
Oracle Business
Intelligence with
Machine Learning

Artificial Intelligence Techniques
in OBIEE for Actionable BI
—
Rosendo Abellera
Lakshman Bulusu

Oracle Business
Intelligence with

Machine Learning
Artificial Intelligence Techniques in

OBIEE for Actionable BI

Rosendo Abellera
Lakshman Bulusu

Oracle Business Intelligence with Machine Learning

Rosendo Abellera Lakshman Bulusu
Aetna St. Tarzana, California Priceton, New Jersey
USA USA

ISBN-13 (pbk): 978-1-4842-3254-5 ISBN-13 (electronic): 978-1-4842-3255-2
https://doi.org/10.1007/978-1-4842-3255-2

Library of Congress Control Number: 2017963641

Copyright © 2018 by Rosendo Abellera and Lakshman Bulusu

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image, we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Cover image by Freepik (www.freepik.com)

Managing Director: WelmoedSpahr
Editorial Director: Todd Green
Acquisitions Editor: Celestin Suresh John
Development Editor: Matthew Moodie
Technical Reviewer: Shibaji Mukherjee
Coordinating Editor: Sanchita Mandal
Copy Editor: Sharon Wilkey
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is
a California LLC and the sole member (owner) is Springer Science + Business Media Finance
Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit
www.apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-3110-4.
For more detailed information, please visit www.apress.com/source-code/.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-3255-2
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
www.apress.com/978-1-4842-3110-4
www.apress.com/source-code/

iii

Contents

About the Authors �� vii

About the Technical Reviewer �� ix

Acknowledgments �� xi

Introduction �� xiii

 ■Chapter 1: Introduction �� 1

Artificial Intelligence and Machine Learning ��� 2

Overview of Machine Learning ��� 4

Patterns, Patterns, Patterns �� 5

Machine-Learning Vendors ��� 7

Build or Buy? ��� 7

Introduction to Machine-Learning Components in OBIEE ����������������������� 8

Oracle BI and Big Data ��� 8

R for Oracle BI��� 9

Summary ��� 9

Citations �� 10

 ■Chapter 2: Business Intelligence, Big Data, and the Cloud ����������� 11

The Goal of Business Intelligence ��� 11

Big-Data Analytics �� 12

But Why Machine Learning Now? ��� 14

■ Contents

iv

A Picture Is Worth a Thousand Words �� 14

Data Modeling �� 17

The Future of Data Preparation with Machine Learning ��� 18

Oracle Business Intelligence Cloud Service �� 19

Oracle Analytics Cloud �� 19

Oracle Database 18c �� 19

Oracle Mobile Analytics ��� 20

Summary ��� 20

 ■Chapter 3: The Oracle R Technologies and R Enterprise ��������������� 23

R Technologies for the Enterprise�� 23

Open Source R �� 23

Oracle’s R Technologies �� 25

Using ORE for Machine Learning and Business Intelligence
with OBIEE: Start-to-Finish Pragmatics ��� 38

Using the ORD randomForest Algorithm to Predict Wine Origin ����������������������������� 38

Using Embedded R Execution in Oracle DB and the ORE R Interface
to Predict Wine Origin ��� 41

Using ore�randomForest Instead of R’s randomForest Model ��������������������������������� 52

Using Embedded R Execution in Oracle DB with the ORE SQL
Interface to Predict Wine Origin ��� 57

Generating PNG Graph Using the ORE SQL Interface and Integrating
It with OBIEE Dashboard ��� 66

Integrating the PNG Graph with OBIEE ��� 70

Creating the OBIEE Analysis and Dashboard with the Uploaded RPD ��������������������� 87

Machine Learning Trending a Match for EDW ��������������������������������������� 89

Summary ��� 98

■ Contents

v

 ■Chapter 4: Machine Learning with OBIEE ������������������������������������� 99

The Marriage of Artificial Intelligence and Business Intelligence ��������� 99

Evolution of OBIEE to Its Current Version ��� 101

The Birth and History of Machine Learning for OBIEE ������������������������ 103

OBIEE on the Oracle Cloud as an Optimal Platform ����������������������������� 105

Machine Learning in OBIEE ��� 105

Summary ��� 106

 ■Chapter 5: Use Case: Machine Learning in OBIEE 12c ���������������� 107

Real-World Use Cases ��� 107

Predicting Wine Origin: Using a Machine-Learning Classification Model ������������ 108

Using Classified Wine Origin as a Base for Predictive
Analytics - Extending BI using machine Learning techniques in OBIEE ��������������� 108

Using the BI Dashboard for Actionable Decision-Making ������������������������������������� 108

Technical and Functional Analysis of the Use Cases ��������������������������� 109

Analysis of Graph Output: Pairs Plot of Wine Origin Prediction
Using Random Forest ��� 111

Analysis of Graph Output: Predicting Propensity to Buy Based on
Wine Source ��� 111

Analysis at a More Detailed Level ��� 112

Use Case(s) of Predicting Propensity to Buy �� 121

Summary �� 133

 ■Chapter 6: Implementing Machine Learning in OBIEE 12c ��������� 135

Business Use Case Problem Description and Solution ������������������������ 135

Technically Speaking ��� 136

First Part of Solution ��� 136

Second Part of Solution �� 147

■ Contents

vi

Summary of Logit Model �� 168

AUC Curve ��� 173

Implementing the Solution Using the ORE SQL Interface ������������������������������������ 174

Integrating PNG Output with the OBIEE Dashboard ����������������������������� 187

Summary ��� 193

Index �� 195

vii

About the Authors

With a proven track record of successful
implementations continuously through several
decades, Rosendo Abellera ranks among the nation’s
top practitioners of data warehousing (DW), business
intelligence (BI), and analytics. As a SME and expert
practitioner, he has architected DW/BI and big-data
analytic solutions and worked as a consultant for a
multitude of leading organizations including AAA,
Accenture, Comcast, ESPN, Harvard University, John
Hancock Financial, Koch Industries, Lexis-Nexis,
Mercury Systems, Pfizer, Staples, State Street Bank, and
the US Department of the Interior (DOI). Moreover, he
has held key management positions to establish the
DW and BI practices of several prominent and leading
consulting firms.

Rosendo founded BIS3, an Oracle Partner firm specializing in business intelligence,
as well as establishing a data science company and big-data analytics platform called
Qteria. Additionally, Rosendo is certified by Oracle in Data Warehousing, OBIEE, and
WebLogic and keeps up with the latest advancements to provide both strategic and
tactical knowledge toward successful implementation and solutions delivery. He has
authored several books and is a frequent speaker at business intelligence and data events.

