$$

$$\frac{y(z)}{w(z)} = \frac{1 + z^{-1}}{1 - \frac{1}{2} z^{-1} + \frac{1}{4} z^{-2}}$$

$$\frac{y(z)}{w(z)} = \frac{1 + z^{-1}}{1 - \frac{1}{2} z^{-1} + \frac{1}{4} z^{-2}}$$

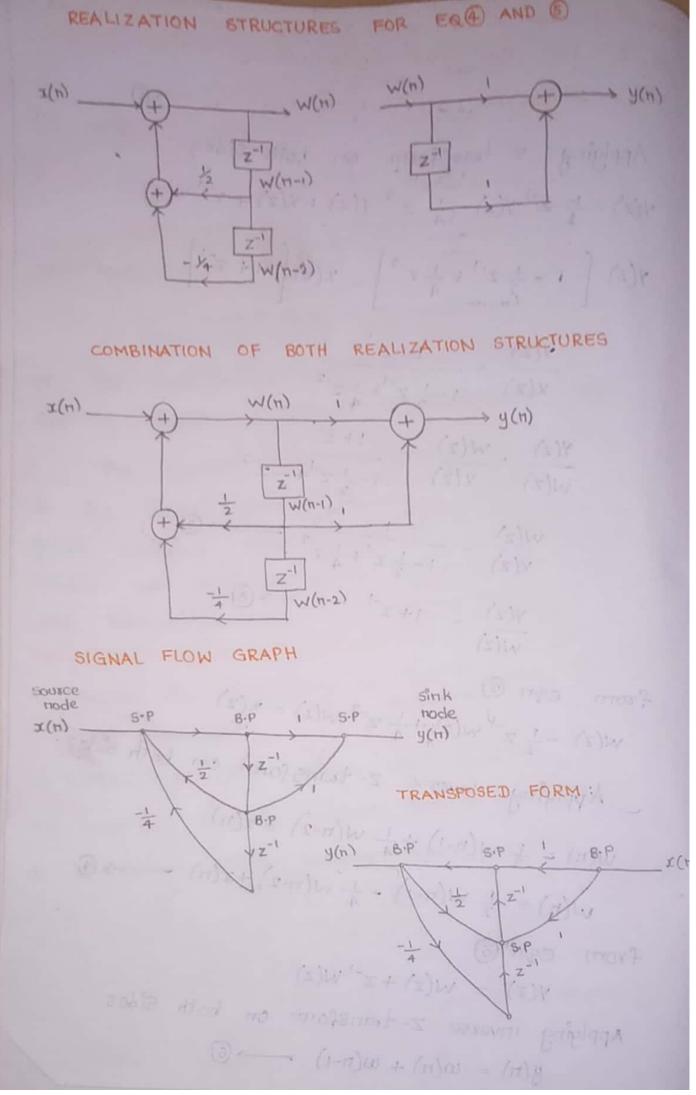
$$\frac{y(z)}{w(z)} = \frac{1 + z^{-1}}{1 - \frac{1}{2} z^{-1} + \frac{1}{4} z^{-2}}$$

$$\frac{y(z)}{w(z)} = \frac{1 + z^{-1}}{1 - \frac{1}{2} z^{-1} + \frac{1}{4} z^{-2}}$$

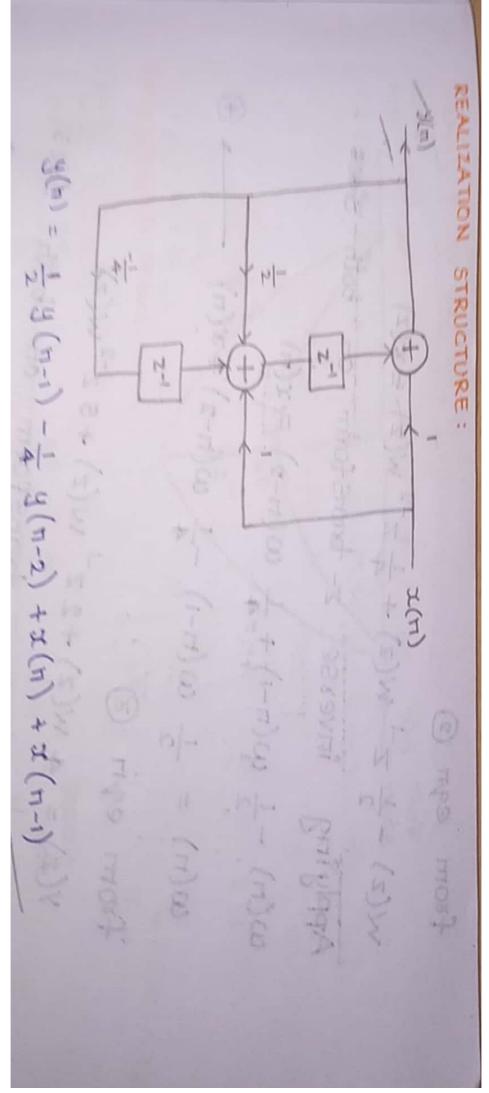
$$\frac{y(z)}{w(z)} = \frac{1 + z^{-1}}{1 - \frac{1}{2} z^{-1} + \frac{1}{4} z^{-2}}$$

$$\frac{y(z)}{w(z)} = \frac{1 + z^{-1}}{1 - \frac{1}{2} z^{-1} + \frac{1}{4} z^{-2}}$$

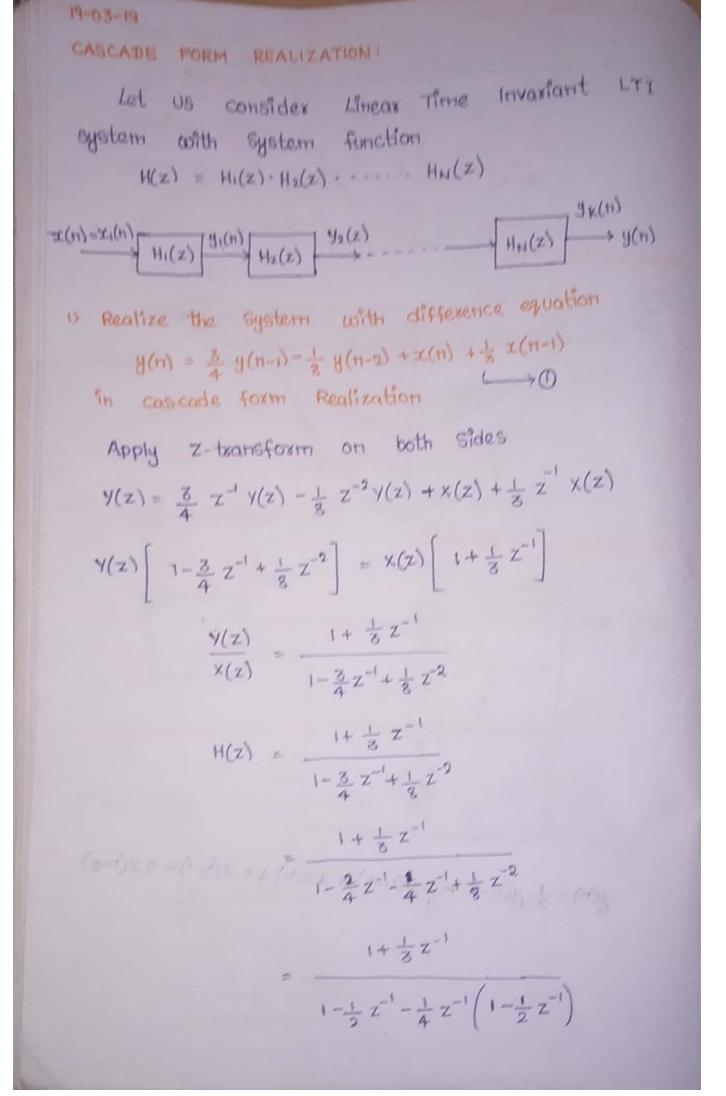
$$\frac{y(z)}{w(z)} = \frac{1 + z^{-1}}{1 - \frac{1}{2} z^{-1} + \frac{1}{4} z^{-2}}$$


$$\frac{y(z)}{w(z)} = \frac{1 + z^{-1}}{1 - \frac{1}{2} z^{-1} + \frac{1}{4} z^{-2}}$$

$$\frac{y(z)}{w(z)} = \frac{1 + z^{-1}}{1 - \frac{1}{2} z^{-1} + \frac{1}{4} z^{-2}}$$


$$\frac{y(z)}{w(z)} = \frac{1 + z^{-1}}{1 - \frac{1}{2} z^{-1} + \frac{1}{4} z^{-2}}$$

$$\frac{y(z)}{w(z)} = \frac{1 + z^{-1}}{1 - \frac{1}{2} z^{-1} + \frac{1}{4} z^{-2}}$$


$$\frac{y(z)}{w(z)} = \frac{1 + z^{-1}$$

Scanned by CamScanner

Scanned by CamScanner

$$H(z) = \frac{1 + \frac{1}{3} z^{-1}}{\left(1 - \frac{1}{4} z^{-1}\right) \left(1 - \frac{1}{2} z^{-1}\right)}$$

$$H(z) = \frac{1 + \frac{1}{3} z^{-1}}{1 - \frac{1}{4} z^{-1}} \cdot \frac{1}{1 - \frac{1}{4} z^{-1}}$$

$$H_{1}(z) = \frac{y_{1}(z)}{y_{1}(z)} \cdot \frac{W_{1}(z)}{y_{1}(z)} = \frac{1 + \frac{1}{3} z^{-1}}{1 - \frac{1}{4} z^{-1}}$$

$$\frac{y_{1}(z)}{w_{1}(z)} \cdot \frac{W_{1}(z)}{x_{1}(z)} = \frac{1 + \frac{1}{3} z^{-1}}{1 - \frac{1}{4} z^{-1}}$$

$$\frac{y_{1}(z)}{y_{1}(z)} = \frac{1}{1 - \frac{1}{4} z^{-1}} \longrightarrow \mathfrak{D}$$

$$\frac{y_{1}(z)}{w_{1}(z)} = 1 + \frac{1}{3} z^{-1}$$

$$\frac{y_{1}(z)}{w_{1}(z)} = 1 + \frac{1}{3} z^{-1}$$

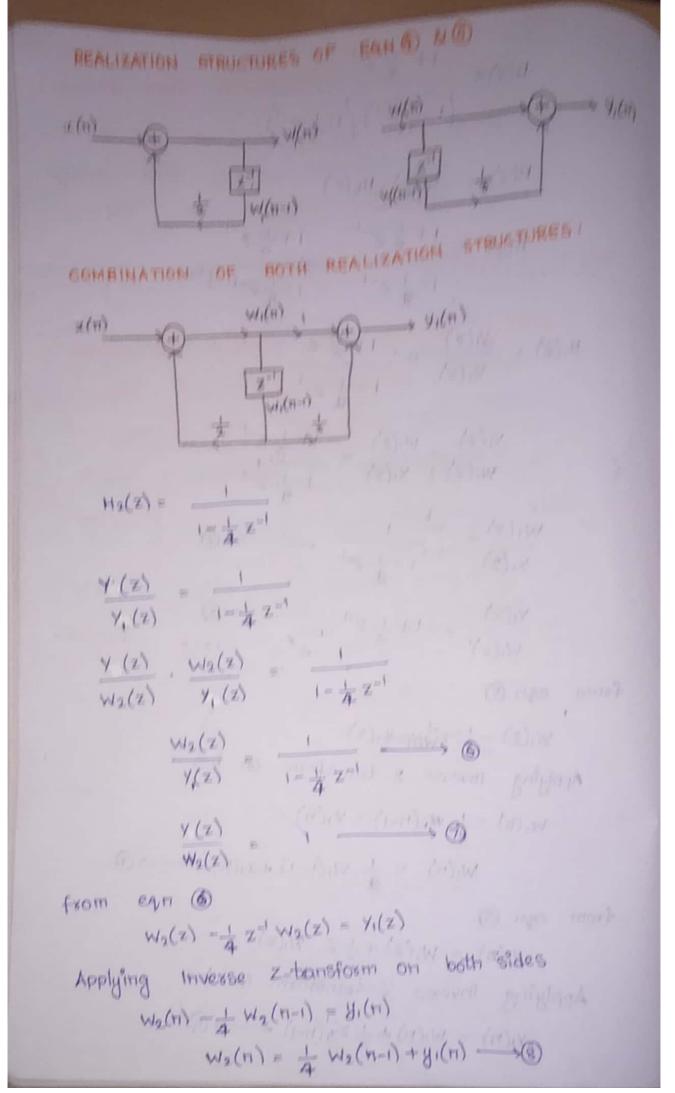
$$(3)$$

$$W_{1}(z) - \frac{1}{4} z^{-1} w_{1}(z) \times x_{1}(z)$$

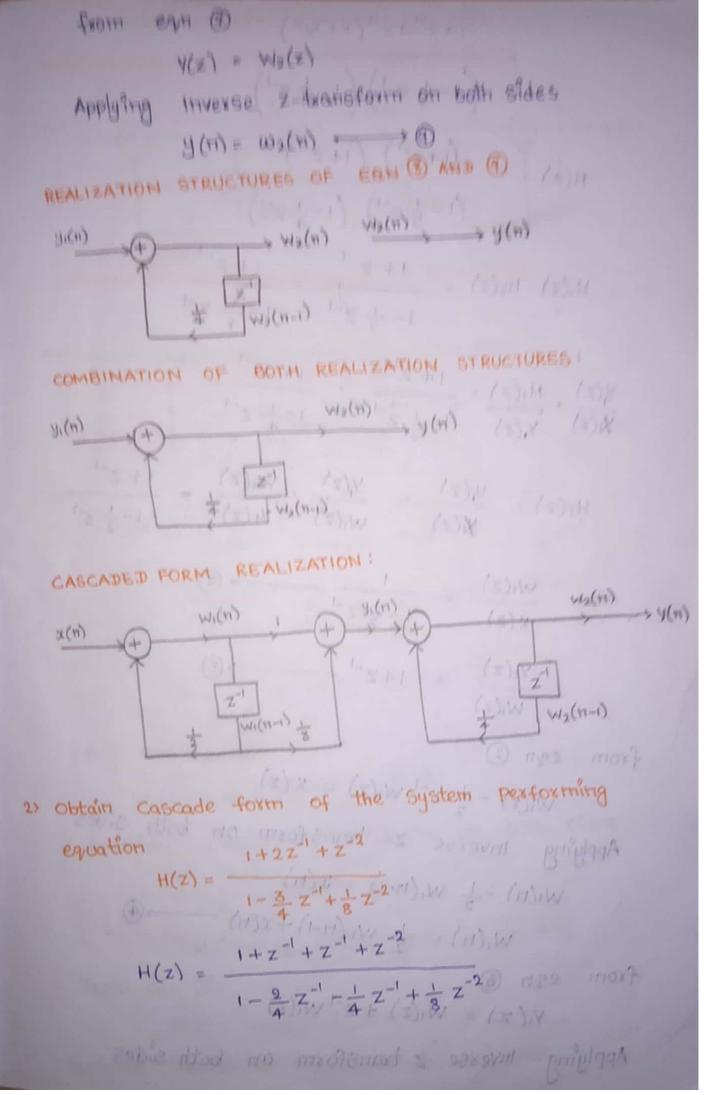
$$Applying Inverse z - txansform on b.s$$

$$W_{1}(z) - \frac{1}{4} w_{1}(z) + \frac{1}{3} z^{-1} w_{1}(z)$$

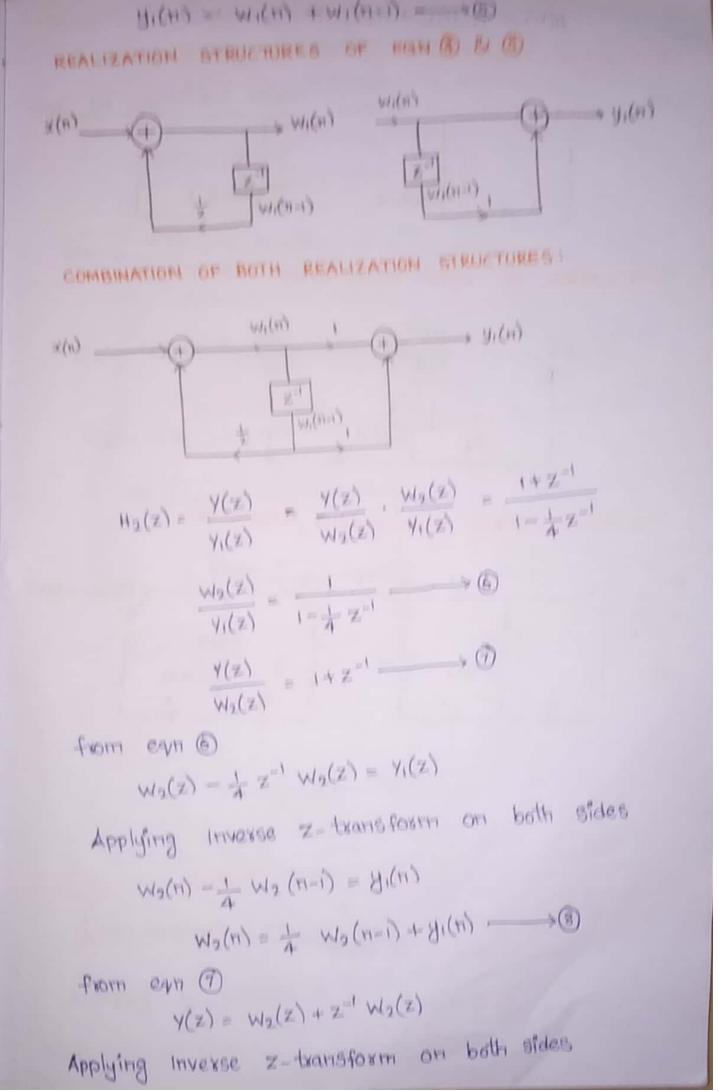
$$W_{1}(z) = w_{1}(z) + \frac{1}{3} z^{-1} w_{1}(z)$$

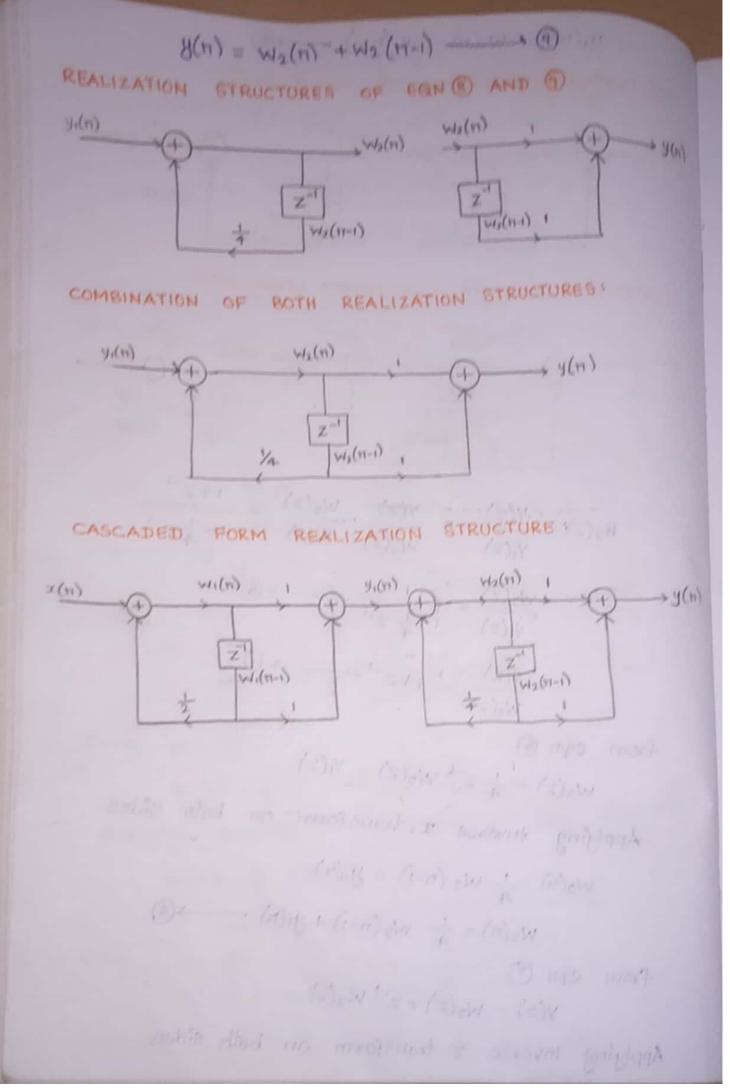

$$Applying Inverse z - txansform on b.s$$

$$y_{1}(z) = w_{1}(z) + \frac{1}{3} z^{-1} w_{1}(z)$$


$$y_{1}(z) = w_{1}(z) + \frac{1}{3} z^{-1} w_{1}(z)$$

$$y_{1}(z) = w_{1}(z) + \frac{1}{3} z^{-1} w_{1}(z)$$


$$y_{2}(z) = \frac{1}{3} w_{1}(z) + \frac{1}{3} z^{-1} w_{2}(z)$$



Scanned by CamScanner

$$\begin{aligned} & \frac{1+z^{-1}+z^{-1}}{(1+z^{-1})} \left(1+z^{-1}\right) \\ & \frac{1-\frac{1}{2}z^{-1}}{(1+z^{-1})} \left(1+z^{-1}\right) \\ & \frac{1+z^{-1}}{2} \left(1+z^{-1}\right) \left(1+z^{-1}\right) \\ & \frac{1+z^{-1}$$

