

1|D B M S

SRET TIRUPATI

DBMS

R20

2|D B M S

SRET TIRUPATI

UNIT I

Introduction: Database systems applications, Purpose of Database Systems, view of Data,

Database Languages, Relational Databases, Database Design, Data Storage and Querying,

Transaction Management, Database Architecture, Data Mining and Information Retrieval,

Specialty Databases, Database users and Administrators,

Introduction to Relational Model: Structure of Relational Databases, Database Schema, Keys,

Schema Diagrams, Relational Query Languages, Relational Operations

Lecture Notes

1.1. A database-management system (DBMS) is a collection of interrelated data and a set

of programs to access those data. The collection of data, usually referred to as the

database, contains information relevant to an enterprise. The primary goal of a DBMS is to

provide a way to store and retrieve database information that is both convenient and

efficient.

Database systems are designed to manage large bodies of information .Management of

data involves both defining structures for storage of information and providing mechanisms

for the manipulation of information. In addition, the database system must ensure the safety

of the information stored, despite system crashes or attempts at unauthorized access. If data

are to be shared among several users, the system must avoid possible anomalous results.

1.2. Database-System Applications

Databases are widely used. Here are some representative applications:

Enterprise Information

Sales: For customer, product, and purchase information.

Accounting: For payments, receipts, account balances, assets and other accounting

information.

Human resources: For information about employees, salaries, payroll taxes, and benefits,

and for generation of paychecks.

Manufacturing: For management of the supply chain and for tracking production of items in

factories, inventories of items in warehouses and stores, and orders for items.

Banking and Finance

3|D B M S

SRET TIRUPATI

Banking: For customer information, accounts, loans, and banking transactions.

Credit card transactions :For purchases on credit cards and generation of monthly

statements.

Finance: For storing information about holdings, sales, and purchases of financial

instruments such as stocks and bonds; also for storing real-time market data to enable

online trading by customers and automated trading by the firm.

Universities: For student information, course registrations, and grades (in addition to

standard enterprise information such as human resources and accounting).

Airlines: For reservations and schedule information. Airlines were among the first to use

databases in a geographically distributed manner.

Telecommunication: For keeping records of calls made, generating monthly bills,

maintaining balances on prepaid calling cards, and storing information about the

communication networks.

As the list illustrates, databases form an essential part of every enterprise today, storing not

only types of information that are common to most enterprises, but also information that is

specific to the category of the enterprise.

Over the course of the last four decades of the twentieth century, use of databases grew in

all enterprises. In the early days, very few people interacted directly with database systems,

although without realizing it, they interacted with databases indirectly— through printed

reports such as credit card statements, or through agents such as bank tellers and airline

reservation agents. Then auto- mated teller machines came along and let users interact

directly with databases. Phone interfaces to computers (interactive voice- response systems)

also allowed users to deal directly with databases a caller could dial a number, and press

phone keys to enter information or to select alternative options, to find flight arrival/departure

times, for example, or to register for courses in a university.

The Internet revolution of the late 1990s sharply increased direct user access to databases.

Organizations converted many of their phone interfaces to databases into Web interfaces,

and made a variety of services and information available online. For instance, when you

access an online book store and browse a book or music collection, you are accessing data

stored in a database. When you enter an order online, your order is stored in a database.

When you access a bank Web site and retrieve your bank balance and transaction

information, the information is retrieved from the bank’s database system. When you access

a Web site, information about you may be retrieved from a database to select which

advertisements you should see. Furthermore, data about your Web accesses may be stored

in a database.

4|D B M S

SRET TIRUPATI

Thus, although user interfaces hide details of access to a database, and most people are not

even aware they are dealing with a database, accessing databases forms an essential part

of almost everyone’s life today.

The importance of database systems can be judged in another way today, database system

vendors like Oracle are among the largest software companies in the world, and database

systems form an important part of the product line of Microsoft and IBM.

Purpose of Database Systems

Database systems arose in response to early methods of computerized management of

commercial data. As an example of such methods, typical of the 1960s, consider part of a

university organization that, among other data, keeps information about all instructors,

students, departments, and course offerings. One way to keep the information on a

computer is to store it in operating system files. To allow users to manipulate the information,

the system has a number of application programs that manipulate the files, including

programs to:

Add new students, instructors, and courses

Register students for courses and generate class rosters

Assign grades to students, compute grade point averages (GPA), and generate transcripts

System programmers wrote these application programs to meet the needs of the university.

New application programs are added to the system as the need arises. For example,

suppose that a university decides to create a new major (say, computer science). As a

result, the university creates a new department and creates new permanent files (or adds

information to existing files) to record information about all the instructors in the department,

students in that major, course offerings, degree requirements, etc. The university may have

to write new application programs to deal with rules specific to the new major. New

application programs may also have to be written to handle new rules in the university.

Thus, as time goes by, the system acquires more files and more application programs.

This typical file-processing system is supported by a conventional operating system. The

system stores permanent records in various files, and it needs different application programs

to extract records from, and add records to, the appropriate files. Before database

management systems (DBMSs) were introduced, organizations usually stored information in

such systems. Keeping organizational information.

introduction to file-processing system has a number of major disadvantages:

Data redundancy and inconsistency. Since different programmers create the files and

application programs over a long period, the various files are likely to have different

structures and the programs may be written in several programming languages. Moreover,

the same information may be duplicated in several places (files). For example, if a student

has a double major (say, music and mathematics) the address and telephone number of that

student may appear in a file that consists of student records of students in the Music

5|D B M S

SRET TIRUPATI

department and in a file that consists of student records of students in the Mathematics

department. This redundancy leads to higher storage and access cost. In addition, it may

lead to data inconsistency; that is, the various copies of the same data may no longer agree.

For example, a changed student address may be reflected in the Music department records

but not elsewhere in the system.

Difficultyinaccessingdata.Supposethatoneoftheuniversityclerksneedsto find out the names of

all students who live within a particular postal- code area. The clerk asks the data-

processing department to generate such a list. Because the designers of the original system

did not anticipate this request, there is no application program on hand to meet it. There is,

however, an application program to generate the list of all students. The university clerk has

now two choices: either obtain the list of all students and extract the needed information

manually or ask a programmer to write the necessary application program. Both alternatives

are obviously unsatisfactory. Suppose that such a program is written, and that, several days

later, the same clerk needs to trim that list to include only those students who have taken at

least 60 credit hours. As expected, a program to generate such a list does not exist. Again,

the clerk has the preceding two options, neither of which is satisfactory.

The point here is that conventional file-processing environments do not allow needed data to

be retrieved in a convenient and efficient manner. More responsive data-retrieval systems

are required for general use.

Data isolation. Because data are scattered in various files, and files may be in different

formats, writing new application programs to retrieve the appropriate data is difficult.

Integrity problems. The data values stored in the database must satisfy certain types of

consistency constraints. Suppose the university maintains an account for each department,

and records the balance amount in each ac- count. Suppose also that the university

requires that the account balance of a department may never fall below zero. Developers

enforce these constraints in the system by adding appropriate code in the various

application pro- grams. However, when new constraints are added, it is difficult to change

the programs to enforce them. The problem is compounded when constraints involve

several data items from different files.

Atomicity problems. A computer system, like any other device, is subject to failure. In many

applications, it is crucial that, if a failure occurs, the data be restored to the consistent state

that existed prior to the failure. Consider a program to transfer $500 from the account

balance of department A to the account balance of department B. If a system failure occurs

during the execution of the program, it is possible that the $500 was removed from the

balance of department A but was not credited to the balance of department B, resulting in an

inconsistent database state. Clearly, it is essential to database consistency that either both

the credit and debit occur, or that neither occur. That is, the funds transfer must be atomic

6|D B M S

SRET TIRUPATI

— it must happen in its entirety or not at all. It is difficult to ensure atomicity in a

conventional file-processing system.

Concurrent-access anomalies. For the sake of overall performance of the sys- tem and

faster response, many systems allow multiple users to update the data simultaneously.

Indeed, today, the largest Internet retailers may have millions of accesses per day to their

data by shoppers. In such an environment, interaction of concurrent updates is possible and

may result in inconsistent data. Consider department A, with an account balance of

$10,000. If two department clerks debit the account balance (by say $500 and $100, re-

spectively) of department A at almost exactly the same time, the result of the concurrent

executions may leave the budget in an incorrect (or inconsistent) state. Suppose that the

programs executing on behalf of each withdrawal read the old balance, reduce that value by

the amount being withdrawn, and write the result back. If the two programs run

concurrently, they may both read the value $10,000, and write back

$9500 and $9900, respectively. Depending on which one writes the value last, the account

balance of department A may contain either $9500or$9900, rather than the correct value

of $9400. To guard against this possibility, the system must maintain some form of

supervision. But supervision is difficult to provide because data may be accessed by many

different application programs that have not been coordinated previously.

As another example, suppose a registration program maintains a count of students

registered for a course, in order to enforce limits on the number of students registered. When

a student registers, the program reads the current count for the courses, verifies that the

count is not already at the limit, adds one to the count, and stores the count back in the

database. Suppose two students register concurrently, with the count at (say) 39. The two

program executions may both read the value 39, and both would then write back 40, leading

to an incorrect increase of only 1, even though two

studentssuccessfullyregisteredforthecourseandthecountshouldbe41. Furthermore, suppose

the course registration limit was 40; in the above case both students would be able to

register, leading to a violation of the limit of 40 students.

Security problems. Not every user of the database system should be able to access all the

data. For example, in a university, payroll personnel need to see only that part of the

database that has financial information. They do not need access to information about

academic records. But, since application programs are added to the file-processing system

in an ad hoc manner, enforcing such security constraints is difficult. These difficulties, among

others, prompted the development of database systems. In what follows, we shall see the

concepts and algorithms that enable database systems to solve the problems with file-

processing systems. In most of this book, we use a university organization as a running

example of a typical data-processing application.

7|D B M S

SRET TIRUPATI

1.3. View of Data

A database system is a collection of interrelated data and a set of programs that allow users

to access and modify these data. A major purpose of a database system is to provide users

with an abstract view of the data. That is, the system hides certain details of how the data

are stored and maintained.

Data Abstraction

For the system to be usable, it must retrieve data efficiently. The need for efficiency has led

designers to use complex data structures to represent data in the database. Since many

database-system users are not computer trained, developers hide the complexity from users

through several levels of abstraction, to simplify users’ interactions with the system:

Physical level. The lowest level of abstraction describes how the data are actually stored.

The physical level describes complex low-level data structures in detail.

Logical level. The next-higher level of abstraction describes what data are stored in the

database, and what relationships exist among those data. The logical level thus describes

the entire database in terms of a small number of relatively simple structures. Although

implementation of the simple structures at the logical level may involve complex physical-

level structures, the user of the logical level does not need to be aware of this complexity.

This is referred to as physical data independence. Database administrators, who must

decide what information to keep in the database, use the logical level of abstraction.

View level. The highest level of abstraction describes only part of the entire database. Even

though the logical level uses simpler structures, complexity remains because of the variety of

information stored in a large database. Many users of the database system do not need all

this information; instead, they need to access only a part of the database. The view level of

abstraction exists to simplify their interaction with the system. The system may provide many

views for the same database.

Figure 1.1 shows the relationship among the three levels of abstraction .An analogy to the

concept of data types in programming languages may clarify the distinction among levels of

abstraction. Many high-level programming.

8|D B M S

SRET TIRUPATI

Languages support the notion of a structured type. For example, we may describe a record

as follows:1

type instructor = record

ID :char (5); name : char (20);

dept name :char (20); salary : numeric (8,2);

end;

This code defines a new record type called instructor with four fields. Each field has a name

and a type associated with it. A university organization may have several such record types,

including

department, with fields dept name, building, and budget

course,withfieldscourseid,title,deptname,andcredits

student,withfieldsID,name,deptname,andtotcred

At the physical level, an instructor, department, or student record can be de- scribed as a

block of consecutive storage locations. The compiler hides this level of detail from

programmers. Similarly, the database system hides many of the lowest-level storage details

from database programmers. Database administrators, on the other hand, may be aware of

certain details of the physical organization of the data.

At the logical level, each such record is described by a type definition, as in the previous

code segment, and the interrelationship of these record types is defined as well.

Programmers using a programming language work at this level of abstraction. Similarly,

database administrators usually work at this level of abstraction.

Finally, at the view level, computer users see a set of application programs that hide details

of the data types. At the view level, several views of the database are defined, and a

database user sees some or all of these views. In addition to hiding details of the logical

level of the database, the views also provide a security mechanism to prevent users from

accessing certain parts of the database. For example, clerks in the university registrar office

can see only that part of the database that has information about students; they cannot

access information about salaries of instructors.

Instances and Schemas

Databases change over time as information is inserted and deleted. The collection of

information stored in the database at a particular moment is called an instance of the

database. The overall design of the database is called the database schema. Schemas are

changed infrequently, if at all.

9|D B M S

SRET TIRUPATI

The concept of database schemas and instances can be understood by analogy to a

program written in a programming language. A database schema corresponds to the

variable declarations (along with associated type definitions) in a program. Each variable has

a particular value at a given instant. The values of the variables in a program at a point in

time correspond to an instance of a database schema.

Database systems have several schemas, partitioned according to the levels of abstraction.

The physical schema describes the database design at the physical level, while the logical

schema describes the database design at the logical level. A database may also have

several schemas at the view level, sometimes called subschema as, that describe different

views of the database.

Of these, the logical schema is by far the most important, in terms of its effect on application

programs, since programmers construct applications by using the logical schema. The

physical schema is hidden beneath the logical schema, and can usually be changed easily

without affecting application programs.

Application programs are said to exhibit physical data independence if they do not depend

on the physical schema, and thus need not be rewritten if the physical schema changes.

Data Models

Underlying the structure of a database is the data model: a collection of conceptual tools for

describing data, data relationships, data semantics, and consistency constraints. A data

model provides a way to describe the design of a database at the physical, logical, and view

levels. There are a number of different data models that we shall cover in the text.

The data models can be classified into four different categories:

Relational Model. The relational model uses a collection of tables to represent both data

and the relationships among those data. Each table has multiple columns, and each column

has a unique name. Tables are also known as relations. The relational model is an example

of a record-based model. Record-based models are so named because the database is

structured in fixed-format records of several types. Each table contains records of a par-

ticular type. Each record type defines a fixed number of fields, or attributes. The columns of

the table correspond to the attributes of the record type. The relational data model is the

most widely used data model, and a vast majority of current database systems are based on

the relational model.

Entity-Relationship Model. The entity-relationship(E-R) data model uses a collection of basic

objects, called entities ,and relationships among these objects An entity is a “thing” or

“object” in the real world that is distinguishable from other objects.

Object-Based Data Model. Object-oriented programming(especially in Java, C++, or C#) has

become the dominant software- development methodology. This led to the development of

10|D B M S

SRET TIRUPATI

an object-oriented data model that can be seen as extending the E-R model with notions of

encapsulation, methods (functions), and object identity. The object-relational data model

combines features of the object-oriented data model and relational data model.

Semi structured Data Model.

The semi structured data model permits the specification of data where individual data items

of the same type may have different sets of attributes. This is in contrast to the data models

mentioned earlier, where every data item particular type must have the same set of attributes

The Extensible Markup Language (XML)is widely used to represent semi structured data.

Historically, the network data model and the hierarchical data model pre- ceded the relational

data model. These models were tied closely to the underlying implementation, and

complicated the task of modeling data. As a result they are used little now, except in old

database code that is still in service in some places.

1.4. Database Languages

A database system provides a data-definition language to specify the database schema and

a data-manipulation language to express database queries and up-dates. In practice, the

data-definition and data- manipulation languages are not two separate languages; instead

they simply form parts of a single database language, such as the widely used SQL

language.

Data-Manipulation Language

A data-manipulation language (DML) is a language that enables users to access or

manipulate data as organized by the appropriate data model. The types of access are:

Retrieval of information stored in the database

Insertion of new information into the database

Deletion of information from the database

Modification of information stored in the database There is basically two types:

Procedural DMLs require a user to specify what data are needed and how to get those data.

Declarative DMLs (also referred to as nonprocedural DMLs) require a user to specify what

data are needed without specifying how to get those data.

Declarative DMLs are usually easier to learn and use than are procedural DMLs. However,

since a user does not have to specify how to get the data, the database system has to figure

out an efficient means of accessing data.

A query is a statement requesting the retrieval of information. The portion of a DML that

involves information retrieval is called a query language. Although technically incorrect, it is

common practice to use the terms query language and data-manipulation languages The

levels of abstraction that apply not only to defining or structuring data, but also to

manipulating data. At the physical level, we must define algorithms that allow efficient access

11|D B M S

SRET TIRUPATI

to data. At higher levels of abstraction, we emphasize ease of use. The goal is to allow

humans to interact efficiently with the system.

Data-Definition Language

We specify a database schema by a set of definitions expressed by a special language

called a data-definition language (DDL). The DDL is also used to

specifyadditionalpropertiesofthedata.Wespecifythestoragestructureand

access methods used by the database system by a set of statements in a special type of

DDL called a data storage and definition language. These statements define the

implementation details of the database schemas, which are usually hidden from theusers.

Thedatavaluesstoredinthedatabasemustsatisfycertainconsistencycon- straints. For example,

suppose the university requires that the account balance of a department must never be

negative. The DDL provides facilities to specify such constraints. The database system

checks these constraints every time the database is updated. In general, a constraint can be

an arbitrary predicate per- tainingto the database. However, arbitrary predicates may be

costly to test. Thus, database systems implement integrity constraints that can be tested with

minimaloverhead:

Domain Constraints. A domain of possible values must be associated with every attribute

(for example, integer types, character types, date/time types). Declaring an attribute to be of

a particular domain acts as a constraint on the values that it can take. Domain constraints

are the most elementary form of integrity constraint. They are tested easily by

thesystemwheneveranewdataitemisenteredintothedatabase.

ReferentialIntegrity.Therearecaseswherewewishtoensurethatavalue that appears in one

relation for a given set of attributes also appears in a cer- tain set of attributes in another

relation (referential integrity). For example, the department listed for each course must be

one that actually exists. More precisely, the dept name value in a course record must appear

in the dept name attribute of some record of the department relation. Database modifications

can cause violations of referential integrity. When a referential-integrity con- straintis

violated, the normal procedure is toreject the action that caused theviolation.

Assertions. An assertion is any condition that the database must alwayssatisfy. Domain

constraints and referential-integrity constraints are special forms of assertions. However,

there are many constraints that we cannot

expressbyusingonlythesespecialforms.Forexample,“Everydepartment

musthaveatleastfivecoursesofferedeverysemester”mustbeexpressed as an assertion. When

an assertion is created, the system tests it for validity. If the assertion is valid, then any future

modificationto thedatabaseisallowedonlyifitdoesnotcausethatassertiontobeviolated.

Authorization. We may want to differentiate among the users as far as the type of access

they are permitted on various data values in the database. These differentiations are

12|D B M S

SRET TIRUPATI

expressed in terms of authorization, the most common being: read authorization, which

allows reading, but not modification, of data; insert authorization, which allows insertion of

new data, but not mod- ificationof existing data; update authorization, which allows

modification, but not deletion, of data; and delete authorization, which allows deletion of

data. We may assign the user all, none, or a

combinationofthesetypesofauthorization.TheDDL,justlikeanyotherdb languages.

The problems in file processing system are programming language, gets as input some

instructions (statements) and generates some output. The output of the DDL is placed in

the data dictionary, which contains metadata — that is, data about data. The data

dictionary is considered to be a special type of table that can only be accessed and

updated by the database system itself (not a regular user). The database system consults

the data dictionary before reading ormodifying actual data.

Relational Databases

A relational database is based on the relational model and uses a collection of tables to

represent both data and the relationships among those data. It also in- cludesa DML

andDDL.

Tables

Each table has multiple columns and each column has a unique name. Figure 1.2 presents a

sample relational database comprising two tables: one shows details of university

instructors and the other shows details of the various universitydepartments.

The first table, the instructor table, shows, for example, that an instructor named Einstein

with ID 22222 is a member of the Physics department and has an annual salary of $95,000.

The second table, department, shows, for example, that the Biology department is located

in the Watson building and has a budgetof$90,000. Of course, a real-world university would

have many more departments and instructors. We use small tables in the text toillustrate

concepts. A larger example for the same schema is available online.