Rosendo is a veteran of the US Air Force and the National Security Agency, where
he served worldwide as a cryptologist and linguist for several languages. With these
beginnings in the US intelligence community more than 30 years ago, Rosendo Abellera
provides unique insight and knowledge from his life-long career of utilizing data and
information as a critical and vital asset of any organization. He shares these in his books.

■ About the Authors

viii

Lakshman Bulusu is a Senior Oracle Consultant with
23 years of experience in the fields of Oracle RDBMS,
SQL, PL/SQL, EDW/BI/EPM, Oracle-related Java, and
Oracle-related R. As an enterprise-level data warehouse
and business intelligence solution architect/technical
manager in the ORACLE RDBMS space, he focused on a
best-fit solution architecture and implementation of the
Oracle Industry Data Model for telecom. He has worked
for major clients in the pharma/healthcare, telecom,
financial (banking), retail, and media industry verticals,
with special emphasis on cross-platform heterogeneous
information architecture and design.

He has published eight books on Oracle and related technologies, all published in
the United States, as well as four books on English poetry. He serves on the development
team of Qteria.com and Qteria Big Data Analytics. Bulusu is OCP certified and holds an
Oracle Masters credential. He was selected as a FOCUS Expert for several research briefs
on FOCUS.com. He has written a host of technical articles and spoken at major Oracle
conferences in the United States and abroad.

ix

About the Technical
Reviewer

Shibaji Mukherjee is a senior technology professional
with more than 20 years of technology development,
strategy, and research experience. He has worked
on designing and delivering large-scale enterprise
solutions, data integration products, data drivers,
search engines, large repository Indexing solutions,
large complex databases, data analytics, and predictive
modelling. He has worked in early-stage start-ups,
big product MNCs, services, and consulting firms
as product manager, architect, and group head. The
major companies he has worked for include I-Kinetics,
SeeBeyond, SUN Microsystems, Accenture, Thomson
Reuters, and Oracle.

He has research experience in bioinformatics,
machine learning, statistical modeling, and NLP and

has worked on applications of machine-learning techniques to several areas. He also
has extensive research experience in theoretical physics and has been a speaker at
conferences and workshops.

Shibaji is a senior industry professional with over 20 years of industry and academic
experience in areas of distributed computing, enterprise solutions, machine learning,
information retrieval, and scientific modelling.

He holds a master’s degree in theoretical physics from Calcutta University in India
and from Northeastern University in Boston.

xi

Acknowledgments

I acknowledge and dedicate this book to my mother, Violeta Mendoza Abellera, who
embodies sheer determination and perseverance and showed me that it is never too late
to reach your goal. You have been a shining example for all your kids and grandkids to
never give up hope.

Special thanks to Eric Perry for developing the Qteria POC with machine learning
and real-time streaming analytics. Also, to Chien-Ming Tu and Miguel Gamis for
contributing research.

—Rosendo Abellera

Thanks to all the readers of my previous books for their invaluable comments and
feedback that have enabled me to overcome challenges as I ventured into the trending
landscape of AI meets BI.

—Lakshman Bulusu

xiii

Introduction

It’s an exciting new era for business intelligence as we usher in artificial intelligence and
machine learning. Imagine. What if this new technology can actually help us to augment
our thinking and provide capabilities that are normally not humanly possible. Should we
take a chance and bank on this new technology? Can it really help give us a competitive
advantage with our data? Can it make the right recommendations? Are we ready for this?

For several decades now, we have been developing and implementing data-centric
solutions. I’d like to say that “we’ve seen it all,” but the industry never ceases to amaze me
as new advances are made and exciting new technologies break new ground—such as
with artificial intelligence and machine learning. This one promises to be a game changer,
and I can’t wait to get my hands on it. But wait! How do I successfully incorporate this into
my busy schedule? How do I implement is successfully? We have the same old excuses.

With each new advancement in technology, we always seem to go through a ritual
before adopting it. First, there is the doubt and denial. We ask, “Could this be real?” or “Is
this the Holy Grail that we’ve been waiting for?” This prompts endless discussions and
debates. Lines are drawn, and divisions are made, where people are pitted against each
other. Sometimes, a brave soul steps out and goes through the motions of trial and error,
where experience (through some success) softens the pangs of doubt and disapproval.
When the dust settles, confident players finally arrive at attempting to incorporate the
new technology into their plans. These rituals are a far cry from the days when every
technologist and developer would jump to become the beta tester for new software.

So that’s what it has become—no matter whether the new technology seems
fascinating. “Once bitten, twice shy,” they say, as we struggle through new technologies.
So we wait until we see proven success and are able to repeat it successfully. Then it
becomes a tried-and-true approach that practitioners can trust and use in their projects.
Finally, confidence takes over, knowing that others have paved the way.

One way to circumvent that experience is to have a mentor go through the
implementation with you step by step and show you how it’s done. As consultants, we
offer that of, course, and we would love to always be in the trenches with you, ready for
action. But because that may not be feasible, we give you the next best thing: our book as
a guide. Here we have captured our proven successes and demonstrate our code.

With the subject being so fresh, we wrote this book to encompass both a strategic
and tactical view, to include machine learning into your Oracle Business Intelligence
installation. For practitioners and implementers, we hope that the book allows you to go
straight to the parts you need to get your system up and running.

If business intelligence and machine learning are new to you, you may want to go
through the entire book (but skimming through the actual code) to get a sense of where
this new technology can provide the best advantage in your particular environment.
Doing so will provide you with a good overview and basic knowledge of business
intelligence and machine learning to get you started. Therefore, if you are a project

■ IntroduCtIon

xiv

manager or director in charge of analytics, this would be the method suggested for you.
Then perhaps, you can pass it on to your development team to incorporate the R code
to get the most out of this book. For the purposes we have described, we have purposely
written some chapters purely centered around the code, while others help shape the
discussion surrounding the topic.

Moreover, if taken as a whole, each chapter builds onto the previous ones. The book
starts with an introduction to artificial intelligence and machine learning in general.
Then it introduces Oracle Business Intelligence. Finally, it progresses to some coding and
programming, culminating with an actual use case to apply the code. This progressive
nature of the book is purposeful and mimics a software development life cycle approach
as we go from planning and analysis all the way to implementation.

We hope you find this book helpful and wish you success in implementing this new
and exciting technology.

Happy data hunting.