Scanned by CamScanner

PARALLEL FORM REALIZATION : A parallel form Realization structure of an 11R system be obtained by performing a partial expansion. $H(z) = C + \sum_{K=1}^{N} \frac{C_K}{1 - P_K z^{-1}}$ $H(z) = \frac{Y(z)}{X(z)} = C + \frac{C_1}{1 - P_1 z^{-1}} + \frac{C_2}{1 - P_2 z^{-1}} + --- + \frac{C_N}{1 - P_N z^{-1}}$ $Y(z) = CX(z) + \frac{C_1}{1-P_1z^{-1}} \times (z) + \frac{C_2}{1-P_2z^{-1}} \times (z) + \cdots + \frac{C_N}{1-P_Nz^{-1}} \times (z)$ Y(Z) = CX(Z) + H1(Z) X(Z) + H2(Z) X(Z) + ---- + HN(Z) X(Z) H₁(z) + (1-58-0-1) (1-100-1) (HN(Z)) + > y(H) parallel form Realization n Realize a system with difference equation y(n) = -0:1 y(n-1) +0.72 y(n-2) +0.7 x(n) -0.25 x(n-2) Applying z-transform on both sides $Y(z) = -0.1 z^{-1} y(z) + 0.72 z^{-2} y(z) + 0.7 x(z) - 0.25 z^{-2} x(z)$

$$Y(z) \begin{bmatrix} 1+0.1 \ z^{-1}-0.72 \ z^{-2} \end{bmatrix} = x(z) \begin{bmatrix} 0.7-0.25 \ z^{2} \end{bmatrix}$$

$$Y(z) \begin{bmatrix} 1+0.1 \ z^{-1}-0.72 \ z^{-2} \end{bmatrix} = x(z) \begin{bmatrix} 0.7-0.25 \ z^{-2} \end{bmatrix}$$

$$y(z) \begin{bmatrix} 1+0.1 \ z^{-1}-0.72 \ z^{-2} \end{bmatrix} = x(z) \begin{bmatrix} 0.7-0.25 \ z^{-2} \end{bmatrix}$$

$$-0.72 \begin{bmatrix} z^{-2}+0.1 \ z^{-1} \end{bmatrix} \begin{bmatrix} -0.25 \begin{bmatrix} z^{-2} \end{bmatrix} \\ -0.05 \begin{bmatrix} z^{-2} \end{bmatrix} \\ -0.05 \begin{bmatrix} z^{-2} \end{bmatrix} \end{bmatrix} + 0.25$$

$$-0.05 \begin{bmatrix} z^{-2} \end{bmatrix} + 0.25$$

$$-0.05 \begin{bmatrix} z^{-2} \end{bmatrix} + 0.25$$

$$-0.05 \begin{bmatrix} z^{-2} \end{bmatrix} + 0.25 \begin{bmatrix} z^{-2} \end{bmatrix} + 0.25$$

$$-0.05 \begin{bmatrix} z^{-2} \end{bmatrix} + 0.25 \begin{bmatrix} z^{-2} \end{bmatrix} + 0.25 \begin{bmatrix} z^{-2} \end{bmatrix} + 0.25$$

$$-0.35 - 0.035 \begin{bmatrix} z^{-2} \end{bmatrix} = 0.25 \begin{bmatrix} z^{-2} \end{bmatrix} + 0.25 \begin{bmatrix}$$

$$0.35 - 0.035 \cdot \frac{1}{0.9} = A \left(1 - 0.8 \left(\frac{1}{0.9} \right) + B \left(1 + 0.9 \left(\frac{1}{0.9} \right) \right) \right)$$

$$0.35 + 0.036 \cdot 8 = A \left(1 + 0.889 \right) + B \left(1 - 1 \right)$$

$$0.3888 = A \left(1.889 \right)$$

$$A = 0.2058$$

$$A = 0.206$$

$$Z = 0.8 \implies Z^{-1} = \frac{1}{0.8}$$

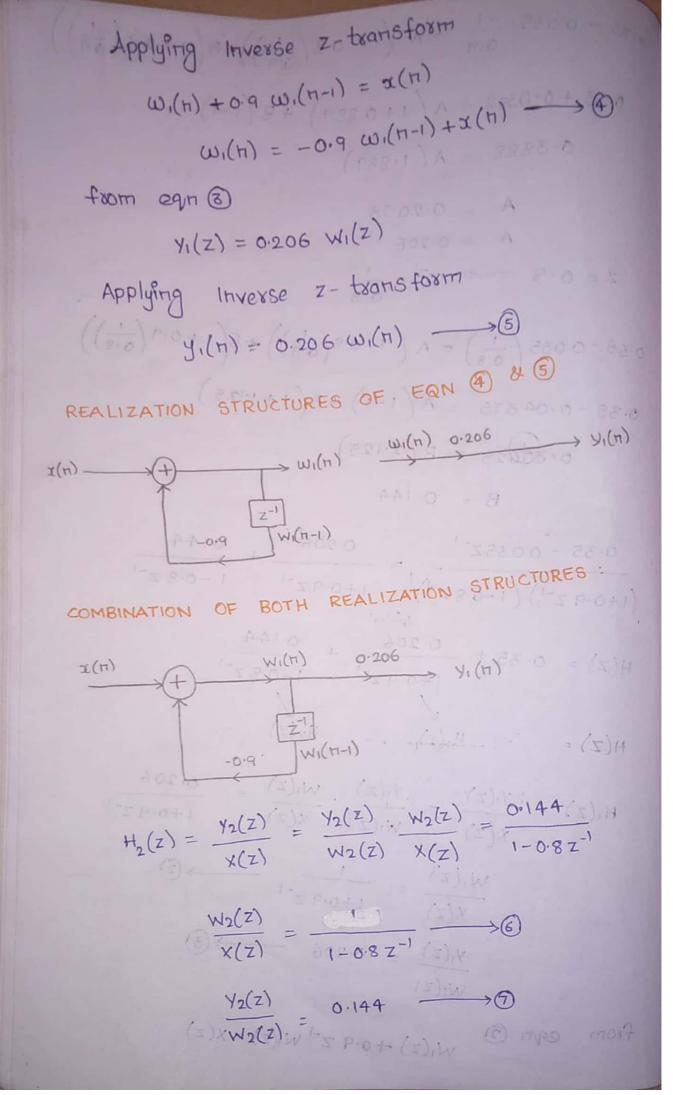
$$0.35 - 0.035 \left(\frac{1}{0.8} \right) = A \left(1 - 0.8 \left(\frac{1}{0.8} \right) \right) + B \left(1 + 0.9 \left(\frac{1}{0.8} \right) \right)$$

$$0.35 - 0.04315 = A \left(1 - 1 \right) + B \left(1 + 1.125 \right)$$

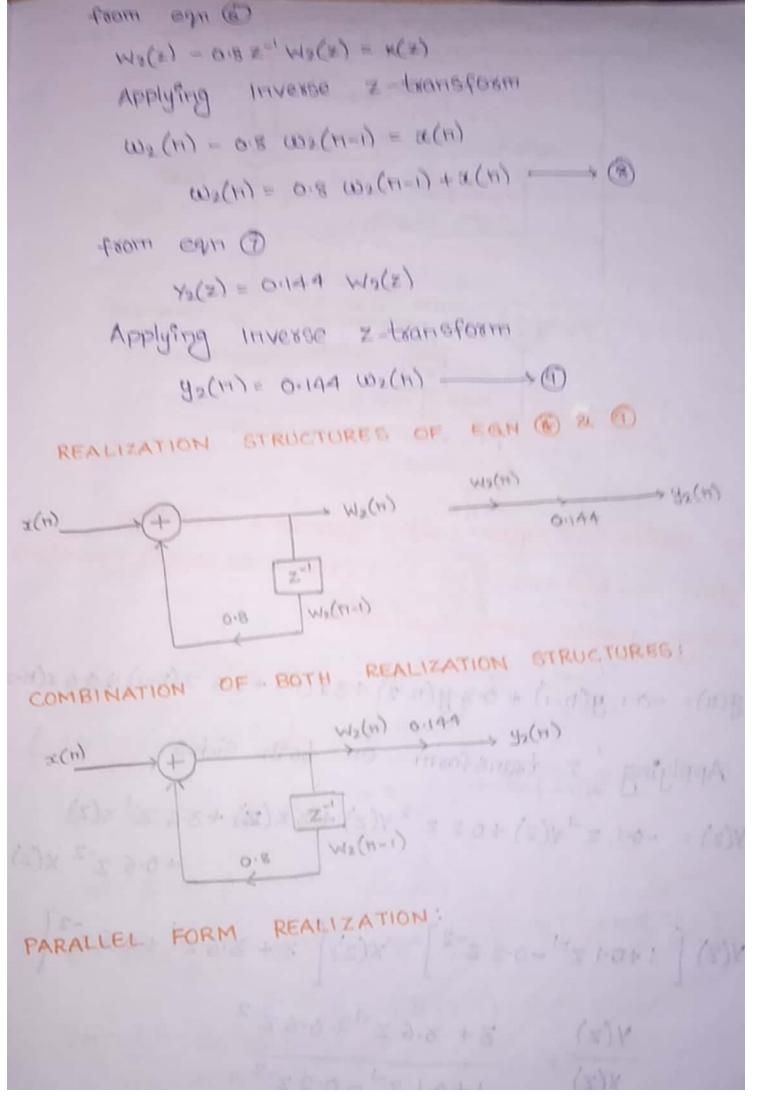
$$0.30625 = B \left(2.125 \right)$$

$$B = 0.144$$

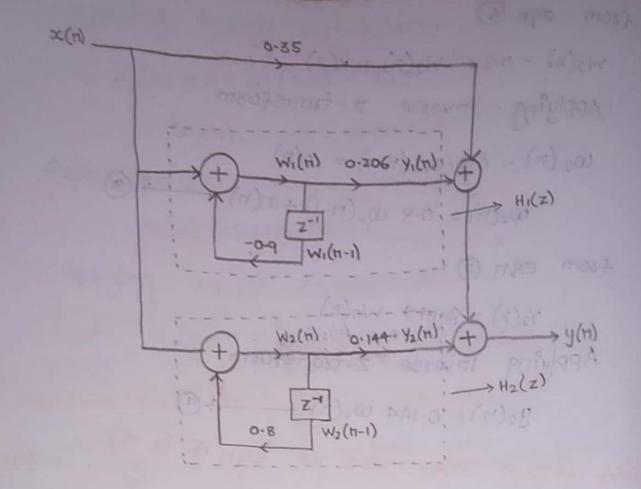
$$0.35 - 0.035Z^{-1} = \frac{0.206}{1 + 0.9 Z^{-1}} + \frac{0.144}{1 - 0.8 Z^{-1}}$$


$$H(Z) = 0.35 + \frac{0.206}{1 + 0.9 Z^{-1}} + \frac{0.144}{1 - 0.8 Z^{-1}}$$

$$H_{1}(Z) = \frac{Y_{1}(Z)}{Y(Z)} = \frac{Y_{1}(Z)}{W_{1}(Z)} \cdot \frac{W_{1}(Z)}{X(Z)} = \frac{0.206}{1 + 0.9 Z^{-1}}$$


$$\frac{W_{1}(Z)}{Y_{1}(Z)} = 0.206 \implies 3$$

$$W_{1}(Z) + 0.9 Z^{-1} W_{1}(Z) = X(Z)$$


$$From equil 3 W_{1}(Z) + 0.9 Z^{-1} W_{1}(Z) = X(Z)$$

Scanned by CamScanner

Scanned by CamScanner

2> Realize a System with difference equation y(n) = -0.1 y(n-1) + 0.2 y(n-2) + 3x(n) + 3.6 x(n-1) + 0.6 x(n-2)using pasallel form Realization. y(n) = -0.1 y(n-1) + 0.2 y(n-2) + 3x(n) + 3.6 x(n-1) + 0.6 x(n-2) $Applying \quad z - \text{txansform} \quad \text{on both sides}$ $y(z) = -0.1 \quad z^{-1} y(z) + 0.2 \quad z^{-2} y(z) + 3x(x) + 3.6 \quad z^{-1} x(z) + 0.6 \quad z^{-2} x(z)$ $y(z) \left[1 + 0.1 \quad z^{-1} - 0.2 \quad z^{-2} \right] = x(z) \left[3 + 3.6 \quad z^{-1} + 0.6 \quad z^{-2} \right]$ $\frac{y(z)}{x(z)} = \frac{3 + 3.6 \quad z^{-1} + 0.6 \quad z^{-2}}{1 + 0.1 \quad z^{-1} - 0.2 \quad z^{-2}}$

$$H(z) = -3 + \frac{39z^{1} + 6}{39z^{1} + 6}$$

$$H(z) = -3 + \frac{39z^{1} + 6}{-92z^{2} + 01z^{2} + 1}$$

$$= -3 + \frac{39z^{1} + 6}{-92z^{2} + 01z^{2} + 1}$$

$$= -3 + \frac{39z^{1} + 6}{-92z^{2} + 01z^{2} + 1}$$

$$H(z) = -3 + \frac{39z^{1} + 6}{-92z^{2} + 01z^{2} + 1}$$

$$= -3 + \frac{39z^{1} + 6}{-92z^{2} + 01z^{2} + 1}$$

$$= -3 + \frac{39z^{1} + 6}{-92z^{2} + 01z^{2} + 1}$$

$$= -3 + \frac{39z^{1} + 6}{-92z^{2} + 01z^{2} + 1}$$

$$= -3 + \frac{39z^{1} + 6}{-92z^{2} + 01z^{2} + 1}$$

$$= -3 + \frac{39z^{1} + 6}{-92z^{2} + 01z^{2} + 1}$$

$$= -3 + \frac{39z^{1} + 6}{-92z^{2} + 01z^{2} + 1}$$

$$= -3 + \frac{39z^{1} + 6}{-92z^{2} + 01z^{2} + 1}$$

$$= -3 + \frac{39z^{1} + 6}{-92z^{2} + 01z^{2} + 1}$$

$$= -3 + \frac{39z^{1} + 6}{-92z^{2} + 01z^{2} + 1}$$

$$= -3 + \frac{39z^{1} + 6}{-92z^{2} + 01z^{2} + 1}$$

$$= -3 + \frac{39z^{1} + 6}{-92z^{2} + 01z^{2} + 1}$$

$$= -3 + \frac{39z^{1} + 6}{-92z^{2} + 01z^{2} + 1}$$

$$= -3 + \frac{39z^{1} + 6}{-92z^{2} + 01z^{2} + 1}$$

$$= -3 + \frac{39z^{1} + 6}{-92z^{2} + 01z^{2} + 1}$$

$$= -3 + \frac{39z^{1} + 6}{-92z^{2} + 01z^{2} + 1}$$

$$= -3 + \frac{39z^{1} + 6}{-92z^{2} + 01z^{2} + 1}$$

$$= -3 + \frac{39z^{1} + 6}{-92z^{2} + 01z^{2} + 1}$$

$$= -3 + \frac{39z^{1} + 6}{-92z^{2} + 01z^{2} + 1}$$

$$= -3 + \frac{39z^{1} + 6}{-92z^{2} + 01z^{2} + 1}$$

$$= -3 + \frac{39z^{1} + 6}{-92z^{2} + 01z^{2} + 1}$$

$$= -3 + \frac{39z^{1} + 6}{-92z^{2} + 01z^{2} + 1}$$

$$= -3 + \frac{39z^{1} + 6}{-92z^{2} + 01z^{2} + 1}$$

$$= -3 + \frac{39z^{1} + 6}{-92z^{2} + 01z^{2} + 1}$$

$$= -3 + \frac{39z^{1} + 6}{-92z^{2} + 01z^{2} + 1}$$

$$= -3 + \frac{39z^{1} + 6}{-92z^{2} + 1} + 1$$

$$= -3 + \frac{39z^{1} + 6}{-92z^{2} + 1} + 1$$

$$= -3 + \frac{39z^{1} + 6}{-92z^{2} + 1} + 1$$

$$= -3 + \frac{39z^{1} + 6}{-92z^{2} + 1} + 1$$

$$= -3 + \frac{39z^{1} + 6}{-92z^{2} + 1} + 1$$

$$= -3 + \frac{39z^{1} + 1}{-92z^{2} + 1} + 1$$

$$= -3 + \frac{39z^{1} + 1}{-92z^{2} + 1} + 1$$

$$= -3 + \frac{39z^{1} + 1}{-92z^{2} + 1} + 1$$

$$= -3 + \frac{39z^{1} + 1}{-92z^{2} + 1} + 1$$

$$= -3 + \frac{39z^{1} + 1}{-92z^{2} + 1} + 1$$

$$= -3 + \frac{39z^{1} + 1}{-92z^{2} + 1} + 1$$

$$= -3 + \frac{39z^{1} + 1}{-92z^{2} + 1} + 1$$

$$= -3 + \frac{39z^{1} + 1}{-92z^{2} + 1} + 1$$

$$= -3 + \frac{39z^{1} + 1}{-92z^{2} + 1} + 1$$

$$= -3 + \frac{39z^{1} + 1}{-92z^{2} + 1} + 1$$

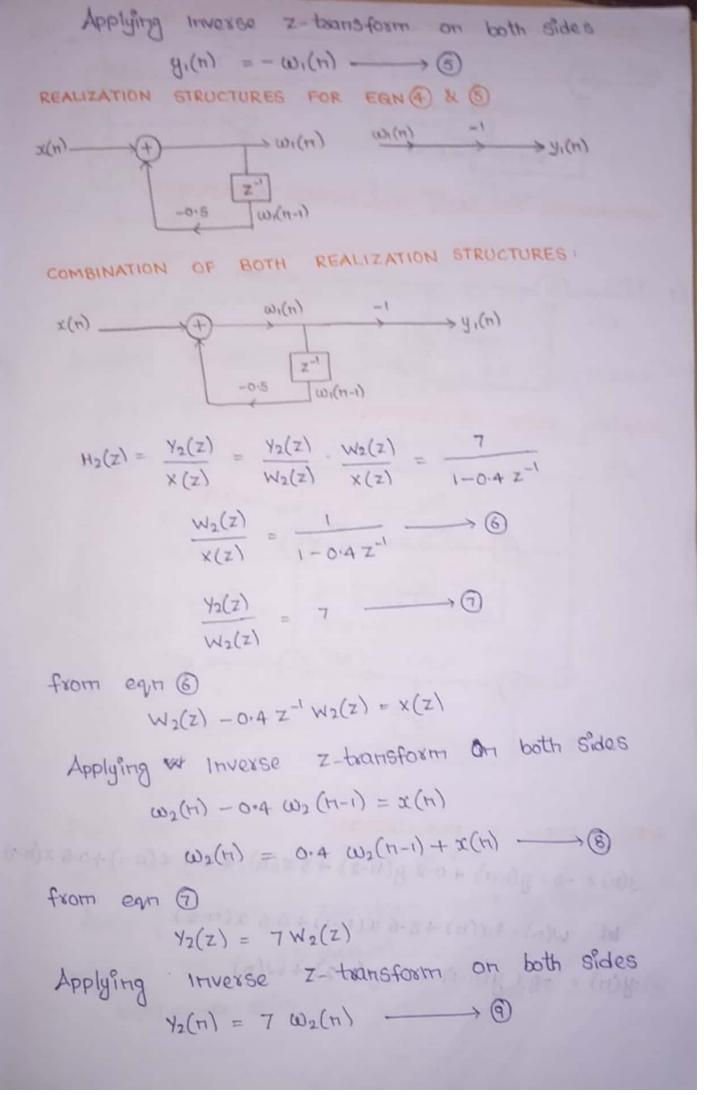
$$= -3 + \frac{39z^{1} +$$

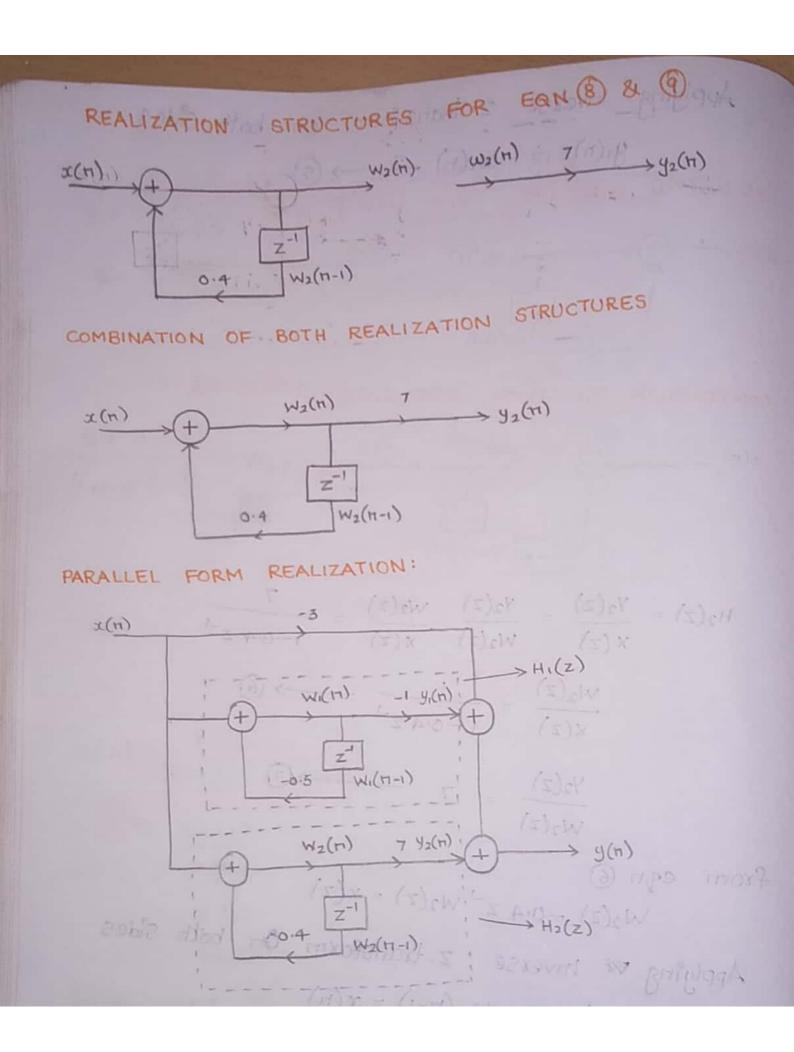
18t
$$Z = 0.4$$
 $\Rightarrow z' = \frac{1}{0.4}$

6+ 8.9 $\left(\frac{1}{0.4}\right) = A\left(1 - 0.4\left(\frac{1}{0.4}\right) + 8\left(1 + 0.5\left(\frac{1}{0.4}\right)\right)\right)$

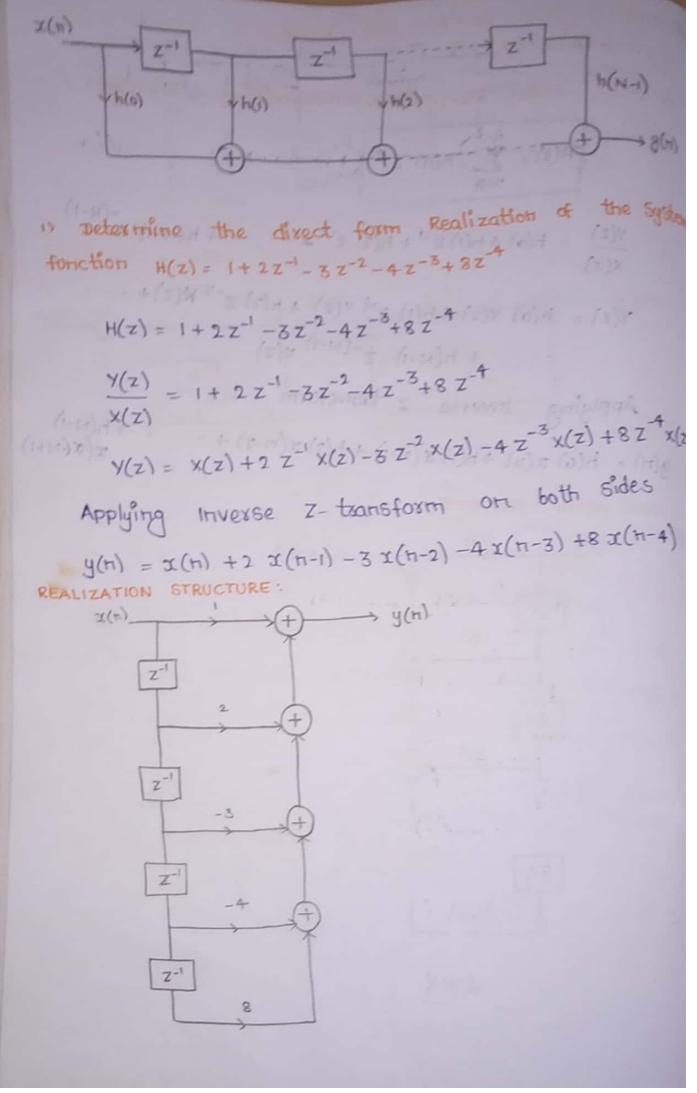
6+ 9.75 $= A\left(1 - 1\right) + B\left(1 + 1.25\right)$

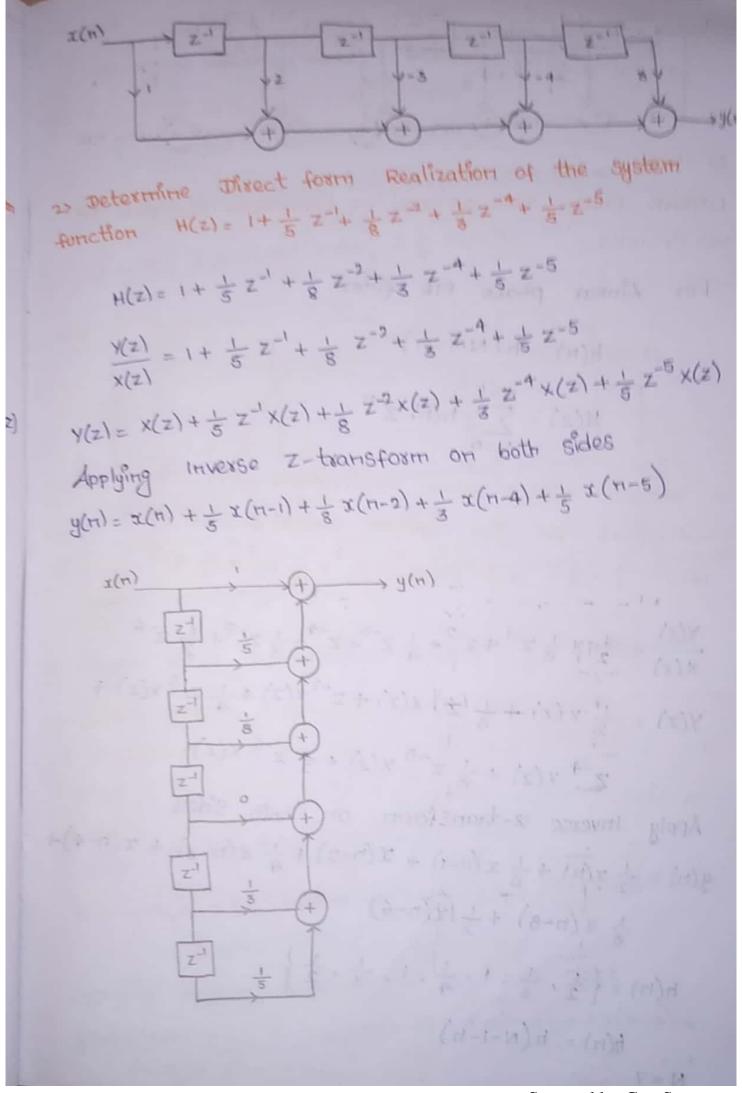
15.75 $= B\left(2.25\right)$

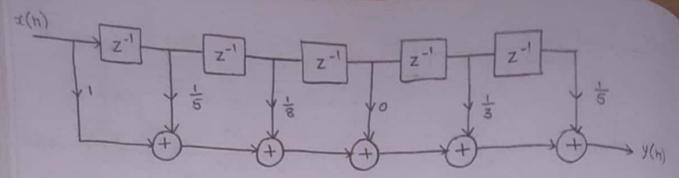

8 $= 7$


6+ 3.9 z^{-1}

(1+0.5 z^{-1}) (1-0.4 z^{-1}) $= 1 + 0.5 z^{-1}$


H(z) $= -3$ $+ \frac{-1}{1 + 0.5 z^{-1}} + \frac{7}{1 - 0.4 z^{-1}}$


H₁(z) $= \frac{1}{1 + 0.5 z^{-1}}$
 $= \frac$



REALIZATION OF FIR: DIRECT FORM REALIZATION TRANSVERSAL STRUCTURE: $H(z) = \sum_{n=1}^{N-1} h(n) z^{-n}$ $\frac{Y(z)}{z} = h(0) + h(1) z^{-1} + h(2) z^{-2} + - - - + h(N-1) z^{-(N-1)}$ X(Z) $Y(z) = h(0) x(z) + h(1) z^{-1} x(z) + h(2) z^{-2} x(z) +$ -- + h(N-1) Z-(N-1) X(Z) Applying Inverse z-transform y(n) = h(0) x(n) + h(1) x(n-1) + h(2) x(n-2) + ---- + h(N-1)REALIZATION STRUCTURE x(n) ... h(o) h(1) h(2) h (N-1) (OR)