The relational model is an example of a record-based model. Record-

basedmodelsaresonamedbecausethedatabaseisstructured in fixed-format records of several

types. Each table contains records of aparticular type. Each record type defines a fixed

number of fields, or attributes. The columns of the table correspond to the attributes of the

recordtype.

It is not hard to see how tables may be stored in files. For instance, a special character

(such as a comma) may be used to delimit the different attributes of a record, and another

13|D B M S

SRET TIRUPATI

special character (such as a new-line character) may be used to delimit records. The

relational model hides such low-level implementation details from database developers

andusers.

We also note that it is possible to create schemas in the relational model that have problems

such as unnecessarily duplicated information. For example, sup- pose we store

thedepartment budget as an attribute ofthe instructor record. Then, whenever the value

ofa particular budget (saythat one for the Physics depart- ment) changes,thatchange must

to be reflected in the records of all instructors associated with the Physics department.

ID name dept name salary

22222 Einstein Physics 95000

12121 Wu Finance 90000

32343 El Said History 60000

45565 Katz Comp. Sci. 75000

98345 Kim Elec. Eng. 80000

76766 Crick Biology 72000

10101 Srinivasan Comp. Sci. 65000

58583 Califieri History 62000

83821 Brandt Comp. Sci. 92000

15151 Mozart Music 40000

33456 Gold Physics 87000

76543 Singh Finance 80000

The instructor table

dept name building budget

Comp. Sci. Taylor 100000

Biology Watson 90000

Elec. Eng. Taylor 85000

Music Packard 80000

Finance Painter 120000

History Painter 50000

Physics Watson 70000

The department table

Figure 1.2 A sample relational database.

Data-ManipulationLanguage

The SQL query language is nonprocedural. A query takes as input several tables (possibly

only one) and always returns a single table. Here is an example of an

SQLquerythatfindsthenamesofallinstructorsintheHistorydepartment:

14|D B M S

SRET TIRUPATI

e

select instructor.name from instructor

where instructor.dept name = ’History’;

The query specifies that those rows from the table instructor where the dept name is History

must be retrieved, and the name attribute of these rows must bedisplayed. More specifically,

the result of executing thisquery is a table with a single column labeled name, and a set of

rows, each of which contains

thenameofaninstructorwhosedeptname,isHistory.Ifthequeryisrunonthe table in Figure 1.2,

the result will consist of two rows, one with the name

ElSaidandtheotherwiththenameCalifieri.

Queries may involve information from more than one table. For instance, thefollowing query

finds the instructor ID and department name of all

instructorsassociatedwithadepartmentwithbudgetofgreaterthan$95,000.

select instructor.ID, department.dept name from instructor, department

where instructor.deptnam= department.dept name and department.budget>95000;

If the above query were run on the tables in Figure 1.2, the system would find that there are

two departments with budget of greater than $95,000 — ComputerScience and Finance;

there are five instructors in these departments. Thus, the result will consist of a table with

two columns (ID, dept name) and five rows: (12121, Finance), (45565, Computer Science),

(10101, Computer Science),(83821,ComputerScience),and(76543,Finance).

Data-DefinitionLanguage

SQL provides a rich DDL that allows one to define tables, integrity constraints, assertions,

etc.

For instance, the following SQL DDL statement defines the department table:

create table department (deptname char (20), buildingchar

(15),

budget numeric(12,2));

Execution of the above DDL statement creates the department table with three columns:

dept name, building, and budget, each of which has a specific data type associated with it. In

addition, the DDL statement updates the data dictionary, which contains metadata .The

schema of a table is an example of metadata.

Database Access from ApplicationPrograms

15|D B M S

SRET TIRUPATI

SQL is not as powerful as a universal Turing machine; that is, there are some computations

that are possible using a general-purpose programming language but are not possible

using SQL. SQL also does not support actions such as input from users, output to displays,

or communication over the network. Such computations and actions must be written in a

host language, such as C, C++, or Java, with embedded SQL queries that access the data

in the database. Application programs are programs that are used to interact with the

database in this fashion. Examples in a university system are programs that allow

students to register for courses, generate class rosters, calculate student GPA, generate

payroll checks ,etc.

Relational Databases

A relational database is based on the relational model and uses a collection of tables to

represent both data and the relationships among those data. It also includes a DML and

DDL.

Tables

Each table has multiple columns and each column has a unique name. Figure 1.2 presents a

sample relational database comprising two tables: one shows details of university

instructors and the other shows details of the various university departments.

The first table, the instructor table, shows, for example, that an instructor named Einstein

with ID 22222 is a member of the Physics department and has an annual salary of $95,000.

The second table, department, shows, for example, that the Biology department is located

in the Watson building and has a budget of

$90,000. Of course, a real-world university would have many more departments and

instructors. We use small tables in the text to illustrate concepts. A larger example for the

same schema is available online.

The relational model is an example of a record-based model. Record-based models are so

named because the database is structured in fixed-format records of several types. Each

table contains records of a particular type. Each record type defines a fixed number of fields,

or attributes. The columns of the table correspond to the attributes of the record type.

It is not hard to see how tables may be stored in files. For instance, a special character

(such as a comma) may be used to delimit the different attributes of a record, and another

special character (such as a new-line character) may be used to delimit records. The

relational model hides such low-level implementation details from database developers and

users.

16|D B M S

SRET TIRUPATI

We also note that it is possible to create schemas in the relational model that have problems

such as unnecessarily duplicated information. For example, sup- pose we store the

department budget as an attribute of the instructor record. Then, whenever the value of

a particular budget (say that one for the Physics department) changes ,that change must to

be reflected in the records of all instructors associated with the Physics department.

ID name dept name salary

22222 Einstein Physics 95000

12121 Wu Finance 90000

32343 El Said History 60000

45565 Katz Comp. Sci. 75000

98345 Kim Elec. Eng. 80000

76766 Crick Biology 72000

10101 Srinivasan Comp. Sci. 65000

58583 Califieri History 62000

83821 Brandt Comp. Sci. 92000

15151 Mozart Music 40000

33456 Gold Physics 87000

76543 Singh Finance 80000

The instructor table

dept name building budget

Comp. Sci. Taylor 100000

Biology Watson 90000

Elec. Eng. Taylor 85000

Music Packard 80000

Finance Painter 120000

History Painter 50000

Physics Watson 70000

The department table

Data-ManipulationLanguage

The SQL query language is nonprocedural. A query takes as input several tables (possibly

only one) and always returns a single table. Here is an example of an

SQLquerythatfindsthenamesofallinstructorsintheHistorydepartment:

select instructor.name from instructor

17|D B M S

SRET TIRUPATI

e

where instructor.dept name = ’History’;

The query specifies that those rows from the table instructor where the dept name is History

must be retrieved, and the name attribute of these rows must be displayed. More

specifically, the result of executing thisquery is a table with a single column labeled name,

and a set of rows, each of which contains

thenameofaninstructorwhosedeptname,isHistory.Ifthequeryisrunon the table in Figure 1.2,

the result will consist of two rows, one with the name

ElSaidandtheotherwiththenameCalifieri.

Queries may involve information from more than one table. For instance, thefollowing query

finds the instructor ID and department name of all

instructorsassociatedwithadepartmentwithbudgetofgreaterthan$95,000.

select instructor.ID, department.dept name from instructor, department

where instructor.deptnam= department.dept name and department.budget>95000;

If the above query were run on the tables in Figure 1.2, the system would find that there are

two departments with budget of greater than $95,000 — ComputerScience and Finance;

there are five instructors in these departments. Thus, the result will consist of a table with

two columns (ID, dept name) and five rows: (12121, Finance), (45565, Computer Science),

(10101, Computer Science),(83821,ComputerScience),and(76543,Finance).

SQL provides a rich DDL that allows one to define tables, integrity constraints, assertions,

etc.

For instance, the following SQL DDL statement defines the department table:

create table department (deptname char (20), buildingchar

(15),

budget numeric(12,2));

Execution of the above DDL statement creates the department table with three columns:

dept name, building, and budget, each of which has a specific data type associated with it. In

addition, the DDL statement updates the data dictionary, which contains metadata .The

schema of a table is an example of metadata.

Database Access from Application Programs

SQL is not as powerful as a universal Turing machine; that is, there are some computations

that are possible using a general-purpose programming language but are not possible

18|D B M S

SRET TIRUPATI

using SQL. SQL also does not support actions such as input from users, output to displays,

or communication over the network. Such com- putationsand actions must be written in a

host language, such as C, C++, or Java, with embedded SQL queries thataccess the data

in the database. Application programs areprograms that are used to interact with the

database in this fashion.Examplesin a university system are programs that allow

students to register for courses, generate class rosters, calculate student GPA, generate

payroll checks,etc.

To access the database, DML statements need to be executed from thehost language.

There are two ways to dothis:

By providing an application program interface (set of procedures) that can be used to send

DML and DDL statements to the database and retrieve theresults.

The Open Database Connectivity (ODBC) standard for usewith the C language is a

commonly used application program interface standard. The Java Database Connectivity

(JDBC) standard provides corresponding features to the Javalanguage.

By extending the host language syntax toembed DML calls within the host language

program. Usually, a special character prefaces DML calls, and a preprocessor, called the

DML precompiler, converts the DML statements to normal procedure calls in the

hostlanguage.

1.5 .Database Design

Database systems are designed to manage large bodies of information. These large bodies

of information do not exist in isolation. They are partof the operation of some enterprise

whose end product may be information from the database or may be some device or service

for which the database plays only a supportingrole.

Databasedesignmainlyinvolvesthedesignofthedatabaseschema. The design of a complete

database application environment that meets the needs of the enterprise being modeled

requires attention to a broader set of issues. In this text, we focus initially on the writing of

databasequeriesandthedesignofdatabaseschema.

DesignProcess

A high-level data model provides the database designer with a conceptual frame- work in

which to specify the data requirements of the database users, and how the database will be

structured to fulfill these requirements. The initial phase of database design, then, is to

characterize fully the data needs of the prospective database users.The database designer

needs to interact extensively with domain experts and users to carry out this task. The

outcome of this phase is a specification of userrequirements.

19|D B M S

SRET TIRUPATI

Next, the designer chooses a data model, and by applying theconcepts of the chosen data

model, translates these requirements into a conceptual schema of the database. The

schema developed at this conceptual-design phase provides a detailed overview of the

enterprise. The designer reviews theschema toconfirm that all data requirements areindeed

satisfied and are not in conflict with oneanother. The designercanalso examine the design to

remove anyredundantfeatures. The focus at this point is on describing the data and their

relationships, rather than on specifying physical storage details.

In terms of the relational model, the conceptual-design process involves de- cisions on what

attributes we want to capture in the database and how to group

theseattributestoformthevarioustables.The“what”partisbasically

abusinessdecision,andweshallnotdiscussitfurtherinthistext.The“how” part is mainly a

computer-science problem. There are principally two ways to tackle the problem. The first

one is to use the entity-relationship model (Section 1.6.3); the other is to employ a set of

algorithms(collectively known as normalization) that takes as input the set of all attributes

and generates a set of tables (Section1.6.4).

A fully developed conceptual schema indicates the functional requirements

oftheenterprise.Inaspecificationoffunctionalrequirements,usersdescribe the kinds of

operations (or transactions) that will be performed on the data. Example operations include

modifying or updating data, searching for and retrieving specific data, and deleting data. At

this stage of conceptual design, the designer can review the schema to ensure it meets

functionalrequirements.

The process of moving from an abstract data model to the implementation of the database

proceeds in two final design phases. In the logical-design phase, the designer maps the

high-level conceptual schema onto the implementation data model of the database system

that will be used. The designer uses the resulting system-specific database schema in the

subsequent physical-design phase, in which the physical features of the database are

specified.

Database Design for a University Organization

To illustrate the design process, let us examine how a database for a university could be

designed. The initial specification of user requirements may be based on interviews with the

database users, and on the designer’s own analysis of the organization. The description that

arises from this design phase serves as the basis for specifying the conceptual structure of

the database. Here are the major characteristics of theuniversity.

The university is organized into departments. Each department is identifiedby a unique name

(dept name), is located in a particular building, and has abudget.

20|D B M S

SRET TIRUPATI

Each department has a list of courses it offers. Each course has associated with it a course

id, title, dept name, and credits, and may also have have associatedprerequisites.

Instructors are identified by their unique ID. Each instructor has name, asso-

ciateddepartment (dept name), andsalary.

Students are identified by their unique ID. Each student has a name, an associ-

atedmajordepartment(deptname),andtotcred(totalcredithours

the student earned thus far).The university maintains a list of classrooms, specifying the

name of the

building, room number, and room capacity.

The university maintains a list of all classes (sections) taught. Each section is identified by a

course id, sec id, year, and semester, and has associated with it a semester, year, building,

room number, and times lot id(the times lot when the classmeets).

The department has a list of teaching assignments specifying, for each in- structor, the

sections the instructor is teaching.

The university has a list of all student course registrations, specifying ,for each student, the

courses and the associated sections the student has taken(registered for).

A real university database would be much more complex than the preceding design.

However we use this simplified model to help you understand conceptual ideas without

getting lost in details of a complex design.

The Entity-Relationship Model

The entity-relationship (E-R) data model uses a collection of basic objects, called entities,

and relationships among these objects. An entity is a “thing” or“ object ”in the real world that

is distinguishable from other objects. For example, each person is an entity, and bank

accounts can be considered as entities.

Entities are described in a database by a set of attributes. For example, the attributes dept

name, building, and budget may describe one particular department in a university, and they

form attributes of the department entity set. Similarly, attributes ID, name, and salary may

describe an instructorentity.2

The extra attribute ID is used to identify an instructor uniquely(since it may be possible to

have two instructors with the same name and the same salary). A unique instructor identifier

must be assigned to each instructor. In the United States, many organizations use the

social-security number of a person (a unique number the U.S. government assigns to every

person in the United States) as a unique identifier.

21|D B M S

SRET TIRUPATI

A relationship is an association among several entities. For example, a member relationship

associates an instructor with her department. The set of all entities of the same type and the

set of all relationships of the same type are termed an entity set and relationship set,

respectively.

The overall logical structure (schema) of a database can be expressed graph- ically by an

entity-relationship (E-R) diagram. There are several ways in which to draw these diagrams.

One of the most

popular is to use the Unified Modeling Language (UML). In the notation we use, which is

based on UML, an E-R diagram is represented as follows:

Entity sets are represented by a rectangular box with the entity set name in the header and

the attributes listed below it.

Relationship sets are represented by a diamond connecting a pair of related entity sets. The

name of the relationship is placed inside the diamond.

As an illustration, consider part of a university database consisting of instructors and the

departments with which they are associated. Figure 1.3 shows the corresponding E-R

diagram. The E-R diagram indicates that there are two entity sets, instructor and department,

with attributes as outlined earlier. The diagram also shows a relationship member between

instructor and department.

In addition to entities and relationships, the E-R model represents certain constraints to

which the contents of a database must conform. One important constraint is mapping

cardinalities, which express the number of entities to which another entity can be associated

via a relationship set. For example, if each instructor must be associated with only a single

department, the E-R model can express that constraint.

Normalization

Another method for designing a relational database is to use a process commonly known as

normalization. The goal is to generate a set of relation schemas that allows us to store

information without unnecessary redundancy, yet also allows us to retrieve information

easily. The approach is to design schemas that are in an appropriate normal form. To

determine whether a relation schema is in one of the desirable normal forms, we need

additional information about the real-world enterprise that we are modeling with the

database.

22|D B M S

SRET TIRUPATI

To understand the need for normalization, let us look at what can go wrong in a bad

database design. Among the undesirable properties that a bad design may haveare:

Repetition ofinformation

Inability to represent certaininformation

ID Name salary dept name building

22222 Einstein 95000 Physics Watson

12121 Wu 90000 Finance Painter

32343 El Said 60000 History Painter

45565 Katz 75000 Comp. Sci. Taylor

98345 Kim 80000 Elec. Eng. Taylor

76766 Crick 72000 Biology Watson

10101 Srinivasan 65000 Comp. Sci. Taylor

58583 Califieri 62000 History Painter

83821 Brandt 92000 Comp. Sci. Taylor

15151 Mozart 40000 Music Packard

33456 Gold 87000 Physics Watson

76543 Singh 80000 Finance Painter

Figure1.4 The facultytable.

We shall discuss these problems with the help of a modified database design forour

universityexample.

Suppose that instead of having the two separate tables instructor and depart- ment, we have

a single table, faculty, that combines the information fromthe two tables (as shown in Figure

1.4). Notice that thereare two rows in faculty that contain repeated information about the

History department, specifically, that department’s building and budget. The repetitionof

information in our alterna- tivedesign is undesirable. Repeating information wastes space.

Furthermore, it complicates updating the database. Suppose that we wish to change the

budget amount of the History department from $50,000 to $46,800. This change must be

reflected in the two rows; contrastthis with the original design, where this requires an update

to only a single row. Thus, updates are more costly under the alternative design than under

the original design. When we perform the update in the alternative database, we must

ensure that every tuple pertaining to the His- tory department is updated, or elseour

database will show two different budget values for the History department.

Now,letusshiftourattentiontotheissueof“inabilitytorepresentcertain

information.”Supposewearecreatinganewdepartmentintheuniversity.In the alternative design

23|D B M S

SRET TIRUPATI

above, we cannot represent directly the information concerning a department (dept name,

building, budget) unless that department has at least one instructor at the university. This is

because rows in the faculty table require values for ID, name, and salary. This means that

wecannotrecord information about the newly created department until the first instructor

ishiredforthenewdepartment.

One solution to this problem is to introduce null values. The null value indicates that the

value does not exist (or is not known). An unknown value maybe either missing (the value

does exist, but we do not have that information) or not known (we do not know whether or

not the value actually exists). Asweshall see later, null values are difficult tohandle, and it is

preferable not to resort to them. If we are not willing to deal with null values, then we can

create a particular item of department information only when the department has at least one

instructor associated with the department. Furthermore, we would have to delete this

information when the last instructor in the department departs. Clearly, thissituation is

undesirable, since, under our original database design, the department information would be

available regardless of whether or not there is an instructor associated with the department,

and without resorting to nullvalues.

An extensive theory of normalization has been developed that helps formally define what

database designs are undesirable, and how to obtain desirable de- signs.

1.5. Data Storage and Querying

A database system is partitioned into modules that deal with each of the re- sponsibilitiesof

the overall system. The functional components ofa database system can be broadly divided

into the storage manager and the query processorcomponents.

The storage manager is important because databases typically require a large amount of

storage space. Corporate databases range in size from hundreds of gigabytes to, for the

largest databases, terabytes of data. A gigabyte is approxi- mately 1000 megabytes (actually

1024) (1 billion bytes), and a terabyte is 1 million megabytes(1 trillion bytes). Since the

main memory of computers cannot store this much information, the information is stored on

disks. Data are moved be- tween disk storage and main memory as needed. Since the

movement of data to and from disk is slow relative to the speed of the central processing

unit, it is imperative that the database system structure the data so as to minimize the need

to move data between disk and main memory.

The query processor is important because it helps the database system to simplify and

facilitate access to data. The query processor allows database users to obtain good

performance while being able to work at the view level and not be burdened with

understanding the physical-level details of theimplementation of the system. It is the job

ofthe database system to translate updates and queries written inanonprocedural language,

at the logical level, into an efficient sequence of operations at the physicallevel.

24|D B M S

SRET TIRUPATI

Storage Manager

The storage manager is the component of a database system that provides the interface

between the low-level data stored in the database and the application programs and queries

submitted to the system. The storage manager is respon- sible for the interaction with the file

manager. The raw data are stored on the disk using the file system provided by the

operating system. The storage man- ager translates the various DML statements into low-

level file-system commands.

Thus, the storage manager is responsible for storing, retrieving, and updating data in the

database.

The storage manager components include:

Authorization and integrity manager, which tests for the satisfaction of

integrityconstraintsandcheckstheauthorityofuserstoaccessdata.

Transactionmanager,whichensuresthatthedatabaseremainsinaconsis- tent (correct) state

despite system failures, and that concurrent transaction executions proceed

withoutconflicting.

File manager, which managesthe allocation of space on disk storage and

thedatastructuresusedtorepresentinformationstoredondisk.

Buffer manager, which is responsible for fetchingdata from disk storage into main

memory, and deciding what data to cache in main memory. The buffermanager is a critical

part of the database system, since it enables the database to handle data sizes that are

much larger than the size of mainmemory.