1© Rosendo Abellera and Lakshman Bulusu 2018
R. Abellera and L. Bulusu, Oracle Business Intelligence with Machine Learning,
https://doi.org/10.1007/978-1-4842-3255-2_1

CHAPTER 1

Introduction

“I think, therefore I am.” Just as this concept has fueled discussions in philosophy
classes about man’s existence, it can now certainly apply to an exploration of what it
really means to be a thinking entity. Moreover, it sparks today’s discussions about what
artificial intelligence (AI) is as it pertains and compares to human intelligence. Is the aim
of artificial intelligence the creation of an object that emulates or replicates the thinking
process of a human being? If so, then the Western philosopher Descartes’ famous phrase
takes on a whole new meaning in terms of existence and the ability to think and—perhaps
equally important, especially in machine learning—the ability to doubt, or to interpret
that something is uncertain or ambiguous.

Beyond philosophy, this seemingly simple notion can be applied now to our
capabilities in analytics and machine learning. But it certainly begs a very direct question:
can we actually emulate the way that a human being thinks? Or at the very least, can
a machine come up with logic as does a human—and if so, does it classify then as a
thinking entity? Then again, do we really need to make this comparison? Or are we
merely searching for any way to replicate or affect outcomes resulting from a thought or
decision?

Indeed, the intelligence and analytical industry is undergoing drastic changes.
New capabilities have been enabled by new technologies and, subsequently, new tools.
Look around you. Machine learning is already being applied in obvious ways. It’s the
technology behind facial recognition, text-to-speech recognition, spam filters on your
inbox, online shopping, viewable recommendations, credit card fraud detection, and
so much more. Researchers are combining statistics and computer science to build
algorithms that can solve more-complex problems, more efficiently, using less computing
power. From medical diagnosis to social media, the potential of machine learning to
transform our world is truly incredible—and it’s here!

At the center of it all is machine learning, which tries to emulate the process that
humans use to learn things. How do we, as humans, have the ability to learn and get
better at tasks through experience? When we are born, we know almost nothing and can
do almost nothing for ourselves. But soon, we’re learning and becoming more capable
each and every day. Can computers truly do the same? Can we take a machine and
program it to think and learn as a human does? If so, what does that mean? This book
will explore that capability and how it can be effectively applied to the world of business
intelligence and analytics. You’ll see how machine learning can change an organization’s
decision-making with actionable knowledge and insight gained through artificial
intelligence techniques.

https://doi.org/10.1007/978-1-4842-3255-2_1

Chapter 1 ■ IntroduCtIon

2

 ■ Note the main focus of this book is applying artificial intelligence (machine learning)
to real applications in the business world. It is not enough to revel in the technology itself.
Instead, we’re interested in how it can change processes and functionality for the good of an
organization. In terms of business intelligence, that can clearly point to the ability to gain a
competitive edge.

With its anticipated prevalence in our daily lives, you probably want to know a little
about artificial intelligence and machine learning. Let’s start with a few definitions to
introduce our topic (www.oracle.com/technetwork/issue-archive/2016/16-jul/
o46ai-3076576.html):

 • Artificial intelligence: The ability of a machine to execute a task
without its being programmed specifically for that task. AI is now
closely associated with robotics and the ability of a machine to
perform human-like tasks, such as image recognition and natural
language processing.

 • Machine learning: An algorithm or set of algorithms that enable a
computer to recognize patterns in a data set and interpret those
patterns in actionable ways.

 • Supervised learning: A machine-learning model that focuses its
interpretation of a data set within specific parameters. A spam
filter is a familiar example.

 • Unsupervised learning: A machine-learning model that
encompasses a complete data set when performing its
interpretation. Data mining uses this technique.

 • Predictive analytics: A machine-learning model that interprets
patterns in data sets with the aim of suggesting future outcomes.
Note: Not all predictive analytics systems use machine learning or
AI-based techniques.

Artificial Intelligence and Machine Learning
It is said that Aristotle, the great thinker of the Western world, was looking for a way
to represent how humans reason and think. It took 2,000 years for the publication of
Principia Mathematica to then lay the foundation for mathematics. Subsequently, this
work allowed Alan Turing to show in 1942 that any form of mathematical reasoning can
be processed by a machine by using 1s and 0s. This, in turn, has led to some philosophical
thoughts on the impact of machines on humankind.

Relying heavily on the theories of those early philosophers, the development
of AI accelerated in the latter half of the last century as commercial interest arose in
applying AI in a practical manner. [1] At the center of this evolution were advances

http://www.oracle.com/technetwork/issue-archive/2016/16-jul/o46ai-3076576.html
http://www.oracle.com/technetwork/issue-archive/2016/16-jul/o46ai-3076576.html

Chapter 1 ■ IntroduCtIon

3

made in computing power and in capabilities surrounding the effective handling of data
via databases and business intelligence—and consequently now with big data. With
each technological advancement, we are closer to being able to fully utilize artificial
intelligence.

 ■ Note Systems that were designed based on early philosophies and logic failed mainly
because of a lack of computing power, less access to large amounts of data, and an inability
to describe uncertainty and ambiguity. [1]

Let’s broadly define AI as “the field that studies the synthesis and analysis of
computational agents that act intelligently.” [2] From this standpoint, our focus is on
a computational agent that has the ability to act intelligently. For the purposes of our
discussion, we need not be concerned about the fascinating human-like robots that
carry out AI—which is usually the focus. We’ll simply agree that all of AI aims to build
intelligent and autonomous agents that have a goal.

In this AI context, we’ll focus on what the agent is to accomplish. Mainly, AI aims to
operate autonomously so as to come up with the best expected outcome. In the context
of this book, that expected outcome is to improve decision-making and aid in predictive
analytics.

So how does the agent go about being intelligent and performing its goal
successfully? The answer lies in representation and reasoning.

In building a system for AI, you must do the following:

 • Acquire and represent knowledge about a domain
(representation)

 • Use that knowledge to solve problems in that domain (reasoning)

The agent can develop a representation of the current environment through past
experiences of previous actions and observations. This and other data provide the inputs
for which it can formulate reasoning. As part of designing a program to solve problems,
we must define how the knowledge will be represented and stored by an agent. Then, we
must decide on the goal and what counts as a solution for that goal. In other words, we
want to do the following:

 • Represent the problem in a language that the computer can
understand (representation)

 • Program the computer to compute the output (use knowledge
and reasoning)

 • Translate the output as a solution to the problem

The learning aspect of artificial intelligence determines whether knowledge is given
or is learned. If the knowledge is learned, then we move to the subcategory of artificial
intelligence called machine learning. [2]

Chapter 1 ■ IntroduCtIon

4

Overview of Machine Learning
Machine learning brings together several disciplines dealing with computer science
and statistics. In simple terms, artificial intelligence deals with the problem of extracting
features from data and forming statistics so as to solve predictive tasks. Machine learning
takes a unique approach to accomplishing that goal. It approaches the design of the
machine learning agent able to make predictions without necessarily providing clear,
concise instructions for doing it.