25-03-19

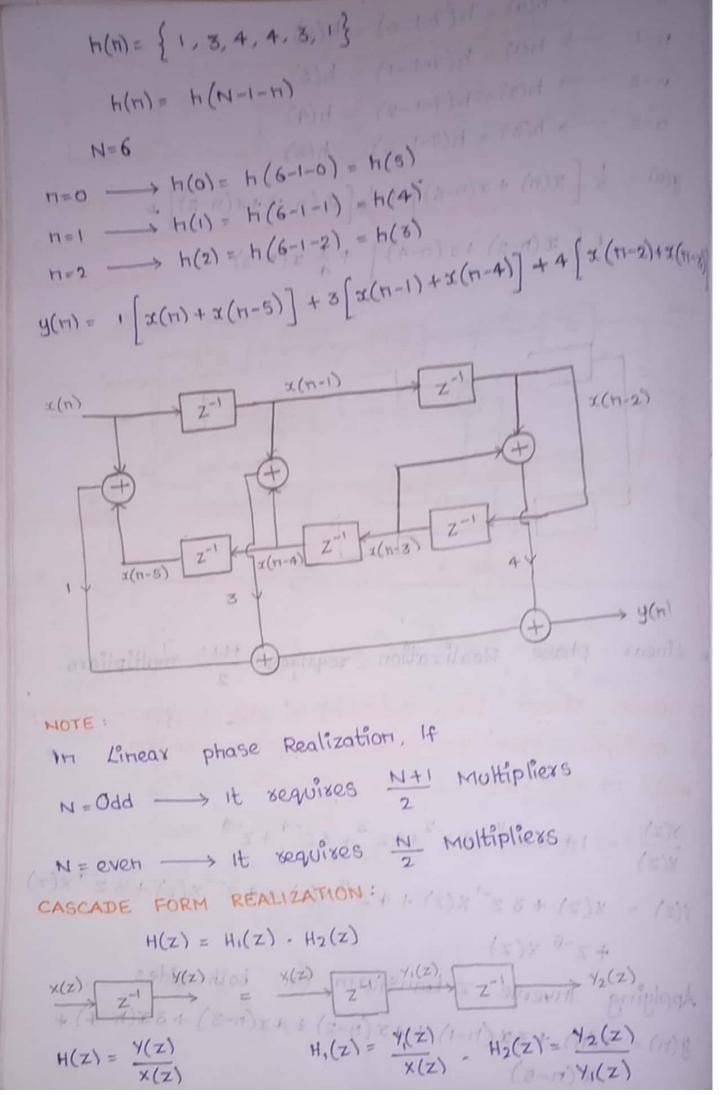
LINEAR PHASE REALIZATION OR MINIMUM NUMBER OF

For Linear phase FIR filter
$$h(H) = h(N-1-H)$$

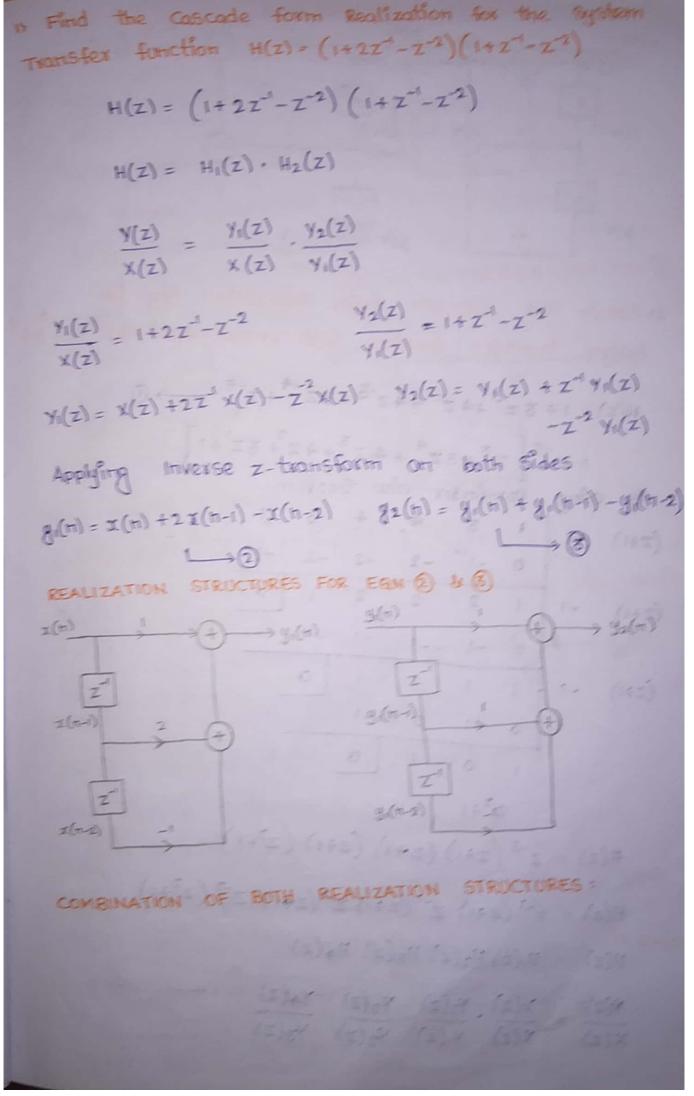
$$H(Z) = \sum_{h=0}^{N-1} h(h) Z^{-h}$$

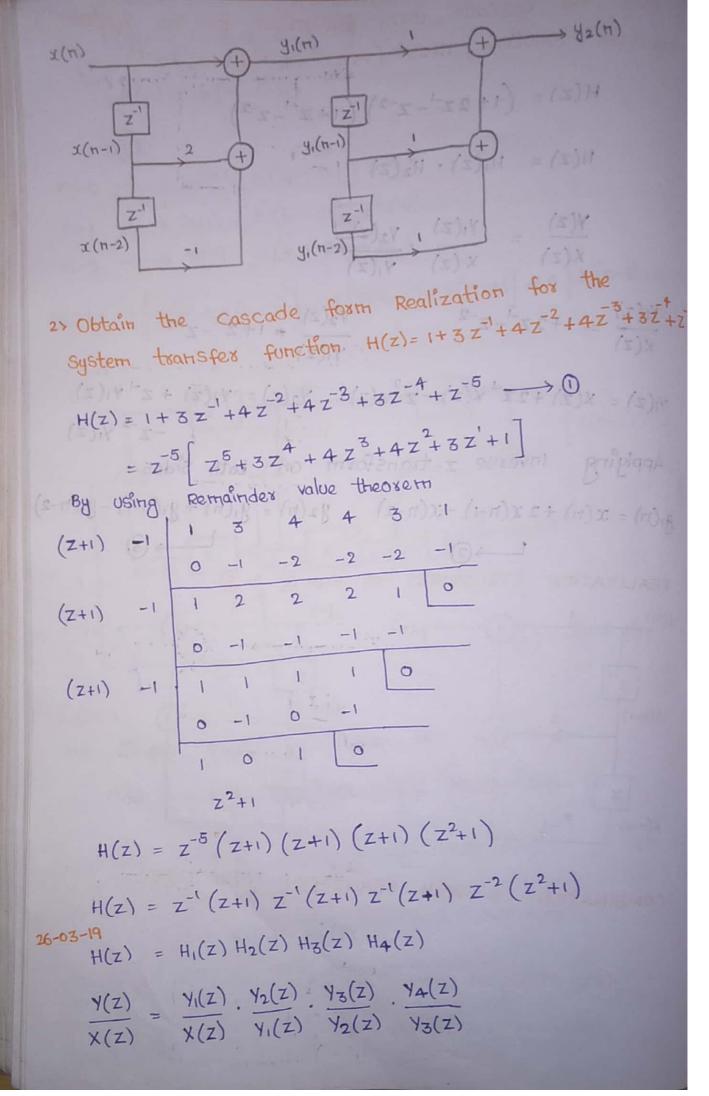
obtain Direct form Realization with min no of multipliers for the System transfer function $H(z) = \frac{1}{2} + \frac{1}{3}z^{-1} + z^{-2} + \frac{1}{4}z^{-3} + z^{-4} + \frac{1}{3}z^{-5} + \frac{1}{2}z^{-6}$

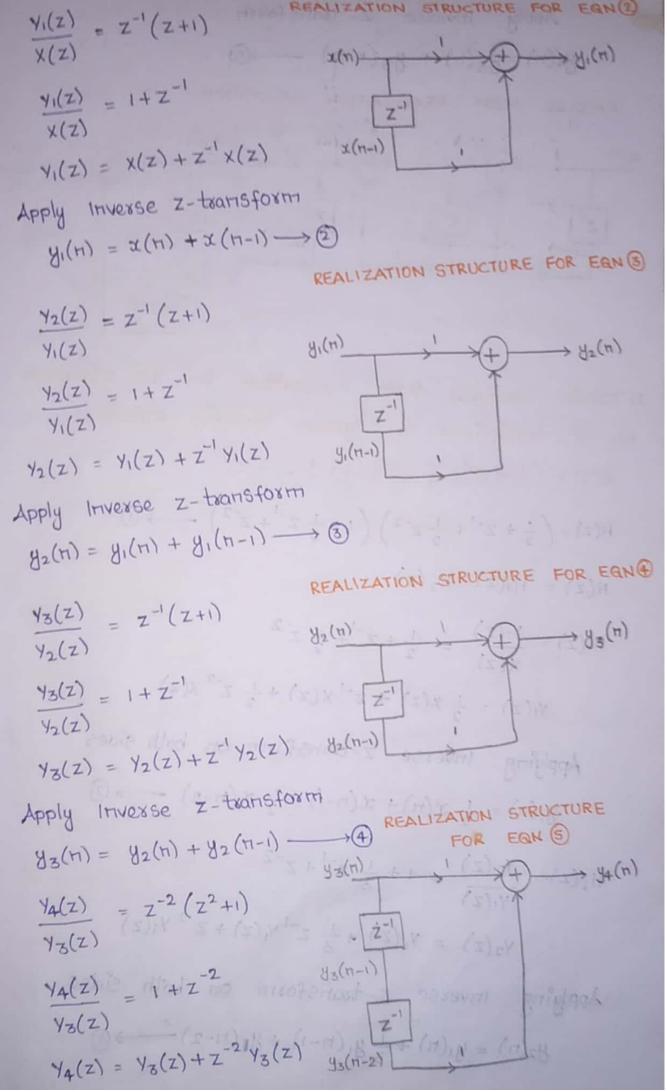
$$\frac{Y(z)}{X(z)} = \frac{1}{2} + \frac{1}{3} Z^{-1} + Z^{-2} + \frac{1}{4} Z^{-3} + Z^{-4} + \frac{1}{3} Z^{-5} + \frac{1}{2} Z^{-6}$$

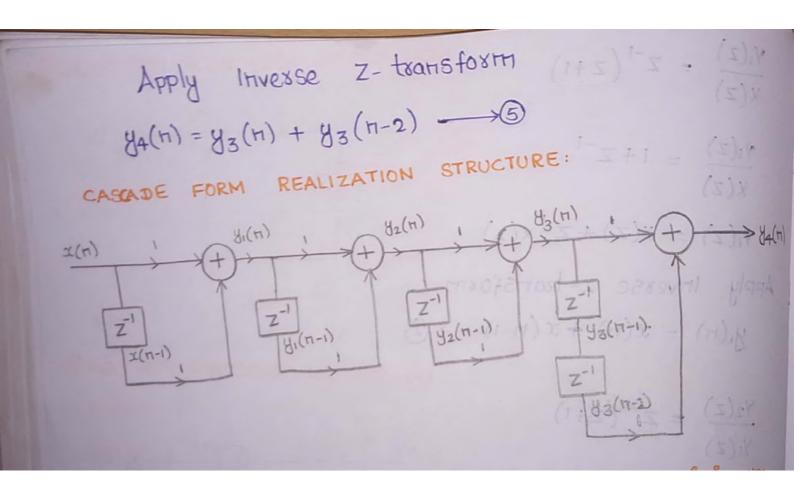

$$Y(z) = \frac{1}{2} \chi(z) + \frac{1}{3} Z^{-1} \chi(z) + Z^{-2} \chi(z) + \frac{1}{4} Z^{-3} \chi(z) + \frac{1}{4} Z^{-3} \chi(z) + \frac{1}{4} Z^{-6} \chi(z)$$

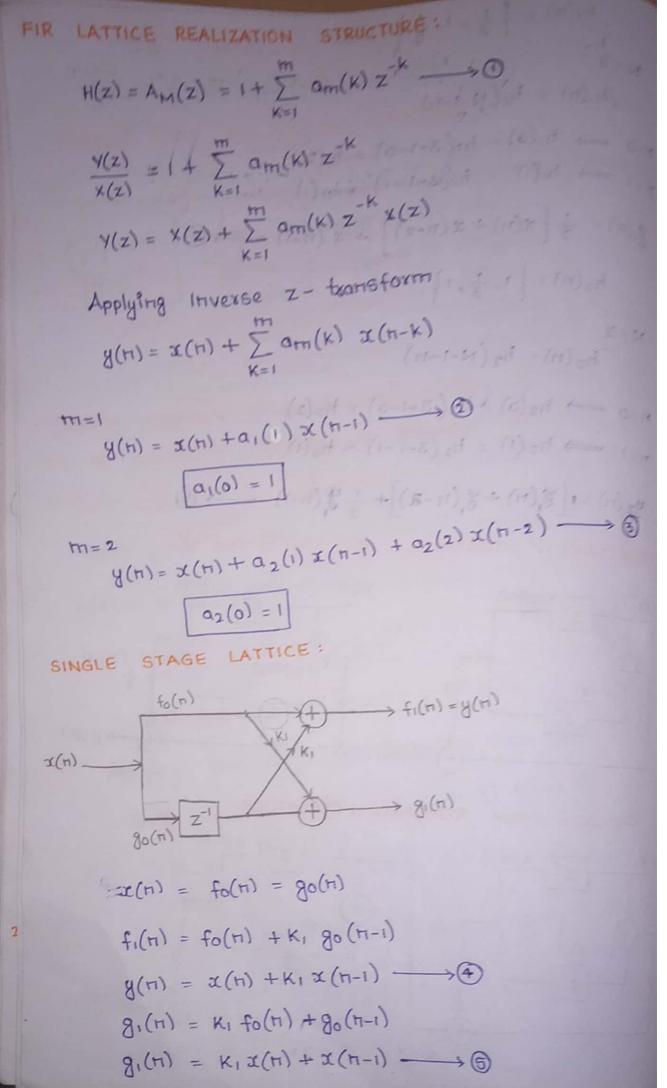
$$Z^{-4} \chi(z) + \frac{1}{3} Z^{-5} \chi(z) + \frac{1}{2} Z^{-6} \chi(z)$$


Apply Inverse z-transform on both sides $y(n) = \frac{1}{2} \chi(n) + \frac{1}{3} \chi(n-1) + \chi(n-2) + \frac{1}{4} \chi(n-3) + \chi(n-4) - \frac{1}{3} \chi(n-5) + \frac{1}{2} \chi(n-6)$ $h(n) = \left\{\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{4}, \frac{1}{3}, \frac{1}{2}\right\}$


N = 7


$$\begin{array}{c} n=0 \longrightarrow h(0) = h(7-1-0) = h(6) \\ n=1 \longrightarrow h(1) = h(7-1-1) = h(5) \\ n=2 \longrightarrow h(3) = h(7-1-2) = h(4) \\ n=3 \longrightarrow h(3) = h(7-1-3) = h(3) \\ g(n) = \frac{1}{2} \left[x(n) + x(n-6) \right] + \frac{1}{3} \left[x(n-1) + x(n-5) \right] + \frac{1}{4} x(n-3) \\ = \frac{1}{2} \left[x(n) + x(n-4) \right] + \frac{1}{4} x(n-3) \\ = \frac{1}{2} \left[x(n-2) + x(n-4) \right] + \frac{1}{4} x(n-3) \\ = \frac{1}{2} \left[x(n-2) + x(n-4) \right] + \frac{1}{4} x(n-3) \\ = \frac{1}{2} \left[x(n-2) + x(n-4) \right] + \frac{1}{4} x(n-3) \\ = \frac{1}{2} \left[x(n-2) + x(n-4) \right] + \frac{1}{4} x(n-3) \\ = \frac{1}{2} \left[x(n-2) + x(n-4) \right] + \frac{1}{4} x(n-3) \\ = \frac{1}{2} \left[x(n-2) + x(n-3) + x(n-3) + x(n-3) + x(n-3) + x(n-4) + x(n-5) \right] + \frac{1}{2} \left[x(n-1) + x(n-2) + x(n-3) + x(n-4) + x(n-5) \right] + \frac{1}{2} \left[x(n-1) + x(n-2) + x(n-3) + x(n-4) + x(n-5) \right] + \frac{1}{2} \left[x(n-1) + x(n-2) + x(n-3) + x(n-4) + x(n-5) \right] + \frac{1}{2} \left[x(n) + x(n-2) + x(n-3) + x(n-4) + x(n-5) \right] + \frac{1}{2} \left[x(n) + x(n-2) + x(n-3) + x(n-4) + x(n-5) \right] + \frac{1}{2} \left[x(n) + x(n-2) + x(n-3) + x(n-4) + x(n-5) \right] + \frac{1}{2} \left[x(n) + x(n-2) + x(n-3) + x(n-4) + x(n-5) \right] + \frac{1}{2} \left[x(n) + x(n-2) + x(n-3) + x(n-4) + x(n-5) \right] + \frac{1}{2} \left[x(n) + x(n-2) + x(n-3) + x(n-4) + x(n-5) \right] + \frac{1}{2} \left[x(n) + x(n-2) + x(n-3) + x(n-4) + x(n-5) \right] + \frac{1}{2} \left[x(n) + x(n-2) + x(n-3) + x(n-4) + x(n-5) \right] + \frac{1}{2} \left[x(n) + x(n-2) + x(n-3) + x(n-4) + x(n-5) \right] + \frac{1}{2} \left[x(n) + x(n-2) + x(n-2) + x(n-4) + x(n-4) + x(n-5) \right] + \frac{1}{2} \left[x(n) + x(n-2) + x(n-4) + x(n-4) + x(n-5) \right] + \frac{1}{2} \left[x(n) + x(n-2) + x(n-4) + x(n-4) + x(n-5) \right] + \frac{1}{2} \left[x(n) + x(n-2) + x(n-4) + x(n-4) + x(n-4) + x(n-5) \right] + \frac{1}{2} \left[x(n) + x(n-4) + x(n-4)$$


Scanned by CamScanner



Scanned by CamScanner

THO STAGE LATTICE! 41643 fo(n) 1(n) Ki gi(n) f2(H) = f1(H) + K2 g1(H-1) f2(n) = fo(n) + K, go (n-1) + K2 g, (n-1) 8(H) = x(H) + K, x(H-1) + K2 [K, x(H-1) + x(H-2)] y(n) = x(n) + K, x(n-1) + K, K2 x(n-1) + K2 x(n-2) y(n) = x(n) + K1 (1+ K2) x(n-1) + K2 x(n-2) 92(H) = K2 fi(H) + gi(H-1) 82(n) = K2 [fo(n) + K1 80(n-1)] + K1 fo(n-1) + 80(n-2) 82(n) = K2 fo(n) + K1K2 go(n-1) + K1 fo(n-1) + go(n-2) 82(H) = K2 X(H) + K1K2 X(H-1) + K1 X(H-1) + X(H-2) 92(H) = K2 x(H) + K1 (1+ K2) x(H-1) + x (H-2) -> 1 TO REALIZE LATTICE STRUCTURE OF FIR SYSTEM : 1). If coefficient of present input x(n) is not unity then convext it to unity by taking common in the coefficients of present imput. 2> Find order of difference equation and compare of coefficients of given difference equation with coefficients of same order lattice structure 3> Assign calculated values of K1, K2, ---- and construct the lattice structure.

In Realize the System
$$H(z) = 5+3z^{-1}$$
 using FIR lattice Structure?