The storage manager implements several data structures as part of the phys-

icalsystemimplementation:

Datafiles,whichstorethedatabaseitself.

Data dictionary, which stores metadata about the structure of thedatabase, in particular the

schema of thedatabase.

Indices, which can provide fast access to data items. Like the index in thistextbook, a

database index provides pointers to those data items that hold aparticular value. For

example, we could use an index to find the instructor record with a particular ID, or all

instructor records with a particular name. Hashing is an alternative to indexing that isfaster

in some but not allcases.

The Query Processor

25|D B M S

SRET TIRUPATI

The query processor components include:

DDL interpreter,whichinterpretsDDL statementsandrecordsthedefinitionsin the

datadictionary.

DML compiler, which translates DML statements in a query language into an evaluation plan

consisting of low-level instructions that the query evaluation engineunderstands.

A query can usually be translated into any of a number of alternative evaluation plans that all

give the same result. The DML compiler also performs query optimization; that is, it picks the

lowest cost evaluation plan from among the alternatives.

Query evaluation engine, which executes low-level instructions generated by the

DMLcompiler.

1.6. TransactionManagement

Often, several operations on the database form a single logical unit of work. An example is a

funds transfer, as in Section 1.2, in which one department account (say A) is debited and

another department account (say B) is credited. Clearly, it is essential that either both the

credit and debit occur, or that neither occur. That is, the funds transfer must happen in its

entirety or not at all. This all-or-none requirementis called atomicity. In addition, it is

essential that the execution of the funds transfer preserve the consistency of the database.

That is, the value of the sum of the balances of A and B must be preserved. This correctness

requirement is called consistency. Finally, after the successful execution of a funds transfer,

the new values of the balances of accounts A and B must persist, despite the possibility of

system failure. This persistence requirement is calleddurability.

A transaction is a collection of operations that performs a single logical function in a

database application. Each transaction is a unit of both atomicity and consistency. Thus, we

require that transactions do not violate any database- consistency constraints. That is, if the

database was consistent when a transaction started, the database must be consistent when

the transaction successfully ter- minates. However, during the execution of a transaction, it

may be necessary temporarily to allow inconsistency, since either the debit of A or the credit

ofB must be done before the other. This temporary inconsistency, although necessary, may

lead to difficulty ifa failure occurs.

It is the programmer’s responsibility to define properly the various transac- tions, so that

each preserves the consistency of the database. For example, the transaction to transfer

funds from the account ofdepartment A to the account of department B could be defined to

be composed of two separate programs: one that debits account A, and another that credits

account B. The execution of these two programs one after the other will indeed preserve

26|D B M S

SRET TIRUPATI

consistency. However, each program by itself does not transform the database from a

consistent state to a new consistent state. Thus, those programs are not transactions.

Ensuring the atomicity and durability properties is the responsibility

ofthedatabasesystemitself—specifically,oftherecoverymanager.In the absence of failures, all

transactions complete successfully, and atomicity is achieved easily.

However, because of various types of failure, a transactionmay not always com- pleteits

execution successfully. If we are to ensure the atomicity property, afailed transaction must

have no effect on the state of the database. Thus, the database must be restored to the

state in which it was before the transaction in question started executing. The database

system must therefore perform failure recovery, that is, detect system failures and restore

thedatabase to the state that existed prior to the occurrence of thefailure.

Finally, when several transactions update the database concurrently, the con- sistency of

data may no longer be preserved, even though eachindividual transac- tionis correct. It is

the responsibility of the concurrency-control manager to con- trolthe interaction among the

concurrent transactions, to ensure the consistency of the database. The transaction

manager consists of the concurrency-control manager and the recoverymanager.

1.6. DatabaseArchitecture

We are now in a positionto provide a single picture (Figure 1.5) of the various

components of a database system and the connections amongthem.

The architecture of a database system is greatly influenced by the underlying computer

system on which the database system runs. Database systems can be centralized, or client-

server, where oneserver machine executes work on behalf of multiple client machines.

Database systems can also be designed to exploit par- allelcomputer architectures.

Distributed databases span multiple geographically separatedmachines.

Most users of a database system today are not present at the site of the database system,

but connect to it through a network. Wecan

therefore differen- tiatebetween client machines, on which remote database users work, and

server machines, on which the database system runs.Databaseapplications are usually

partitioned into two or three parts, as in Figure 1.6. In a two-tier architecture, the application

resides at the client machine, where it invokes database system functionality at the server

machine through

client

application

network

user

application client

network

user

27|D B M S

SRET TIRUPATI

server

(a)Two-tierarchitecture (b) Three-tier architecture

Figure 1.6 Two-tier and three-tier architectures.

query language statements. Application program interface standards like

ODBC

and JDBC are used for interaction between the client and the server.

In contrast, in a three-tier architecture, the client machine acts as merely a front end and

does not contain any direct database calls. Instead, theclient end communicates withan

application server, usually through a forms interface. The application server in turn

communicates with a database system to access data. The business logic of the application,

which says what actions to carry out under what conditions, is embedded in the application

server, instead ofbeing distributed across multiple clients. Three-tier applications aremore

appropriate for large applications, and for applications that run on theWorld WideWeb.

Data Mining and InformationRetrieval

The term data mining refers loosely to the process ofsemiautomatically analyzing large

databases to find useful patterns. Like knowledge discovery in artificial intelligence (also

called machine learning) or statistical analysis, data mining attempts to discover rules and

patterns from data. However, data mining differs from machine learning and statistics in that

it deals with large volumes of data, storedprimarily

28|D B M S

SRET TIRUPATI

ondisk.Thatis,dataminingdealswith“knowledgediscoveryin databases.”

Some types ofknowledge discovered from a database can be represented by a set of rules.

The following is an example of a rule, statedinformally:

“Youngwomenwithannualincomesgreaterthan

$50,000arethemostlikelypeopletobuysmallsportscars.”Ofcoursesuch rules are not universally

true, but rather have degrees of

“support”and“confidence.”Othertypesofknowledgearerepresented by equations relating

different variables to each other, or by other mechanisms for predicting outcomes when the

values of some variables areknown.

There are a variety of possible typesof patterns that may be useful, and different

techniques are used to find different types of patterns.

29|D B M S

SRET TIRUPATI

Usually there is a manual component to data mining, consisting of preprocess- ingdata to a

form acceptable to the algorithms, and postprocessing of discovered patterns to find novel

ones that could be useful. There may also be more than one type of pattern that can be

discovered from a given database, and manual interaction may be needed to pick useful

types of patterns. For this reason, data mining is really a semiautomatic process in real life.

However, in our description we concentrate on the automatic aspect of mining.

Businesseshavebeguntoexploittheburgeoningdataonlinetomake better decisions about their

activities, such as whatitemstostock and how best to target customers toincrease sales.

Manyoftheir queries are rather complicated, however, and

certaintypesofinformationcannotbeextractedevenbyusingSQL.Severaltechniquesand tools

are available to help with decisionsupport.

Several tools for data analysis allow analysts to view data in different ways. Other analysis

tools precompute summaries of very large amounts of data, in order to give fast

responses to queries. The SQL standard contains additional constructs to support

dataanalysis.

Large companies have diverse sources of data that they need to use for making business

decisions. To execute queries efficiently on such diverse data, companies have built data

warehouses. Data warehouses gather data from multiple sources under a unified schema,

ata single site. Thus, they provide the user a single uniform interfaceto data.

Textual data, too, has grown explosively. Textual data is unstructured, unlike the rigidly

structured data in relational databases. Querying of unstructured textual data is referred to

as information retrieval. Information retrieval systems have much in common with database

systems — in particular, the storage and retrieval of data on secondary storage. However,

the emphasis in the field of information systems is different from that in database systems,

concentrating on issuessuchasqueryingbasedonkeywords;therelevanceofdocuments to the

query; and the analysis, classification, and indexing ofdocuments.

1.7. SpecialtyDatabases

Several application areas for database systems are limited by the restrictions of the

relational data model. As a result, researchers have developed several data models to deal

with these application domains, including object-based data models and semistructureddata

models.

Object-Based Data Models

Object-oriented programming has become the dominant software- development

methodology. This led to the development of an object- oriented data model that can be

seen as extending the E-R model with notions of encapsulation, methods (functions), and

object identity. Inheritance, object identity, andencapsulation (information hiding), with

30|D B M S

SRET TIRUPATI

methods to provide an interface to objects, are among the key concepts of object-oriented

programming that have found applications in data modeling. The object-oriented data model

also supports a rich type system, including structured and collection types. In the 1980s,

severaldatabasesystemsbasedontheobject-orienteddatamodelwere developed.

The major database vendors presently support theobject-relational data model, a data model

that combines features of the object-oriented data model and relational data model. It

extends the traditional relational model with a variety of features such as structured and

collection types, as well as objectorientation.

Semi structured Data Models

Semistructureddata models permit the specification of data where individual data items of

the same type may have different sets of attributes. This is in contrast with the data models

mentioned earlier, where every data item of a particular type must have the same set of

attributes.

The XML language was initially designed as a way of adding markupinfor- mationto text

documents, but has become important because of its applications in data exchange. XML

provides a way to represent data that have nested structure, and furthermore allows a great

deal of flexibility in structuring of data, which is important for certain kinds of

nontraditionaldata.

1.8. Database Users and Administrators

A primary goal of a database system is to retrieve informationfrom

andstorenewinformationintothedatabase.Peoplewhoworkwitha

database can be categorized as database users or database administrators.

Database Users and UserInterfaces

There are four different types of database-system users, differentiated by the way they

expect to interact with the system. Different types of user interfaces have been designed for

the different types of users.

Naıveusers are unsophisticated users who interact with the system by in- vokingone of the

application programs that have been writtenpreviously. For example, a clerk inthe

universitywho needs to add a new instructor to department A invokes a program called new

hire. This program asks the clerk for the name of the new instructor, her new ID, the name of

the department (that is, A), andthe salary.

31|D B M S

SRET TIRUPATI

The typical user interface for na¨ıve users is a forms interface, where the user can fill in

appropriate fields of the form. Na¨ıve users may also simply read reports generated from

thedatabase.

As another example, consider a student, who during class registration period, wishes to

register for a class by using a Web interface. Such a userconnects to a Web application

program that runs at a Web server. The appli- cation first verifies the identity of the user,

and allows her to access a form where she enters the desired information. The form

information is sent back to the Web application at the server, which then determines if there

is room in the class (by retrieving information from the database) and if so adds the

student information to the class roster in thedatabase.

Application programmers are computer professionals who write applicationprograms.

Application programmers canchoose frommany tools to develop user interfaces. Rapid

application development (RAD) tools are tools that en- ablean application programmer to

construct forms and reports with minimal programmingeffort.

Sophisticated users interact with the system without writing programs. In-stead, they form

their requests either using a database query language or by using tools such as data

analysis software. Analysts who submitqueries to explore data in the database fall in

thiscategory.

Specialized users are sophisticated users who write specialized databaseapplications that

do not fit into the traditional data-processing framework. Among these applications are

computer-aided design systems, knowledge- base and expert systems, systems that store

data with complex data types (for example, graphics data and audio data), and environment-

modeling systems.

Database Administrator

One of the main reasons for usingDBMSs is to have central control of both the data and

the programs that access those data. A person whohas such central control over the

system is called a database administrator (DBA). The functions of a DBAinclude:

Schema definition. The DBA creates the original database schema by

executingasetofdatadefinitionstatementsintheDDL.

Storage structureandaccess-method definition.

Schema and physical-organization modification. The DBA carries out changes to the schema

and physical organization to reflect the changing needs of the organization, or to alter the

physical organization to improve performance.

Granting of authorization for data access. By granting different types of authorization, the

database administrator can regulate which parts of the database various users can access.

32|D B M S

SRET TIRUPATI

The authorization information is kept in a special system structure that

thedatabasesystemconsultswheneversomeoneattemptstoaccess the data in thesystem.

Routine maintenance. Examples of the database administrator’s routine maintenance

activitiesare:

Periodically backing up the database, either onto tapes or onto remote servers, to prevent

loss of data in case of disasters such asflooding.

Ensuring that enough free disk space is available for normal operations, and upgrading disk

space asrequired.

Monitoring jobs running on the database and ensuring that performance is not degraded by

very expensive tasks submitted by someusers.

History of Database Systems

Information processing drives the growth of computers, as it has from the earli- estdays of

commercial computers. In fact, automation of data processing tasks predates computers.

Punched cards, invented by Herman Hollerith, were used at the very beginning of the

twentieth century to record U.S. census data, and mechanical systems were used

to process the cards and tabulate results. Punched cards were later widely used as a

means of entering data intocomputers.

Techniques for data storage and processing have evolved over the years:

1950s and early 1960s: Magnetic tapes were developed for data storage. Data processing

tasks such as payroll were automated, with data stored on tapes. Processing of data

consisted of reading data from one or more tapes and writing data to a new tape. Data could

also be input from punched card decks, and output to printers.

Tapes (and card decks) could be read only sequentially, and data sizes weremuch larger

than main memory; thus, data processing programs were forced to process data in a

particular order, by reading and merging data from tapes and card decks.

Late 1960s and 1970s: Widespread use of hard disks in the late1960s changed the scenario

for data processing greatly, since hard disks allowed direct access to data. The position of

data on disk was immaterial, since any location on disk could be accessed in just tens

of milliseconds. Data were thus freedfrom

the tyranny of sequentiality. With disks, network and hierarchical databases could be created

that allowed data structures such as lists and trees to be stored on disk. Programmers could

construct and manipulate these data structures.

A landmark paper by Codd [1970] defined the relational model and nonprocedural ways of

querying data in the relational model, and

relationaldatabaseswereborn.Thesimplicityoftherelationalmodeland the possibility of hiding

33|D B M S

SRET TIRUPATI

si

implementation details completely from the programmer were enticing indeed. Codd later

won the prestigious Association of Computing Machinery Turing Award for hiswork.

1980s: Although academically interesting, the relational model wasnot used in practice

initially, because of its perceived performance disadvantages; rela- tionaldatabases could

not match the performance of existing network and hi- erarchical databases. That changed

with System R, a groundbreaking project at IBM Research that developed techniques for the

construction of an efficient relational database system. Excellent overviews of System R are

provided by Astrahanet al. [1976] and Chamberlin et al. [1981]. The fully functional Sys-

temR prototype led to IBM’s first relational database product, SQL/DS. At the same time,

theIngres system was being developed at the University of California at Berkeley. It led to a

commercial product of the same name. Ini- tialcommercial relational database systems, such

as IBM DB2, Oracle, Ingres, and DEC Rdb, played a major role in advancing techniques

forefficient pro- cessingof declarative queries. By the early 1980s, relationaldatabases

had become competitive with network and hierarchical database systems even in the area of

performance. Relational databases were so easy to use that they eventually replaced

network and hierarchical databases; programmers using such databases were forced to deal

with many low- level implementation de- tails, and had to code their queries in aprocedural

fashion. Most importantly, they had to keep efficiency in mind when designing their

programs, which involved a lot of effort. In contrast, in a relational database, almost all

these low-level tasks are carried out automatically by the database, leaving the programmer

free to work at a logical level. Since attaining dominance in the 1980s, the relational model

has reigned supreme among datamodels.

The 1980s alsosaw muchresearch on parallel and distributed databases, as well as initial

work on object-oriented databases.

Early1990s:TheSQLlanguagewasdesignedprimarilyfordecisionsupportapplications, which are

query-intensive, yet the mainstay of databases in the 1980s was transaction-processing

applications, which are update- intensive. Decision support and querying re-emerged as a

major application area for databases. Tools for analyzing large amounts of data saw large

growths inusage.

Many database vendors introduced parallel database products in this period. Database

vendors also began to add object-relational support to their databases.

1990s: The major event of the 1990s was the explosive growth of the World Wide Web.

Databases were deployed muchmore

extensivelythaneverbefore.D×atabasesystemsnowhadtosupport very high transaction-

procesng rates, as well as veryhigh

reliability and 247 availability (availability 24hours a day, 7 days a week, meaning no

downtime for scheduled maintenance activities). Database systems also had to support Web

interfaces to data.

34|D B M S

SRET TIRUPATI

2000s: The first half of the 2000s saw the emerging of XML and theassociated query

language XQuery as a new database technology. Although XML is widely used for data

exchange, aswell as for storing certain complex data types, relational databases still form the

core of a vast majority of large-scale database applications. In this time period we have also

witnessed the growthin “autonomic-computing/auto-admin” techniquesfor minimizing system

administration effort. This period also saw a significant growth in use of open-source

database systems, particularly PostgreSQL andMySQL.

1.9. Introduction to the Relational Model

The relational model is today the primary data model for commercial data­ processing

applications. It attained its primary position because of its simplicity, which eases the job of

the programmer, compared to earlier data models such as the network model or the

hierarchical model.

Structure of Relational Databases

A relational database consists of a collection of tables, each of which is assigned a unique

name. For example, consider the instructor table of Figure 2.1, which stores information

about instructors. The table has four column headers:

ID,name,deptname,andsalary.Eachrowofthistablerecordsinformationabout an instructor,

consisting of the instructor’s ID, name, dept name, and salary. Similarly, the course table of

Figure 2.2 stores information about courses, consisting of a course id, title, dept name, and

credits, for each course. Note that each instructor is identified by the value of the column ID,

while each course is identified by the value of the column course id. Figure 2.3 shows a third

table, prereq, which stores the prerequisite courses for each course. The table has two

columns, course id and prereq id. Each row consists of a pair of course identifiers

suchthatthesecondcourseisaprerequisiteforthefirstcourse.

Ingeneral,arowinatablerepresentsa relationshipamongasetofvalues.Sincea

tableisacollectionofsuchrelationships,thereisaclosecorrespondencebetweenthe concept of

table and the mathematical concept of relation, from which the relational data model takes its

name. In mathematical terminology, a tuple is simply a sequence (or list) of values. A

relationship between n values is repre­ sented mathematically by an n­tupleof values, i.e., a

tuple with n values, which corresponds to a row in a table.

Figure2.2Thecourserelation.

course id prereq id

35|D B M S

SRET TIRUPATI

BIO­301

BIO­399 CS­190

CS­315 CS­319

CS­347

EE­181

BIO­101

BIO­101 CS­101

CS­101CS­101C

S­101

PHY­101

Thus, in the relational model the term relation is used to refer to a table, while the term tuple

is used to refer to a row. Similarly, the term attribute refers to a column of a table.

Examining Figure 2.1, we can see that the relation instructor has four attributes:

ID, name, dept name, and salary.

Weusethetermrelationinstancetorefertoaspecificinstanceofarelation,i.e.,

containingaspecificsetofrows.TheinstanceofinstructorshowninFigure2.1has12 tuples,

corresponding to 12instructors.

In this chapter, we shall be using a number of different relations to illustrate the various

concepts underlying the relational data model. These relations represent part of a

university. They do not include all the data an actual university database would contain, in

order to simplify ourpresentation.

The order in which tuples appear in a relation is irrelevant, since a relation is a setof tuples.

Thus, whether the tuples of a relation are listed in sorted order, as in

Figure2.1,orareunsorted,asinFigure2.4,doesnotmatter;therelationsin

the two figures are the same, since both contain the same set of tuples. For ease of

exposition, we will mostly show the relations sorted by their first attribute.

For each attribute of a relation, there is a set of permitted values, called the domain of that

attribute. Thus, the domain of the salary attribute of the

instructorrelationisthesetofallpossiblesalaryvalues,whilethedomainof

thenameattributeisthesetofallpossibleinstructornames.

We require that, for all relations r, the domains of all attributes of r beatomic. Units. For

example, suppose the table instructor had an attribute phone number, which can store a set

of phone numbers corresponding to the instructor. Then the domain of phone number would

not be atomic, since an

element of the domain is a set of phone numbers, and it has subparts, namely the individual

phone numbers in theset.

The important issue is not what the domain itself is, but rather how we use domain elements

in our database. Suppose now that the phone number attribute stores a single

phone number. Even then, if we split the value from the phone number attribute into a

country code, an area code and a local number, we would be treating it as a nonatomic

36|D B M S

SRET TIRUPATI

value. If we treat each phone number as a single indivisible unit, then the attribute phone

number would have an atomicdomain.

The null value is a special value that signifies that the value is unknown or does not exist.