Essentially, machine learning allows the computer to “learn” by trying to find a
function that will be able to predict outcomes. In this way, the main focus of machine
learning is on the discovery and exploration of data that is provided. That is where it has
great use in an enterprise business driven by data: in searching large amounts of data
and discovering a certain structure or statistical pattern. In this way, machine learning
allows us to take on data problems that were previously too difficult to solve or that we
had no way of knowing how to solve. In the past, even the sheer volume of the data itself
posed difficulties in terms of processing and extracting vital pieces of information. Later
chapters cover in detail how machine learning can be applied and then implemented in an
organization via enterprise business intelligence (BI) and advanced analytical solutions.

In simple terms, machine learning enables computers (machines) to learn from a
certain stated task and patterns discovered in data. Moreover, it does this without being
programmed with the specific steps needed to perform that task—much like a human
can decipher and analyze an experience to improve a task. In other words, the computer
learns how to best perform a task rather than being programmed with specific steps
and instructions to accomplish the task. This is extraordinary, to say the least, because
machines are mimicking humans in being able to learn. Let’s take this a step further and
apply this concept.

With the goal of solving many tasks and providing the correct output, machine
learning extracts features from input with hopes of being directed to a desired point.
Consider that as a toddler recognizes a flower as a flower by looking at its distinct
structure; the input to the toddler’s brain comprises the photons perceived through
sight that the toddler’s brain processes. But a toddler isn’t born with the knowledge
that a flower is a flower. The toddler learns it by seeing flowers over and over again and
recognizing distinct features such as a stem, petals, and its circular symmetry. Machine-
learning AI is similar, in that it learns and improves at performing a task (such as
recognizing flowers) from experience.

The key here is that the algorithm for recognition is not specifically designated by the
designer or the programmer. Rather, it is created by repeated data and statistical methods
and training the AI agents of machine learning need to be trained. As part of this training,
a large volume of historical data must be provided. [5]

As the use of machine learning permeates the landscape more and more, algorithms
will be created that prove to be highly effective and easy to use in analytics. One example
of a simple yet highly effective algorithm is one that finds the optimal line that separates
and classifies data according to a given category. In this case, the category can be specified

Chapter 1 ■ IntroduCtIon

5

in accordance with your features and characteristics. As the computer inputs more and
more images. it can begin to check whether that feature falls within your learned attribute.
Perhaps even before then, it can scan a picture and determine whether the object in the
picture is human or not. The machine-learning algorithm can begin there and perhaps
identify humans in the photograph. It learns whether the image is of a human or not.
A virtual line is determined that indicates whether the object is indeed human. Perhaps
the machine goes even further to look specifically for faces or facial features.

Patterns, Patterns, Patterns
A vital and important branch of machine learning is pattern recognition. Patterns and
regularities in data help form meaningful labels. This pattern recognition mimics how
we, as humans, categorize and classify things as we observe them. Through time and
repetitive reinforcement, we begin to identify a pattern in our observations, and thus
begin a process of learning from those patterns. This works much the same way for
machines in today’s world of big data; that repetition can now be readily provided at
an accelerated pace as computers sift through massive amounts of data to learn and
recognize patterns.

Take, for instance, being able to distinguish faces in a social media application. The
application is fed images and begins to formulate information based on data points. A
computer programmed to learn will seek statistical patterns within the data that enable
it to recognize and then represent that information, numerically organizing it in space.
But, crucially, it’s the computer, and not the programmer, that identifies those patterns
and establishes the algorithm by which future data will be sorted. Of course, there can
be mistakes. The more data the computer receives, the more finely tuned its algorithm
becomes, and the more accurate it can be in its predictions. Applied to “recognizing” a
face, definitive points are determined to distinguish and identify similarities.

But what if the data points are fuzzy and not so definitive? Could a machine
distinguish a likeness or even a representation of a person (for example, in a painting)?

The answer to this question may contain the very essence of what differentiates
human reasoning and machine learning, and provides a glimpse of what the future may
hold if we enter the ability to reason. A person can recognize a certain likeness of Elvis
in an abstract painting by applying knowledge of his facial features (even though here
they’re somewhat vague) and of the way Elvis may have looked as he sang intensely, with
eyes closed, into the microphone. Through past experience and observations, we have
learned and come to know that Elvis had a certain pose, and so we apply and reason
and accept that this is indeed a representation of him. On the other hand, without this
reasoning, and with a reliance on definitive data points, a machine may not even come
close to correlating the image in the painting with the familiar face of Elvis as in the
following depiction:

Chapter 1 ■ IntroduCtIon

6

We can reason that the likeness is close enough for us to even make an educated
guess about the painting, and that a machine would not be able to pick up the pattern
in order to learn and recognize the resemblance. We can then begin to understand how
exactly a machine can learn, and how pattern recognition is the key to this ability.

Machine learning can be divided into three main types. Two of those main categories are
supervised and unsupervised. These are most applicable and pertinent to today’s big data.

With unsupervised learning, the agent can pick up patterns in the input that is
provided. Moreover, no explicit feedback or instruction is given. The most common
unsupervised learning task is clustering, which deals with detecting potentially useful
clusters of input examples. [1] Let’s apply this concept to people. Children don’t need
to be told that something is a flower in order to recognize it as something distinct; when
repeatedly seen, the flower is mentally registered as a visual pattern by the child. Without
specific instruction, the child can recognize the flower as a thing that belongs in a group.
The association with the word flower is made later, and is just a classification of this thing
that the child’s mind already grouped. With enough data that covers all possibilities,
grouping can be done. Clustering is the most common type of grouping.

Contrast this to supervised learning, where the agent is provided a direct input to
home in on as it attempts to clarify and classify items accordingly.

Furthermore, along with supervised/unsupervised learning, we have reinforcement
learning. Here the agent learns (in either a supervised or unsupervised manner) from
a series of reinforcements in the form of rewards or punishments. A binary result is the
focus, as each respective reward or punishment signals to the machine that it may have
done something right or wrong, respectively. It is then up to the agent to decide which
of the actions prior to the reinforcement were most responsible for it. [1] In turn, the
machine uses this information to further learn and move toward a certain outcome.