 $H(z) = 5+3z^{-1} \longrightarrow 0$
 $\frac{y(z)}{x(z)} = 5+3z^{-1}$
 $y(z) = 5 \times (z) + 3z^{-1} \times (z)$

Apply Inverse $z - \text{transform}$
 $g(n) = 5 \left[x(n) + \frac{3}{5} x(n-1) \right] \longrightarrow 0$

From Single stage lattice

 $g(n) = x(n) + K, x(n-1) \longrightarrow 0$

compase eqn @ and eqn @

 $K_1 = \frac{3}{5}$

SINGLE STAGE LATTICE:

$$\frac{4}{5}(n) = 5 \left[x(n) + \frac{3}{5} x(n-1) \right]$$
 $g(n) = 5 \left[x(n) + \frac{3}{5} x(n-1) \right]$
 $g(n) = 5 \left[x(n) + \frac{3}{5} x(n-1) \right]$

2) Detextine lattice coefficient corresponding to FIR system with system function

 $H(z) = 1 + \frac{7}{7} z^{-1} + \frac{3}{5} z^{-2}$

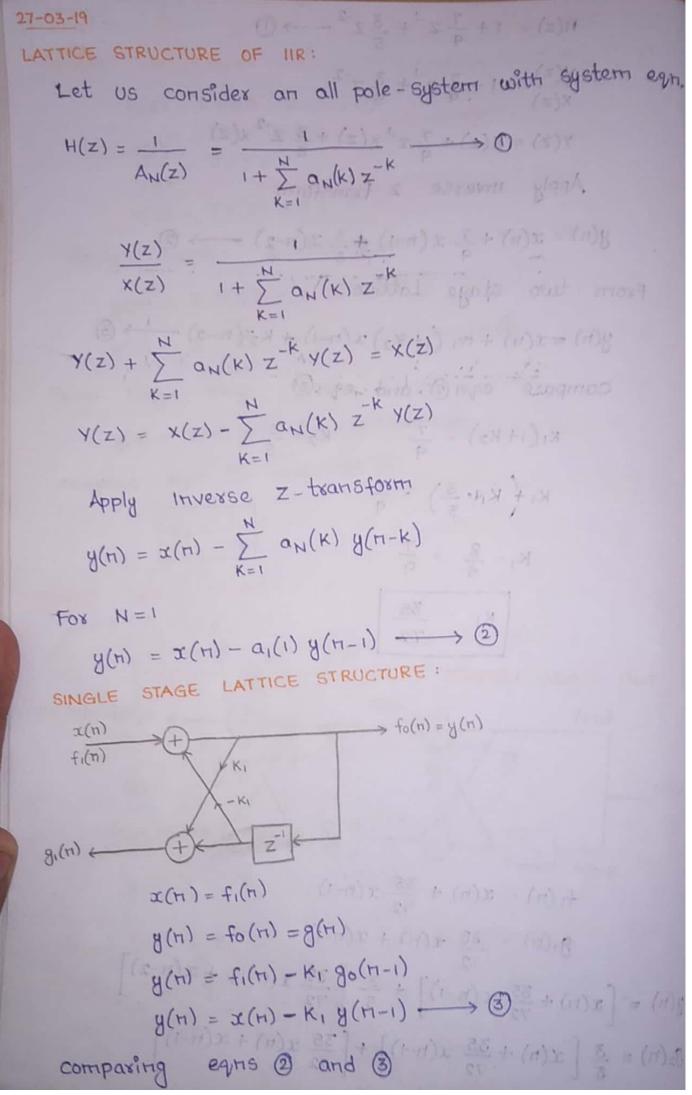
$$H(z) = 1 + \frac{7}{q} z^{-1} + \frac{3}{8} z^{-2} \longrightarrow 0$$

$$y(z) = 1 + \frac{7}{q} z^{-1} + \frac{3}{8} z^{-2}$$

$$y(z) = x(z) + \frac{7}{q} z^{-1} \times (z) + \frac{3}{8} z^{-2} \times (z)$$

$$y(z) = x(n) + \frac{7}{q} x(n-1) + \frac{3}{5} x(n-2) \longrightarrow 0$$

$$y(n) = x(n) + K_1 (1 + K_2) x(n-1) + K_2 x(n-2) \longrightarrow 0$$


$$y(n) = x(n) + K_1 (1 + K_2) x(n-1) + K_2 x(n-2) \longrightarrow 0$$

$$K_1(1 + K_2) = \frac{7}{q} \qquad K_2 = \frac{3}{5}$$

$$K_1 \left(1 + \frac{3}{5}\right) = \frac{7}{q}$$

$$K_1 \cdot \frac{8}{5} = \frac{7}{4}$$

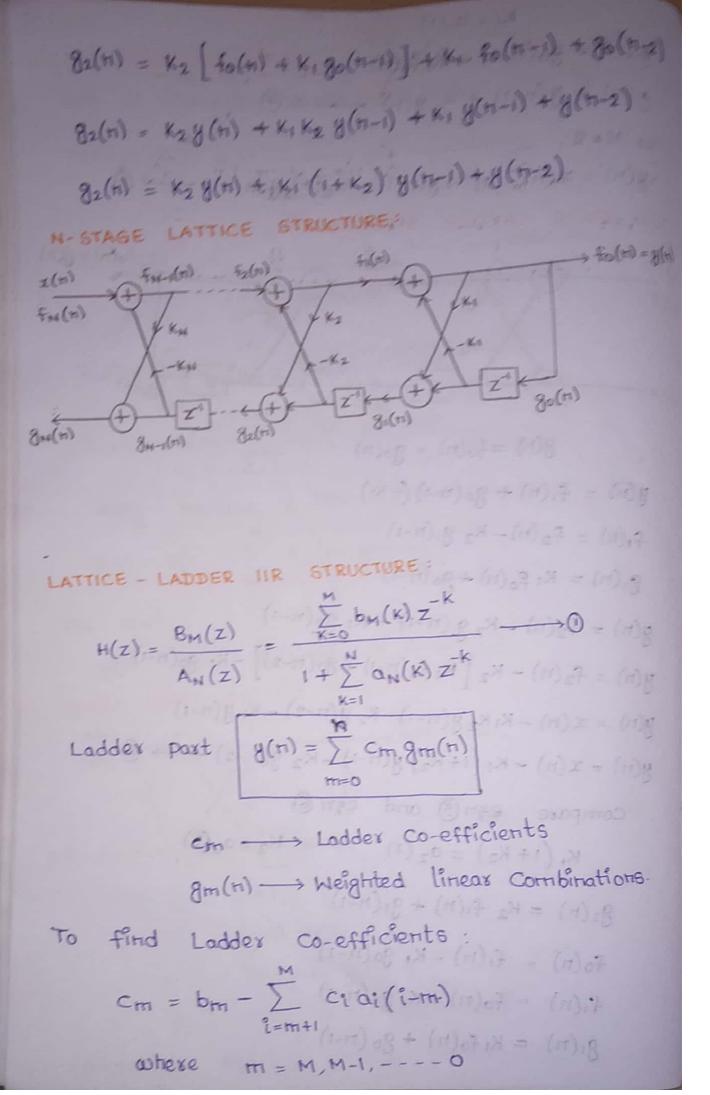
$$K_1 \cdot \frac{8}{5} = \frac{7$$

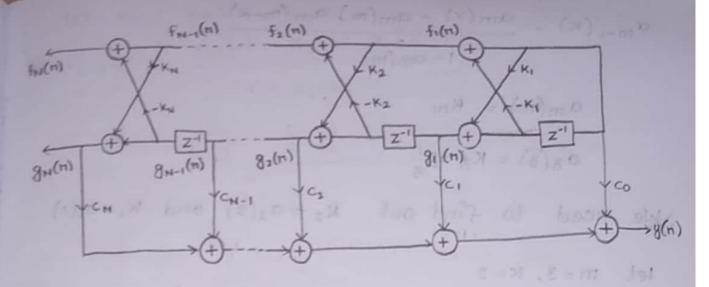
$$g_{1}(n) = g_{0}(n-1) + K_{1} g_{0}(n)$$

$$g_{1}(n) = g_{0}(n-1) + K_{1} g_{0}(n)$$

$$g_{1}(n) = \chi(n) - \alpha_{2}(1) g_{1}(n-1) - \alpha_{2}(2) g_{1}(n-2) \longrightarrow \mathfrak{G}$$

TWO STAGE LATTICE STRUCTURE:
$$\chi(n)$$


$$g_{1}(n) = f_{0}(n) = g_{0}(n)$$


$$g_{1}(n) = f_{1}(n) + g_{0}(n-1)(-K_{1})$$

$$g_{1}(n) = K_{1} f_{0}(n) + g_{0}(n-1)$$

$$g_{1}(n) = K_{2} g_{1}(n-1) - K_{1} g_{0}(n-1)$$

$$g_{1}(n) = \chi(n) - K_{2} g_{1}(n-1) - \chi(n-1) - \chi(n-1)$$

Equation 2 can be used to convert lattice to direct

$$a_{m-1}(K) = \frac{a_m(K) - a_m(m) a_m(m-K)}{1 - a_m^2(m)}$$

Equation 3 can be used to convert direct form to Lattice structure.

1> Obtain Lattice ladder structure for system transfer function

H(z) =
$$\frac{1 + 2Z^{-1} + 2Z^{-2} + Z^{-3}}{1 + \frac{13}{24}Z^{-1} + \frac{5}{8}Z^{-2} + \frac{1}{3}Z^{-3}}$$

$$H(z) = \frac{B_{M}(z)}{A_{N}(z)} = \frac{1 + 2z^{-1} + 2z^{-2} + z^{-3}}{1 + \frac{13}{24}z^{-1} + \frac{5}{8}z^{-2} + \frac{1}{3}z^{-3}}$$

Here
$$B_M(z) = 1 + 2z^{-1} + 2z^{-2} + z^{-3}$$

$$A_N(Z) = 1 + \frac{13}{24} Z^{-1} + \frac{5}{8} Z^{-2} + \frac{1}{3} Z^{-3}$$

$$a_3(0) = 1$$
, $a_3(1) = \frac{13}{24}$, $a_3(2) = \frac{5}{8}$, $a_3(3) = \frac{1}{3}$

$$a_{m-1}(K) = \frac{a_m(K) - a_m(m) a_m(m-K)}{1 - a_m^2(m)}$$

$$a_m(m) = Km$$

$$a_3(8) = K_3 = \frac{1}{8}$$
We need to find out $K_2 = a_2(2)$ and $K_1 = a_1(1)$
let $m = 3$, $K = 2$

$$a_{3-1}(2) = \frac{a_3(2) - a_3(8)}{8 - \frac{1}{3}} \frac{a_3(8-2)}{3 \cdot 24} = \frac{45 - 18}{3 \cdot 24} \frac{32}{3 \cdot 24} \frac{32 \cdot 24}{3 \cdot 24} \frac{32 \cdot$$

$$a_{2=1}(1) = a_{2}(1) = a_{3}(2) \quad a_{3}(2)$$

$$= \frac{1}{4} \quad a_{1}(1) = \frac{1}{4}$$

$$= \frac{1}{2} \cdot \frac{1}{2}$$

$$a_{1}(1) = \frac{1}{4}$$

$$k_{1} = \frac{1}{4} \quad k_{2} = \frac{1}{2} \cdot \frac{1}{4}$$

$$a_{1}(1) = \frac{1}{4}$$

$$k_{1} = \frac{1}{4} \quad k_{2} = \frac{1}{2} \cdot \frac{1}{4} \cdot \frac{1}{2}$$

$$b_{0} = 1 \quad b_{1} = 2 \quad b_{2} = 2 \quad b_{3} = 1$$

$$b_{1} = 1 \quad b_{2} \quad b_{3} = 2 \quad b_{3} = 1$$

$$c_{1} = 1 \quad c_{1} \quad a_{1}(1 - m)$$

$$c_{2} = 1 \quad c_{3} \quad a_{1}(1 - m)$$

$$c_{3} = 1 \quad c_{4} \quad a_{1}(1 - m)$$

$$c_{4} = 1 \quad a_{2}(1 - m)$$

$$c_{5} = 1 \quad c_{7} \quad a_{1}(1 - m)$$

$$c_{7} = 1 \quad a_{1}(1 - m)$$

$$c_{8} = 1 \quad c_{1} \quad a_{1}(1 - m)$$

$$c_{8} = 1 \quad c_{1} \quad a_{1}(1 - m)$$

$$c_{1} = 1 \quad a_{2}(1 - m)$$

$$c_{2} = 1 \quad a_{3}(1 - m)$$

$$c_{3} = 1 \quad c_{4}(1 - m)$$

$$c_{4} = 1 \quad a_{2}(1 - m)$$

$$c_{5} = 1 \quad c_{7} \quad a_{1}(1 - m)$$

$$c_{7} = 1 \quad a_{1}(1 - m)$$

$$c_{8} = 1 \quad a_{1}(1 - m)$$

$$c_{8} = 1 \quad a_{1}(1 - m)$$

$$c_{1} = 1 \quad a_{2}(1 - m)$$

$$c_{2} = 1 \quad a_{3}(1 - m)$$

$$c_{3} = 1 \quad a_{4}(1 - m)$$

$$c_{4} = 1 \quad a_{4}(1 - m)$$

$$c_{5} = 1 \quad a_{5}(1 - m)$$

$$c_{7} = 1 \quad a_{7}(1 - m)$$

$$c_{8} = 1 \quad a_{7}(1 - m)$$

$$C_{3} = b_{3} = \sum_{i=3}^{3} C_{i} \alpha_{i}^{*} (1=3)$$

$$= b_{3} = C_{3} \alpha_{3} (1)$$

$$= 2 = 1 \cdot \frac{13}{24}$$

$$= 2 = 0.541$$

$$C_{2} = 1.45$$

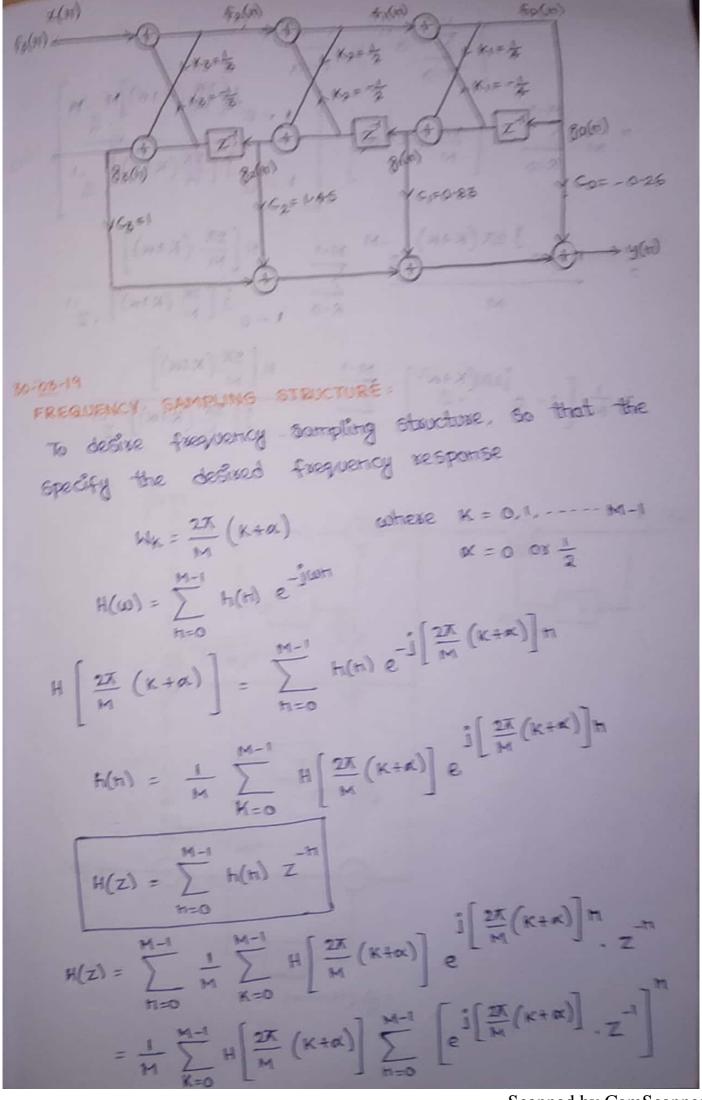
$$C_{1} = b_{1} = \sum_{i=2}^{3} C_{i}^{*} \alpha_{i}^{*} (1=i)$$

$$= b_{1} - C_{2} \alpha_{2} (1) - C_{3} \alpha_{3} (2)$$

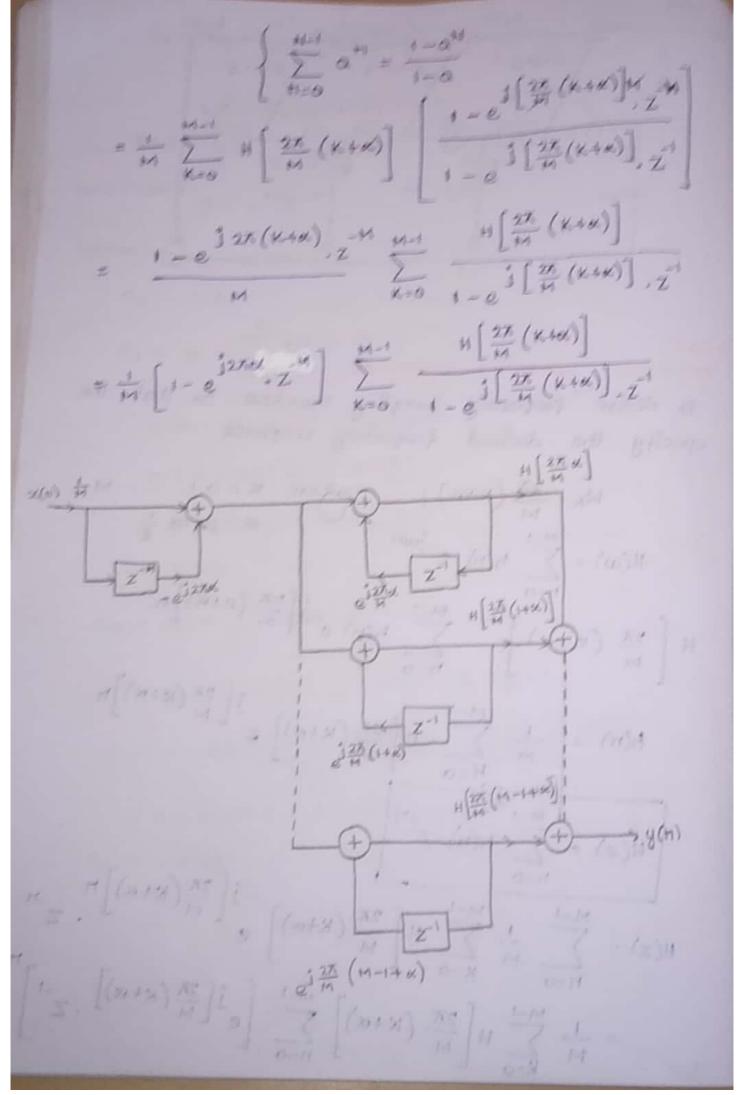
$$= 2 - 1.45 \left(\frac{3}{3}\right) - 1 \left(\frac{5}{3}\right)$$

$$= 2 - 0.54375 = 0.625$$

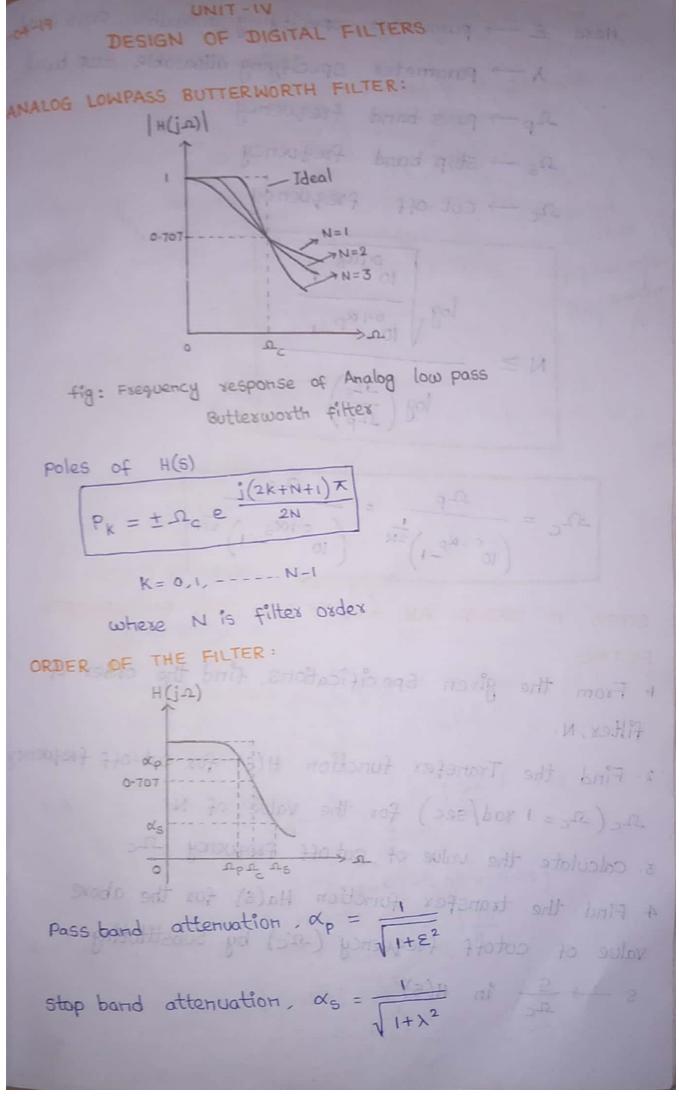
$$C_{1} = 0.83$$

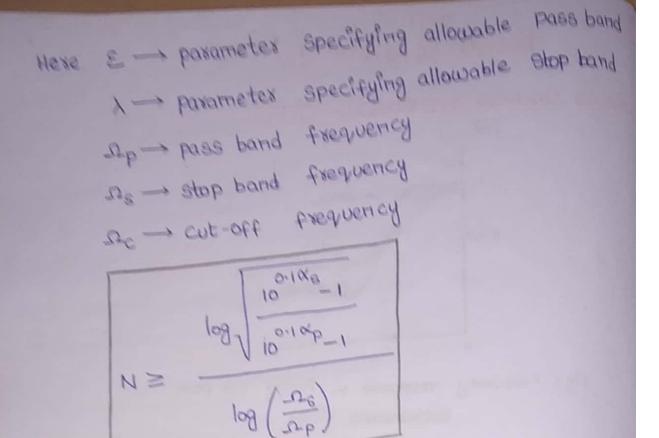

$$C_{0} = b_{0} = \sum_{i=1}^{3} C_{i}^{*} \alpha_{i}^{*} (1)$$

$$= b_{0} - C_{1} \alpha_{1} (1) - C_{2} \alpha_{2} (2) - C_{3} \alpha_{3} (3)$$


$$= 1 - 0.83 \left(\frac{1}{4}\right) = 1.45 \left(\frac{1}{2}\right) - 1 \left(\frac{1}{3}\right)$$

$$= 1 - 0.2075 - 0.725 + 0.33$$


$$C_{0} = -0.26$$



Scanned by CamScanner

Scanned by CamScanner

$$\Omega_{c} = \frac{\Omega_{p}}{\left(\frac{0.1}{10} \times p_{-1}\right)^{\frac{1}{2}N}} = \frac{1}{\left(\frac{0.1}{10} \times p_{-1}\right)^{\frac{1}{2}N}}$$