For example, suppose as before that we include the attribute phone number in the instructor

relation. It may be that an instructor does not have a phone number at all, or that the

telephone number is unlisted. We would then have to use the null value to signify that the

value is unknown or does not exist. We shall see later that null values cause a number of

difficulties when we access or update the database, and thus

shouldbeeliminatedifatallpossible.Weshallassumenullvaluesareabsent initially, and in Section

3.6 we describe the effect of nulls on different operations.

Database Schema

When we talk about a database, we must differentiate between the database schema, which

is the logical design of the database, and the database

instance,whichisasnapshotofthedatainthedatabaseatagiveninstantin time.

The concept of a relation corresponds to the programming­language no­

tionofavariable,whiletheconceptofarelationschemacorrespondstothe programming­language

notion of typedefinition.

In general, a relation schema consists of a list of attributes and their corre­

spondingdomains.The concept of a relation instance corresponds to the programming­

language notion of a value of a variable. The value of a given variable may change with time;

dept name building budget

Biology

Comp. Sci.

Elec. Eng.

Finance

History

Music

Physics

Watson

Taylor

Taylor

Painter

Painter

Packard

Watson

90000

100000

85000

120000

50000

80000

70000

Figure 2.5 The department relation.

similarly the contents of a relation instance may change with time as the relation is updated.

In contrast, the schema of a relation does not generally change.

Although it is important to know the difference between a relation schema and a relation

instance, we often use the same name, such as instructor, to refer to both the schema and

the instance. Where required, we explicitly refer to the schema or to the instance, for

example “the instructor schema,” or “an instance of the instructor relation.” However, where it

is clear whether we mean the schema or the instance, we simply use the relationname.

Consider the department relation of Figure 2.5. The schema for that relation is

37|D B M S

SRET TIRUPATI

department (dept name, building, budget)

Note that the attribute dept name appears in both the instructor schema and the

department schema. This duplication is not a coincidence. Rather, using common

attributes in relation schemas is one way of relating tuples of distinct relations. For example,

suppose we wish to find the information about all the instructors who work in the Watson

building. We look first at the department relation to find thedept

nameofallthedepartmentshousedinWatson.Then,foreachsuchdepartment,we

look in the instructor relation to find the information about the instructor associated with the

corresponding dept name.

Let us continue with our university database example.

Each course in a university may be offered multiple times, across different semesters, or

even within a semester. We need a relation to describe each individ­

ualoffering,orsection,oftheclass.Theschemais

section (course id, sec id, semester, year, building, room number, time slot id) Figure 2.6

shows a sample instance of the section relation.

We need a relation to describe the association between instructors and the class sections

that they teach. The relation schema to describe this association is

teaches (ID, course id, sec id, semester, year)

course id Semester building room number time slot id

BIO­101

BIO­301 CS­101

CS­101 CS­190

CS­190 CS­315

CS­319 CS­319

CS­347 EE­181

FIN­201 HIS­351

MU­199

PHY­101

Summer

Summer Fall

Spring

SpringSpringSp

ringSpringSprin

g Fall Spring

SpringSpringSp

ring

Fall

Painter

Painter

Packard

Packard Taylor

Taylor Watson

Watson Taylor

TaylorTaylor

Packard

Painter

Packard

Watson

514

514

101

101

3128

3128

120

100

3128

3128

3128

101

514

101

100

B A H

F E A

D B C

A C B

C D

A

38|D B M S

SRET TIRUPATI

Figure 2.6 The section relation.

As you can imagine, there are many more relations maintained in a real uni­versity

database. In addition to those relations we have listed already, instructor,

department,course,section,prereq,andteaches,weusethefollowingrelationsinthis text:

ID course id sec id semester year

10101

10101

10101

12121

15151

22222

32343

45565

45565

76766

76766

83821

83821

83821

98345

CS­101

CS­315

CS­347

FIN­201

MU­199

PHY­101

HIS­351

CS­101

CS­319

BIO­101

BIO­301

CS­190

CS­190

CS­319

EE­181

1

1

1

1

1

1

1

1

1

1

1

1

2

2

1

Fall Spring

Fall Spring

Spring Fall

Spring

SpringSpring

Summer

Summer

Spring

SpringSpring

Spring

2009

2010

2009

2010

2010

2009

2010

2010

2010

2009

2010

2009

2009

2010

2009

Figure 2.7 The teaches relation.

student (ID, name, dept name, totcred)

advisor (s id, iid)

takes (ID, course id, sec id, semester, year,grade)

classroom (building, room number,capacity)

time slot (time slot id, day, start time, endtime)

1.10. Keys

We must have a way to specify how tuples within a given relation are distin­ guished. This is

expressed in terms of their attributes. That is, the values of the attribute values of a tuple

must be such that they can uniquely identify the tuple. In other words, no two tuples in a

relation are allowed to have exactly the same value for all attributes.

Asuperkeyisasetofoneormoreattributesthat,takencollectively,allowustoidentify uniquely a

tuple in the relation. For example, the ID attribute of the relation instructor is sufficient to

distinguish one instructor tuple from another. Thus, ID is a superkey.Thenameattribute of

39|D B M S

SRET TIRUPATI

instructor, on the other hand, is not a superkey, because several instructors might have the

same name.

student (ID, name, dept name, totcred)

advisor (s id, iid)

takes (ID, course id, sec id, semester, year,grade)

classroom (building, room number,capacity)

time slot (time slot id, day, start time, endtime)

Keys

We must have a way to specify how tuples within a given relation are distin­ guished. This is

expressed in terms of their attributes. That is, the values of the attribute values of a tuple

must be such that they can uniquely identify the tuple. In other words, no two tuples in a

relation are allowed to have exactly the same value for all attributes.

Asuperkeyisasetofoneormoreattributesthat,takencollectively,allowustoidentify uniquely a

tuple in the relation. For example, the ID attribute of the relation instructor is sufficient to

distinguish one instructor tuple from another. Thus, ID is a superkey.Thenameattribute of

instructor, on the other hand, is not a superkey, because several instructors might have the

same name.

The primary key should be chosen such that its attribute values are never, or very rarely,

changed. For instance, the address field of a person should not be part of the primary key,

since it is likely to change. Social­ security numbers, on the other hand, are guaranteed

never to change. Unique identifiers generated by enterprises generally do not change,

except if two enterprises merge; in such a case the same identifier may have been issued by

both enterprises, and a reallocation of identifiers may be required to make sure they are

unique.

It is customary to list the primary key attributes of a relation schema before

theotherattributes;forexample,thedeptnameattributeofdepartmentislistedfirst,sinceit is the

primary key. Primary key attributes are also underlined.

A relation, say r1, may include among its attributes the primary key of an­ other relation, say

r2. This attribute is called a foreign key from r1, referencing r2. The relation r1 is also called

the referencing relation of the foreign key depen­ dency, and r2 is called the referenced

relation of the foreign key. For example, the attribute dept name in instructor is a foreign key

from instructor, referencing depart­ ment, since dept name is the primary key of department.

In any database instance, given any tuple, say ta, from the instructor relation, there must be

some tuple, say tb, in the department relation such that the value of the dept name attribute

of tais the same as the value of the primary key, dept name, of tb.

Now consider the section and teaches relations. It would be reasonable to require that if a

section exists for a course, it must be taught by at least one instructor; however, it could

40|D B M S

SRET TIRUPATI

possibly be taught by more than one instructor. To enforce

thisconstraint,wewouldrequirethatifaparticular(courseid,secid,semester,year)combination

appears in section, then the same combination must appear inteaches.

However, this set of values does not form a primary key for teaches, since more than one

instructor may teach one such section. As a result, we cannot declare a foreign key

constraint from section to teaches (although we can define a foreign key constraint in the

otherdirection,fromteachestosection).Theconstraintfromsectiontoteachesisanexampleofarefer

entialintegrityconstraint;areferentialintegrityconstraintrequires that the values appearing in

specified attributes of any tuple in the referencing relation also appear in specified attributes

of at least one tuple in the referencedrelation.

Schema Diagrams

A database schema, along with primary key and foreign key dependencies, can be depicted

by schema diagrams. Figure 2.8 shows the schema diagram for our university organization.

Each relation appears as a box, with the relation name at the top in blue, and the attributes

listed inside the box. Primary key attributes are shown underlined. Foreign key

dependencies appear as arrows from the foreign key attributes

ofthereferencingrelationtotheprimarykeyofthereferencedrelation

Referential integrity constraints other than foreign key constraints are not shown explicitly in

schema diagrams. Entity­ relationship diagrams let us represent several kinds of constraints,

including general referential integrityconstraints.

Many database systems provide design tools with a graphical user interface for creating

schema diagrams. Figure 2.9 gives the relational schema that we use in our examples, with

primary­ key attributesunderlined.

1.11. Relational Query Languages

A query language is a language in which a user requests information from the database.

These languages are usually on a level higher than that of a standard programming

language. Query languages can be categorized as either procedural or nonprocedural. In a

procedural language, the user instructs the system to perform a

sequence of operations on the database to compute the desired result. In a nonprocedural

language, the user describes the desired information without giving a specific procedure for

obtaining that information.

classroom(building, room number, capacity) department(dept name, building,

budget) course(course id, title, dept name, credits) instructor(ID, name, dept name, salary)

section(course id, sec id, semester, year, building, room number, time slot id) teaches(ID,

course id, sec id, semester,

year) student(ID, name, dept name, tot cred)

takes(ID, course id, sec id, semester, year, grade)

41|D B M S

SRET TIRUPATI

advisor(s ID, i ID)

time slot(time slot id, day, start time, end time) prereq(course id, prereq id)

Query languages used in practice include elements of both the procedural and the

nonprocedural approaches. .

There are a number of “pure” query languages: The relational algebra is pro­ cedural,

whereas the tuple relational calculus and domain relational calculus are nonprocedural.

These query languages are terse and formal, lacking the “syntactic sugar” of commercial

languages, but they illustrate the fundamental techniques for extracting data from the

database. The relational algebra consists of a set of operations that take one or two relations

as input and produce a new relation as their result. The relational calculus uses predicate

logic to define the result desired without giving any specific algebraic procedure for obtaining

thatresult.

Relational Operations

All procedural relational query languages provide a set of operations that can be applied to

either a single relation or a pair of relations. These operations have the nice and desired

property that their result is always a single relation. This property allows one to combine

several of these operations in a modular way.

Specifically, since the result of a relational query is itself a relation, relational operations can

be applied to the resultsofqueriesaswellastothegivensetofrelations.

The specific relational operations are expressed differently depending on the language, but

fit the general framework we describe in this section.

The most frequent operation is the selection of specific tuples from a sin­ gle relation

(sayinstructor)thatsatisfiessomeparticularpredicate(saysalary>85,000).Theresultis a new

relation that is a subset of the originalrelation

ID name dept name salar

y

1212

1

2222

2

3345

6

8382

1

Wu

Einstein

Gold

Brandt

Finance

Physics

Physics Comp.

Sci.

9000

0

9500

0

8700

0

9200

0

Figure 2.10 Result of query selecting instructor tuples with salary greater than $85000.

42|D B M S

SRET TIRUPATI

For example, if we select tuples from the instructor relation of Figure 2.1, satisfying the

predicate “salary is greater than $85000”, we get the result shown in Figure 2.10.

Another frequent operation is to select certain attributes (columns) from a relation. The result

is a new relation having only those selected attributes. For example, suppose we want a list

of instructor IDs and salaries without listing the

nameanddeptnamevaluesfromtheinstructorrelationofFigure2.1,thentheresult,

shown in Figure 2.11, has the two attributes ID and salary. Each tuple in the resultis

derived from a tuple of the instructor relation but with only selected attributes shown.

The join operation allows the combining of two relations by merging pairs of tuples, one from

each relation, into a single tuple. There are a number of different ways to join relations .

Figure 2.12 shows an example of joining the tuples from the instructor and department tables

with the new tuples showing the information about each instructor and the department in

which she is working. This result was

formed by combining each tuple in the instructor relation with the tuple in the department

relation for the instructor’s department. In the form of join shown in

Figure2.12,whichiscalledanaturaljoin,atuplefromtheinstructorrelationmatches a tuple in the

department relation if the values.

Figure 2.11 Result of query selecting attributes ID and salary from the instructor relation.

of their dept name attributes are the same. All such matching pairs of tuples are present in

the join result. In general, the natural join operation on two relations matches tuples whose

values are the same on all attribute names that are common to both relations.

The Cartesian product operation combines tuples from two relations, but unlike the join

operation, its result contains all pairs of tuples from the two relations, regardless of whether

their attribute values match.

Because relations are sets, we can perform normal set operations on relations. The union

operation performs a set union of two “similarly structured” tables (say a table of all graduate

students and a table of all undergraduate students). For example, one can obtain the set of

all students in a department. Other set operations,

suchasintersectionandsetdifferencecanbeperformedaswell.

As we noted earlier, we can perform operations on the results of queries. For example, if we

want to find the ID and salary for those instructors who have salary greater than $85,000, we

would perform the first two operations in our example

above.Firstweselectthosetuplesfromtheinstructorrelationwherethesalaryvalue

is greater than $85,000 and then, from that result, select the two attributes IDand

salary, resulting in the relation shown in Figure 2.13 consisting of the ID.

ID salary

43|D B M S

SRET TIRUPATI

12121

22222

33456

83821

90000

95000

87000

92000

Figure 2.13 Result of selecting attributes ID and salary of instructors with salary greater

than$85,000

Symbol

(Name)

Example of Use

o

(Selection)

osalary>=85000(instructor)

Return rows of the input relation that satisfy

the predicate.

M

(Projection)

MID,salary(instructor)

Output specified attributes from all rows of

the input relation. Remove duplicate tuples from the output.

0

(Natural join)

instructor 0 department

Outputpairsofrowsfromthetwoinputrela­

tions that have the same value on all attributes

that have the same name.

×(Cartesian

product)

instructor × department

Outputallpairsofrowsfromthetwoinput

relations (regardless of whether or not they have the same values

on commonattributes)

∪(Union) Mname(instructor)∪Mname(student)

Outputtheunionoftuplesfromthetwoinputrelations.

and salary. In this example, we could have performed the operations in either order, but that

is not the case for all situations, as we shall see.

Sometimes, the result of a query contains duplicate tuples. For example, if we select the

dept name attribute from the instructor relation, there are several cases of duplication,

including “Comp. Sci.”, which shows up three times. Certain rela­ tional languages adhere

strictly to the mathematical definition of a set and remove duplicates.

10. Assignments

11. Part A- Question & Answers

44|D B M S

SRET TIRUPATI

12. Part B- Questions

13. Supportive Online Certification Courses

https://nptel.ac.in/courses/106/105/106105175/

https://academy.oracle.com/en/resources-oracle-certifications.html

https://www.coursera.org/courses?query=database%20management

14. Real Time Applications

S.No Application CO

1  Railway Reservation System

 Library Management System

 Banking

 Universities and colleges

1

2  Credit card transactions

 Social Media Sites

 Telecommunications

 Finance

2

3  Military

 Online Shopping

 Human Resource Management

3

4  Manufacturing

 Airline Reservation system

4

15. Contents Beyond the Syllabus

1. Database System Architecture: Centralized and client server systems Server system
architecture

centralized: all calculation are done on one particular computer
distributed: the calculations is distributed to multiple computers when you have a large
amount f data then you can divide it and send each part to a particular computers which
will make the calculations for their part.

2. Parallel systems and Distributed systems

in parallel computing multiple processors performs multiple takes assigned to them
simultaneously. memory in parallelism can either be shared or distributed. Parallel computing
provides concurrency and saves time and memory.

in distributed computing we have multiple autonomous computers which seems to be the user
as single system. in distributed systems there is mo shared memory and computers
communicate either each other through message passing. in distributed computing a single task
is divided among different computers.

45|D B M S

SRET TIRUPATI

16. Prescribed Text Books & Reference Books

Text Book

1. A.Silberschatz, H.F.Korth, S.Sudarshan, “Database System Concepts”, 6/e, TMH

2019

References:

1. Shamkant B. Navathe, “Database Management System” 6/e RamezElmasriPEA

2. “Database Principles Fundamentals of Design Implementation and Management”,

Carlos Coronel, Steven Morris, Peter Robb, CengageLearning.

3. Raghurama Krishnan, Johannes Gehrke, “Database Management Systems”,

3/e,TMH

17. Mini Project Suggestion

1. Railway Reservation System

the case study is used to design and developed a database maintaining the records of

different trains, train status and passengers. the record of train includes its number, name,

source, destination and days on which it is available, where as the records of train status

includes dates for which ticker takes can be booked ,total number of seats available, and

number of seats already booked .

2. Library Management System

LMS gives us the complete information about the library and the daily transactions

done in library.

3. Banking

Banking gives us the complete information about the banking and the daily transactions

done in banking.

UNIT-II

2.1 OVERVIEW OF THE SQL QUERY LANGUAGE

SQL is a language to operate databases; it includes database creation, deletion, fetching rows,

modifying rows, etc. SQL is an ANSI (American National Standards Institute) standard language, but

there are many different versions of the SQL language.

What is SQL?

SQL is Structured Query Language, which is a computer language for storing, manipulating and

retrieving data stored in a relational database. SQL is the standard language for Relational Database

System. All the Relational Database Management Systems (RDMS) like MySQL, MS Access, Oracle,

46|D B M S

SRET TIRUPATI

Sybase, Informix, Postgres and SQL Server use SQL as their standard database language. Also, they

are using different dialects, such as −

 MS SQL Server using T-SQL,

 Oracle using PL/SQL,

 MS Access version of SQL is called JET SQL (native format) etc.

Why SQL?

SQL is widely popular because it offers the following advantages −

 Allows users to access data in the relational database management

systems.

 Allows users to describe the data.

 Allows users to define the data in a database and manipulate that data.

 Allows to embed within other languages using SQL modules, libraries &

precompilers.

 Allows users to create and drop databases and tables.

 Allows users to create view, stored procedure, functions in a database.

 Allows users to set permissions on tables, procedures and views.

A Brief History of SQL

1. 1970 − Dr. Edgar F. "Ted" Codd of IBM is known as the father of relationaLdatabases. He

described a relational model for databases.

2. 1974 − Structured Query Language appeared.

3. 1978 − IBM worked to develop Codd's ideas and released a product named System/R.

4. 1986 − IBM developed the first prototype of relational database and standardized by ANSI. The

first relational database was released by Relational Software which later came to be known as

Oracle.

SQL Process

When you are executing an SQL command for any RDBMS, the system determines the best way to

carry out your request and SQL engine figures out how to interpret the task. There are various

components included in this process.

These components are −

 Query Dispatcher

 Optimization Engines

 Classic Query Engine

 SQL Query Engine, etc.

A classic query engine handles all the non-SQL queries, but a SQL query engine won't handle logical

files.

RDBMS: RDBMS stands for Relational Database Management System. RDBMS is the basis for SQL,

and for all modern database systems like MS SQL Server, IBM DB2, Oracle, MySQL, and Microsoft

Access.

2.2 SQL DATA DEFINITION

A Relational database management system (RDBMS) is a database management system (DBMS)

that is based on the relational model as introduced by E. F. Codd.

table: The data in an RDBMS is stored in database objects which are called as tables. This table is

basically a collection of related data entries and it consists of numerous columns and rows.

Remember, a table is the most common and simplest form of data storage in a relational

database. The following program is an example of a CUSTOMERS table −

47|D B M S

SRET TIRUPATI

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

+----+----------+-----+-----------+----------+

field:

Every table is broken up into smaller entities called fields. The fields in the CUSTOMERS table consist

of ID, NAME, AGE, ADDRESS and SALARY. A field is a column in a table that is designed to maintain

specific information about every record in the table.

Record or a Row:

A record is also called as a row of data is each individual entry that exists in a table. For example,

there are 7 records in the above CUSTOMERS table. Following is a single row of data or record in the

CUSTOMERS table −

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

+----+----------+-----+-----------+----------+

A record is a horizontal entity in a table.

Column:

A column is a vertical entity in a table that contains all information associated with a specific field in a

table. For example, a column in the CUSTOMERS table is ADDRESS, which represents location

description and would be as shown below −

+-----------+

| ADDRESS |

+-----------+

| Ahmedabad |

| Delhi |

| Kota |

| Mumbai |

| Bhopal |

| MP |

| Indore |

+----+------+

NULL:

A NULL value in a table is a value in a field that appears to be blank, which means a field with a NULL

value is a field with no value. It is very important to understand that a NULL value is different than a

zero value or a field that contains spaces. A field with a NULL value is the one that has been left blank

during a record creation.