This is a small sample of some of the methods covered in machine learning. In later
chapters, we will discuss and even apply these methods to a real use case. However, we
don’t attempt to explain machine learning in its entirety in this book; we focus only on

Figure 1-1. Blue Elvis by Roz Abellera (https://roz-abellera.pixels.com/blogs/
blue-elvis.html)

https://roz-abellera.pixels.com/blogs/blue-elvis.html
https://roz-abellera.pixels.com/blogs/blue-elvis.html

Chapter 1 ■ IntroduCtIon

7

major topics such as knowledge discovery and classification. However, we will continue
to cover this subject in our blog at www.bis3.com, where we cover the latest in business
intelligence software, service, and solutions.

Machine-Learning Vendors
In a race to provide artificial intelligence and machine learning to the mainstream,
a multitude of vendors have clamored to the market to offer premiere tools. In 2016,
artificial intelligence and machine learning exploded onto the scene, becoming a reality
in many facets of our daily lives—especially in the Internet world, including Google and
Facebook, for instance. From a corporate standpoint, some of the leaders thus far have
been those organizations that led the software and database application revolution in the
past, such as Oracle, which offers a complete, holistic enterprise reporting and analytics
offering.

Build or Buy?
This new trend in analytics is resulting in a barrage of unique partnerships. Even
some strange bedfellows are looking to collaborate in order to offer capable services
or products in the new BI and big-data analytics market. If the past strategies of major
software companies hold true, I can easily predict that if some of these vendors can’t
develop their own software, they will end up acquiring their missing pieces.

In terms of this book, the real questions we need to answer are as follows:

 • What improvements do vendors need to offer in order to satisfy
capabilities in this space for the future?

 • Is Oracle Business Intelligence the right platform and technology
to provide a foundation for what is to come with artificial
intelligence?

Numerous industry analysts make predictions about which vendors will win the
race to deliver the best offering. Many look for Oracle to be a leader in this area. With
its latest offering relying heavily on artificial intelligence and machine learning, it
will be interesting to see what Oracle can develop, or perhaps which companies and
technologies it will acquire to complete its offering.

With this push from some of the world’s largest and most advanced corporations
in the world, artificial intelligence and machine learning have made their way into the
corporate world. Access to these tools and technologies has permeated into all levels of
the enterprise and corporate ladder. No longer are artificial intelligence and machine
learning reserved for just the most sophisticated statistics operations or matters of
strategy. Now everyone in the organization is in on the game. Only one thing stands
between accessing a wealth of enterprise data and knowledge, and that is how easy a
user can get to and use the data. Naturally, this issue of user-friendliness and self-service
has caused a lot of angst and has been a catalyst for many vendors, including Oracle, to
revamp their strategies and toolsets accordingly.

http://www.bis3.com/

Chapter 1 ■ IntroduCtIon

8

Introduction to Machine-Learning
Components in OBIEE
Oracle Corporation has long been in the business of data management. And with every
advancement in data and knowledge management, new capabilities have led users to
more—and even advanced—features of business intelligence. With Oracle’s introduction
of Oracle Business Intelligence Enterprise Edition (OBIEE) a decade ago, and its
subsequent adoption and popularity, users wanted to gain more control of their data and
any capabilities that their analytical tool could offer.

So began this need for self-service BI. It was exactly this functionality that users
sought in a BI system that would allow some degree of independence and capability for
users to do their own analysis. I’m sure that almost all would agree that this idea of self-
service BI is perhaps the true overall vision and essence of what a business intelligence
solution should offer. Indeed, the industry has come a long way to be able to offer all the
technologies that enable a person to access and readily use large amounts of data. In
recent years, the industry has introduced new tools and technologies, such as big data
and artificial intelligence, to help realize self-service BI and beyond.

Oracle BI and Big Data
Self-service BI revolves around the fact that using data for decision-making is aided, in
particular, by interactive and business-user-driven interfaces to that underlying data.
Data today consists not only of structured data, but also of unstructured data—which
is often referred to as big data. The analysis of big data demands fast processing as well
as an integrated approach to the analysis of online transaction processing (OLTP) and
online analytical processing (OLAP) data and the discovery of new information from
that data. Big data for decision-making must support new data, new analytics, and new
metrics that involve past performance analytics along with predictive analytics.

Self-service and, more important, the resulting actionable analytics, can become
a reality as the latest technologies and business analysis processes (such as mobile
device management, visual discovery, and spreadsheet analysis) become business-user
driven, with no disconnect across all needed data points. Oracle’s concentration on the
enterprise is making this possible.

OBIEE combined with Oracle Essbase provides a holistic solution that enables
predictive analytics, operational BI, and self-service reporting on structured data.
Similarly, Oracle offerings for analytics and big data can help extend BI beyond relational
data and its multidimensional analysis, which in turn allows self-service analytics on gig
data. This can answer what we call the who, what, when, why, and even how of big data in
near-real-time, with results easily served via a dashboard and various visualizations of the
data to expose the vital information discovered.

Later chapters examine how advances in Oracle’s data visualization and data
preparation tools, technologies, and artificial intelligence components are changing the
way we handle and utilize data in today’s world of advanced analytics.

Chapter 1 ■ IntroduCtIon

9

R for Oracle BI
Perhaps the biggest enabler and game changer in today’s analytical space is the
introduction of the R language for statistics into various BI and analytical products.
Beginning in 2012, Oracle made a major leap into artificial intelligence when it
announced Oracle Advanced Analytics for big data. This package integrated the R
statistical programming language into the Oracle Database (version 11g at the time), and
bundled Oracle R Enterprise with Oracle Data Mining. Since then, Oracle has continued
to add R and its capabilities in its suite of BI tools. Oracle also has committed to using it
for machine learning to fine-tune and improve its own products, including its flagship
database offering, being dubbed as a self-healing database system.

Introduced in 1995 as an open source project, R has been adopted by millions of
users for statistical analysis. Oracle has integrated it and enabled its functionality to
be utilized by its applications and systems. Oracle customers can utilize this analytical
functionality to explore and discover valuable information from all the data gathered in
their Oracle systems.

This book later provides an example of applying R and machine-learning techniques
to create and develop actionable BI and analytics.

Summary
This chapter provided an introduction to artificial intelligence and machine learning—
rom their early history and evolution, to today’s world as a game changer in our daily
lives. A multitude of algorithms have already been written as well as applications that
successfully use machine-learning techniques. From the early automation of tasks found
in industries such as agriculture and manufacturing, we have now reached an age in
which new applications are being sought to automate tasks for knowledge workers.

One such area of automation is in decision support systems (DSSs) and enterprise
data warehouses (EDWs) specifically in an organization. It is here where the power of
computing and the capability to handle volumes of data are being put to the test with
new applications of AI-powered technologies. The basic goal of the EDW is to find a
trend in the data that has been integrated and stored. Often, it is only in the EDW that
an organization has data that is completely gathered, integrated, and further cleansed;
this enables the delivery of a usable set of data that can provide historical insight into the
enterprise and expose trends. Applying AI and machine learning can extend the EDW
even further by supplying missing or unknown data.