TO DESIGN AN ANALOG LOW PAGS BUTTERWORTH

1. From the given specifications, find the order of filter. N.

- 2. Find the Transfer function H(s) for cut-off frequen De (De= 1 rad/sec) for the value of N.
- 3. calculate the value of cutoff frequency Dc.
- 4 Find the transfer function Ha(s) for the above value of cutoff frequency (-2c) by substituting s - s in H(s)

pesign an analog low pass butterworth filter that has 2 dB pass band attenuation at a psequency of 20 xad/sec and atteast ladB stap band attenuation at a frequency of 30 xad/sec and atteast ladB stap band attenuation at a frequency of 30 xad/sec and atteast ladB stap band attenuation at a frequency of 30 xad/sec
$$100 \frac{10^{0.180}}{10^{0.180}} \frac{10^{0.18$$

$$K=2 \implies P_{2} = \pm 1 \cdot e \qquad 2.4 = \pm e \qquad 8$$

$$P_{2} = \pm \left(-0.92 - \frac{1}{9} \cdot 0.38\right)$$

$$K=3 \implies P_{3} = \pm 1 \cdot e \qquad 2.4 = \pm e \qquad 111X$$

$$P_{5} = \pm \left(-0.38 - 0.92\right)$$

$$P_{5} = \pm \left(-0.38 - 0.92\right)$$
For filter stability, we take left half of 8-plane of poles.
$$H(S) = \frac{1}{\left(S-P_{0}\right)\left(S-P_{1}\right)\left(S-P_{2}\right)\left(S-P_{3}\right)}$$

$$= \frac{1}{\left(S+0.38-\frac{1}{9}0.92\right)\left(S+0.92-\frac{1}{9}0.38\right)\left(S+0.92+\frac{1}{9}0.38\right)}$$

$$= \frac{1}{\left(S+0.38+\frac{1}{9}0.92\right)\left(S+0.92-\frac{1}{9}0.38\right)\left(S+0.92+\frac{1}{9}0.38\right)}$$

$$= \frac{1}{\left(S+0.76S+1\right)\left(S+\frac{1}{9}+\frac{1}{9}0.38+\frac{1}{9}0.92\right)}$$

$$= \frac{1}{\left(S^{2}+0.76S+1\right)\left(S^{2}+1.84S+1\right)}$$

$$= \frac{1}{\left(S^{2}+0.76S+1\right)}$$

4. Transfex function
$$H_{a}(5)$$

$$s \rightarrow \frac{S}{\Omega_{c}}$$

$$H_{a}(5) = H(8) \Big]_{8 + 1} \frac{S}{\Omega_{c}}$$

$$H_{a}(5) = \frac{\left[\left(\frac{S}{\Omega_{c}}\right)^{2} + 0.76 \frac{S}{\Omega_{c}} + 1\right] \left[\left(\frac{S}{\Omega_{c}}\right)^{2} + 1.24 \frac{S}{\Omega_{c}} + 1\right]}{\left[\left(\frac{S}{\Omega_{c}}\right)^{2} + 1.24 \frac{S}{\Omega_{c}} + 1\right]}$$

$$H_{a}(5) = \frac{3^{2} + 0.76 \frac{S}{\Omega_{c}} + 1}{\left[\left(\frac{S}{\Omega_{c}}\right)^{2} + 1.24 \frac{S}{\Omega_{c}} + 1\right]}$$

$$H_{a}(5) = \frac{3^{2} + 0.76 \frac{S}{\Omega_{c}} + 1}{\left[\left(\frac{S}{\Omega_{c}}\right)^{2} + 1.24 \frac{S}{\Omega_{c}} + 1\right]}$$

$$H_{a}(5) = \frac{3^{2} + 0.76 \frac{S}{\Omega_{c}} + 1}{\left[\left(\frac{S}{\Omega_{c}}\right)^{2} + 1.24 \frac{S}{\Omega_{c}} + 1\right]}$$

$$H_{a}(5) = \frac{3^{2} + 0.76 \frac{S}{\Omega_{c}} + 1}{\left[\left(\frac{S}{\Omega_{c}}\right)^{2} + 1.24 \frac{S}{\Omega_{c}} + 1\right]}$$

$$H_{a}(5) = \frac{3^{2} + 0.76 \frac{S}{\Omega_{c}} + 1}{\left[\left(\frac{S}{\Omega_{c}}\right)^{2} + 1.24 \frac{S}{\Omega_{c}} + 1\right]}$$

$$H_{a}(5) = \frac{3^{2} + 0.76 \frac{S}{\Omega_{c}} + 1}{\left[\left(\frac{S}{\Omega_{c}}\right)^{2} + 1.24 \frac{S}{\Omega_{c}} + 1\right]}$$

$$H_{a}(5) = \frac{3^{2} + 0.76 \frac{S}{\Omega_{c}} + 1}{\left[\left(\frac{S}{\Omega_{c}}\right)^{2} + 1.24 \frac{S}{\Omega_{c}} + 1\right]}$$

$$H_{a}(5) = \frac{3^{2} + 0.76 \frac{S}{\Omega_{c}} + 1}{\left[\left(\frac{S}{\Omega_{c}}\right)^{2} + 1.24 \frac{S}{\Omega_{c}} + 1\right]}$$

$$H_{a}(5) = \frac{3^{2} + 0.76 \frac{S}{\Omega_{c}} + 1}{\left[\left(\frac{S}{\Omega_{c}}\right)^{2} + 1.24 \frac{S}{\Omega_{c}} + 1\right]}$$

$$H_{a}(5) = \frac{3^{2} + 0.76 \frac{S}{\Omega_{c}} + 1}{\left[\left(\frac{S}{\Omega_{c}}\right)^{2} + 1.24 \frac{S}{\Omega_{c}} + 1\right]}$$

$$H_{a}(5) = \frac{3^{2} + 0.76 \frac{S}{\Omega_{c}} + 1}{\left[\left(\frac{S}{\Omega_{c}}\right)^{2} + 1.24 \frac{S}{\Omega_{c}} + 1\right]}$$

$$H_{a}(5) = \frac{3^{2} + 1.24 \frac{S}{\Omega_{c}} + 1}{\left[\left(\frac{S}{\Omega_{c}}\right)^{2} + 1.24 \frac{S}{\Omega_{c}} + 1\right]}$$

$$H_{a}(5) = \frac{3^{2} + 1.24 \frac{S}{\Omega_{c}} + 1}{\left[\left(\frac{S}{\Omega_{c}}\right)^{2} + 1.24 \frac{S}{\Omega_{c}} + 1\right]}$$

$$H_{a}(5) = \frac{3^{2} + 1.24 \frac{S}{\Omega_{c}} + 1}{\left[\left(\frac{S}{\Omega_{c}}\right)^{2} + 1.24 \frac{S}{\Omega_{c}} + 1\right]}$$

$$H_{a}(5) = \frac{3^{2} + 1.24 \frac{S}{\Omega_{c}} + 1}{\left[\left(\frac{S}{\Omega_{c}}\right)^{2} + 1.24 \frac{S}{\Omega_{c}} + 1\right]}$$

$$H_{a}(5) = \frac{3^{2} + 1.24 \frac{S}{\Omega_{c}} + 1}{\left[\left(\frac{S}{\Omega_{c}}\right)^{2} + 1.24 \frac{S}{\Omega_{c}} + 1\right]}$$

$$H_{a}(5) = \frac{3^{2} + 1.24 \frac{S}{\Omega_{c}} + 1}{\left[\left(\frac{S}{\Omega_{c}}\right)^{2} + 1.24 \frac{S}{\Omega_{c}} + 1\right]}$$

$$H_{a}(5) = \frac{3^{2} + 1.24 \frac{S}{\Omega_{c}} + 1}{\left[\left(\frac{S}{\Omega_{c}}\right)^{2} + 1.24 \frac{S}{\Omega_{c}} + 1\right]}$$

$$H_{a}(5) = \frac{3^{2} + 1.24 \frac{S}{\Omega_{c}} + 1}{\left[\left(\frac{S}{\Omega_{c}}\right)^{2} + 1.24 \frac{S}{\Omega_{c}} + 1\right]}$$

$$H_{a}(5) = \frac{3^{2} + 1.24 \frac{$$

Scanned by CamScanner

Poles of H(s)
$$\frac{i(2K+N+1)\pi}{i(2K+N+1)\pi}$$

$$P_{K} = \pm \Omega_{C} \in 2N$$

$$K = 0.1, 2, ... - N-1$$

$$K = 0.1, 2, ... - N-1$$

$$K = 0.1, 2.3$$

$$K = 0 \implies P_{0} = \pm i \cdot e = 2 + nod/sec$$

$$R_{0} = \pm (-6.38 + j \cdot 0.92)$$

$$K = 1 \implies P_{1} = \pm 1 \cdot e = \frac{i(2+4+1)\pi}{2\cdot4} = \pm e = \frac{i\pi}{8}$$

$$P_{1} = \pm (-0.92 + j \cdot 0.38)$$

$$K = 2 \implies P_{2} = \pm 1 \cdot e = \frac{i(2+2+4+1)\pi}{2\cdot4} = \pm e = \frac{i\pi}{8}$$

$$P_{2} = \pm (-0.92 + j \cdot 0.38)$$

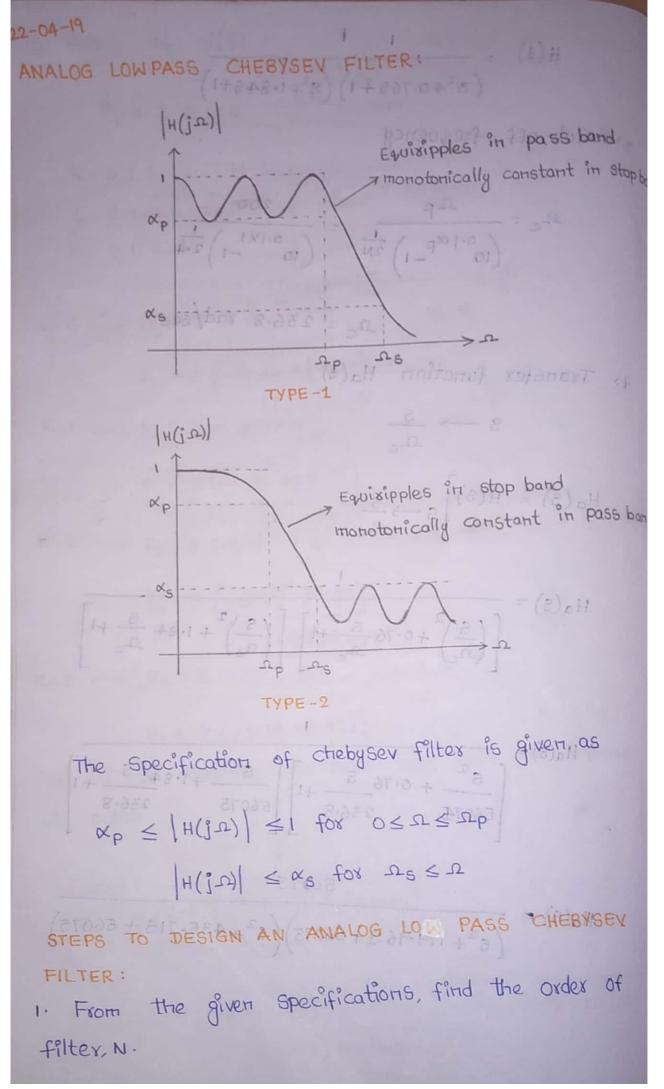
$$K = 3 \implies P_{3} = \pm 1 \cdot e = 2 + e = \frac{i\pi}{8}$$

$$P_{5} = \pm (-0.38 - 0.92j)$$
For fifter stability, we take left half of 5-plane of poles

$$H(s) = \frac{i\pi}{(s-P_{0})(s-P_{1})(s-P_{2})(s-P_{3})}$$

$$= \frac{i\pi}{(s+0.38 - j \cdot 0.92)(s+0.92 - j \cdot 0.38)(s+0.92 + j \cdot 0.38)(s+0.92 + j \cdot 0.38)(s+0.92 + j \cdot 0.38)(s+0.92 + j \cdot 0.38)}$$

$$H(s) = \frac{1}{(s^{2}+0.765+1)(s^{2}+1.845+1)}$$


$$D_{c} = \frac{\Omega p}{(0.18p_{-1})^{\frac{1}{2N}}} = \frac{200}{(0.181-1)^{\frac{1}{2.4}}}$$

$$D_{c} = \frac{236.8 \text{ Yad/sec}}{(10^{-10}-1)^{\frac{1}{2.4}}}$$

$$D_{c} = \frac{236.8 \text{ Yad/sec}}{(10^{-10}-1)^{\frac{1}{2.4}}}$$

$$D_{c} = \frac{1}{(10^{-10}-1)^{\frac{1}{2.4}}}$$

$$D_{c}$$

$$N \geq \frac{\cos h^{-1} \sqrt{\frac{n \cdot \log_{-1}}{\log \log n}}}{\cosh \frac{n \cdot \log_{-1}}{\log n \cdot \log_{-1}}}$$

$$Cosh^{-1} \left(\frac{n \cdot s}{n \cdot p}\right)$$

$$A = \frac{1}{1 + \epsilon^{2}}$$

$$Where K = 0, 1, \dots, N-1$$

$$A = \frac{n \cdot p}{1 + \sqrt{1 + \epsilon^{2}}}$$

$$A = \frac{n \cdot p}{2} \left(\frac{n^{N} - n^{N}}{2}\right)$$

$$A = \frac{n \cdot p}{2} \left(\frac{n^{N} - n^{N}}{2}\right)$$

$$A = \frac{n \cdot p}{2} \left(\frac{n^{N} + n^{N}}{2}\right)$$

$$A = \frac{n \cdot p}{2} \left(\frac{n^{N} + n^{N}}{2}\right)$$

$$A = \frac{n \cdot p}{2} \left(\frac{n \cdot p}{2}\right)$$

$$A = \frac{n \cdot p}{2} \left(\frac{n \cdot p$$

Here

$$K = \begin{cases} b_0 & \text{fox } N = \text{odd} \end{cases}$$
 $b_0 & \text{fox } N = \text{odd} \end{cases}$

For Normalized chebysev filter, pass band frequency

 $\Delta p = 20 \text{ ad/sec}$, pass band attenuation $\Delta p = 2.5dR$, stop band frequency $\Delta c = 50 \text{ sad/sec}$, stop band attenuation band frequency $\Delta c = 50 \text{ sad/sec}$.

 $\Delta c = 30 \text{ dB}$
 $\Delta c = 30 \text{ dB}$
 $\Delta c = 30 \text{ dB}$

Nordex of the filter

 $\Delta c = 30 \text{ dB}$
 Δ

Scanned by CamScanner

$$N \geq \frac{4 \cdot 272}{9n(2.5 + \sqrt{2.5^2 + 1})}$$

$$N \geq \frac{4 \cdot 272}{1 \cdot 647}$$

$$N \geq 2.593$$

$$N \cong 3$$

$$2) \quad P_{K} = \sigma_{K} + j \Omega_{K}$$

$$where \quad K = 0, 1, ---3 - 1$$

$$K = 0, 1, 2$$

$$K = 0$$

$$P_{0} = \sigma_{0} + j \Omega_{0}$$

$$= \alpha \cos \phi_{0} + j \cos \phi_{0}$$

$$= \frac{1 + \sqrt{1 + \epsilon^{2}}}{2}$$

$$= \frac{1 + \sqrt{1 + (0.88)^{2}}}{0.88}$$

$$A = \frac{1 + \sqrt{1 + (0.88)^{2}}}{2}$$

$$\alpha = \Omega_{P} \left(\frac{\mu^{N} - \mu^{N}}{2}\right) = 20 \left(\frac{(2.65)^{\frac{1}{3}} - (2.65)^{\frac{1}{3}}}{2}\right)$$

$$\alpha = 6.6$$

$$b = \Omega p \left(\frac{u^{N} + u^{N}}{2} \right) = 20 \left(\frac{6.65}{3} + \frac{1}{2.65} \right)^{\frac{1}{3}}$$

$$b = 21.06$$

$$b = 21.06$$

$$k = \frac{(2K + N + 1)X}{2N} \qquad k = 0,1,2$$

$$p_{0} = \frac{(0 + 3 + 1)X}{2 \cdot 3} = \frac{4X}{2 \cdot 3} = \frac{2X}{3}$$

$$p'_{1} = \frac{(2 + 3 + 1)X}{2 \cdot 3} = \frac{6X}{6} = X$$

$$p'_{2} = \frac{(4 + 3 + 1)X}{2 \cdot 3} = \frac{6X}{2 \cdot 3} = \frac{4X}{3}$$

$$k = 0 \implies P_{0} = \sqrt{0} + \frac{1}{3} \Omega_{0}$$

$$P_{0} = \alpha \cos \phi_{0} + \frac{1}{3} b \sin \phi_{0}$$

$$= 6.6 \cos \left(\frac{2X}{3}\right) + \frac{1}{3} 21.06 \sin \left(\frac{2X}{3}\right)$$

$$= 6.6 (-0.5) + \frac{1}{3} 21.06 (0.366)$$

$$= -3.3 + \frac{1}{3} 18.23$$

$$k = 1 \implies P_{1} = \sigma_{1} + \frac{1}{3} \Omega_{1}$$

$$= \alpha \cos \phi_{1} + \frac{1}{3} b \sin \phi_{1}$$

$$= 6.6 \cos (X) + \frac{1}{3} 21.06 (0).$$

$$P_{1} = -6.6$$

$$K = 2 \implies P_{2} = \sigma_{2} + \frac{1}{3} \Omega_{2}$$

$$= \alpha \cos \phi_{2} + \frac{1}{3} b \sin \phi_{2}$$

$$= 6.6 \cos\left(\frac{4x}{3}\right) + j \cdot 2i \cdot 06 \cdot \sin\left(\frac{4x}{3}\right)$$

$$= 6.6 \left(-0.5\right) + j \cdot 2i \cdot 06 \left(-0.866\right)$$

$$P_{a} = -3.3 - j \cdot 18.23$$

$$\text{Min.} \quad \text{Twansfex function}$$

$$H_{a}(s) = \frac{k}{\left(s - P_{0}\right)\left(s - P_{1}\right)\left(s - P_{2}\right)}$$

$$= \frac{k}{\left(s + 3.3 - j \cdot 18.25\right)\left(s + 6.6\right)\left(s + 3.3 + j \cdot 18.25\right)}$$

$$= \frac{k}{\left(s + 6.6\right)\left(\left(s + 3.3\right)^{2} - \left(j \cdot 18.23\right)^{2}\right)}$$

$$= \frac{k}{\left(s + 6.6\right)\left(s^{2} + 6.6s + 10.89 + 332.3529\right)}$$

$$= \frac{k}{\left(s + 6.6\right)\left(s^{2} + 6.6s + 343.2229\right)}$$

$$= \frac{k}{\left(s + 6.6\right)\left(s^{2} + 6.6s + 343.2229\right)}$$

$$= \frac{k}{\left(s + 6.6s^{2} + 343.22293 + 6.6s^{2} + 43.56s + 2265.27114\right)}$$

$$R_{p} = 3.01 \text{ dB}$$

Scanned by CamScanner

$$P_{0} = 0.596 (-0.5) + 1 \cdot 2.0869 (0.266)$$

$$P_{0} = -0.298 + j \cdot 1.8072$$

$$R = 0.598 + j \cdot 1.8072$$

$$P_{1} = 0.596 + j \cdot 5.000 = 0.000$$

$$P_{1} = 0.596 + j \cdot 5.000 = 0.000$$

$$P_{1} = 0.596 + j \cdot 2.0869 + j \cdot 0.000$$

$$P_{1} = -0.596$$

$$R = 0.596 + j \cdot 0.000 = 0.000$$

$$P_{2} = 0.596 + j \cdot 0.000 = 0.000$$

$$P_{3} = 0.596 + j \cdot 0.000 = 0.000$$

$$P_{4} = 0.596 + j \cdot 0.000 = 0.000$$

$$P_{5} = 0.596 + j \cdot 0.000 = 0.000$$

$$P_{7} = 0.596 + j \cdot 0.000 = 0.000$$

$$P_{8} = 0.596 + j \cdot 0.000 = 0.000$$

$$P_{9} = 0.596 + j \cdot 0.000 = 0.000$$

$$P_{1} = 0.596 + j \cdot 0.000$$

$$P_{2} = 0.596 + j \cdot 0.000$$

$$P_{3} = 0.596 + j \cdot 0.000$$

$$P_{4} = 0.0000 = 0.000$$

$$P_{5} = 0.0000 = 0.000$$

$$P_{6} = 0.0000 = 0.000$$

$$P_{7} = 0.0000 = 0.000$$

$$P_{8} = 0.0000 = 0.000$$

$$P_{8} = 0.0000 = 0.000$$

$$P_{1} = 0.0000 = 0.000$$

$$P_{2} = 0.0000 = 0.000$$

$$P_{3} = 0.0000 = 0.000$$

$$P_{4} = 0.0000 = 0.000$$

$$P_{5} = 0.0000 = 0.000$$

$$P_{6} = 0.0000 = 0.000$$

$$P_{7} = 0.0000 = 0.000$$

$$P_{8} = 0.0000 = 0.000$$

$$P_{1} = 0.0000 = 0.000$$

$$P_{1} = 0.0000 = 0.000$$

$$P_{2} = 0.0000 = 0.000$$

$$P_{3} = 0.0000 = 0.000$$

$$P_{4} = 0.0000 = 0.000$$

$$P_{5} = 0.0000 = 0.000$$

$$P_{6} = 0.0000 = 0.000$$

$$P_{7} = 0.0000 = 0.000$$

$$P_{8} = 0.0000 = 0.000$$

$$P_{1} = 0.0000 = 0.000$$

$$P_{2} = 0.0000 = 0.000$$

$$P_{3} = 0.0000 = 0.000$$

$$P_{4} = 0.0000 = 0.000$$

$$P_{5} = 0.0000 = 0.000$$

$$P_{5} = 0.0000 = 0.000$$

$$P_{5} = 0.0000 = 0.000$$

$$P_{7} = 0.0000 = 0.000$$

$$P_{7} = 0.0000 = 0.000$$

$$P_{8} = 0.0000 = 0.000$$

$$P_{1} = 0.0000 = 0.000$$

$$P_{1} = 0.0000 = 0.000$$

$$P_{2} = 0.0000 = 0.000$$

$$P_{3} = 0.0000 = 0.000$$

$$P_{4} = 0.0000 = 0.000$$

$$P_{5} = 0.0000 = 0.000$$

$$P_{5} = 0.0000$$

$$P_{5} = 0.0000 = 0.000$$

$$P_{5} = 0.0000$$

$$P_{7} = 0.0000 = 0.000$$

$$P_{7} = 0.0000$$

$$P_{8} = 0.0000$$

$$P_{1} = 0.0000$$

$$P_{1} = 0.0000$$

$$P_{2} = 0.0000$$

$$P_{1} = 0.0000$$

$$P_{2} = 0.0000$$

$$P_{3} = 0.0000$$

$$P_{4} = 0.0000$$

$$P_{5} =$$

Ha(s) =
$$\frac{K}{s^3 + 0.596s^2 + 3.3547s + 0.596s^2 + 0.3552s + 14}$$

Ha(s) = $\frac{K}{s^3 + 1.1925^2 + 3.7099s + 1.9994}$

For the given Specifications of $\alpha_p = 3dB$, $\alpha_s = 16dB$,

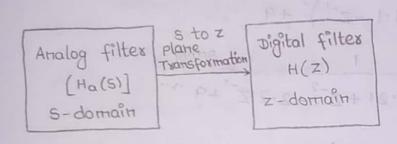
For the given Specifications of $\alpha_p = 3dB$, $\alpha_s = 16dB$,

 $\alpha_p = 1KHZ$, $\alpha_p = 2KHZ$ betexmine the filter order and $\alpha_p = 3dB$ analog lowpass chebyshev filter.

 $\alpha_p = 3dB$
 $\alpha_p = 2\pi \times f_p = 2\pi$. $\alpha_p = 2\pi$

$$H_a(s) = s^2 + 1289.608 \times s + 2831325.38 \times^2$$

Ha(S) =
$$s^2 + 1289.608 \times S + 2831325.38 \times$$
AS N = even (N=2) then K = $\frac{b0}{\sqrt{1+E^2}} = \frac{2831325.38 \times}{\sqrt{1+0.9976^2}}$


$$= \sqrt{1+0.9976^2}$$

$$= 2004.453.275 \times 2$$

$$H_{a}(s) = \frac{2004453 \cdot 275 \, \chi^{2}}{8^{2} + 1289 \cdot 608 \, \chi S + 28313 \, 25 \cdot 38 \, \chi^{2}}$$

24-04-19

DESIGN OF TIR FILTER FROM ANALOG FILTER:

- 1. Approximation derivate method or Backward difference 2. Impulse Invasiance method.
 - 3. Bilinear Transformation

BACKWARD DIFFERENCE METHOD:

$$S = \frac{1-Z^{-1}}{T}$$

$$\begin{cases} T = 1 \text{ Sec} \quad (B) \text{ off} \end{cases}$$

use the backward difference method, convert analog filter to digital filter. The system function H(s) = 1/s+2

$$H(s) = \frac{1}{s+2} = \frac{1-z^{-1}+2}{1-z^{-1}+2}$$

$$H(s) = \frac{1}{3-z^{-1}}$$

$$H(s) = \frac{1}{3-Z^{-1}}$$

Use the backward difference method, convert and the postfal filter the system function
$$H(s) = \frac{1}{(s+o_1)^2 + 9}$$

$$H(z) = \frac{1}{(1-z^{-1}+o_1)^2 + 9}$$

$$= \frac{1}{(1-z^{-1})^2 + 9}$$

$$=$$

$$h_{n}(t) = h_{n}(t)$$

$$h(n) = h_{n}(t)$$

$$h(n) = \sum_{K=1}^{\infty} C_{K} e^{P_{K}nT}$$

$$h(n) = \sum_{K=1}^{\infty} h(n) Z^{-n}$$

$$= \sum_{K=1}^{\infty} \sum_{K=1}^{\infty} C_{K} e^{P_{K}nT} Z^{-n}$$
STEPS TO DESIGN A DIGITAL FILTER

STEP 1: For the given specifications, find Ha(s)

STEP 2: Select the Sampling rate of the digital filter

T sec/samples

T sec/samples

STEP 3: Express the analog filter transfer function

$$H_{n}(s) = \sum_{K=1}^{\infty} \frac{C_{K}}{S^{-P_{K}}}$$
STEP 4: Compute the z-transform of digital filter

$$H(z) = \sum_{K=1}^{\infty} \frac{C_{K}}{1-e^{P_{K}T}Z^{-1}}$$
For the analog Transfer function $H(s) = \frac{2}{(s+1)} (s+2)$

Determine H(z) by using impulse invariance method

assuming T=1 sec

$$H(s) = \frac{2}{(s+1)(s+2)}$$

$$T = 1 \sec c$$

$$\frac{2}{(s+1)(6+2)} = \frac{A}{s+1} + \frac{B}{s+2}$$

$$2 = A(6+2) + B(5+1)$$

$$2 = A(-1+2) + B(-1+1)$$

$$2 = A(1) + B(0)$$

$$2 = A + 0$$

$$A = 2$$

$$S = -2 \implies 2 = A(-2+2) + B(-2+1)$$

$$2 = -B$$

$$B = -2$$

$$H(s) = \frac{2}{s+1} - \frac{2}{s+2}$$

$$= \frac{2}{s-(-1)} - \frac{2}{s-(-2)}$$
These ase two poles
$$P_1 = -1 \quad P_2 = -2$$

$$K = 1 \quad -e^{P_K T} \cdot Z^{-1}$$

$$= \sum_{K=1}^{2} \frac{C_K}{1 - e^{P_K T} \cdot Z^{-1}}$$

$$H(5) = \frac{16}{6^{3}} \frac{1}{10} + 10$$

$$\frac{10}{6^{3}} \frac{1}{10} + 10$$

$$\frac{10}{6^{3}} \frac{1}{10} + 10$$

$$\frac{10}{6^{3}} \frac{1}{10} + 10$$

$$\frac{10}{6^{3}} \frac{1}{10} + \frac{61}{6^{4}} + \frac{62}{6^{4}} + \frac{10}{3} + \frac{1$$

$$H(z) = \sum_{k=1}^{N} \frac{c_k}{1 - e^{RT} z^{-1}} + \frac{c_k}{1 - e^{RT} z^{-1}}$$

$$= \frac{10/3}{1 - e^{-2(6z)} z^{-1}} + \frac{-10/3}{1 - e^{-2(6z)} z^{-1}}$$

$$= \frac{10/3}{1 - e^{-0.4} z^{-1}} - \frac{10/3}{1 - e^{-1} z^{-1}}$$

$$= \frac{10}{3} \left[\frac{1}{1 - 0.3678 z^{-1} - 0.6703 z^{-1}} + 0.2465 z^{-1} \right]$$

$$= \frac{10}{3} \left[\frac{1}{1 - 0.3678 z^{-1} - 0.6703 z^{-1} + 0.2465 z^{-1}} \right]$$

$$= \frac{10}{3} \left[\frac{0.3025 z^{-1}}{1 - 1.0361 z^{-1} + 0.2465 z^{-1}} \right]$$

$$= \frac{10}{3} \left[\frac{0.3025 z^{-1}}{1 - 1.0361 z^{-1} + 0.7595 z^{-2}} \right]$$

$$= \frac{10}{3} \left[\frac{0.3025 z^{-1}}{1 - 1.0361 z^{-1} + 0.7595 z^{-2}} \right]$$

DESIGN OF LIR FILTER USING BILINEAR TRANSFORMATIO Let us consider a analog filter with system func $H(s) = \frac{b}{s+a} \longrightarrow 0$ s y(s) + a y(s) = b x(s) This can be characterized by differential equation $\frac{d}{dt}$ $y(t) + a y(t) = b x(t) \longrightarrow 0$ y(t) can be treated by trapezoidal formula y(t) = \(y'(\tau) d\tau + y(t_0) \) where y'(7) is the desivative of y(t) The approximation of the integral by the trapezoide formula at t=nT and to=nT-T $\int_{a}^{b} f(x) dx = \frac{b-a}{2} \left[f(b)' + f(a) \right]$ $y(hT) = \frac{T}{2} \left[y'(hT) + y'(hT-T) \right] + y(hT-T) \longrightarrow 3$ from 2 y'(HT-T) = -ay(HT-T) + bx(HT-T) --> 6

The relationship between S and Z is known as

Bilineax transformation.