SQL Constraints:

Constraints are the rules enforced on data columns on a table. These are used to limit the type of data

that can go into a table. This ensures the accuracy and reliability of the data in the database.

Constraints can either be column level or table level. Column level constraints are applied only to one

column whereas, table level constraints are applied to the entire table.

48|D B M S

SRET TIRUPATI

Following are some of the most commonly used constraints available in SQL −

1. NOT NULL Constraint − Ensures that a column cannot have a NULL value.

2. DEFAULT Constraint − Provides a default value for a column when none is Specified.

3. UNIQUE Constraint − Ensures that all the values in a column are different.

4. PRIMARY Key − Uniquely identifies each row/record in a database table.

5. FOREIGN Key − Uniquely identifies a row/record in any another database table.

6. CHECK Constraint − The CHECK constraint ensures that all values in a column satisfy certain

conditions.

7. INDEX − Used to create and retrieve data from the database very quickly.

Data Integrity

The following categories of data integrity exist with each RDBMS −

1. Entity Integrity − There are no duplicate rows in a table.

2. Domain Integrity − Enforces valid entries for a given column by restricting the type,

3. the format, or the range of values.

4. Referential integrity − Rows cannot be deleted, which are used by other records.

5. User-Defined Integrity − Enforces some specific business rules that do not fall into entity,

domain or referential integrity.

SQL is followed by a unique set of rules and guidelines called Syntax. This tutorial gives you a quick

start with SQL by listing all the basic SQL Syntax. All the SQL statements start with any of the

keywords like SELECT, INSERT, UPDATE, DELETE, ALTER, DROP, CREATE, USE, SHOW and the

entire statements end with a semicolon (;).

The most important point to be noted here is that SQL is case insensitive, which means SELECT and

select have same meaning in SQL statements. Where as, MySQL makes difference in table names.

So, if you are working with MySQL, then you need to give table names as they exist in the database.

2.3. BASIC STRUCTURE OF SQL QUERIES

All the examples given in this tutorial have been tested with a MySQL server.

SQL SELECT Statement

SELECT column1, column2....columnN

FROM table_name;

SQL DISTINCT Clause

SELECT DISTINCT column1, column2....columnN

FROM table_name;

SQL WHERE Clause

SELECT column1, column2....columnN

FROM table_name

WHERE CONDITION;

SQL AND/OR Clause

SELECT column1, column2....columnN

FROM table_name

WHERE CONDITION-1 {AND|OR} CONDITION-2;

SQL IN Clause

SELECT column1, column2....columnN

FROM table_name

WHERE column_name IN (val-1, val-2,...val-N);

SQL BETWEEN Clause

SELECT column1, column2....columnN

FROM table_name

49|D B M S

SRET TIRUPATI

WHERE column_name BETWEEN val-1 AND val-2;

SQL LIKE Clause

SELECT column1, column2....columnN

FROM table_name

WHERE column_name LIKE { PATTERN };

SQL ORDER BY Clause

SELECT column1, column2....columnN

FROM table_name

WHERE CONDITION

ORDER BY column_name {ASC|DESC};

SQL GROUP BY Clause

SELECT SUM(column_name)

FROM table_name

WHERE CONDITION

GROUP BY column_name;

SQL COUNT Clause

SELECT COUNT(column_name)

FROM table_name

WHERE CONDITION;

SQL HAVING Clause

SELECT SUM(column_name)

FROM table_name

WHERE CONDITION

GROUP BY column name

HAVING (arithmetic function condition);

SQL CREATE TABLE Statement

CREATE TABLE table name(

column1 datatype,

column2 datatype,

column3 datatype,

.....

columnN datatype,

PRIMARY KEY(one or more columns)

);

SQL DROP TABLE Statement

DROP TABLE table_name;

SQL CREATE INDEX Statement

CREATE UNIQUE INDEX index_name

ON table_name (column1, column2,...columnN);

SQL DROP INDEX Statement

ALTER TABLE table_name

DROP INDEX index_name;

SQL DESC Statement

DESC table_name;

SQL TRUNCATE TABLE Statement

TRUNCATE TABLE table_name;

SQL ALTER TABLE Statement

ALTER TABLE table_name {ADD|DROP|MODIFY} column_name {data_ype};

SQL ALTER TABLE Statement (Rename)

ALTER TABLE table_name RENAME TO new_table_name;

50|D B M S

SRET TIRUPATI

SQL INSERT INTO Statement

INSERT INTO table_name(column1, column2....columnN)

VALUES (value1, value2....valueN);

SQL UPDATE Statement

UPDATE table_name

SET column1 = value1, column2 = value2....columnN=valueN

[WHERE CONDITION];

SQL DELETE Statement

DELETE FROM table_name

WHERE {CONDITION};

SQL CREATE DATABASE Statement

CREATE DATABASE database_name;

SQL DROP DATABASE Statement

DROP DATABASE database_name;

SQL USE Statement

USE database_name;

SQL COMMIT Statement

COMMIT;

SQL ROLLBACK Statement

ROLLBACK;

2.4. ADDITIONAL BASIC OPERATIONS

The Rename Operation

Consider again the query that we used earlier:

select name, course id

from instructor, teaches

where instructor. ID = teaches. ID ;

The result of this query is a relation with the following attributes:

name, course id

The names of the attributes in the result are derived from the names of the attributes in the relations in

the from clause. SQL provides a way of renaming the attributes of a result relation. It uses the as

clause, taking the form:

old-name as new-name

The as clause can appear in both the select and from clauses. For example, if we want the attribute

name name to be replaced with the name instructor name, we can rewrite the preceding query as:

select name as instructor name, course id

from instructor, teaches

where instructor. ID = teaches. ID ;

The as clause is particularly useful in renaming relations. One reason to rename a relation is to

replace a long relation name with a shortened version that is more convenient to use elsewhere in the

query. To illustrate, we rewrite the query “For all instructors in the university who have taught some

course, find their names and the course ID of all courses they taught.”

select T.name, S.course id

from instructor as T, teaches as S

where T. ID = S. ID ;

String Operations:

51|D B M S

SRET TIRUPATI

SQL specifies strings by enclosing them in single quotes, for example, ’Computer’. A single quote

character that is part of a string can be specified by using two single quote characters;

for example, the string “It’s right” can be specified by “It”s right”.

The SQL standard specifies that the equality operation on strings is case sensitive; as a result the

expression “’comp. sci.’ = ’Comp. Sci.’” evaluates to false. However, some database systems, such as

M y SQL and SQL S erver, do not distinguish uppercase from lowercase when matching strings; as a

result “’comp. Sci.’ = ’Comp. Sci.’” would evaluate to true on these databases. This default behavior

can, however, be changed, either at the database level or at the level of specific attributes. SQL also

permits a variety of functions on character strings, such as concate- nating (using “ ”), extracting

substrings, finding the length of strings, converting strings to uppercase (using the function upper(s)

where s is a string) and low- ercase (using the function lower(s)), removing spaces at the end of the

string (using trim(s)) and so on. There are variations on the exact set of string functions supported by

different database systems. See your database system’s manual for more details on exactly what

string functions it supports. Pattern matching can be performed on strings, using the operator like. We

describe patterns by using two special characters:

• Percent (%): The % character matches any substring.

• Underscore (): The character matches any character.

Patterns are case sensitive; that is, uppercase characters do not match lowercase characters, or vice

versa. To illustrate pattern matching, we consider the following examples:

1. ’Intro%’ matches any string beginning with “Intro”.

2. ’%Comp%’ matches any string containing “Comp” as a substring, for example, ’Intro. To

Computer Science’, and ’Computational Biology’.

3. '_ _ _’ matches any string of exactly three characters.

4. '_ _ _ %’ matches any string of at least three characters.

SQL expresses patterns by using the like comparison operator. Consider the query “Find the names of

all departments whose building name includes the substring ‘Watson’.” This query can be written as:

select dept name

from department

where building like ’%Watson%’;

For patterns to include the special pattern characters (that is, % and), SQL allows the specification of

an escape character. The escape character is used immediately before a special pattern character to

indicate that the special pattern character is to be treated like a normal character. We define the

escape character for a like comparison using the escape keyword. To illustrate, consider the following

patterns, which use a backslash (\) as the escape character:

1. like ’ab\%cd%’ escape ’\’ matches all strings beginning with “ab%cd”.

2. like ’ab\\cd%’ escape ’\’ matches all strings beginning with “ab\cd”.

Attribute Specification in Select Clause:

The asterisk symbol “ * ” can be used in the select clause to denote “all attributes.” Thus, the use of

instructor.* in the select clause of the query:

select instructor.*

from instructor, teaches

where instructor. ID = teaches. ID ;

indicates that all attributes of instructor are to be selected. A select clause of the form select *

indicates that all attributes of the result relation of the from clause are selected.

Ordering the Display of Tuples:

52|D B M S

SRET TIRUPATI

SQL offers the user some control over the order in which tuples in a relation are displayed. The order

by clause causes the tuples in the result of a query to appear in sorted order. To list in alphabetic

order all instructors in the Physics department, we write:

select name

from instructor

where dept name = ’Physics’

order by name;

By default, the order by clause lists items in ascending order. To specify the sort order, we may

specify desc for descending order or asc for ascending order. Furthermore, ordering can be performed

on multiple attributes. Suppose that we wish to list the entire instructor relation in descending order of

salary. If several instructors have the same salary, we order them in ascending order by name. We

express this query in SQL as follows:

select * from instructor order by salary desc, name asc;

Where Clause Predicates:

SQL includes a between comparison operator to simplify where clauses that specify that a value be

less than or equal to some value and greater than or equal to some other value. If we wish to find the

names of instructors with salary amounts between $90,000 and $100,000, we can use the between

comparison to write:

select name from instructor

where salary between 90000 and 100000;

instead of:

select name

from instructor

where salary <= 100000 and salary >= 90000;

Similarly, we can use the not between comparison operator. We can extend the preceding query that

finds instructor names along with course identifiers, which we saw earlier, and consider a more

complicated case in which we require also that the instructors be from the Biology department:

“Find the instructor names and the courses they taught for all instructors in the Biology

department who have taught some course.”

To write this query, we can modify either of the SQL queries we saw earlier, by adding an extra

condition in the where clause. We show below the modified form of the SQL query that does not use

natural join.

select name, course id

from instructor, teaches

where instructor. ID = teaches. ID and dept name = ’Biology’;

SQL permits us to use the notation (v 1 , v 2 , . . . , v n) to denote a tuple of arity n containing values v

1 , v 2 , . . . , v n . The comparison operators can be used on tuples, and the ordering is defined

lexicographically. For example, (a 1 , a 2) <= (b 1 , b 2)

COURSEID

CS -101

53|D B M S

SRET TIRUPATI

CS -347

PHY -101

The c1 relation, listing courses taught in Fall 2009. is true if a 1 <= b 1 and a 2 <= b 2 ; similarly, the

two tuples are equal if all their attributes are equal. Thus, the preceding SQL query can be rewritten as

follows:

select name, course id

from instructor, teaches

where (instructor. ID , dept name) = (teaches. ID , ’Biology’);

2.5. SET OPERATIONS

The SQL operations union, intersect, and except operate on relations and correspond to the

mathematical set-theory operations , ∩, and −. We shall now construct queries involving the ∪ union,

intersect, and except operations over two sets.

• The set of all courses taught in the Fall 2009 semester:

select course id

from section

where semester = ’Fall’ and year= 2009;

• The set of all courses taught in the Spring 2010 semester:

select course id

from section

where semester = ’Spring’ and year= 2010;

In our discussion that follows, we shall refer to the relations obtained as the result of the preceding

queries as c1 and c2, respectively, and show the results when these queries are run on the section

relation of Figure 2.6 in Figures 3.9 and 3.10. Observe that c2 contains two tuples corresponding to

course id CS -319, since two sections of the course have been offered in Spring 2010.

course id

CS -101

CS -315

CS -319

CS -319

FIN -201

HIS -351

MU -199

The Union Operation:To find the set of all courses taught either in Fall 2009 or in Spring 2010, or both,

(select course id from section where semester = ’Fall’ and year= 2009)

union

(select course id from section where semester = ’Spring’ and year= 2010);

The union operation automatically eliminates duplicates, unlike the select clause. Thus, using the

section relation of Figure 2.6, where two sections of CS -319 are offered in Spring 2010, and a section

of CS -101 is offered in the Fall 2009 as well as in the Fall 2010 semester, CS -101 and CS -319

appear only once in the result, shown in Figure 3.11. If we want to retain all duplicates, we must write

union all in place of union:

(select course id from section where semester = ’Fall’ and year= 2009)

54|D B M S

SRET TIRUPATI

union all

(select course id from section where semester = ’Spring’ and year= 2010);

The number of duplicate tuples in the result is equal to the total number of duplicates that appear in

both c1 and c2. So, in the above query, each of CS -319 and CS -101 would be listed twice. As a

further example, if it were the case that sections of ECE -101 were taught in the Fall 2009 semester

and 2 sections of ECE -101

course id

CS -101

CS -315

CS -319

CS -347

FIN -201

HIS -351

MU -199

PHY -101

The Intersect Operation

To find the set of all courses taught in the Fall 2009 as well as in Spring 2010 we write:

(select course id from section where semester = ’Fall’ and year= 2009)

intersect

(select course id from section where semester = ’Spring’ and year= 2010);

The result relation, shown in Figure 3.12, contains only one tuple with CS -101. The intersect

operation automatically eliminates duplicates. For example, if it were the case that 4 sections of ECE -

101 were taught in the Fall 2009 semester and sections of ECE -101 were taught in the Spring 2010

semester, then there would be only 1 tuple with ECE -101 in the result.

If we want to retain all duplicates, we must write intersect all in place of intersect:

course id

CS -101

(select course id from section where semester = ’Fall’ and year= 2009)

intersect all

(select course id from section where semester = ’Spring’ and year= 2010);

The number of duplicate tuples that appear in the result is equal to the minimum number of duplicates

in both c1 and c2. For example, if 4 sections of ECE -101 were taught in the Fall 2009 semester and 2

sections of ECE -101 were taught in the Spring 2010 semester, then there would be 2 tuples with ECE

-101 in the result.

The Except Operation

To find all courses taught in the Fall 2009 semester but not in the Spring 2010 semester, we

write:

(select course id from section where semester = ’Fall’ and year= 2009)

except

(select course id from section where semester = ’Spring’ and year= 2010);

The result of this query is shown. Note that this is exactly relation c1 except that the tuple for CS -101

does not appear. The except operation 7 outputs all tuples from its first input that do not occur in the

second input; that is, it performs set difference. The operation automatically eliminates duplicates in

the inputs before performing set difference. For example, if 4 sections of ECE -101 were taught in the

55|D B M S

SRET TIRUPATI

Fall 2009 semester and 2 sections of ECE -101 were taught in the Spring 2010 semester, the result of

the except operation would not have any copy of ECE -101. If we want to retain duplicates, we must

write except all in place of except:

(select course id from section where semester = ’Fall’ and year= 2009)

except all

(select course id from section where semester = ’Spring’ and year= 2010);

course id

CS -347

PHY -101

2.6. Null Values

Null values present special problems in relational operations, including arithmetic operations,

comparison operations, and set operations. The result of an arithmetic expression (involving, for

example +, −, , or /) is null if any of the input values is null. For example, if a ∗ query has an

expression r.A + 5, and r.A is null for a particular tuple, then the expression result must alsobe null for

that tuple. Comparisons involving nulls are more of a problem. For example, consider the comparison

“1 < null”. It would be wrong to say this is true since we do not know what the null value represents.

But it would likewise be wrong to claim this expression is false; if we did, “not (1 < null)” would

evaluate to true, which does not make sense. SQL therefore treats as unknown the result of any

comparison involving a null value (other than predicates is null and is not null, which are described

later in this section). This creates a third logical value in addition to true and false.

Since the predicate in a where clause can involve Boolean operations such as and, or,and not on the

results of comparisons, the definitions of the Boolean operations are extended to deal with the value

unknown.

• and: The result of true and unknown is unknown, false and unknown is false,

while unknown and unknown is unknown.

• or: The result of true or unknown is true, false or unknown is unknown, while

unknown or unknown is unknown.

• not: The result of not unknown is unknown.

SQL uses the special keyword null in a predicate to test for a null value. Thus, to find all instructors

who appear in the instructor relation with null values for salary, we write:

select name

from instructor

where salary is null;

Aggregate Functions:

Aggregate Functions are all about

 Performing calculations on multiple rows

 Of a single column of a table

 And returning a single value.

The ISO standard defines five (5) aggregate functions namely;

1. COUNT

2. SUM

3. AVG

4. MIN

5. MAX

COUNT Function

56|D B M S

SRET TIRUPATI

The COUNT function returns the total number of values in the specified field. It works on both numeric

and non-numeric data types.All aggregate functions by default exclude nulls values before working on

the data.

COUNT (*) is a special implementation of the COUNT function that returns the count of all the rows in

a specified table. COUNT (*) also considers Nulls and duplicates. The table shown below shows data

in movie rentals table

reference_

number

transaction_

date

return_date membership_

number

movie_id movie_

returned

11 20-06-2012 NULL 1 1 0

12 22-06-2012 25-06-2012 1 2 0

13 22-06-2012 25-06-2012 3 2 0

14 21-06-2012 24-06-2012 2 2 0

15 23-06-2012 NULL 3 3 0

Let's suppose that we want to get the number of times that the movie with id 2 has been rented out

SELECT COUNT(`movie_id`) FROM `movierentals` WHERE `movie_id` = 2;

COUNT('movie_id')

3

DISTINCT Keyword

The DISTINCT keyword that allows us to omit duplicates from our results. This is achieved by

grouping similar values together .

To appreciate the concept of Distinct, lets execute a simple query

SELECT `movie_id` FROM `movierentals`;

movie_id

1

2

2

2

3

Now let's execute the same query with the distinct keyword -

SELECT DISTINCT `movie_id` FROM `movierentals`;

As shown below , distinct omits duplicate records from the results.

movie_id

1

2

3

57|D B M S

SRET TIRUPATI

MIN function

The MIN function returns the smallest value in the specified table field. As an example, let's suppose

we want to know the year in which the oldest movie in our library was released, we can use MySQL's

MIN function to get the desired information.

The following query helps us achieve that

SELECT MIN(`year_released`) FROM `movies`;

Executing the above query in MySQL workbench against myflixdb gives us the following

results.

MIN('year_released')

2005

MAX function:

It returns the largest value from the specified table field. Let's assume we want to get the year that the

latest movie in our database was released. We can easily use the MAX function to achieve that.

The following example returns the latest movie year released.

SELECT MAX(`year_released`) FROM `movies`;

Executing the above query in MySQL workbench using myflixdb gives us the following results.

MAX('year_released')

2012

SUM function

Suppose we want a report that gives total amount of payments made so far. We can use the MySQL

SUM function which returns the sum of all the values in the specified column. SUM works on numeric

fields only. Null values are excluded from the result returned. The following table shows the data in

payments table payment_id

payment_

id

membership_

number

payment_

date

description amount_

paid

external_

reference

_number

1 1 23-07-2012 Movie rental

payment

2500 11

2 1 25-07-2012 Movie rental

payment

2000 12

3 3 30-07-2012 Movie rental

payment

6000 NULL

The query shown below gets the all payments made and sums them up to return a single result.

SELECT SUM(`amount_paid`) FROM `payments`;

Executing the above query in MySQL workbench against the myflixdb gives the following results.

SUM('amount_paid')

10500

AVG function:

MySQL AVG function returns the average of the values in a specified column. Just like the SUM

function, it works only on numeric data types. Suppose we want to find the average amount paid. We

can use the following query –

58|D B M S

SRET TIRUPATI

SELECT AVG(`amount_paid`) FROM `payments`;

Executing the above query in MySQL workbench, gives us the following results.

AVG('amount_paid')

3500

2.7.Nested sub queries

A Subquery or Inner query or a Nested query is a query within another SQL query and embedded

within the WHERE clause. A subquery is used to return data that will be used in the main query as a

condition to further restrict the data to be retrieved.

Subqueries can be used with the SELECT, INSERT, UPDATE, and DELETE statements along

with the operators like =, <, >, >=, <=, IN, BETWEEN, etc.