Machine-learning application algorithms that can discover trends and basic patterns
lend themselves to the exact focus and purpose of an EDW. OBIEE is the perfect
AI-powered technology for the enterprise business and commercial world of the future.

With Oracle’s OBIEE suite, capabilities have now entered the realm of artificial
intelligence. This book provides step-by-step instructions for setting up R and machine
learning. Moreover, this book provides a case study as an example of applying machine
learning to the business world.

Chapter 1 ■ IntroduCtIon

10

Citations
Russell, S. J., & Norving, P. (2010). Artificial Intelligence: A modern Approach. New Jersey:
Pearson. [1]

Artificial Intelligence: Foundations of Computational Agents by David L. Poole and
Alan K. Mackworth [e-textbook] http://artint.info/html/ArtInt.html#cicontents [2]

https://www.forbes.com/sites/mikhailnaumov/2016/12/30/2017-guide-for-
deep-learning-business-applications/#6a0217147b84 [3]

https://journalofbigdata.springeropen.com/articles/10.1186/s40537-014-
0007-7 [4]

http://docs.aws.amazon.com/machine-learning/latest/dg/training-ml-
models.html [5]

Rainbird, August 12, 2016, The History of Artificial Intelligence (AI), AI - The
Cognitive Reasoning Platform [6]

http://artint.info/
http://artint.info/html/ArtInt.html#cicontents
https://www.forbes.com/sites/mikhailnaumov/2016/12/30/2017-guide-for-deep-learning-business-applications/#6a0217147b84
https://www.forbes.com/sites/mikhailnaumov/2016/12/30/2017-guide-for-deep-learning-business-applications/#6a0217147b84
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-014-0007-7
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-014-0007-7
http://docs.aws.amazon.com/machine-learning/latest/dg/training-ml-models.html
http://docs.aws.amazon.com/machine-learning/latest/dg/training-ml-models.html

11© Rosendo Abellera and Lakshman Bulusu 2018
R. Abellera and L. Bulusu, Oracle Business Intelligence with Machine Learning,
https://doi.org/10.1007/978-1-4842-3255-2_2

CHAPTER 2

Business Intelligence,
Big Data, and the Cloud

In our first book together, written around 2015, we described how a complete, holistic BI
solution involved three main classifications of reporting and analytics in general. In that
book we labeled them as:

• Operational Reporting

• Operational BI

• Analytical BI

At the time, we focused on mainly describing the elements in an enterprise business
intelligence solution—that is, one that involves structured data. Although we wrote a
few chapters about it, we almost purposely ignored the changes in the industry that
were happening at the time with the emergence of big data and the cloud. Since then,
we can no longer ignore their presence and dominance in what is to become the future
of business intelligence and analytics. This book covers these components along with
artificial intelligence (machine learning) that enable advanced analytics and even big-
data analytics.

Now with the new capabilities advanced by today’s latest technologies such as big
data, artificial intelligence, and cloud computing, a new classification in the reporting
and analytics realm has taken the forefront and grabbed a lot of attention. That new
classification comprises data discovery and exploration and even big-data analytics in
general. In this new classification, even the area of business intelligence as a whole takes
on an entirely new role. Business intelligence has transformed into a totally different
level of functionality, with capabilities to provide insights about and interactions with the
intelligence gathered from the data. This next level of business intelligence—being fueled
by artificial intelligence—is called actionable intelligence.

The Goal of Business Intelligence
We’ve come a long way when it comes to business intelligence. We, as practitioners
and implementers, have seen a lot of changes and added functionalities. Some were
not even feasible in the early days of the industry, mainly because of deficiencies in the

https://doi.org/10.1007/978-1-4842-3255-2_2

Chapter 2 ■ Business intelligenCe, Big Data, anD the ClouD

12

technologies that were needed. Take, for instance, real-time or near-real-time analytics.
The challenge was that by the time the data reached the right person, the intelligence
would no longer be fresh or worth utilizing. A line manager or director in charge of
such operations would not even have access to that type of information (and related
insights) in order to affect the operational process; this lack of information could prevent
businesses from gaining a competitive edge.

So it was that real-time business intelligence did not even come into play until the
tools and technologies became sophisticated enough to move data to and from the source
in a way that was conducive to using that data to gain a competitive edge. The mere act
of gathering data within your organization in order to utilize it posed a big challenge.
For many decades, just the idea of being able to store all that information together in
one place was a big issue. There was simply no effective way of moving data to and from
one system to another. Several approaches were studied to determine the most effective
method of creating intelligence and analytics from raw data. Let’s discuss an early
solution to moving data around.

A great deal of the evolution in capabilities to collect and use data was initiated by
companies such as Informatica, which focused on delivering data from one source to
a target. With Oracle-Based Optimization Engine (OBOE), we already had methods of
moving data by, for example, writing SQL scripts and using SQL *Loader with Oracle.
But there just wasn’t a sophisticated way of moving data from one system to another.
Even if you were able to collect all the data, you’d still have the challenge of cleaning
it, transporting it, and converting it. This problem was addressed by companies such
as Informatica, which automated the process by creating what is now called extract,
transform, and load (ETL). An entire market grew around this new technology as
executives were able to focus on business intelligence and analytics.

Although ETL was effective for managing the process, it still left a void in being
able to handle large amounts of disparate data and, especially the unstructured data we
now call big data. There simply was no effective way of moving data around, not even
with powerful ETL tools. This issue opened up a whole new paradigm for handling large
amounts of data. We will discuss this new approach for data preparation later in this
chapter.

Big-Data Analytics
There are differences between business intelligence and big-data analytics. Although
today the two terms are often used interchangeably. However, with new advancements in
technology, data architectures, and strategies—and specifically in advanced analytics—I
expect that the two will eventually converge to be one and the same.

In the early days, starting with reporting, the capability to access data for use
transactionally was the main focus. However, it was not really capable of gaining any kind
of insight analytics based on history—at least not automatically. Reporting was really just
a means to access whatever data your transactional system had. Any kind of analytics
thereafter was done by a different system, often referred to as a decision support system
(DSS) or an online analytical processing (OLAP) system.

In today’s world of advanced analytics with artificial intelligence, moving from
reporting to analytics is becoming more seamless. If we were to separate the various types
of systems that are available, we could talk about reporting versus analytics (which as a

Chapter 2 ■ Business intelligenCe, Big Data, anD the ClouD

13

whole are encompassed by what is now referred to as business intelligence). But with each
advancement of the tools and technology that deliver reporting and analytics capabilities
seamlessly, new subcategories arise that have their own sets of success criteria and
requests.