Let
$$Z = 3e^{\frac{1}{2}\omega}$$
 and $S = \sigma + \frac{1}{2}\omega$

$$S = \frac{2}{T} \left[\frac{1-Z^{-1}}{1+Z^{-1}} \right]$$

$$= \frac{2}{T} \left[\frac{z-1}{z+1} \right]$$

$$= \frac{2}{T} \left[\frac{xe^{\frac{1}{2}\omega}-1}{xe^{\frac{1}{2}\omega}+1} \right]$$

$$= \frac{2}{T} \left[\frac{xe^{\frac{1}{2}\omega}-1}{xe^{\frac{1}{2}\omega}+1} \right]$$

$$= \frac{2}{T} \left[\frac{x\cos\omega+1-j\sin\omega}{x\cos\omega+1-j\sin\omega} \right] \left[\frac{x\cos\omega+1-j\sin\omega}{x\cos\omega+1-j\sin\omega} \right]$$

$$= \frac{2}{T} \left[\frac{x^2\cos^2\omega+x\cos\omega-\frac{1}{2}x^2\sin\omega\cos\omega-x\cos\omega-x\cos\omega-1+j\sin\omega}{x^2\cos^2\omega+1+2x\cos\omega+\frac{1}{2}\sin^2\omega} \right]$$

$$= \frac{2}{T} \left[\frac{x^2(\cos^2\omega+\sin^2\omega)-1+2\sin^2\omega}{x^2(\cos^2\omega+\sin^2\omega)-1+2\sin\omega} \right]$$

$$= \frac{2}{T} \left[\frac{x^2(\cos^2\omega+\sin^2\omega)-1+2\sin\omega}{x^2(\cos^2\omega+\sin^2\omega)-1+2\sin\omega} \right]$$

$$S = \frac{2}{T} \begin{bmatrix} \frac{8^2 - 1}{8^2 + 1 + 28 \cos \omega} \\ \frac{8^2 + 1}{1 + 28 \cos \omega} \end{bmatrix}$$

$$S = \frac{2}{T} \begin{bmatrix} \frac{8^2 - 1}{1 + 8^2 + 28 \cos \omega} \\ \frac{8^2 - 1}{1 + 8^2 + 28 \cos \omega} \end{bmatrix}$$

$$Composing with $S = \sigma + j\Omega$

$$\Omega = \frac{2}{T} \begin{bmatrix} \frac{285 \sin \omega}{1 + 8^2 + 28 \cos \omega} \\ \frac{1 + 8^2 + 28 \cos \omega}{1 + 1 + 2 \cos \omega} \end{bmatrix}$$

$$S = \frac{2}{T} \begin{bmatrix} \frac{285 \sin \omega}{1 + 1 + 2 \cos \omega} \\ \frac{1 + 1 + 2 \cos \omega}{2 + 2 \cos \omega} \end{bmatrix}$$

$$S = \frac{2}{T} \begin{bmatrix} \frac{2}{2} \sin \omega \\ \frac{1}{2} \cos \omega \end{bmatrix}$$

$$S = \frac{2}{T} \begin{bmatrix} \frac{2}{2} \sin \omega \\ \frac{1}{2} \cos \omega \end{bmatrix}$$

$$S = \frac{2}{T} \begin{bmatrix} \frac{2}{2} \sin \omega \\ \frac{1}{2} \cos \frac{2}{2} \end{bmatrix}$$

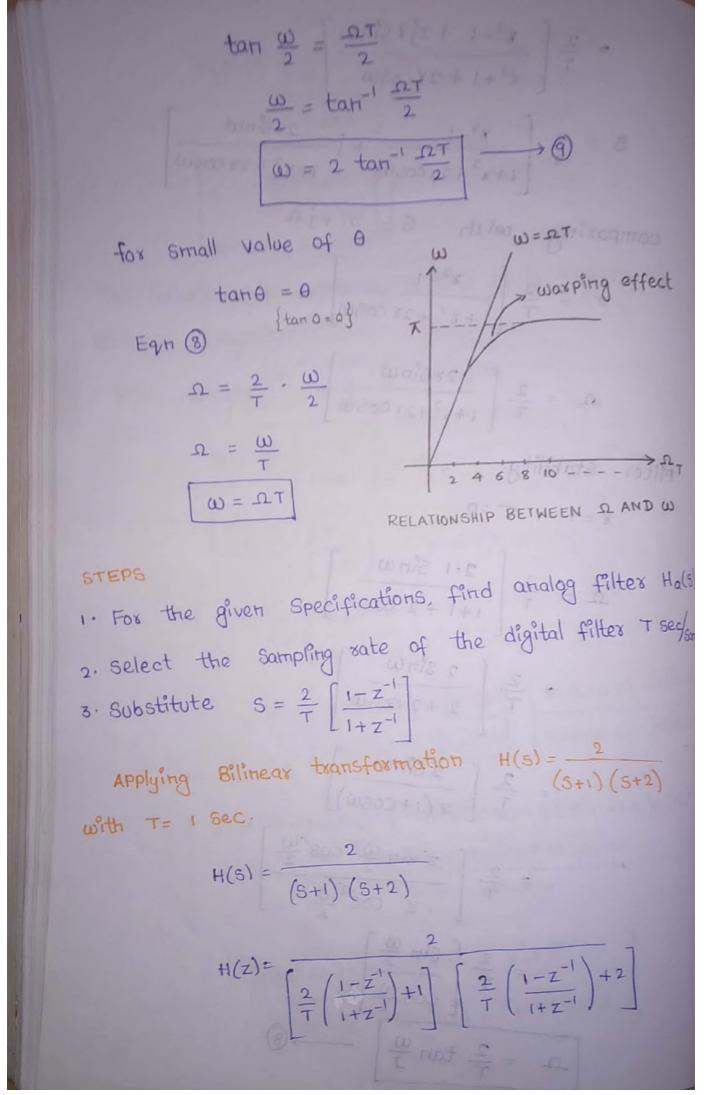
$$S = \frac{2}{T} \begin{bmatrix} \frac{2}{2} \sin \omega \\ \frac{1}{2} \cos \frac{2}{2} \end{bmatrix}$$

$$S = \frac{2}{T} \begin{bmatrix} \frac{2}{2} \sin \omega \\ \frac{1}{2} \cos \frac{2}{2} \end{bmatrix}$$

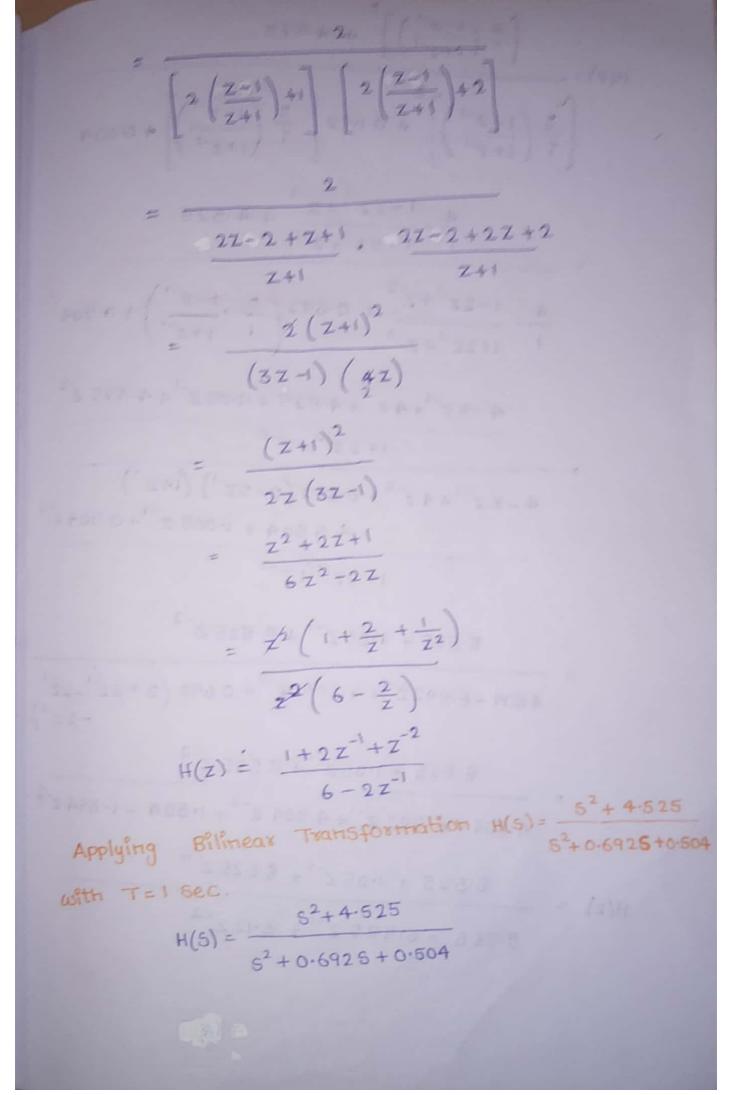
$$S = \frac{2}{T} \begin{bmatrix} \frac{2}{2} \sin \omega \\ \frac{1}{2} \cos \frac{2}{2} \end{bmatrix}$$

$$S = \frac{2}{T} \begin{bmatrix} \frac{2}{2} \sin \omega \\ \frac{1}{2} \cos \frac{2}{2} \end{bmatrix}$$

$$S = \frac{2}{T} \begin{bmatrix} \frac{2}{2} \sin \omega \\ \frac{1}{2} \cos \frac{2}{2} \end{bmatrix}$$


$$S = \frac{2}{T} \begin{bmatrix} \frac{2}{2} \sin \frac{\omega}{2} \\ \frac{2}{2} \cos \frac{2}{2} \end{bmatrix}$$

$$S = \frac{2}{T} \begin{bmatrix} \frac{2}{2} \sin \frac{\omega}{2} \\ \frac{2}{2} \cos \frac{2}{2} \end{bmatrix}$$


$$S = \frac{2}{T} \begin{bmatrix} \frac{2}{2} \sin \frac{\omega}{2} \\ \frac{2}{2} \cos \frac{2}{2} \end{bmatrix}$$

$$S = \frac{2}{T} \begin{bmatrix} \frac{2}{2} \sin \frac{\omega}{2} \\ \frac{2}{2} \cos \frac{2}{2} \end{bmatrix}$$$$

Scanned by CamScanner

Scanned by CamScanner

$$H(z) = \frac{2}{T} \left(\frac{1-z^{-1}}{1+z^{-1}}\right)^{\frac{2}{2}} + 4.525$$

$$\frac{4}{T} \cdot \frac{1-2z^{-1}+z^{-2}}{1+2z^{-1}+z^{-2}} + 4.525$$

$$\frac{4}{1} \cdot \frac{1-2z^{-1}+z^{-2}}{1+2z^{-1}+z^{-2}} + 0.692 \left(\frac{2}{1} \cdot \frac{1-z^{-1}}{1+z^{-1}}\right) + 0.504$$

$$\frac{4-8z^{-1}+4z^{-2}}{1+2z^{-1}+z^{-2}} + 0.692 \left(\frac{2}{1} \cdot \frac{1-z^{-1}}{1+z^{-1}}\right) + 0.504$$

$$\frac{4-8z^{-1}+4z^{-2}}{1+2z^{-1}+z^{-2}} + 0.692 \left(\frac{2}{2} \cdot 2z^{-1}\right) \left(\frac{1+z^{-1}}{1+z^{-1}}\right) + 0.504$$

$$\frac{4-8z^{-1}+4z^{-2}}{1+2z^{-1}+z^{-2}} + 0.692 \left(\frac{2}{2} \cdot 2z^{-1}\right) \left(\frac{1+z^{-1}}{1+z^{-1}}\right) + 0.504$$

$$\frac{1+2z^{-1}+z^{-2}}{1+2z^{-1}+z^{-2}} + 0.692 \left(\frac{2}{2} + 2z^{-1} + 0.504z^{-1}\right) + 0.504z^{-1}$$

$$\frac{1+2z^{-1}+z^{-2}}{1+2z^{-1}+z^{-2}} + 0.692 \left(\frac{2}{2} + 2z^{-1} - 2z^{-1}\right)$$

$$\frac{8.525 + 1.05z^{-1} + 8.525z^{-2}}{4.504 - 6.992z^{-1} + 4.504z^{-2} + 1.584z^{-1} - 1.884z^{-1}}$$

$$H(z) = \frac{8.525 + 1.05z^{-1} + 8.525z^{-2}}{5.888 - 6.992z^{-1} + 3.12z^{-2}}$$

MULTIRATE SIGNAL PROCESSING

The Systems that use single sampling rate from A/D converter to D/A converter are known as "single rate System". The Discrete time System that process the data at more than one sampling rate known as "Multi Rate System". There are many cases known as "Multi Rate System". There are many cases where multirate signal processing is used. They are where multirate signal processing, for example, a CD (compact Disc) is sampled at 44.1 KHz but DAT

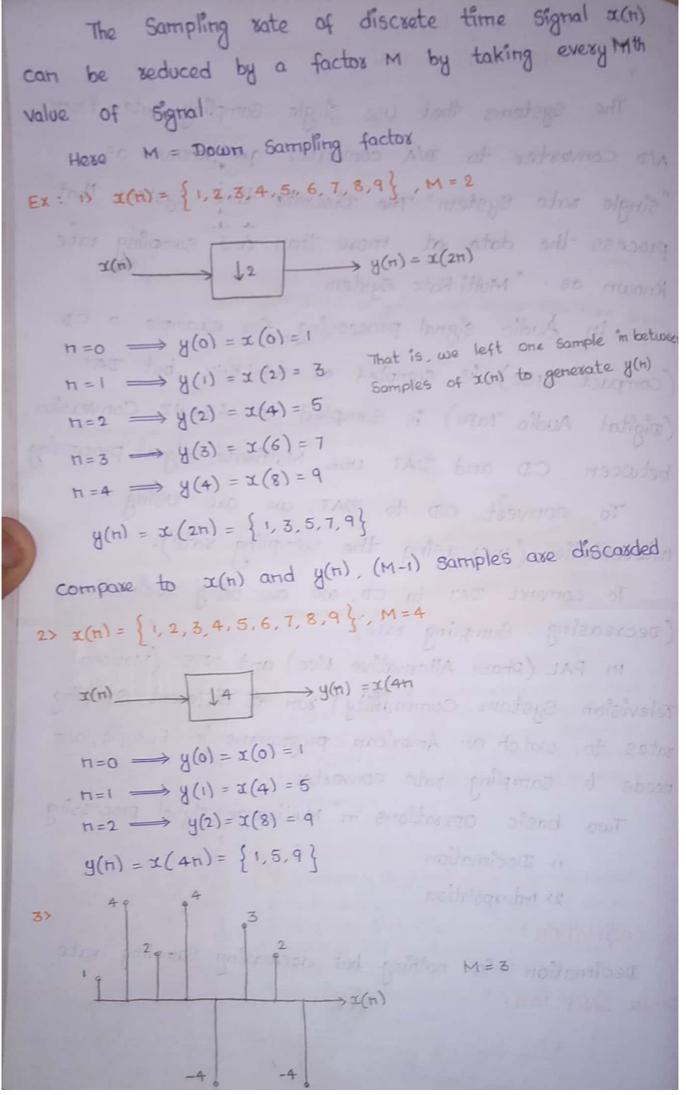
(Compact Disc) is sampled at 44.1 kHZ but (Convexsion (Digital Audio Tape) is sampled at 48 kHZ. Convexsion (Digital Audio Tape) is sampled at 48 kHZ. Convexsion (Digital Audio Tape) is sampled at 48 kHZ. Convexsion (Digital Audio Tape) is sampled at 44.1 kHZ but 14.1 kHZ but 1

To convext CD to DAT, we are using interpolation (increasing the sampling rate).

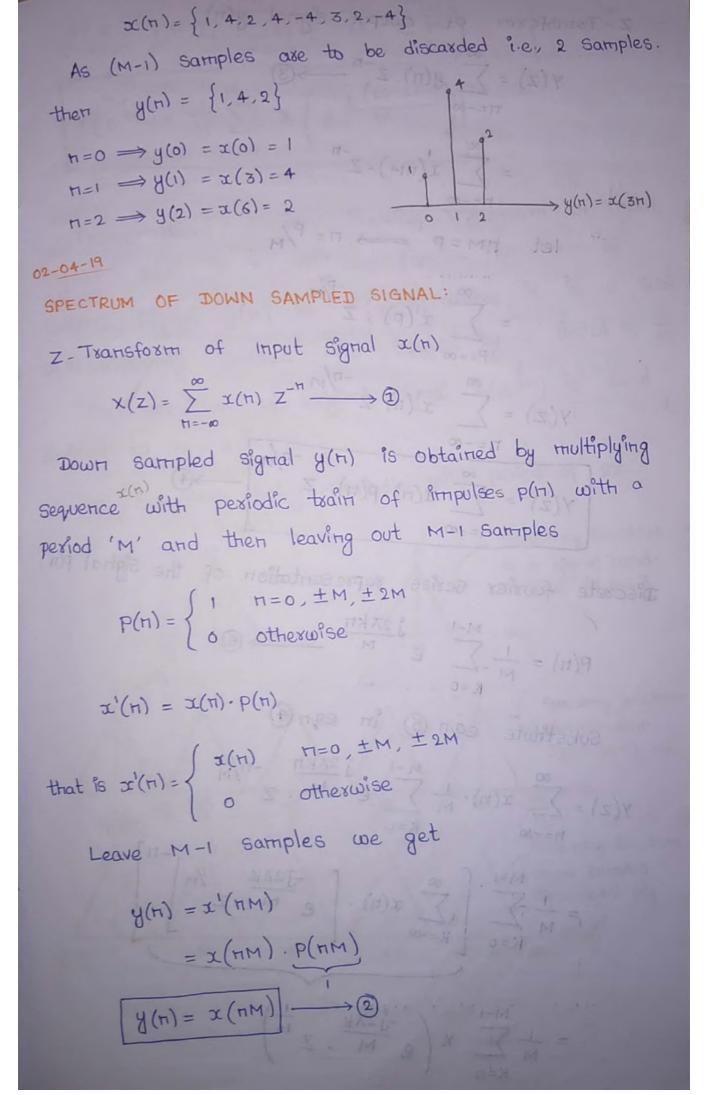
To convext DAT to CD, we are using Decimation (Decreasing Sampling rate)

Television System Community) run at different Sampling rates. To watch an American programme in Europe, one needs a sampling rate converter. In Transmultiplexers

Two basic operations in Multirange signal processing


1> Decimation

2> Interpolation


DECIMATION :