There are a few rules that subqueries must follow −

1) Subqueries must be enclosed within parentheses.

2) A subquery can have only one column in the SELECT clause, unless multiple

3) columns are in the main query for the subquery to compare its selected columns.

4) An ORDER BY command cannot be used in a subquery, although the main query can use an

ORDER BY. The GROUP BY command can be used to perform the same

function as the ORDER BY in a subquery.

5) Subqueries that return more than one row can only be used with multiple value

operators such as the IN operator.

6) The SELECT list cannot include any references to values that evaluate to a BLOB,

ARRAY, CLOB, or NCLOB.

7) A subquery cannot be immediately enclosed in a set function.

8) The BETWEEN operator cannot be used with a subquery. However, the BETWEEN

operator can be used within the subquery.

Subqueries with the SELECT Statement

Subqueries are most frequently used with the SELECT statement. The basic syntax is as

follows −

SELECT column_name [, column_name]

FROM table1 [, table2]

WHERE column_name OPERATOR

(SELECT column_name [, column_name]

FROM table1 [, table2]

[WHERE])

Example

Consider the CUSTOMERS table having the following records –

59|D B M S

SRET TIRUPATI

Now, let us check the following subquery with a SELECT statement.

SQL> SELECT *

FROM CUSTOMERS

WHERE ID IN (SELECT ID

FROM CUSTOMERS

WHERE SALARY > 4500) ;

This would produce the following result.

Subqueries with the INSERT Statement

Subqueries also can be used with INSERT statements. The INSERT statement uses the data returned

from the subquery to insert into another table. The selected data in the subquery can be modified with

any of the character, date or number functions.

The basic syntax is as follows.

INSERT INTO table_name [(column1 [, column2])]

SELECT [*|column1 [, column2]

FROM table1 [, table2]

[WHERE VALUE OPERATOR]

Example

Consider a table CUSTOMERS_BKP with similar structure as CUSTOMERS table. Now to copy the

complete CUSTOMERS table into the CUSTOMERS_BKP table, you can use the following syntax.

SQL> INSERT INTO CUSTOMERS_BKP

SELECT * FROM CUSTOMERS

WHERE ID IN (SELECT ID

FROM CUSTOMERS) ;

Subqueries with the UPDATE Statement

The subquery can be used in conjunction with the UPDATE statement. Either single or multiple

columns in a table can be updated when using a subquery with the UPDATE statement.

60|D B M S

SRET TIRUPATI

The basic syntax is as follows.

UPDATE table

SET column_name = new_value

[WHERE OPERATOR [VALUE]

(SELECT COLUMN_NAME

FROM TABLE_NAME)

[WHERE)]

Example

Assuming, we have CUSTOMERS_BKP table available which is backup of CUSTOMERS table. The

following example updates SALARY by 0.25 times in the CUSTOMERS table for all the customers

whose AGE is greater than or equal to 27.

SQL> UPDATE CUSTOMERS

SET SALARY = SALARY * 0.25

WHERE AGE IN (SELECT AGE FROM CUSTOMERS_BKP

WHERE AGE >= 27);

This would impact two rows and finally CUSTOMERS table would have the following

records.

Subqueries with the DELETE Statement

The subquery can be used in conjunction with the DELETE statement like with any other statements

mentioned above.

The basic syntax is as follows.

DELETE FROM TABLE_NAME

[WHERE OPERATOR [VALUE]

(SELECT COLUMN_NAME

FROM TABLE_NAME)

[WHERE)]

Example

Assuming, we have a CUSTOMERS_BKP table available which is a backup of the CUSTOMERS

table. The following example deletes the records from the CUSTOMERS table for all the customers

whose AGE is greater than or equal to 27.

SQL> DELETE FROM CUSTOMERS

WHERE AGE IN (SELECT AGE FROM CUSTOMERS_BKP

WHERE AGE >= 27);

This would impact two rows and finally the CUSTOMERS table would have the following records.

61|D B M S

SRET TIRUPATI

Database modification

The SQL Modification Statements make changes to database data in tables and columns. There are 3

modification statements:

1) INSERT Statement -- add rows to tables

2) UPDATE Statement -- modify columns in table rows

3) DELETE Statement - remove rows from tables

INSERT Statement

The INSERT Statement adds one or more rows to a table. It has two formats:

INSERT INTO table-1 [(column-list)] VALUES (value-list)

and,

INSERT INTO table-1 [(column-list)] (query-specification)

The first form inserts a single row into table-1 and explicitly specifies the column values for the row.

The second form uses the result of query-specification to insert one or more rows into table-1. The

result rows from the query are the rows added to the insert table. Note: the query cannot reference

table-1. Both forms have an optional column-list specification. Only the columns listed will be assigned

values. Unlisted columns are set to null, so unlisted columns must allow nulls. The values from the

VALUES Clause (first form) or the columns from the query-specification rows (second form) are

assigned to the corresponding column in column-list in order. If the optional column-list is missing, the

default column list is substituted. The default column list contains all columns in table-1 in the order

they were declared in

CREATE TABLE, or

CREATE VIEW.

VALUES Clause

The VALUES Clause in the INSERT Statement provides a set of values to place in the columns of a

new row. It has the following general format:

VALUES (value-1 [, value-2] ...)

value-1 and value-2 are Literal Values or Scalar Expressionsinvolving literals. They can also specify

NULL. The values list in the VALUES clause must match the explicit or implicit column list for INSERT

in degree (number of items). They must also match the data type of corresponding column or be

convertible to that data type.

INSERT INTO sp

SELECT s.sno, p.pno, 500

FROM s, p

WHERE p.color='Green' AND s.city='London

62|D B M S

SRET TIRUPATI

UPDATE Statement

The UPDATE statement modifies columns in selected table rows. It has the following general

format:

UPDATE table-1 SET set-list [WHERE predicate]

The optional WHERE Clause has the same format as in the SELECT Statement. See WHERE

Clause. The WHERE clause chooses which table rows to update. If it is missing, all rows are in table-

1 are updated. The set-list contains assignments of new values for selected columns. See SET

Clause. The SET Clause expressions and WHERE Clause predicate can contain subqueries, but the

subqueries cannot reference table-1. This prevents situations where results are dependent on the

order of processing.

SET Clause

The SET Clause in the UPDATE Statement updates (assigns new value to) columns in the selected

table rows. It has the following general format:

SET column-1 = value-1 [, column-2 = value-2] ...

column-1 and column-2 are columns in the Update table. value-1 and value2 are expressions that can

reference columns from the update table. They also can be the keyword -- NULL, to set the column to

null. Since the assignment expressions can reference columns from the current row, the expressions

are evaluated first. After the values of all Set expressions have been computed, they are then

assigned to the referenced columns. This avoids results dependent on the order of processing.

UPDATE Examples

UPDATE sp SET qty = qty + 20

Before

After

Sno pno qty

S1 P1 NULL

S2 P1 200

S3 P1 1000

S3 P2 200

=>

sno pno qty

S1 P1 NULL

S2 P1 220

S3 P1 1020

S3 P2 220

UPDATE s

SET name = 'Tony', city = 'Milan'

WHERE sno = 'S3'

Before

sno name city

S1 Pierre Paris

S2 John London

S3 Mario Rome

=> After

Sno name city

S1 Pierre Paris

S2 John London

63|D B M S

SRET TIRUPATI

S3 Tony Milan

DELETE Statement

The DELETE Statement removes selected rows from a table. It has the following general

format:

DELETE FROM table-1 [WHERE predicate]

The optional WHERE Clause has the same format as in the SELECT Statement. See WHERE

Clause. The WHERE clause chooses which table rows to delete. If it is missing, all rows are in table-1

are removed.

The WHERE Clause predicate can contain subqueries, but the subqueries cannot reference table-1.

This prevents situations where results are dependent on the order of processing.

DELETE Examples

DELETE FROM sp WHERE pno = 'P1'

Before

After

sno pno qty

S1 P1 NULL

S2 P1 200

S3 P1 1000

S3 P2 200

=>

sno pno qty

S3 P2 200

DELETE FROM p WHERE pno NOT IN (SELECT pno FROM sp)

Before

Pno descr color

P1 Widget Blue

P2 Widget Red

P3 Dongle Green

=> After

pno descr color

P1 Widget Blue

P2 Widget Red

2.8. JOINS

The SQL Joins clause is used to combine records from two or more tables in a database.

JOIN is a means for combining fields from two tables by using values common to each.

Consider the following two tables −

Table 1 − CUSTOMERS Table

+----+----------+-----+-----------+----------+---------------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+---------------+

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

64|D B M S

SRET TIRUPATI

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

+----+----------+-----+-----------+----------+----------------+

Table 2 − ORDERS Table

+-----+---------------------+-------------+--------+

|OID | DATE | CUSTOMER_ID | AMOUNT |

+-----+---------------------+-------------+--------+

| 102 | 2009-10-08 00:00:00 | 3 | 3000 |

| 100 | 2009-10-08 00:00:00 | 3 | 1500 |

| 101 | 2009-11-20 00:00:00 | 2 | 1560 |

| 103 | 2008-05-20 00:00:00 | 4 | 2060 |

+-----+---------------------+-------------+--------+

Now, let us join these two tables in our SELECT statement as shown below.

SQL> SELECT ID, NAME, AGE, AMOUNT

FROM CUSTOMERS, ORDERS

WHERE CUSTOMERS.ID = ORDERS.CUSTOMER_ID;

This would produce the following result.

+----+----------+-----+--------+-----------+

| ID | NAME | AGE | AMOUNT |

+----+----------+-----+--------+------------+

| 3 | kaushik | 23 | 3000 |

| 3 | kaushik | 23 | 1500 |

| 2 | Khilan | 25 | 1560 |

| 4 | Chaitali | 25 | 2060 |

+----+----------+-----+--------+---------+

Here, it is noticeable that the join is performed in the WHERE clause. Several operators can be used

to join tables, such as =, <, >, <>, <=, >=, !=, BETWEEN, LIKE, and NOT; they can all be used to join

tables. However, the most common operator is the equal to symbol.

There are different types of joins available in SQL −

1) INNER JOIN − returns rows when there is a match in both tables.

2) LEFT JOIN − returns all rows from the left table, even if there are no matches in the

right table.

3) RIGHT JOIN − returns all rows from the right table, even if there are no matches in

the left table.

4) FULL JOIN − returns rows when there is a match in one of the tables.

The most important and frequently used of the joins is the INNER JOIN. They are also

referred to as an EQUIJOIN.

The INNER JOIN creates a new result table by combining column values of two tables (table1 and

table2) based upon the join-predicate. The query compares each row of table1 with each row of table2

to find all pairs of rows which satisfy the join-predicate. When the join-predicate is satisfied, column

values for each matched pair of rows of A and B are combined into a result row.

Syntax:

The basic syntax of the INNER JOIN is as follows.

SELECT table1.column1, table2.column2...

FROM table1

INNER JOIN table2

ON table1.common_field = table2.common_field;

Example

65|D B M S

SRET TIRUPATI

Consider the following two tables.

Table 1 − CUSTOMERS Table is as follows.

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

+----+----------+-----+-----------+----------+

Table 2 − ORDERS Table is as follows.

+-----+---------------------+-------------+--------+

| OID | DATE | CUSTOMER_ID | AMOUNT |

+-----+---------------------+-------------+--------+

| 102 | 2009-10-08 00:00:00 | 3 | 3000 |

| 100 | 2009-10-08 00:00:00 | 3 | 1500 |

| 101 | 2009-11-20 00:00:00 | 2 | 1560 |

| 103 | 2008-05-20 00:00:00 | 4 | 2060 |

+-----+---------------------+-------------+--------+

Now, let us join these two tables using the INNER JOIN as follows −

SQL> SELECT ID, NAME, AMOUNT, DATE

FROM CUSTOMERS

INNER JOIN ORDERS

ON CUSTOMERS.ID = ORDERS.CUSTOMER_ID;

This would produce the following result.

+----+----------+--------+---------------------+---------+

| ID | NAME | AMOUNT | DATE |

+----+----------+--------+---------------------+----------+

| 3 | kaushik | 3000 | 2009-10-08 00:00:00 |

| 3 | kaushik | 1500 | 2009-10-08 00:00:00 |

| 2 | Khilan | 1560 | 2009-11-20 00:00:00 |

| 4 | Chaitali | 2060 | 2008-05-20 00:00:00 |

+----+----------+--------+---------------------+

The SQL LEFT JOIN returns all rows from the left table, even if there are no matches in the right table.

This means that if the ON clause matches 0 (zero) records in the right table; the join will still return a

row in the result, but with NULL in each column from the right table. This means that a left join returns

all the values from the left table, plus matched values from the right table or NULL in case of no

matching join predicate.

Syntax

The basic syntax of a LEFT JOIN is as follows.

SELECT table1.column1, table2.column2...

FROM table1

LEFT JOIN table2

ON table1.common_field = table2.common_field;

Here, the given condition could be any given expression based on your requirement.

Example

Consider the following two tables,

66|D B M S

SRET TIRUPATI

Table 1 − CUSTOMERS Table is as follows.

+----+----------+-----+-----------+----------+-----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+-----------+

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

+----+----------+-----+-----------+----------+-----------------+

Table 2 − Orders Table is as follows.

+-----+---------------------+-------------+--------+

| OID | DATE | CUSTOMER_ID | AMOUNT |

+-----+---------------------+-------------+--------+

| 102 | 2009-10-08 00:00:00 | 3 | 3000 |

| 100 | 2009-10-08 00:00:00 | 3 | 1500 |

| 101 | 2009-11-20 00:00:00 | 2 | 1560 |

| 103 | 2008-05-20 00:00:00 | 4 | 2060 |

+-----+---------------------+-------------+--------+

Now, let us join these two tables using the LEFT JOIN as follows.

SQL> SELECT ID, NAME, AMOUNT, DATE

FROM CUSTOMERS

LEFT JOIN ORDERS

ON CUSTOMERS.ID = ORDERS.CUSTOMER_ID;

This would produce the following result –

+----+----------+--------+---------------------+

| ID | NAME | AMOUNT | DATE |

+----+----------+--------+---------------------+

| 1 | Ramesh | NULL | NULL |

| 2 | Khilan | 1560 | 2009-11-20 00:00:00 |

| 3 | kaushik | 3000 | 2009-10-08 00:00:00 |

| 3 | kaushik | 1500 | 2009-10-08 00:00:00 |

| 4 | Chaitali | 2060 | 2008-05-20 00:00:00 |

| 5 | Hardik | NULL | NULL |

| 6 | Komal | NULL | NULL |

| 7 | Muffy | NULL | NULL |

+----+----------+--------+---------------------+

The SQL RIGHT JOIN returns all rows from the right table, even if there are no matches in the left

table. This means that if the ON clause matches 0 (zero) records in the left table; the join will still

return a row in the result, but with NULL in each column from the left table. This means that a right join

returns all the values from the right table, plus matched values from the left table or NULL in case of

no matching join predicate.

Syntax

The basic syntax of a RIGHT JOIN is as follow.

SELECT table1.column1, table2.column2...

FROM table1

RIGHT JOIN table2

67|D B M S

SRET TIRUPATI

ON table1.common_field = table2.common_field;

Example

Consider the following two tables,

Table 1 − CUSTOMERS Table is as follows.

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

+----+----------+-----+-----------+----------+

Table 2 − ORDERS Table is as follows.

+-----+---------------------+-------------+--------+

|OID | DATE | CUSTOMER_ID | AMOUNT |

+-----+---------------------+-------------+--------+

| 102 | 2009-10-08 00:00:00 | 3 | 3000 |

| 100 | 2009-10-08 00:00:00 | 3 | 1500 |

| 101 | 2009-11-20 00:00:00 | 2 | 1560 |

| 103 | 2008-05-20 00:00:00 | 4 | 2060 |

+-----+---------------------+-------------+--------+

Now, let us join these two tables using the RIGHT JOIN as follows.

SQL> SELECT ID, NAME, AMOUNT, DATE

FROM CUSTOMERS

RIGHT JOIN ORDERS

ON CUSTOMERS.ID = ORDERS.CUSTOMER_ID;

This would produce the following result −

+------+----------+--------+---------------------+

| ID | NAME | AMOUNT | DATE |

+------+----------+--------+---------------------+

| 3 | kaushik | 3000 | 2009-10-08 00:00:00 |

| 3 | kaushik | 1500 | 2009-10-08 00:00:00 |

| 2 | Khilan | 1560 | 2009-11-20 00:00:00 |

| 4 | Chaitali | 2060 | 2008-05-20 00:00:00 |

+------+----------+--------+---------------------+

The SQL FULL JOIN combines the results of both left and right outer joins. The joined table will

contain all records from both the tables and fill in NULLs for missing matches on either side.

Syntax

The basic syntax of a FULL JOIN is as follows −

SELECT table1.column1, table2.column2...

FROM table1

FULL JOIN table2

ON table1.common_field = table2.common_field;

Here, the given condition could be any given expression based on your requirement.

Example

Consider the following two tables.

68|D B M S

SRET TIRUPATI

Table 1 − CUSTOMERS Table is as follows.

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

+----+----------+-----+-----------+----------+

Table 2 − ORDERS Table is as follows.

+-----+---------------------+-------------+--------+

|OID | DATE | CUSTOMER_ID | AMOUNT |

+-----+---------------------+-------------+--------+

| 102 | 2009-10-08 00:00:00 | 3 | 3000 |

| 100 | 2009-10-08 00:00:00 | 3 | 1500 |

| 101 | 2009-11-20 00:00:00 | 2 | 1560 |

| 103 | 2008-05-20 00:00:00 | 4 | 2060 |

+-----+---------------------+-------------+--------+

Now, let us join these two tables using FULL JOIN as follows.

SQL> SELECT ID, NAME, AMOUNT, DATE

FROM CUSTOMERS

FULL JOIN ORDERS

ON CUSTOMERS.ID = ORDERS.CUSTOMER_ID;

This would produce the following result −

+------+----------+--------+---------------------+

| ID | NAME | AMOUNT | DATE |

+------+----------+--------+---------------------+

| 1 | Ramesh | NULL | NULL |

| 2 | Khilan | 1560 | 2009-11-20 00:00:00 |

| 3 | kaushik | 3000 | 2009-10-08 00:00:00 |

| 3 | kaushik | 1500 | 2009-10-08 00:00:00 |

| 4 | Chaitali | 2060 | 2008-05-20 00:00:00 |

| 5 | Hardik | NULL | NULL |

| 6 | Komal | NULL | NULL |

| 7 | Muffy | NULL | NULL |

| 3 | kaushik | 3000 | 2009-10-08 00:00:00 |

| 3 | kaushik | 1500 | 2009-10-08 00:00:00 |

| 2 | Khilan | 1560 | 2009-11-20 00:00:00 |

| 4 | Chaitali | 2060 | 2008-05-20 00:00:00 |

+------+----------+--------+---------------------+

If your Database does not support FULL JOIN (MySQL does not support FULL JOIN), then you can

use UNION ALL clause to combine these two JOINS as shown below.

SQL> SELECT ID, NAME, AMOUNT, DATE

FROM CUSTOMERS

LEFT JOIN ORDERS

ON CUSTOMERS.ID = ORDERS.CUSTOMER_ID

UNION ALL

69|D B M S

SRET TIRUPATI

SELECT ID, NAME, AMOUNT, DATE

FROM CUSTOMERS

RIGHT JOIN ORDERS

ON CUSTOMERS.ID = ORDERS.CUSTOMER_ID

2.8. VIEWS

A view is nothing more than a SQL statement that is stored in the database with an associated name.

A view is actually a composition of a table in the form of a predefined SQL query. A view can contain

all rows of a table or select rows from a table. A view can be created from one or many tables which

depends on the written SQL query to create a view. Views, which are a type of virtual tables allow

users to do the following −

1. Structure data in a way that users or classes of users find natural or intuitive.

2. Restrict access to the data in such a way that a user can see and (sometimes) modify exactly

what they need and no more.

3. Summarize data from various tables which can be used to generate reports.

Creating Views:

Database views are created using the CREATE VIEW statement. Views can be created from a single

table, multiple tables or another view. To create a view, a user must have the appropriate system

privilege according to the specific implementation.

The basic CREATE VIEW syntax is as follows −

CREATE VIEW view_name AS

SELECT column1, column2.....