In terms of big-data analytics, a whole new set of goals has arisen related to
actionable business intelligence. We aim to push analytical systems to go further, to
be predictive and prescriptive. If we were to truly change the success of this industry,
we would have to point to these recent advancements as the impetus for an evolution
that would then take business intelligence and analytics truly to the next level, where
information and intelligence provides valuable insights that can then be totally
actionable.

With the cloud, we come closer to this goal of actionable business intelligence, as
this ubiquitous solution clearly offers several advantages (see Figure 2-1).

In 2016, a popular data visualization vendor wrote a white paper titled “Top 10 Cloud
Trends for 2016.” The paper stated the following:

In 2015, the cloud technology landscape changed in ways that only a highly
disruptive market can. From watershed innovation announcements to
unexpected business moves, 2015 drove any last shred of doubt from the
minds of skeptics that the cloud revolution is permanent. At the eye of this
storm is the growing realization that data as a critical business asset can
be very efficiently (and cost-effectively) stored in the cloud. The database,
integration, and analytics markets are now in a race to understand how
each can ultimately capitalize on this shift.

Figure 2-1. The cloud advantage

Chapter 2 ■ Business intelligenCe, Big Data, anD the ClouD

14

But Why Machine Learning Now?
The argument in favor of machine learning is quite simple: we want to access as much
data as possible in one repository and be able to analyze that data in order to find certain
patterns that may be useful. These might be patterns that would not be humanly possible
to derive without the use of a supercomputer. Therefore, we can argue that only through
artificial intelligence, which is machine learning, can we even get to the results.

Until now, technology has not provided us the means to be able to use all the data
that is now being produced. Without these new tools and technologies, we would have a
sea of endless data that we, as humans, couldn’t possibly analyze and process.

In 2016, Oracle announced its future strategy and next generation of cloud
infrastructure called Cloud at Customer. In response to the public’s acceptance and
adoption of its previous cloud offerings, Oracle centered its new strategy on its customers
and the advantages that new technologies can bring to the table for its ERP programs (for
example, EBS) that cover every aspect of the enterprise, from human resources to supply-
chain management.

Cloud at Customer combines data throughout the enterprise with multiple
sources, and uses machine learning to make recommendations. Artificial intelligence
is embedded into the software applications and coupled with Oracle’s data. Oracle
describes the products as “software-as-a-service offerings that blend third-party data with
real-time analytics to create cloud applications that adapt and learn.”

Moreover, with its the real-time analytics, machine-learning results presented in
user-friendly displays, and data visualizations, engineered systems such as Cloud at
Customer can offer users so much more insight into their enterprise data and information.

A Picture Is Worth a Thousand Words
What is data visualization? Let’s explore the increasing role that this tremendously
popular technique is playing in today’s analytics. Visualization, by itself, is defined as
the transformation of information to visual objects such as points, lines, and bars, with
the goal of communicating that information to viewers more efficiently. The information
can be a set of numerical data or even abstract ideas, processes, or concepts. Data
visualization, in technology, refers to the display of information that can be stored in
computers, with the goal of explaining or exploring patterns, trends, and correlations.
In a broader sense, this can be seen as relations of numbers. Undoubtedly, using charts
or graphs (or some other form of data visualization) is an easier means to process large
amounts of complex data, as opposed to having to process the data laid out in a tabular
form stored as spreadsheets.

We have all heard the popular quip that “a picture is worth a thousand words,” or
should we say in today’s business intelligence and analytics world that “a visualization
is worth a thousand data points.” Data visualization can compress rows of data into a
pictorial representation, allowing viewers to quickly access a lot of information efficiently.
It is designed to engage its viewers and hold an audience’s attention. This is because
images are easier to absorb and interpret than tabular data; the human brain has better
perception for images, as compared to words and numbers.

In addition to being visual, words and numbers are encoded units of information
that we learn throughout our lives. Having many numbers presented all at once requires

Chapter 2 ■ Business intelligenCe, Big Data, anD the ClouD

15

a lot of mental processing, as well as mathematical and statistical expertise, to see their
relationships. In contrast, patterns, correlations, outliers, and trends are much easier
recognize visually.

In terms of using data visualization for explanatory purposes, images are also easier
to retain than words and numbers. Moreover, data visualization can answer questions
in a more complete way that shows the bigger picture. For example, say you have a
quantitative question, such as which month had the lowest amount of sales. An answer
presented through data visualization would show a complete picture, enabling you to see
the distribution of sales throughout the year as well as how much smaller that minimum
was compared to other months. In contrast, an answer from simple query-based software
would give you only the direct value. Data visualization also provides an ease of access
to data and new insights that encourages follow-up questions, which in turn lead to new
insights. For instance, the same data answering a monthly pattern can also answer a
yearly pattern if aggregated.

Business managers need to pinpoint issues and opportunities in their businesses,
but also to quickly figure out why and how they are occurring in order to make
reactionary decisions. Business analysts need to find key variables that influence these
issues and these opportunities in order to formulate the right solutions. [1] The effect that
data visualization has on analytics is dictated by the continuing needs of businesses for
BI and analytics. Businesses rely on analytics to put actionable information in the hands
of line-of-business users quickly by providing self-service access to data and custom
analysis on the fly to empower decision makers. [2]

Recognizing the need to combine visualization solutions with data analysis and
data-mining front ends, a new discipline has emerged from information visualization,
scientific visualization, and data-mining communities: visual analytics. Visual analytics
focuses on the entire so-called sense-making process that starts with data acquisition,
continues through a number of repeated and refined visualization scenarios (during
which interaction allows users to explore various viewpoints, or test and refine numerous
hypotheses), and ends by presenting the users’ insight about the underlying phenomena
of interest. As such, visual analytics typically focuses on processes or data sets that are
either too large or too complex, by a single static or image. The goal of visual analytics is
to provide techniques and tools that support end users in their analytical thinking. [3]

A further fundamental feature of visualizations is their interactive aspect. The
visualization process is rarely a static one. In most applications, there is a need to
visualize a large amount of data that would not fit on a single screen, a high-dimensional
data set containing many independent data values per data point, or both. In such cases,
displaying a static image that contains all the data is typically not possible. Moreover,
even when this is possible, there usually are many ways of constructing the data-to-
image mapping, which the user might like to try out in order to better understand the
data at hand. All of these aspects benefit from the use of interactive visualizations. Such
applications enable the user to modify several parameters (ranging from the view angle,
zoom factor, and color usage to the type of visualization method used) and to observe the
changes in the produced image.