Decimation is nothing but decreasing Sampling rate

$$\chi(n)$$
 $\downarrow M$ $\rightarrow \chi(n) = \chi(mn)$

Scanned by CamScanner

Z=Transform of output signal
$$y(n)$$

$$y(z) = \sum_{n=-\infty}^{\infty} y(n) z^{-n} \longrightarrow \emptyset$$

$$= \sum_{n=-\infty}^{\infty} x'(n) Z$$

let $n = p \longrightarrow n = p/M$

$$= \sum_{n=-\infty}^{\infty} x'(p) Z$$

$$y(z) = \sum_{n=-\infty}^{\infty} x'(n) Z$$

$$y(z) = \sum_{n=-\infty}^{\infty} x'(n) Z$$

$$y(z) = \sum_{n=-\infty}^{\infty} x'(n) P(n) Z$$

$$y(z) = \sum_{n=-\infty}^{\infty} x(n) P(n) P(n) Z$$

$$y(z) = \sum_{n=-\infty}^{\infty} x(n) P(n) P(n) P(n) P(n) P(n)$$

$$y(z) = \sum_{n=-\infty}^{\infty} x(n) P(n) P(n) P(n) P(n) P(n)$$

$$y(z) = \sum_{n=-\infty}^{\infty} x(n) P(n) P(n) P(n) P(n) P(n)$$

$$y(z) = \sum_{n=-\infty}^{\infty} x(n) P(n) P(n) P(n) P(n) P(n)$$

$$y(z) = \sum_{n=-\infty}^{\infty} x(n) P(n) P(n) P(n) P(n) P(n)$$

$$y(z) = \sum_{n=-\infty}^{\infty} x(n) P(n) P(n) P(n) P(n) P(n)$$

$$y(z) = \sum_{n=-\infty}^{\infty} x(n) P(n) P(n) P(n) P(n) P(n) P(n)$$

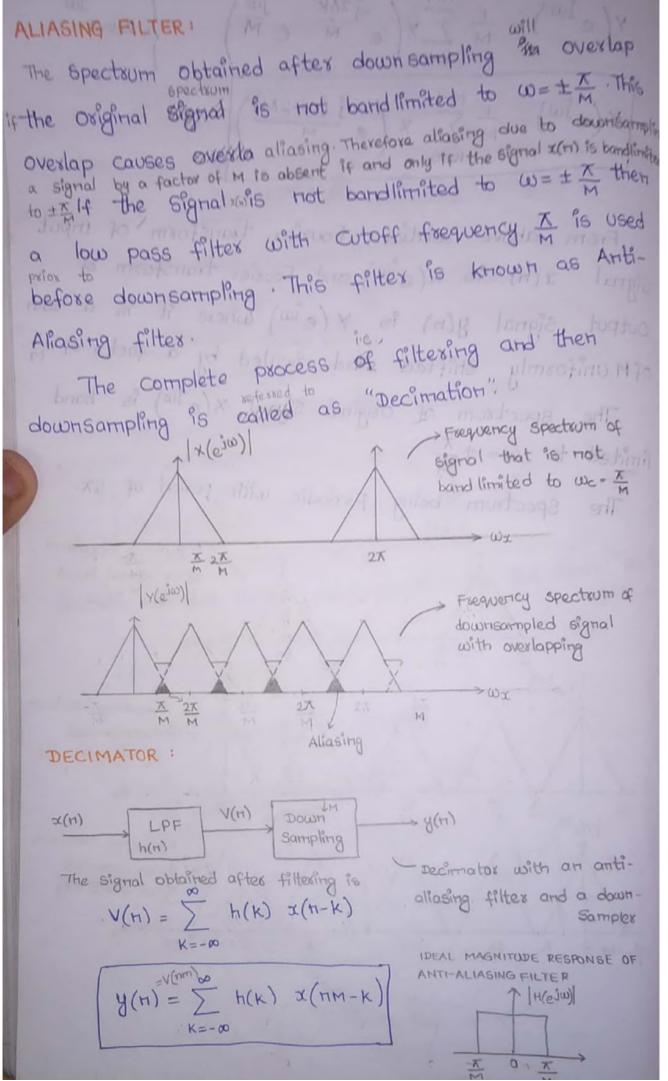
$$y(z) = \sum_{n=-\infty}^{\infty} x(n) P(n) P(n) P(n) P(n) P(n) P(n) P(n)$$

$$y(z) = \sum_{n=-\infty}^{\infty} x(n) P(n) P(n) P(n) P(n) P(n) P(n)$$

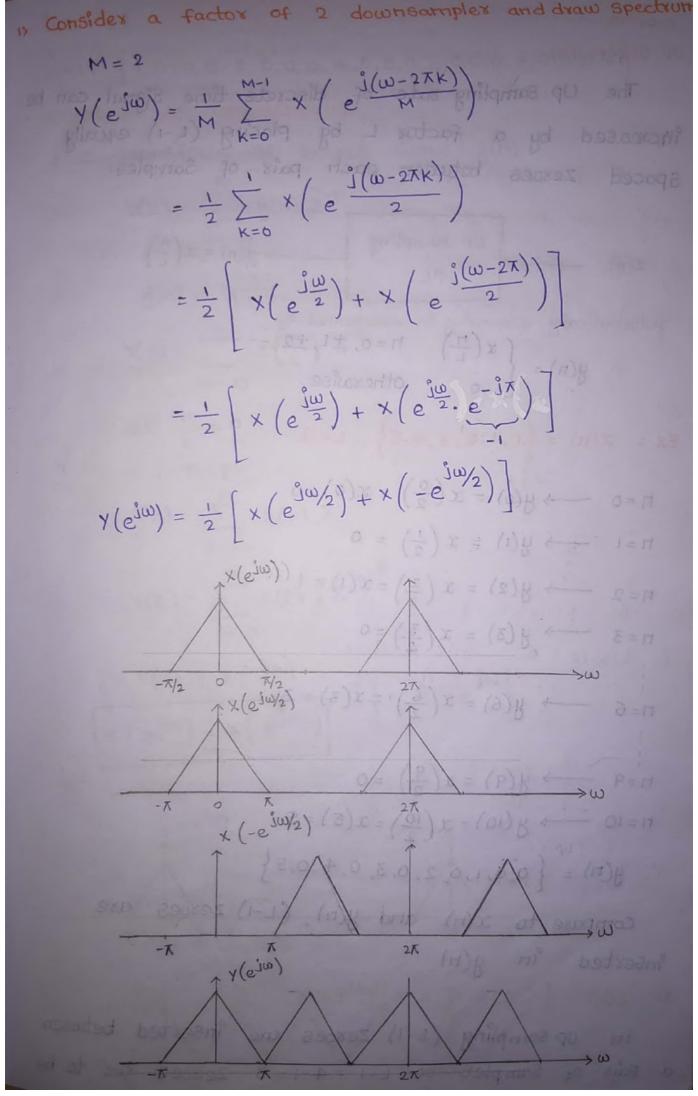
$$y(z) = \sum_{n=-\infty}^{\infty} x(n) P(n) P(n) P(n) P(n) P(n)$$

$$y(z) = \sum_{n=-\infty}^{\infty} x(n) P(n) P(n) P(n) P(n) P(n)$$

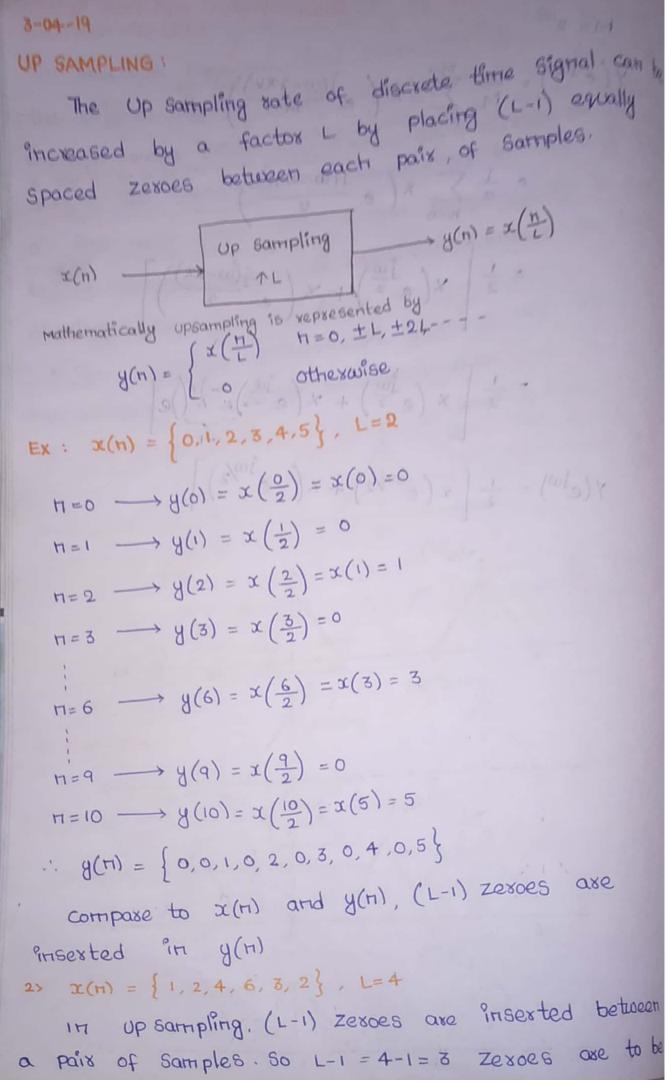
$$y(z) = \sum_{n=-\infty}^{\infty} x(n) P(n)$$

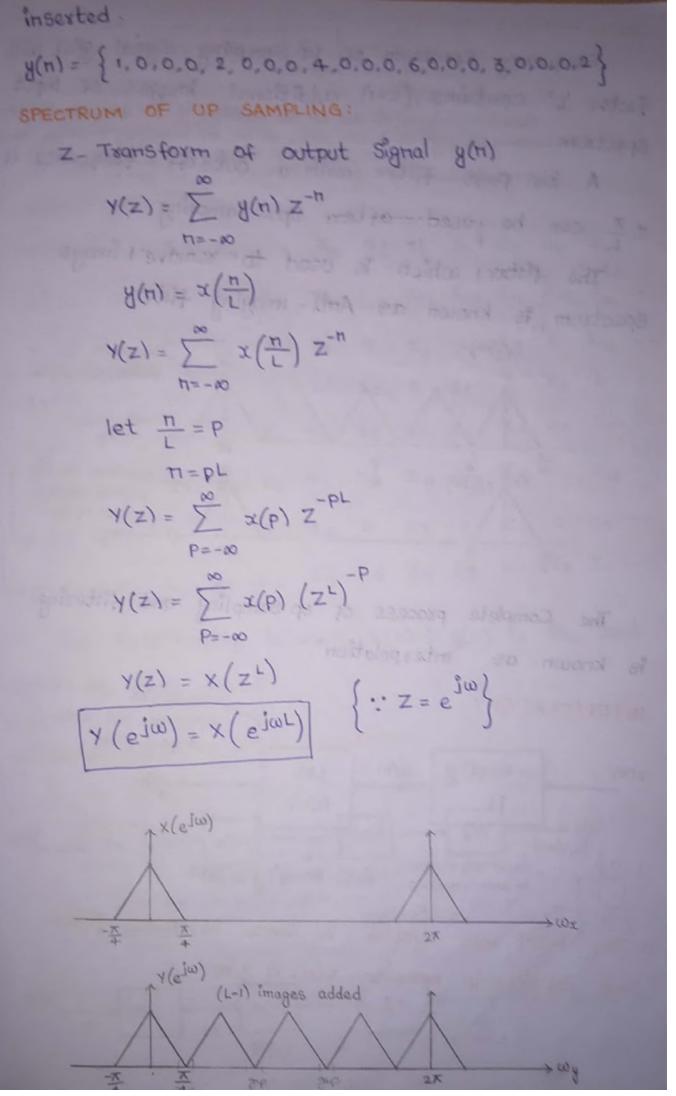

$$y(z) = \sum_{$$

$$y(e^{j\omega}) = \frac{1}{M} \sum_{K=0}^{M-1} x\left(e^{j\pi K} e^{j\pi K}\right)$$

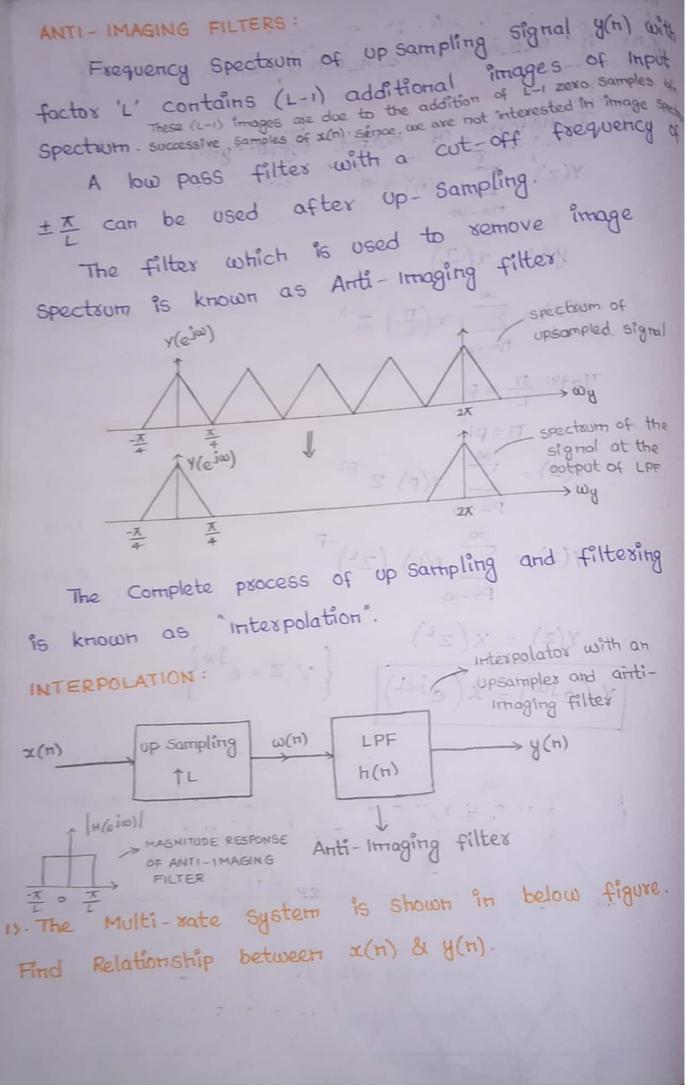

$$y(e^{j\omega}) = \frac{1}{M} \sum_{K=0}^{M-1} x\left(e^{j\omega}\right)$$

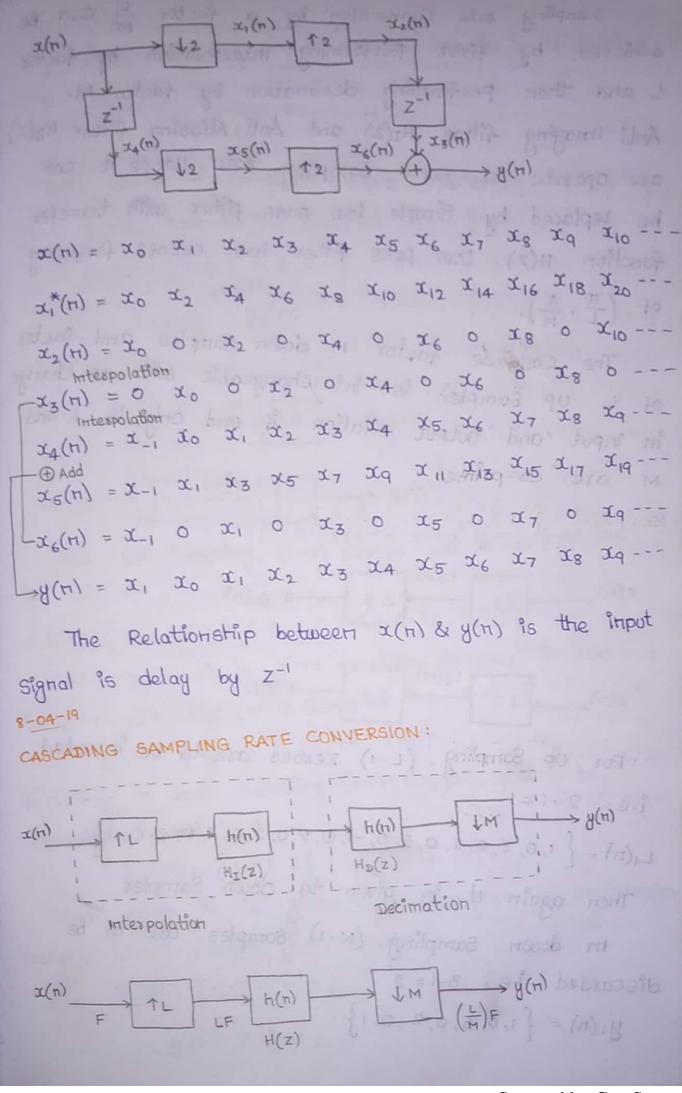
$$y(e^{j\omega}) = \frac{1}{M} \sum_{K=0}^{M-1} x\left(e^{$$


Scanned by CamScanner

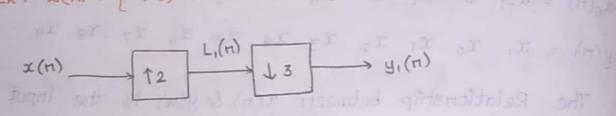


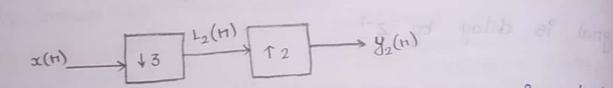
Scanned by CamScanner




Scanned by CamScanner

Scanned by CamScanner



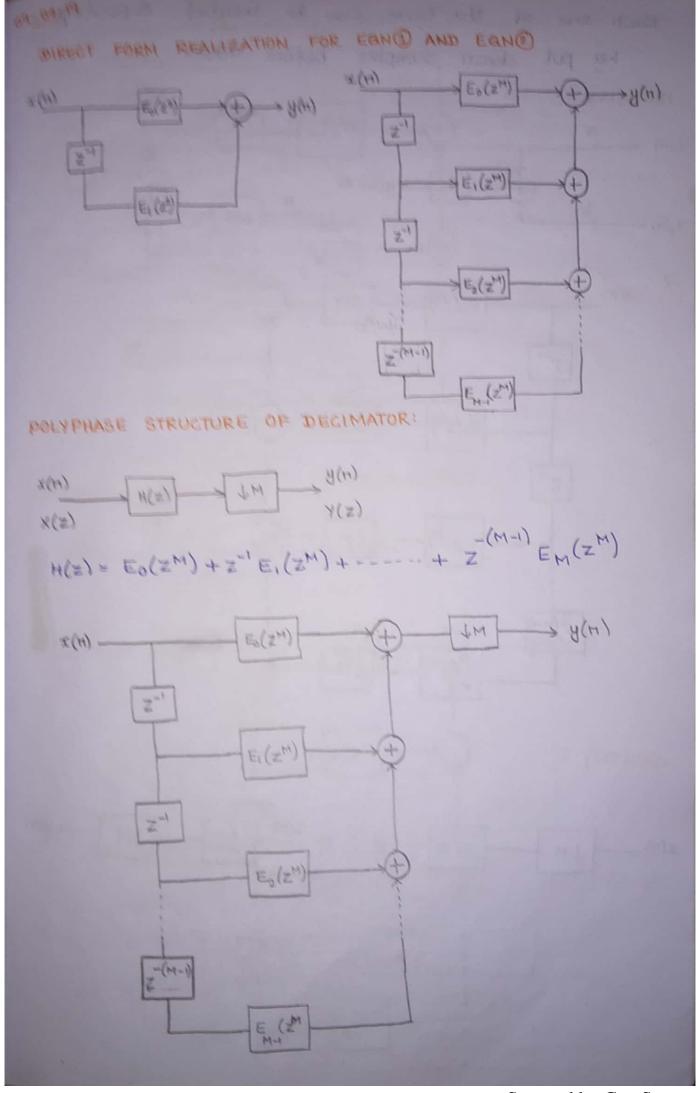


Sampling rate Conversion by a factor $\frac{L}{M}$ can be actived by first performing interpolation by factor L and then performing decimation by factor M.

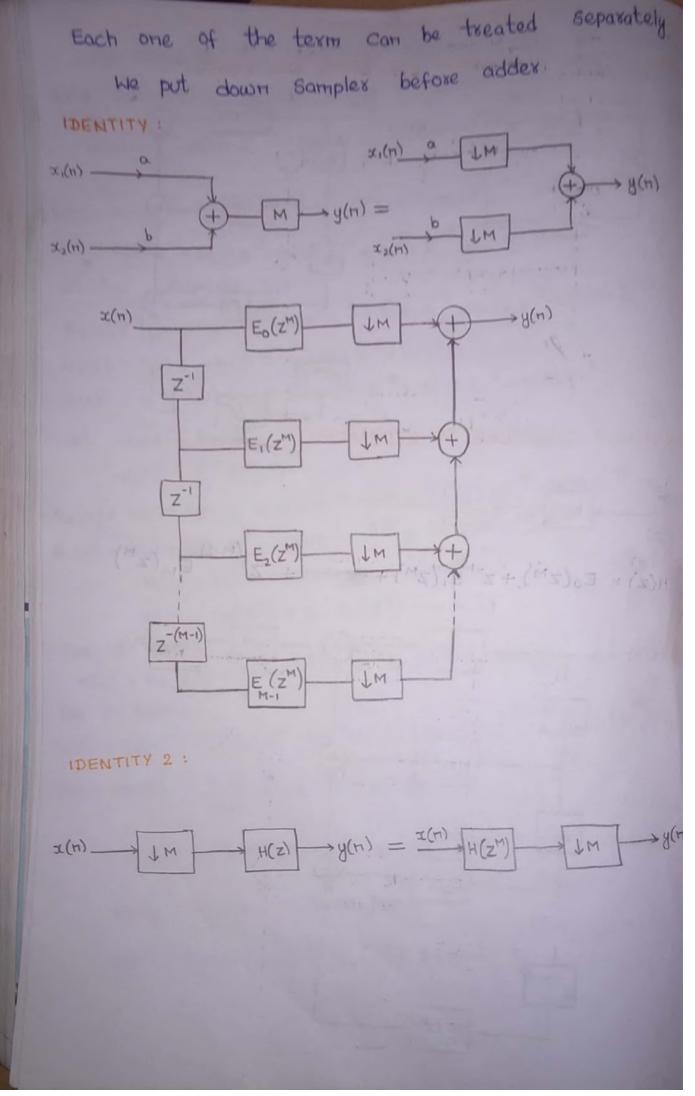
Anti Imaging filter $H_{I}(z)$ and A_{I} Aliasing filter H_{I} are operate at same Sampling vate. Hence it can be replaced by Simple low pass filter with transfer function H(z). Low pass filter has cut off frequency of $\left(\frac{\pi}{L}, \frac{\pi}{M}\right)$.

The Cascade factor M down samples and factor of L up sampler is interchangeable with no change in input and output relation if and only if L and M are co-primes

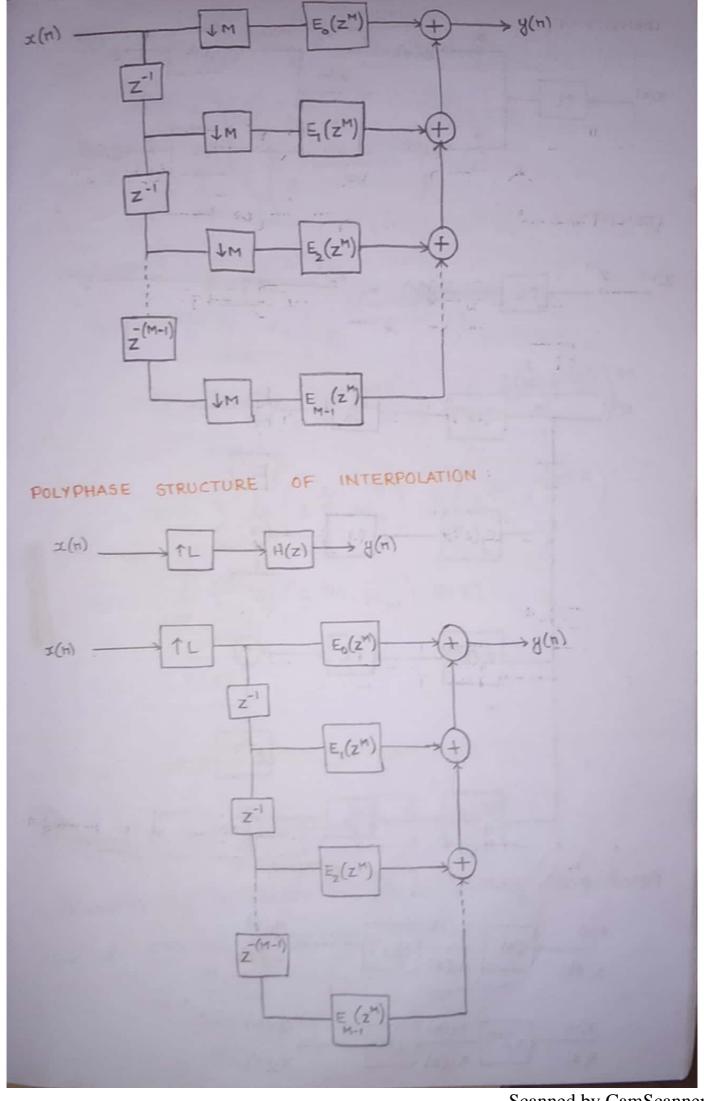
Fox up Sampling, (L-1) zeroes are to be inserted i.e., 2-1=1

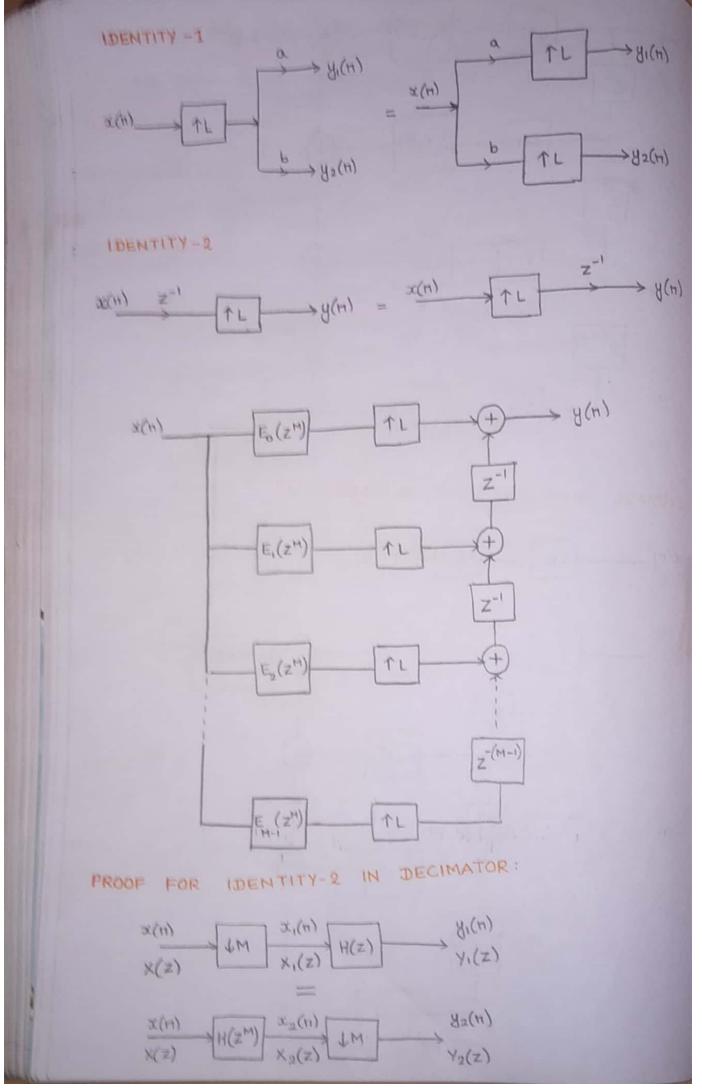

$$L_{1}(n) = \left\{ 1, 0, 3, 0, 2, 0, 5, 0, -1, 0, 2, 0, 2, 0, 3, 0, 2, 0, 1 \right\}$$