FROM table_name

WHERE [condition];

You can include multiple tables in your SELECT statement in a similar way as you use them in a

normal SQL SELECT query.

Example

Consider the CUSTOMERS table having the following records –

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

+----+----------+-----+-----------+----------+

Following is an example to create a view from the CUSTOMERS table. This view would be used to

have customer name and age from the CUSTOMERS table.

SQL > CREATE VIEW CUSTOMERS_VIEW AS

SELECT name, age

FROM CUSTOMERS;

70|D B M S

SRET TIRUPATI

Now, you can query CUSTOMERS_VIEW in a similar way as you query an actual table. Following is

an example for the same.

SQL > SELECT * FROM CUSTOMERS_VIEW;

This would produce the following result.

+----------+-----+

| name | age |

+----------+-----+

| Ramesh | 32 |

| Khilan | 25 |

| kaushik | 23 |

| Chaitali | 25 |

| Hardik | 27 |

| Komal | 22 |

| Muffy | 24 |

+----------+-----+

The WITH CHECK OPTION

The WITH CHECK OPTION is a CREATE VIEW statement option. The purpose of the WITH

CHECK OPTION is to ensure that all UPDATE and INSERTs satisfy the condition(s) in the view

definition. If they do not satisfy the condition(s), the UPDATE or INSERT returns an error. The

following code block has an example of creating same view

CUSTOMERS_VIEW with the WITH CHECK OPTION.

CREATE VIEW CUSTOMERS_VIEW AS

SELECT name, age

FROM CUSTOMERS

WHERE age IS NOT NULL

WITH CHECK OPTION;

The WITH CHECK OPTION in this case should deny the entry of any NULL values in the view's AGE

column, because the view is defined by data that does not have a NULL value in the AGE column.

Updating a View

A view can be updated under certain conditions which are given below −

1. The SELECT clause may not contain the keyword DISTINCT.

2. The SELECT clause may not contain summary functions.

3. The SELECT clause may not contain set functions.

4. The SELECT clause may not contain set operators.

5. The SELECT clause may not contain an ORDER BY clause.

6. The FROM clause may not contain multiple tables.

7. The WHERE clause may not contain subqueries.

8. The query may not contain GROUP BY or HAVING.

9. Calculated columns may not be updated.

All NOT NULL columns from the base table must be included in the view in order

for the INSERT query to function. So, if a view satisfies all the above-mentioned rules then you can

update that view. The following code block has an example to update the age of Ramesh.

SQL > UPDATE CUSTOMERS_VIEW

SET AGE = 35

WHERE name = 'Ramesh';

This would ultimately update the base table CUSTOMERS and the same would reflect in the view

itself. Now, try to query the base table and the SELECT statement would produce the following result.

+----+----------+-----+-----------+----------+

71|D B M S

SRET TIRUPATI

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 35 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

+----+----------+-----+-----------+----------+

Inserting Rows into a View

Rows of data can be inserted into a view. The same rules that apply to the UPDATE command also

apply to the INSERT command. Here, we cannot insert rows in the CUSTOMERS_VIEW because we

have not included all the NOT NULL columns in this view, otherwise you can insert rows in a view in a

similar way as you insert them in a table.

Deleting Rows into a View

Rows of data can be deleted from a view. The same rules that apply to the UPDATE and INSERT

commands apply to the DELETE command.

Following is an example to delete a record having AGE = 22.

SQL > DELETE FROM CUSTOMERS_VIEW

WHERE age = 22;

This would ultimately delete a row from the base table CUSTOMERS and the same would reflect in

the view itself. Now, try to query the base table and the SELECT statement would produce the

following result.

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 35 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

+----+----------+-----+-----------+----------+

Dropping Views

Obviously, where you have a view, you need a way to drop the view if it is no longer needed. The

syntax is very simple and is given below −

DROP VIEW view_name;

Following is an example to drop the CUSTOMERS_VIEW from the CUSTOMERS table.

DROP VIEW CUSTOMERS_VIEW;

2.9. TRANSACTION

A transaction is a unit of work that is performed against a database. Transactions are units or

sequences of work accomplished in a logical order, whether in a manual fashion by a user or

automatically by some sort of a database program. A transaction is the propagation of one or more

changes to the database. For example, if you are creating a record or updating a record or deleting a

record from the table, then you are performing a transaction on that table. It is important to control

these transactions to ensure the data integrity and to handle database errors. Practically, you will club

many SQL queries into a group and you will execute all of them together as a part of a transaction.

72|D B M S

SRET TIRUPATI

Properties of Transactions

Transactions have the following four standard properties, usually referred to by the

acronym ACID.

1. Atomicity − ensures that all operations within the work unit are completed successfully.

Otherwise, the transaction is aborted at the point of failure and all the previous operations are

rolled back to their former state.

2. Consistency − ensures that the database properly changes states upon a Successfully

committed transaction.

3. Isolation − enables transactions to operate independently of and transparent to each other.

4. Durability − ensures that the result or effect of a committed transaction persists in

case of a system failure.

Transaction Control

The following commands are used to control transactions.

5. COMMIT − to save the changes.

6. ROLLBACK − to roll back the changes.

7. SAVEPOINT − creates points within the groups of transactions in which to

8. ROLLBACK.

9. SET TRANSACTION − Places a name on a transaction.

Transactional Control Commands

Transactional control commands are only used with the DML Commands such as - INSERT, UPDATE

and DELETE only. They cannot be used while creating tables or dropping them because these

operations are automatically committed in the database.

The COMMIT Command

The COMMIT command is the transactional command used to save changes invoked by atransaction

to the database.The COMMIT command is the transactional command used to save changes invoked

by a transaction to the database. The COMMIT command saves all the transactions to the database

since the last COMMIT or ROLLBACK command.

The syntax for the COMMIT command is as follows.

COMMIT;

Example

Consider the CUSTOMERS table having the following records −

+----+----------+-----+-----------+----------+-----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+-----------+

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

+----+----------+-----+-----------+----------+

Following is an example which would delete those records from the table which have age = 25 and

then COMMIT the changes in the database.

SQL> DELETE FROM CUSTOMERS

WHERE AGE = 25;

SQL> COMMIT;

73|D B M S

SRET TIRUPATI

Thus, two rows from the table would be deleted and the SELECT statement would produce the

following result.

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

+----+----------+-----+-----------+----------+

The ROLLBACK Command

The ROLLBACK command is the transactional command used to undo transactions that have not

already been saved to the database. This command can only be used to undo transactions since the

last COMMIT or ROLLBACK command was issued.

The syntax for a ROLLBACK command is as follows −

ROLLBACK;

Example

Consider the CUSTOMERS table having the following records −

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

+----+----------+-----+-----------+----------+

Following is an example, which would delete those records from the table which have the age = 25

and then ROLLBACK the changes in the database.

SQL> DELETE FROM CUSTOMERS

WHERE AGE = 25;

SQL> ROLLBACK;

Thus, the delete operation would not impact the table and the SELECT statement would

produce the following result.

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

+----+----------+-----+-----------+----------+

The SAVEPOINT Command

74|D B M S

SRET TIRUPATI

A SAVEPOINT is a point in a transaction when you can roll the transaction back to a certain point

without rolling back the entire transaction. The syntax for a SAVEPOINT command is as shown below.

SAVEPOINT SAVEPOINT_NAME;

This command serves only in the creation of a SAVEPOINT among all the transactional statements.

The ROLLBACK command is used to undo a group of transactions. The syntax for rolling back to a

SAVEPOINT is as shown below.

ROLLBACK TO SAVEPOINT_NAME;

Following is an example where you plan to delete the three different records from the CUSTOMERS

table. You want to create a SAVEPOINT before each delete, so that you can ROLLBACK to any

SAVEPOINT at any time to return the appropriate data to its original state.

Example

Consider the CUSTOMERS table having the following records.

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

+----+----------+-----+-----------+----------+

The following code block contains the series of operations.

SQL> SAVEPOINT SP1;

Savepoint created.

SQL> DELETE FROM CUSTOMERS WHERE ID=1;

1 row deleted.

SQL> SAVEPOINT SP2;

Savepoint created.

SQL> DELETE FROM CUSTOMERS WHERE ID=2;

1 row deleted.

SQL> SAVEPOINT SP3;

Savepoint created.

SQL> DELETE FROM CUSTOMERS WHERE ID=3;

1 row deleted.

Now that the three deletions have taken place, let us assume that you have changed your mind and

decided to ROLLBACK to the SAVEPOINT that you identified as SP2. Because SP2 was created after

the first deletion, the last two deletions are undone –

SQL> ROLLBACK TO SP2;

Rollback complete.

75|D B M S

SRET TIRUPATI

Notice that only the first deletion took place since you rolled back to SP2.

SQL> SELECT * FROM CUSTOMERS;

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

+----+----------+-----+-----------+----------+

6 rows selected.

The RELEASE SAVEPOINT Command

The RELEASE SAVEPOINT command is used to remove a SAVEPOINT that you have created.

The syntax for a RELEASE SAVEPOINT command is as follows.

RELEASE SAVEPOINT SAVEPOINT_NAME;

Once a SAVEPOINT has been released, you can no longer use the ROLLBACK command to undo

transactions performed since the last SAVEPOINT.

The SET TRANSACTION Command

The SET TRANSACTION command can be used to initiate a database transaction. This command is

used to specify characteristics for the transaction that follows. For example, you can specify a

transaction to be read only or read write.

The syntax for a SET TRANSACTION command is as follows.

SET TRANSACTION [READ WRITE | READ ONLY];

SQL Constraints

SQL Constraints are rules used to limit the type of data that can go into a table, to maintain the

accuracy and integrity of the data inside table. Constraints can be divided into the following two types,

1.Column level constraints: Limits only column data.

2.Table level constraints: Limits whole table data.

Constraints are used to make sure that the integrity of data is maintained in the database.

Following are the most used constraints that can be applied to a table.

1. NOT NULL

2. UNIQUE

3. PRIMARY KEY

4. FOREIGN KEY

5. CHECK

6. DEFAULT

NOT NULL CONSTRAINT

NOT NULL constraint restricts a column from having a NULL value. Once NOT NULL constraint is

applied to a column, you cannot pass a null value to that column. It enforces a column to contain a

proper value.

One important point to note about this constraint is that it cannot be defined at table level. Example

using NOT NULL constraint

CREATE TABLE Student(s_id int NOT NULL, Name varchar(60), Age int);

The above query will declare that the s_id field of Student table will not take NULL value.

UNIQUE CONSTRAINT

UNIQUE constraint ensures that a field or column will only have unique values. A UNIQUE constraint

field will not have duplicate data. This constraint can be applied atcolumn level or table level. Using

76|D B M S

SRET TIRUPATI

UNIQUE constraint when creating a Table (Table Level) Here we have a simple CREATE query to

create a table, which will have a column s_id with unique values.

CREATE TABLE Student(s_id int NOT NULL UNIQUE, Name

varchar(60), Age int);

The above query will declare that the s_id field of Student table will only have unique values and wont

take NULL value. Using UNIQUE constraint after Table is created (Column Level)

ALTER TABLE Student ADD UNIQUE(s_id);

The above query specifies that s_id field of Student table will only have unique value.

PRIMARY KEY CONSTRAINT

Primary key constraint uniquely identifies each record in a database. A Primary Key must contain

unique value and it must not contain null value. Usually Primary Key is used to index the data inside

the table.

Using PRIMARY KEY constraint at Table Level

CREATE table Student (s_id int PRIMARY KEY, Name varchar(60)

NOT NULL, Age int);

The above command will creates a PRIMARY KEY on the s_id.

Using PRIMARY KEY constraint at Column Level

ALTER table Student ADD PRIMARY KEY (s_id);

The above command will creates a PRIMARY KEY on the s_id.

FOREIGN KEY CONSTRAINT

FOREIGN KEY is used to relate two tables. FOREIGN KEY constraint is also used to restrict actions

that would destroy links between tables.

In Customer_Detail table, c_id is the primary key which is set as foreign key in Order_Detail table. The

value that is entered in c_id which is set as foreign key in Order_Detail table must be present in

Customer_Detail table where it is set as primary key. This prevents invalid data to be inserted into

c_id column of Order_Detail table.

If you try to insert any incorrect data, DBMS will return error and will not allow you to insert the data.

Using FOREIGN KEY constraint at Table Level.

CREATE table Order_Detail

(

order_id int PRIMARY KEY,

order_name varchar(60) NOT NULL,

c_id int FOREIGN KEY REFERENCES Customer_Detail(c_id)

);

In this query, c_id in table Order_Detail is made as foriegn key, which is a reference of c_id column in

Customer_Detail table.

Using FOREIGN KEY constraint at Column Level

ALTER table Order_Detail ADD FOREIGN KEY (c_id) REFERENCES

Customer_Detail(c_id);

Behaviour of Foriegn Key Column on Delete

There are two ways to maintin the integrity of data in Child table, when a particular record is deleted in

the main table. When two tables are connected with Foriegn key, and certain data in the main table is

deleted, for which a record exits in the child table, then we must have some mechanism to save the

integrity of data in the child table.

1.On Delete Cascade : This will remove the record from child table, if that value of

foriegn key is deleted from the main table.

2.On Delete Null : This will set all the values in that record of child table as NULL,

for which the value of foriegn key is deleted from the main table.

77|D B M S

SRET TIRUPATI

3.If we don't use any of the above, then we cannot delete data from the main table for

which data in child table exists. We will get an error if we try to do so.

ERROR : Record in child table exist.

CHECK Constraint

CHECK constraint is used to restrict the value of a column between a range. It performs check on the

values, before storing them into the database. Its like condition checking before saving data into a

column.

Using CHECK constraint at Table Level

CREATE table Student(

s_id int NOT NULL CHECK(s_id > 0),

Name varchar(60) NOT NULL,

Age int

);

The above query will restrict the s_id value to be greater than zero.

Using CHECK constraint at Column Level

ALTER table Student ADD CHECK(s_id > 0);

2.10.SQL DATA TYPE

SQL Data Type is an attribute that specifies the type of data of any object. Each column, variable and

expression has a related data type in SQL. You can use these data types while creating your tables.

You can choose a data type for a table column based on your requirement.

AUTHORIZATION

We may assign a user several forms of authorizations on parts of the database.

Authorizations on data include:

1. Authorization to read data.

2. Authorization to insert new data.

3. Authorization to update data.

4. Authorization to delete data.

Each of these types of authorizations is called a privilege. We may authorize the user all, none, or a

combination of these types of privileges on specified parts of a database, such as a relation or a view.

Granting and Revoking of Privileges:

The SQL standard includes the privileges select, insert, update, and delete. The privilege all privileges

can be used as a short form for all the allowable privi-leges. A user who creates a new relation is

given all privileges on that relation automatically. The SQL data-definition language includes

commands to grant and revoke privileges. The grant statement is used to confer authorization. The

basic form of this statement is:

grant <privilege list>

on <relation name or view name>

to <user/role list>;

The privilege list allows the granting of several privileges in one command. The select authorization on

a relation is required to read tuples in the relation. The following grant statement grants database

users Amit and Satoshi select authorization on the department relation:

grant select on department to Amit, Satoshi;

This allows those users to run queries on the department relation. This grant statement gives users

Amit and Satoshi update authorization on the budget attribute of the department relation:

grant update (budget) on department to Amit, Satoshi;

The insert authorization on a relation allows a user to insert tuples into the relation. The insert privilege

may also specify a list of attributes; any inserts to the relation must specify only these attributes, and

the system either gives each of the remaining attributes default values (if a default is defined for the

78|D B M S

SRET TIRUPATI

attribute) or sets them to null. The delete authorization on a relation allows a user to delete tuples from

a relation.

To revoke an authorization, we use the revoke statement. It takes a form almost identical to that of

grant:

revoke <privilege list>

on <relation name or view name>

from <user/role list>;

Thus, to revoke the privileges that we granted previously, we write revoke select on department from

Amit, Satoshi;

revoke update (budget) on department from Amit, Satoshi;

Roles:

The notion of roles captures this concept. A set of roles is created in the database. Authorizations can

be granted to roles, in exactly the same fashion as they are granted to individual users. Each

database user is granted a set of roles (which may be empty) that she is authorized to perform. Roles

can be created in SQL as follows:

create role instructor;

Roles can then be granted privileges just as the users can, as illustrated in this statement:

grant select on takes

to instructor;

Roles can be granted to users, as well as to other roles, as these statements show:

grant dean to Amit;

create role dean;

grant instructor to dean;

grant dean to Satoshi;

Thus the privileges of a user or a role consist of:

• All privileges directly granted to the user/role.

• All privileges granted to roles that have been granted to the user/role.

Authorization on Views in our university example, consider a staff member who needs to know the

salaries of all faculty in a particular department, say the Geology department. This staff member is not

authorized to see information regarding faculty in other departments. Thus, the staff member must be

denied direct access to the instructor relation. But, if he is to have access to the information for the

Geology department, he might be granted access to a view that we shall call geo instructor, consisting

of only those instructor tuples pertaining to the Geology department. This view can be defined in SQL

as follows:

create view geo instructor as

(select *

from instructor

where dept name = ’Geology’);

Suppose that the staff member issues the following SQL query:

select *

from geo instructor;

Authorizations on Schema:

The SQL standard specifies a primitive authorization mechanism for the database schema:

Only the owner of the schema can carry out any modification to the schema, such as creating or

deleting relations, adding or dropping attributes of relations, and adding or dropping indices

Transfer of Privileges:

A user who has been granted some form of authorization may be allowed to pass on this authorization

to other users. By default, a user/role that is granted a privilege is not authorized to grant that privilege

to another user/role. If we wish to grant a privilege and to allow the recipient to pass the privilege on to

other users, we append the with grant option clause to the appropriate grant command. For example,

79|D B M S

SRET TIRUPATI

if we wish to allow Amit the select privilege on department and allow Amit to grant this privilege to

others, we write:

grant select on department to Amit with grant option;

The creator of an object (relation/view/role) holds all privileges on the object, including the privilege to

grant privileges to others.

Revoking of Privileges:

revocation of a privilege from a user/role may cause other users/roles also to lose that privilege. This

behavior is called cascading revocation. In most database systems, cascading I the default behavior.

However, the revoke statement may specify restrict in order to prevent cascading revocation:

revoke select on department from Amit, Satoshi restrict;

ADVANCED SQL

2.11. Accessing SQL From a Programming Language

SQL provides a powerful declarative query language. Writing queries in SQL is usually much easier

than coding the same queries in a general-purpose programming language. However, a database

programmer must have access to a general-purpose programming language for at least two reasons:

1. Not all queries can be expressed in SQL , since SQL does not provide the full expressive power of

a general-purpose language. That is, there exist queries that can be expressed in a language such as

C, Java, or Cobol that cannot be expressed in SQL . To write such queries, we can embed SQL within

a more powerful language.

2. Nondeclarative actions—such as printing a report, interacting with a user, or sending the results of

a query to a graphical user interface —cannot be done from within SQL . Applications usually have

several components, and querying or updating data is only one component; other components are

written in general-purpose programming languages. For an integrated application, there must be a

means to combine SQL with a general-purpose programming language. There are two approaches to

accessing SQL from a general-purpose programming language:

• Dynamic SQL : A general-purpose program can connect to and communicate

with a database server using a collection of functions (for procedural languages) or

methods (for object-oriented languages). Dynamic SQL allows theprogram to

construct an SQL query as a character string at runtime, submit the query, and then

retrieve the result into program variables a tuple at a time. The dynamic SQL

component of SQL allows programs to construct and submit SQL queries at

runtime.

• Embedded SQL : Like dynamic SQL , embedded SQL provides a means by

which a program can interact with a database server. However, under embedded

SQL , the SQL statements are identified at compile time using a preprocessor.

The preprocessor submits the SQL statements to the database system for

precompilation and optimization; then it replaces the SQL statements in the

application program with appropriate code and function calls before in voking the

programming-language compiler.