Then again it is given to down Samples


In down Sampling, (M-1) Samples are to be
discarded i.e., 3-1=2

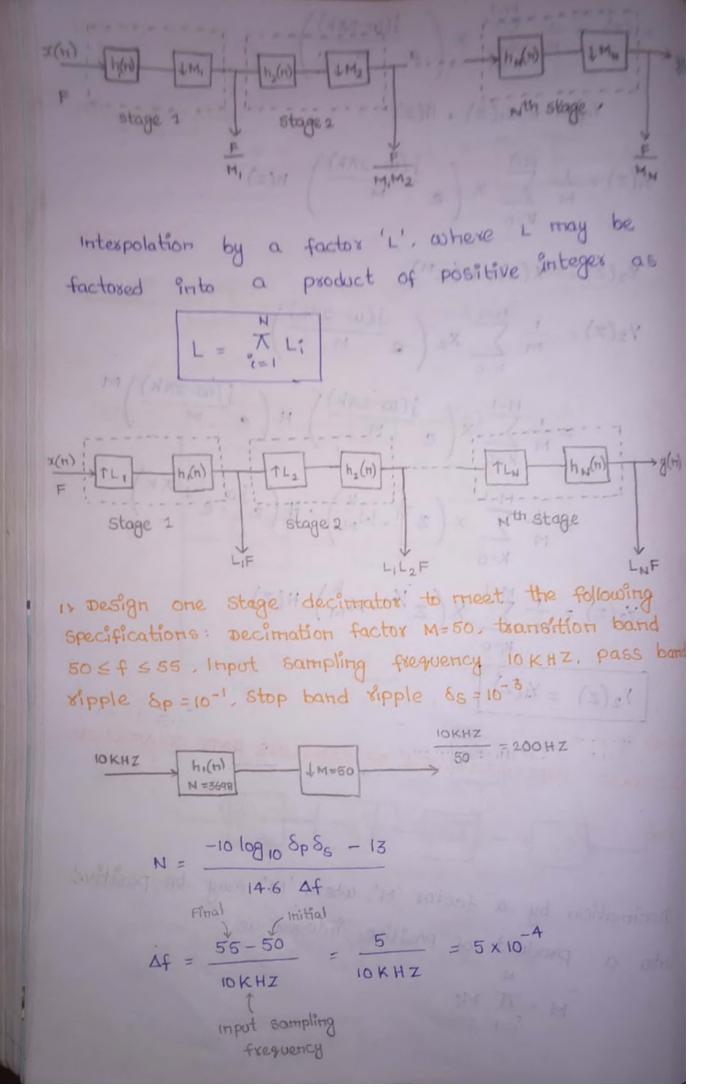
similarly. in down sampling, (M-1) samples are to be discorded 1.64 3-1=2 Then again it is given to up samples. In up sampling, (1-1) zeroes are to be inserted i.e., 2-1=1 82(H) = {1,0,5,0,2,0,1} yi(n) = y2(n) 2) x(n) = {1,3,2,5,-1,2,2,3,2,1} = (8) H + 2 = (4) H + (1) H | 1 = (2) = H x(n) $\uparrow 2$ $\downarrow 14$ $\rightarrow g_1(n)$ $\downarrow g_2(n)$ Fox Up Sampling, (L-1) zeroes are to be inserted (X) H+(Z) H= (X) H Li(H) = {1.0.3.0,2,0,5,0,-1,0,2,0,2,0,3,0,2,0,1} i.e., 2-1=1 Then again it is given to down samplex. So. down Samplex discards (M-1) samples i.e., 4-1=3 y, (n) = {1,2,-1,2,2} similarly, in down sampling (M-1) samples are to be discorded i.e., 4-1=3 L2(H) = {1,-1,2} Then again it is given to up samples. So up samples insexts (L-1) zexoes i.e., 2-1=1 y2(n) = {1,0,-1,0,2} y1(H) = 42(H)


```
IMPLEMENTATION OF SAMPLING RATE CONVERSION :
   We consider the efficient implementation of sample
 rate conversion system using polyphase filter structure
    H(z) = \sum_{n=0}^{N-1} h(n) z^{-n} let N = 11 \longrightarrow H(z) = \sum_{n=0}^{N-1} h(n) z^{-n}
H(z) = h(0) z + h(1) z + h(2) z + h(3) z + h(4) z + h(5) z +
       h(6) z-6+h(7) z-7+h(8) z-8+h(9) z-8+h(10) z-10
  H_1(z) = h(0) + h(2) z^{-2} + h(4) z^{-4} + h(6) z^{-6} + h(8) z^{-8} + h(10) z^{-10}
  Picking alternate terms
 H_2(z) = h(1)z^{-1} + h(3)z^{-3} + h(5)z^{-6} + h(7)z^{-7} + h(9)z^{-9}
 H_2(z) = z^{-1} [h(1) + h(3) z^{-2} + h(5) z^{-4} + h(7) z^{-6} + h(9) z^{-8}]
  let Ho(z) = Eo(z2)
        H1(z) = Z-1 E1(Z2)
E_0(z) = h(0) + h(2) z^{-1} + h(4) z^{-2} + h(6) z^{-3} + h(8) z^{-4} + h(10) z^{-6}
E_1(z) = h(1) + h(3) z^{-1} + h(5) z^{-2} + h(7) z^{-3} + h(9) z^{-4}
          H(z) = H_0(z) + H_1(z)
          H(z) = E_0(z^2) + z^{-1} E_1(z^2) \longrightarrow 0
 Fox 3 texms
  ox 3 texms
H(z) = E_0(z^3) + z^{-1}E_1(z^3) + z^{-2}E_2(z^3) \longrightarrow \textcircled{2}
Fox M texms
H(z) = E_0(z^M) + z^{-1}E_1(z^M) + z^{-2}E_2(z^M) + - - + z^{-(M-1)}E_{M-1}(z^M) - 3
From eqn () \frac{Y(z)}{X(z)} = E_0(z^2) + Z^{-1} E_1(z^2)
       Y(Z) = E_0(Z^2) \times (Z) + Z^{-1} E_1(Z^2) \times (Z)
      Apply Invesse Z-Transform
      y(n) = E_0(Z^2) x(n) + E_1(Z^2) x(n-1)
```



Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner


Scanned by CamScanner

$$\begin{aligned} \chi_{1}(z) &= \frac{1}{M} \sum_{k=0}^{M-1} \chi \left(e^{\frac{j(\omega-2\pi k)}{M}} \right) \\ \chi_{1}(z) &= \chi_{1}(z) \cdot H(z) \\ \chi_{2}(z) &= \chi_{1}(z) \cdot H(z^{M}) \\ \chi_{2}(z) &= \chi_{2}(z) \cdot H(z^{M}) \\ \chi_{2}(z) &= \frac{1}{M} \sum_{k=0}^{M-1} \chi_{2} \left(e^{\frac{j(\omega-2\pi k)}{M}} \right) H(e^{\frac{j(\omega-2\pi k)}{M}}) \\ &= \frac{1}{M} \sum_{k=0}^{M-1} \chi \left(e^{\frac{j(\omega-2\pi k)}{M}} \right) H(e^{\frac{j(\omega-2\pi k)}{M}}) H(e^{\frac{j(\omega-2\pi k)}{M}}) \\ &= \frac{1}{M} \sum_{k=0}^{M-1} \chi \left(e^{\frac{j(\omega-2\pi k)}{M}} \right) H(e^{\frac{j(\omega-2\pi k)}{M}}) H(e^{\frac{j(\omega-2\pi k)}{M}}) \\ \chi_{2}(z) &= \frac{1}{M} \sum_{k=0}^{M-1} \chi \left(e^{\frac{j(\omega-2\pi k)}{M}} \right) H(z) \\ \chi_{2}(z) &= \chi_{1}(z) \end{aligned}$$

15-04-19

IMPLEMENTATION OF SAMPLING RATE CONVERSION: MULTISTAGE

Decimation by a factor 'M', where 'M' may be factored product of positive integer as

Scanned by CamScanner

No.
$$\frac{14.6 (5 \times 10^{-4})}{14.6 (5 \times 10^{-4})}$$
 $\frac{14.6 (5 \times 10^{-4})}{14.6 (5 \times 10^{-4})}$
 $\frac{14.6 (5 \times 10^{-4})}{14.6 (5 \times 10^{-4})}$
 $\frac{40-13}{14.6 (5 \times 10^{-4})}$

No. $\frac{3698.63}{14.6 (5 \times 10^{-4})}$

No. $\frac{3698.63}{14.6 (5 \times 10^{-4})}$

No. $\frac{3698.63}{14.6 (5 \times 10^{-4})}$

No. $\frac{3698}{14.6 (5 \times 10^{-4})}$

No. $\frac{369$

Scanned by CamScanner

$$N_{1} = \frac{-10 \log_{10} (10^{-1}) (10^{-3})}{14.6 \times 0.4895}$$

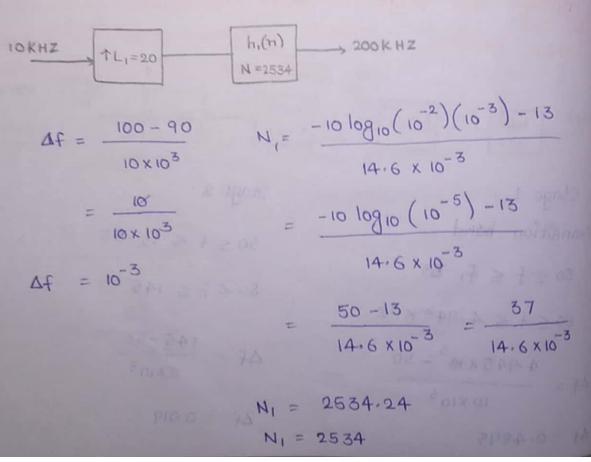
$$= \frac{-10 \log_{10} (10^{-1}) (10^{-3})}{14.6 \times 0.4895}$$

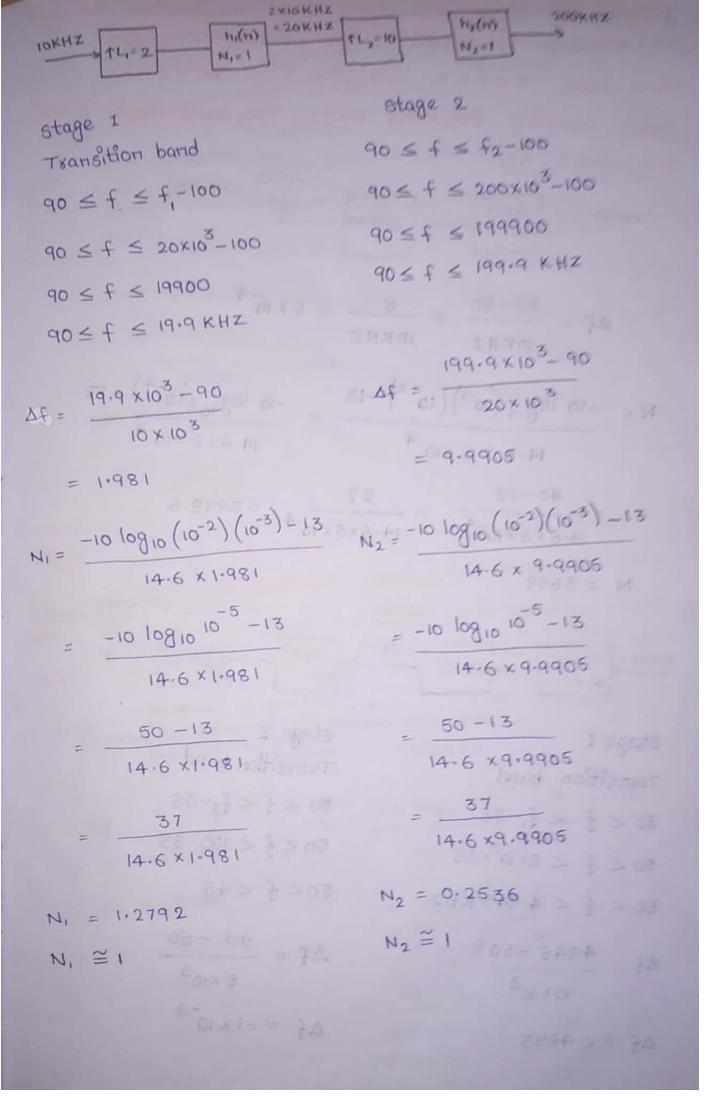
$$= \frac{-10 \log_{10} (10^{-1})}{14.6 \times 0.4895}$$

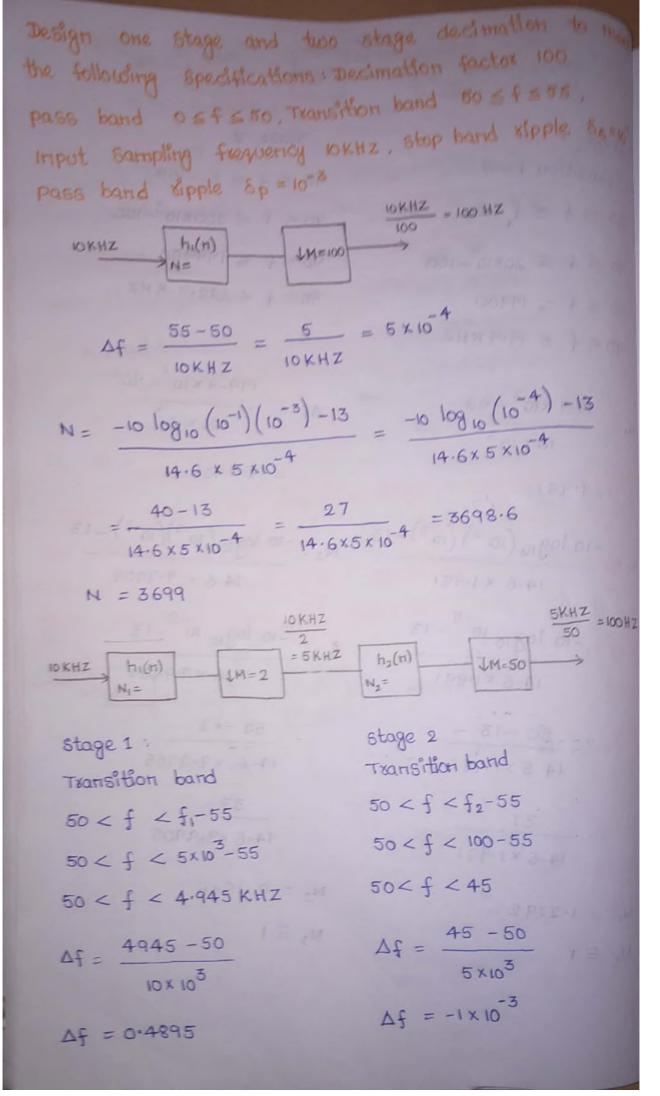
$$= \frac{40 - 13}{14.6 \times 0.4895}$$

$$= \frac{40 - 13}{14.6 \times 0.019}$$

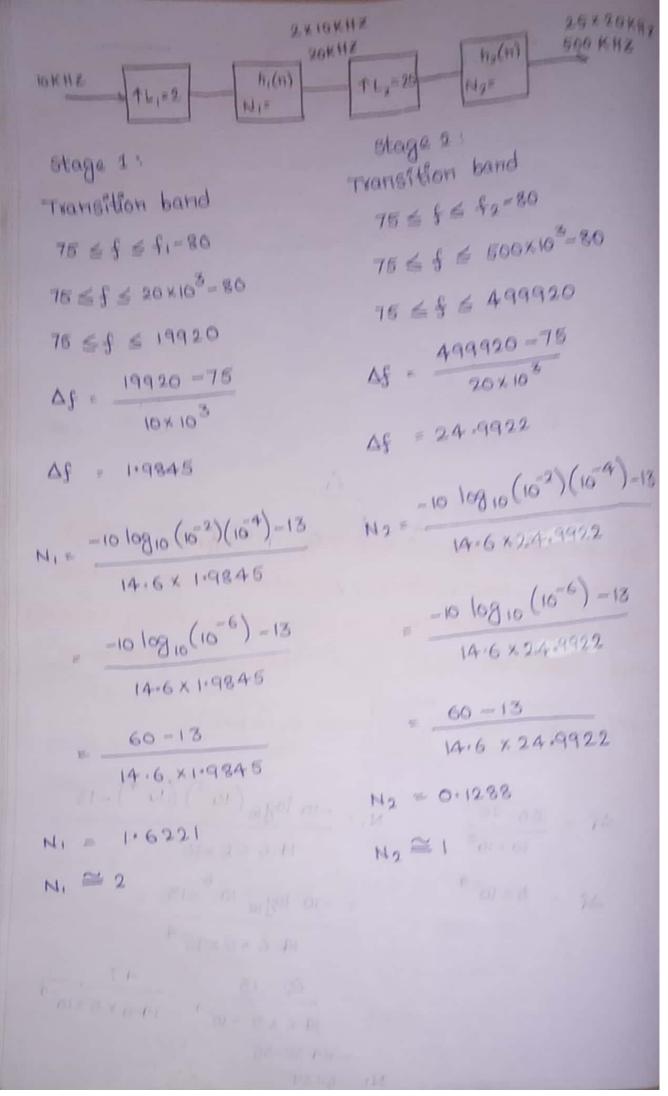
$$= \frac{27}{14.6 \times 0.4895}$$

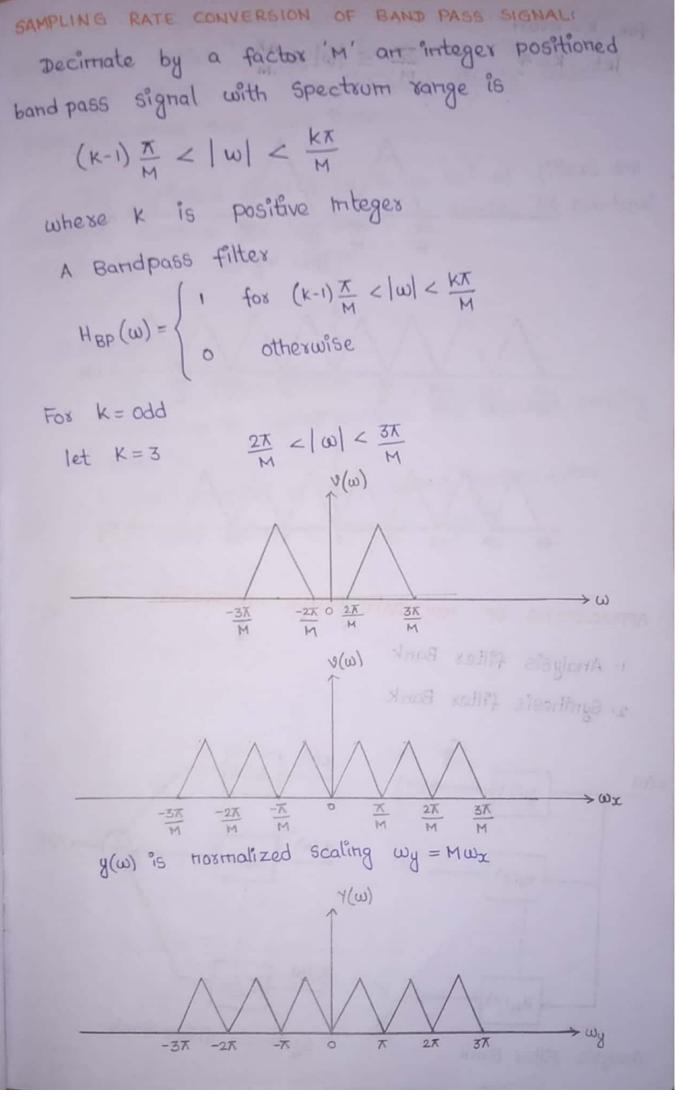

$$= \frac{27}{14.6 \times 0.4895}$$

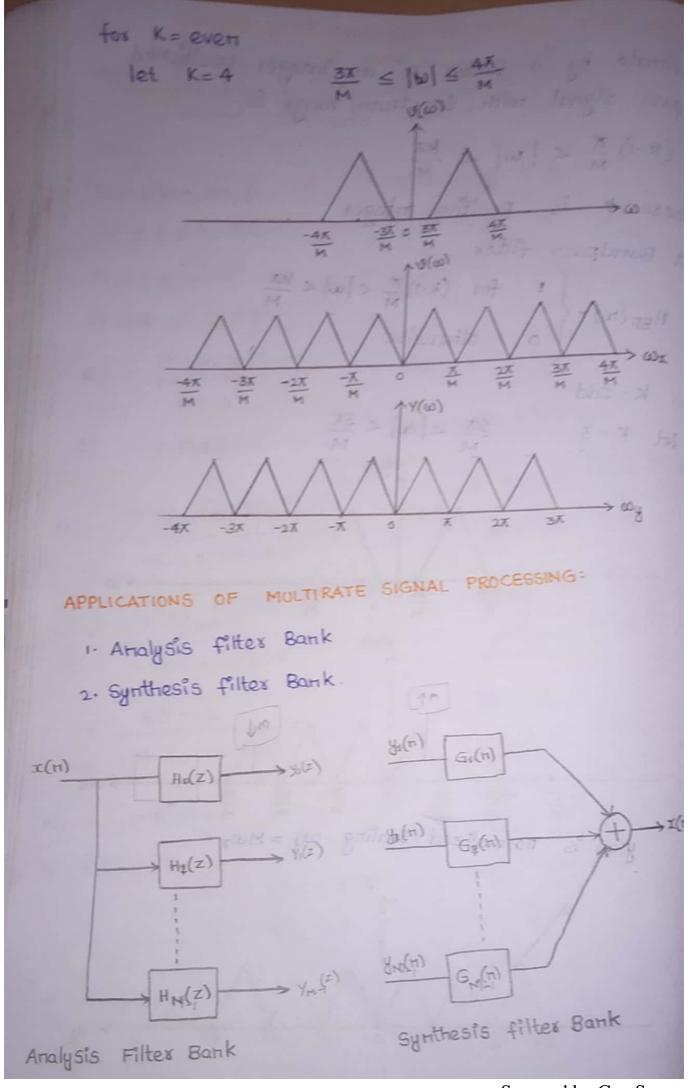

$$= \frac{27}{14.6 \times 0.4895}$$


$$= \frac{27}{14.6 \times 0.019}$$

$$= \frac$$


Design one stage and two stage interpolation to meet the following specification: interpolation factor 20 and transition band $90 \le f \le 100$, input sampling frequency 10KHz, pass band ripple 10^{-2} , Stop band ripple 10^{-3} .




pesign one stage and second stage interpolation to meet the following specifications: interpolation factor 50, pass 10 KHZ, Stop band ripple &s = 10-4, pass band ripple &p = 10-2. 10 KHZ $1 \text{ TL}_1 = 50$ $1 \text{ H}_1(n)$ $1 \text{ N}_1 =$ 1 SOOKHZ $\Delta f = \frac{80-75}{10\times10^3}$ $N_1 = \frac{-10 \log_{10}(10^{-2})(10^{-4})-13}{14.6\times5\times10^{-4}}$ = -10 log 10 10 -13 $\Delta f = 5 \times 10^{-4}$ 14.6 × 5 × 10 -4 $= \frac{60 - 13}{14.6 \times 5 \times 10^{-4}} = \frac{47}{14.6 \times 5 \times 10^{-4}}$ = 6438.35 N1 = 6439

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

The Analysis filter bank is used for spectrum analysis in which a signal is divided into set of sub band signals. All the Sub band signals contains same frequency and same value.

The Synthesis filter bank is a set of filters are used to combine or Synthesize a number of sub-band signals into a single signal.

APPLICATIONS

- · Design of Phase shifters
- · Intexfacing of Digital systems with Different Sampling Rates
 - · implementation of Naxxowband lowpass filter
 - · Sub-band coding of speech signals