JDBC

The JDBC standard defines an application program interface (API) that Java

programs can use to connect to database servers.

public static void JDBCexample(String userid, String passwd)

{

try

{

Class.forName ("oracle.jdbc.driver.OracleDriver");

80|D B M S

SRET TIRUPATI

Connection conn =

DriverManager.getConnection("jdbc:oracle:thin:@db.yale.edu:1521:univdb",userid,

passwd);

Statement stmt = conn.createStatement();

try {

stmt.executeUpdate(

"insert into instructor values(’77987’, ’Kim’, ’Physics’, 98000)");

} catch (SQLException sqle)

{

System.out.println("Could not insert tuple. " + sqle);

}

ResultSet rset = stmt.executeQuery(

"select dept name, avg (salary) "+" from instructor "+" group by dept name");

while (rset.next()) {

System.out.println(rset.getString("dept name") + " " +rset.getFloat(2));

}

stmt.close();

conn.close();

}

catch (Exception sqle)

{

System.out.println("Exception : " + sqle);

}

}

The above code shows an example Java program that uses the JDBC interface. It illustrates how

connections are opened, how statements are executed and results processed, and how connections

are closed. We discuss this example in detail in this section. The Java program must import java.sql.*

, which contains the interface definitions for the functionality provided by JDBC .

1. Connecting to the Database

2. Shipping SQL Statements to the Database System

3. Retrieving the Result of a Query

4. Prepared Statements

5. Callable Statements

6. Metadata Features

ODBC:

The Open Database Connectivity (ODBC) standard defines an API that applications can use to open

a connection with a database, send queries and updates, and get back results. Applications such as

graphical user interfaces, statistics packages, and spreadsheets can make use of the same ODBC

API to connect to any database server that supports ODBC .

Each database system supporting ODBC provides a library that must be linked with the client

program. When the client program makes an ODBC API call, the code in the library communicates

with the server to carry out the requested action, and fetch results. The above code shows an

example of C code using the ODBC API.

Embedded SQL:

The SQL standard defines embeddings of SQL in a variety of programming languages, such as C,

C++, Cobol, Pascal, Java, PL/I , and Fortran. A language in which SQL queries are embedded is

referred to as a host language, and the SQL structures permitted in the host language constitute

embedded SQL . Programs written in the host language can use the embedded SQL syntax to access

and update data stored in a database. An embedded SQL program must be processed by a special

preprocessor prior to compilation. The preprocessor replaces embedded SQL requests with

81|D B M S

SRET TIRUPATI

hostlanguage declarations and procedure calls that allow runtime execution of the database accesses.

Then, the resulting program is compiled by the host-language compiler. This is the main distinction

between embedded SQL and JDBC or ODBC . In JDBC , SQL statements are interpreted at runtime

(even if they are prepared first using the prepared statement feature). When embedded SQL is used,

some SQL-related errors (including data-type errors) may be caught at compile time. To identify

embedded SQL requeststo the preprocessor, we use the EXEC SQL statement; it has the form:

EXEC SQL <embedded SQL statement >;

The exact syntax for embedded SQL requests depends on the language in which SQL is embedded.

In some languages, such as Cobol, the semicolon is replaced with ENDEXEC. Before executing any

SQL statements, the program must first connect to the database.

This is done using:

EXEC SQL connect to server user user-name using password;

The open statement for our sample query is as follows:

EXEC SQL open c;

We must use the close statement to tell the database system to delete the temporary relation that

held the result of the query. For our example, this statement takes

the form

EXEC SQL close c;

2.12.PROCEDURES:

A subprogram is a program unit/module that performs a particular task. These subprograms are

combined to form larger programs. This is basically called the 'Modular design'. A subprogram can be

invoked by another subprogram or program which is called the calling program.

A subprogram can be created −

1. At the schema level

2. Inside a package

3. Inside a PL/SQL block

At the schema level, subprogram is a standalone subprogram. It is created with the CREATE

PROCEDURE or the CREATE FUNCTION statement. It is stored in the database and can be deleted

with the DROP PROCEDURE or DROP FUNCTION statement.

A subprogram created inside a package is a packaged subprogram. It is stored in the database and

can be deleted only when the package is deleted with the DROP PACKAGE statement. We will

discuss packages in the chapter 'PL/SQL - Packages'. PL/SQL subprograms are named PL/SQL

blocks that can be invoked with a set of parameters. PL/SQL provides two kinds of subprograms −

1. Functions − These subprograms return a single value; mainly used to

compute and return a value.

2. Procedures − These subprograms do not return a value directly; mainly used

to perform an action.

This chapter is going to cover important aspects of a PL/SQL procedure. We will

discuss PL/SQL function in the next chapter.

Parts of a PL/SQL Subprogram

Each PL/SQL subprogram has a name, and may also have a parameter list. Like

anonymous PL/SQL blocks, the named blocks will also have the following three parts

−

1 Declarative Part

It is an optional part. However, the declarative part for a subprogram does not start with the DECLARE

keyword. It contains declarations of types, cursors, constants, variables, exceptions, and nested

82|D B M S

SRET TIRUPATI

subprograms. These items are local to the subprogram and cease to exist when the subprogram

completes execution.

2 Executable Part

This is a mandatory part and contains statements that perform the designated action.

3 Exception-handling

This is again an optional part. It contains the code that handles run-time errors.

Creating a Procedure

A procedure is created with the CREATE OR REPLACE PROCEDURE statement. The simplified

syntax for the CREATE OR REPLACE PROCEDURE statement is as follows −

CREATE [OR REPLACE] PROCEDURE procedure_name

[(parameter_name [IN | OUT | IN OUT] type [, ...])]

{IS | AS}

BEGIN

< procedure_body >

END procedure_name;

Where,

1. procedure-name specifies the name of the procedure.

2. [OR REPLACE] option allows the modification of an existing procedure.

3. The optional parameter list contains name, mode and types of the parameters.

IN represents the value that will be passed from outside and OUT represents the parameter that will

be used to return a value outside of the procedure.

1. Procedure-body contains the executable part.

2. The AS keyword is used instead of the IS keyword for creating a standalone procedure.

Example

The following example creates a simple procedure that displays the string 'Hello World!' on the screen

when executed.

CREATE OR REPLACE PROCEDURE greetings

AS

BEGIN

dbms_output.put_line('Hello World!');

END;

/

When the above code is executed using the SQL prompt, it will produce the following

result −

Procedure created.

Executing a Standalone Procedure

A standalone procedure can be called in two ways −

Using the EXECUTE keyword

Calling the name of the procedure from a PL/SQL block

The above procedure named 'greetings' can be called with the EXECUTE keyword as

−

EXECUTE greetings;

The above call will display −

Hello World

PL/SQL procedure successfully completed.

The procedure can also be called from another PL/SQL block −

BEGIN

83|D B M S

SRET TIRUPATI

greetings;

END;

/

The above call will display −

Hello World

PL/SQL procedure successfully completed.

Deleting a Standalone Procedure:

A standalone procedure is deleted with the DROP PROCEDURE statement. Syntax for deleting a

procedure is −

DROP PROCEDURE procedure-name;

You can drop the greetings procedure by using the following statement −

DROP PROCEDURE greetings;

Parameter Modes in PL/SQL Subprograms:

The following table lists out the parameter modes in PL/SQL subprograms −

S.No Parameter Mode & Description

1.IN

An IN parameter lets you pass a value to the subprogram. It is a read-only parameter. Inside the

subprogram, an IN parameter acts like a constant. It cannot be assigned a value. You can pass a

constant, literal, initialized variable, or expression as an IN parameter. You can also initialize it to a

default value; however, in that case, it is omitted from the subprogram call. It is the default mode of

parameter passing. Parameters are passed by reference.

2 OUT

An OUT parameter returns a value to the calling program. Inside the subprogram, an OUT parameter

acts like a variable. You can change its value and reference the value after assigning it. The actual

parameter must be variable and it is passed by value.

3 IN OUT

An IN OUT parameter passes an initial value to a subprogram and returns an updated value to the

caller. It can be assigned a value and the value can be read. The actual parameter corresponding to

an IN OUT formal parameter must be a variable, not a constant or an expression. Formal parameter

must be assigned a value. Actual parameter is passed by value.

IN & OUT Mode Example 1

This program finds the minimum of two values. Here, the procedure takes two numbers using the IN

mode and returns their minimum using the OUT parameters.

DECLARE

a number;

b number;

c number;

PROCEDURE findMin(x IN number, y IN number, z OUT number) IS

BEGIN

IF x < y THEN

z:= x;

ELSE

z:= y;

END IF;

END;

BEGIN

a:= 23;

84|D B M S

SRET TIRUPATI

b:= 45;

findMin(a, b, c);

dbms_output.put_line(' Minimum of (23, 45) : ' || c);

END;

/

When the above code is executed at the SQL prompt, it produces the following result −

Minimum of (23, 45) : 23

PL/SQL procedure successfully completed.

IN & OUT Mode Example 2

This procedure computes the square of value of a passed value. This example shows how we can use

the same parameter to accept a value and then return another result.

DECLARE

a number;

PROCEDURE squareNum(x IN OUT number) IS

BEGIN

x := x * x;

END;

BEGIN

a:= 23;

squareNum(a);

dbms_output.put_line(' Square of (23): ' || a);

END;

/

When the above code is executed at the SQL prompt, it produces the following result −

Square of (23): 529

PL/SQL procedure successfully completed.

Methods for Passing Parameters

Actual parameters can be passed in three ways −

 Positional notation

 Named notation

 Mixed notation

Positional Notation

In positional notation, you can call the procedure as −

findMin(a, b, c, d);

In positional notation, the first actual parameter is substituted for the first formal parameter; the second

actual parameter is substituted for the second formal parameter, and so on. So, a is substituted for x,

b is substituted for y, c is substituted for z and d is substituted for m.

Named Notation

In named notation, the actual parameter is associated with the formal parameter using the arrow

symbol (=>). The procedure call will be like the following −

findMin(x => a, y => b, z => c, m => d);

Mixed Notation

In mixed notation, you can mix both notations in procedure call; however, the positional notation

should precede the named notation.

The following call is legal −

findMin(a, b, c, m => d);

However, this is not legal:

findMin(x => a, b, c, d);

85|D B M S

SRET TIRUPATI

FUNCTIONS:

A function is same as a procedure except that it returns a value. Therefore, all the discussions of the

previous chapter are true for functions too.

Creating a Function

A standalone function is created using the CREATE FUNCTION statement. The simplified syntax for

the CREATE OR REPLACE PROCEDURE statement is as follows −

CREATE [OR REPLACE] FUNCTION function_name

[(parameter_name [IN | OUT | IN OUT] type [, ...])]

RETURN return_datatype

{IS | AS}

BEGIN

< function_body >

END [function_name];

Where,

1. function-name specifies the name of the function.

2. [OR REPLACE] option allows the modification of an existing function.

3. The optional parameter list contains name, mode and types of the parameters.

4. IN represents the value that will be passed from outside and OUT represents

the parameter that will be used to return a value outside of the procedure.

5. The function must contain a return statement.

6. The RETURN clause specifies the data type you are going to return from the

function.

7. Function-body contains the executable part.

8. The AS keyword is used instead of the IS keyword for creating a standalone

function.

Example

The following example illustrates how to create and call a standalone function. This function returns

the total number of CUSTOMERS in the customers table. We will use the CUSTOMERS table, which

we had created in the PL/SQL Variables chapter −

Select * from customers;

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

+----+----------+-----+-----------+----------+

CREATE OR REPLACE FUNCTION totalCustomers

RETURN number IS

total number(2) := 0;

BEGIN

SELECT count(*) into total

FROM customers;

RETURN total;

86|D B M S

SRET TIRUPATI

END;

/

When the above code is executed using the SQL prompt, it will produce the following result − Function

created.

Calling a Function

While creating a function, you give a definition of what the function has to do. To use a function, you

will have to call that function to perform the defined task. When a program calls a function, the

program control is transferred to the called function.

A called function performs the defined task and when its return statement is executed or when the last

end statement is reached, it returns the program control back to the main program. To call a function,

you simply need to pass the required parameters along with the function name and if the function

returns a value, then you can store the returned value. Following program calls the function

totalCustomers from an anonymous block −

DECLARE

c number(2);

BEGIN

c := totalCustomers();

dbms_output.put_line('Total no. of Customers: ' || c);

END;

/

When the above code is executed at the SQL prompt, it produces the following result −

Total no. of Customers: 6

PL/SQL procedure successfully completed.

Example

The following example demonstrates Declaring, Defining, and Invoking a Simple PL/SQL Function that

computes and returns the maximum of two values.

DECLARE

a number;

b number;

c number;

FUNCTION findMax(x IN number, y IN number)

RETURN number

IS

z number;

BEGIN

IF x > y THEN

z:= x;

ELSE

Z:= y;

END IF;

RETURN z;

END;

BEGIN

a:= 23;

b:= 45;

c := findMax(a, b);

dbms_output.put_line(' Maximum of (23,45): ' || c);

END;

/

87|D B M S

SRET TIRUPATI

When the above code is executed at the SQL prompt, it produces the following result − Maximum of

(23,45): 45

PL/SQL procedure successfully completed.

PL/SQL Recursive Functions

We have seen that a program or subprogram may call another subprogram. When a subprogram calls

itself, it is referred to as a recursive call and the process is known as recursion.

To illustrate the concept, let us calculate the factorial of a number. Factorial of a number n is defined

as −

n! = n*(n-1)!

= n*(n-1)*(n-2)!

...

= n*(n-1)*(n-2)*(n-3)... 1

The following program calculates the factorial of a given number by calling itself recursively –

DECLARE

num number;

factorial number;

FUNCTION fact(x number)

RETURN number

IS

f number;

BEGIN

IF x=0 THEN

f := 1;

ELSE

f := x * fact(x-1);

END IF;

RETURN f;

END;

BEGIN

num:= 6;

factorial := fact(num);

dbms_output.put_line(' Factorial '|| num || ' is ' || factorial);

END;

/

When the above code is executed at the SQL prompt, it produces the following result − Factorial 6 is

720

PL/SQL procedure successfully completed.

TRIGGERS:

Triggers are stored programs, which are automatically executed or fired when some events occur.

Triggers are, in fact, written to be executed in response to any of the following events −

 A database manipulation (DML)s tatement (DELETE, INSERT, or

UPDATE)

 A database definition (DDL) statement (CREATE, ALTER, or DROP).

 A database operation(SERVERERROR, LOGON, LOGOFF, STARTUP, or SHUTDOWN).

Triggers can be defined on the table, view, schema, or database with which the event is associated.

88|D B M S

SRET TIRUPATI

Benefits of Triggers

Triggers can be written for the following purposes −

1. Generating some derived column values automatically

2. Enforcing referential integrity

3. Event logging and storing information on table access

4. Auditing

5. Synchronous replication of tables

6. Imposing security authorizations

7. Preventing invalid transactions

Creating Triggers

The syntax for creating a trigger is −

CREATE [OR REPLACE] TRIGGER trigger_name

{BEFORE | AFTER | INSTEAD OF }

{INSERT [OR] | UPDATE [OR] | DELETE}

[OF col_name]

ON table_name

[REFERENCING OLD AS o NEW AS n]

[FOR EACH ROW]

WHEN (condition)

DECLARE

Declaration-statements

BEGIN

Executable-statements

EXCEPTION

Exception-handling-statements

END;

Where,

1. CREATE [OR REPLACE] TRIGGER trigger_name − Creates or replaces an existing trigger

with thetrigger_name.

2. {BEFORE | AFTER | INSTEAD OF} − This specifies when the trigger will be executed. The

INSTEAD OF clause is used for creating trigger on a view. {INSERT [OR] | UPDATE [OR] |

DELETE} − This specifies the DML operation.

3. [OF col_name] − This specifies the column name that will be updated.

4. [ON table_name] − This specifies the name of the table associated with the trigger.

5. [REFERENCING OLD AS o NEW AS n] − This allows you to refer new and old values for

various DML statements, such as INSERT, UPDATE, and DELETE.

6. [FOR EACH ROW] − This specifies a row-level trigger, i.e., the trigger will be executed for each

row being affected. Otherwise the trigger will execute just once when the SQL statement is

executed, which is called a table level trigger.

7. WHEN (condition) − This provides a condition for rows for which the trigger would fire. This

clause is valid only for row-level triggers.

Example

To start with, we will be using the CUSTOMERS table we had created and used in the

previous chapters −

Select * from customers;

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

89|D B M S

SRET TIRUPATI

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

+----+----------+-----+-----------+----------+

The following program creates a row-level trigger for the customers table that would fire for INSERT or

UPDATE or DELETE operations performed on the CUSTOMERS table. This trigger will display the

salary difference between the old values and new values −

CREATE OR REPLACE TRIGGER display_salary_changes

BEFORE DELETE OR INSERT OR UPDATE ON customers

FOR EACH ROW

WHEN (NEW.ID > 0)

DECLARE

sal_diff number;

BEGIN

sal_diff := :NEW.salary - :OLD.salary;

dbms_output.put_line('Old salary: ' || :OLD.salary);

dbms_output.put_line('New salary: ' || :NEW.salary);

dbms_output.put_line('Salary difference: ' || sal_diff);

END;

/

When the above code is executed at the SQL prompt, it produces the following result − Trigger

created.

The following points need to be considered here −

OLD and NEW references are not available for table-level triggers, rather you can use them for

record-level triggers. If you want to query the table in the same trigger, then you should use the

AFTER keyword, because triggers can query the table or change it again only after the initial changes

are applied and the table is back in a consistent state. The above trigger has been written in such a

way that it will fire before any DELETE or INSERT or UPDATE operation on the table, but you can

write your trigger on a single or multiple operations, for example BEFORE DELETE, which will fire

whenever a record will be deleted using the DELETE operation on the table.

Triggering a Trigger

Let us perform some DML operations on the CUSTOMERS table. Here is one INSERT statement,

which will create a new record in the table −

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (7, 'Kriti', 22, 'HP', 7500.00);

When a record is created in the CUSTOMERS table, the above create trigger,

display_salary_changes will be fired and it will display the following result −

Old salary:

New salary: 7500

Salary difference:

Because this is a new record, old salary is not available and the above result comes as null. Let us

now perform one more DML operation on the CUSTOMERS table. The

UPDATE statement will update an existing record in the table –

UPDATE customers

SET salary = salary + 500

WHERE id = 2;

90|D B M S

SRET TIRUPATI

When a record is updated in the CUSTOMERS table, the above create trigger,

display_salary_changes will be fired and it will display the following result −

Old salary: 1500

New salary: 2000

Salary difference: 500

2.13. Relational Algebra

The relational algebra is a procedural query language. It consists of a set of operations that take one

or two relations as input and produce a new relation as their result. The fundamental operations in the

relational algebra are

1. select: σ

2. project: Π

3. union: ∪

4. set difference: –

5. Cartesian product: x

6. rename: ρ

The operators take one or two relations as inputs and produce anew relation as a result. The select,

project, and rename operations are called unary operations, because they operate on one relation.

The other three operations operate on pairs of relations and are, therefore, called binary operations.

The Select Operation The select operation selects tuples that satisfy a given predicate. We use the

lowercase Greek letter sigma (σ) to denote selection. The predicate appears as a subscript to σ. The

argument relation is in parentheses after the σ. The instructor relation

Thus, to select those tuples of the instructor relation where the instructor is in the “Physics”

department, we write: σ dept name = “Physics” (instructor) If the instructor relation is as shown in

table, then the relation that results from the preceding query is as shown in Figure 2. We can find all

instructors with salary greater than $90,000 by writing: σ salary > 90000 (instructor).

In general, we allow comparisons using =, =, , and ≥ in the selection predicate. Furthermore,we can

combine several predicates into a larger predicate by using the connectives and (∧), or (∨), and not

(¬). Thus, to find the instructors in Physics with a salary greater than $90,000, we write:

σ dept name =“Physics”∧ salary > 90000 (instructor)

The Project Operation Suppose we want to list all instructors’ ID, name, and salary, but do not care

about the dept name. The project operation allows us to produce this relation. The project operation is

a unary operation that returns its argument relation, with certain attributes left out. Since a relation is a

set, any duplicate rows are eliminated. Projection is denoted by the uppercase Greek letter pi (Π). Π

ID, name, salary (instructor).

The Union Operation:

Consider a query to find the set of all courses taught in the Fall 2009 semester, the Spring 2010

semester, or both. The information is contained in the section relation. To find the set of all courses

taught in the Fall 2009 semester, we write: Π course id (σ semester =“Fall”∧year=2009 (section)) To

find the set of all courses taught in the Spring 2010 semester, we write: Π course id (σ semester

=“Spring”∧year=2010 (section))

To answer the query, we need the union of these two sets; that is, we need all section IDs that appear

in either or both of the two relations. We find these data by the binary operation union, denoted, as in