But larger amounts and more complex forms of data are emerging from today’s
devices and computers. A popular statement and big-data line is that “90% of all digital
data in the Internet today was generated in the past two years” [4]. Data scientists or
data miners often require the analytics team to have expertise in statistics and data

Chapter 2 ■ Business intelligenCe, Big Data, anD the ClouD

16

science in order to perform more complex exploratory analysis to process big data. So the
business thinkers may need to consult with the data team before getting a clear answer to
questions about their data.

Visualization is a continuous process. Large amounts of data cannot all be summed
up in one, or even just a few, images; big data is too vast, and each data point has too many
attributes of value. For example, rows of data for a sales transaction for a department store
chain has many attributes: the price sold, profit margin, date, location of sale, time, and
even more attributes originating both from the product and the buyer. All these attributes
cannot all be summed up into one or a few forms of visualization. Different variables need
to be isolated, omitted, and filtered in a continuous process to gain new insights.

In a way, visual analytics has become the user-friendly interface for business
thinkers to access big data. Business thinkers can take the initiative and be analysts. With
quick and interactive access to data, business thinkers can freely explore data without
necessarily having a specific question to answer or an issue to solve. Visibility of data
for easier and quicker recognition of patterns, correlations, trends, and outliers backed
with the business expertise to reason about these observations becomes a very powerful
commodity for businesses. For this reason, many enterprise software providers are now
adopting visual analytics as a necessity.

In today’s landscape of business intelligence and knowledge management, data
visualization has become such an essential—and even the most powerful—tool for
analytics. For that reason, many vendors have focused on it and marketed how it should
be done effectively. There are many who say data visualization is an intricate blend of
science and art. Its appealing and effective interface experience has become an essential
part of the big-data analytics equation, and many vendors have recognized its role.

In conclusion, data visualization tools are transforming business intelligence, as
many vendors in the marketplace have gone to market primarily around their data
visualization tools. Some vendors have recently risen to popularity by riding this data
visualization and discovery wave and have seen a new chance to compete by focusing on
their product’s data visualization capabilities. Many of these were small “departmental”
tools. On the other hand, the major players of business intelligence are also now in the
game, such as Oracle with its most recent version of OBIEE 12c. In this case, they have
released visualization capabilities to complement their traditional and already popular
suites of tools.

CITATIONS

www.sas.com/en_ca/insights/analytics/what-is-analytics.htm [1]

http://bluehillresearch.com/business-intelligence-data-visualization-
and-the-brain/ [2]

telea, alexandru. Data Visualization: principles and practice. Boca raton: CrC, taylor
& Francis group, 2015. print. [3]

sinteF. “Big Data, for better or worse: 90% of world’s data generated over last
two years.” scienceDaily. scienceDaily, 22 May 2013. www.sciencedaily.com/
releases/2013/05/130522085217.htm.[4]

http://www.sas.com/en_ca/insights/analytics/what-is-analytics.htm
http://bluehillresearch.com/business-intelligence-data-visualization-and-the-brain/
http://bluehillresearch.com/business-intelligence-data-visualization-and-the-brain/
http://www.sciencedaily.com/releases/2013/05/130522085217.htm
http://www.sciencedaily.com/releases/2013/05/130522085217.htm

Chapter 2 ■ Business intelligenCe, Big Data, anD the ClouD

17

Data Modeling
The direction now in working with data is to turn unstructured data into structured data
automatically. With the Oracle Analytics Cloud platform, Big Data Services will use a
lightweight model and then use the Data Preparation with artificial intelligence to read
the data from any data store and add it to the model. The focus is shifted toward the
business and analytics modelers to apply their model on top of the data that is already
prepared and ready for analysis, and the real work that is needed.

Another feature is Oracle Big Data SQL, which has the ability to send out a query of
any format and standards that are not native, such as NoSQL databases. Furthermore,
SQL with R will be used to do analytics.

It’s important to understand that two different structures and architectures are
needed to support a transactional system and a decision support system. Simply
speaking, one type of architecture can’t effectively satisfy both. As a data architect, you
must understand how and when to apply the proper architecture to each respective
system. To this day, I still encounter organizations that do not understand this basic
notion and fail miserably at constructing a proper solution. Even worse, I have recently
encountered organizations that took it upon themselves to create yet another structure
(explaining it as a hybrid) that supports neither transactional nor decision support
solutions effectively. What they end up with is yet another structure to maintain that
costs a tremendous amount of money and resources to create, and yet still leaves a void
in offering a proper solution. Furthermore, any future advancements aided by artificial
intelligence and machine learning would be further confused by the patterns of the data
structures and thus could not be utilized.

To illustrate this, try optimizing a transactional system the same way you do
a decision support system, and vice versa. You will find that you end up with futile
results. For instance, the index you create for a transactional system focuses on data
manipulation (inserts, updates, and deletes) and will surely be different from one created
for decision support, in which the main focus is for fast retrieval and querying. How
great it would be to be able to hit your transactional system directly for querying, without
any other type of work needed. Indeed, when technology catches up to a point where
transactional systems and decision support systems can use the same database structure
in the back, then there will be no need for data architects and their expertise. With
machine learning, that day might have just arrived.

By using data points, we can create aggregates and summaries from the data that
paint a picture of facts and behavior (which could be expected or unexpected). Moreover,
through artificial intelligence and machine learning, anomalies can be identified
based on baseline data in order to predict certain future actions. This predictive and
prescriptive function is the ultimate aim for machine learning, which focuses on real-
time analytics and automated anomaly detection in data.

This technology could be used not only to look for data anomalies but also to “learn”
of certain changes and then to suggest a recommendation based on the patterns of the
data and the changes. Machine learning can learn from the data metrics, identify the
anomalies, alert users, and provide recommendations. Then beyond that, it can identify
what we, as humans, failed to ask or couldn’t have possibly known to ask. Like a most
trusted advisor, artificial intelligence can help us in ways that we are not even aware of.
The future is wide open for applying artificial intelligence in our daily lives as well as in
business.

Chapter 2 ■ Business intelligenCe, Big Data, anD the ClouD

18

The Future of Data Preparation with Machine Learning
Artificial intelligence has changed the future of analytics in Oracle by changing the
way we create an analytical solution. One of the most significant changes has been in
preparing data for generating reports. The term data preparation is becoming more and
more important and could be the game changer we’ve been looking for all along.

Let me set the background for why this is significant. When building a solution
from the ground up, the traditional method for implementation what’s the first put into
place the data foundation needed to support the application your solution. In general,
this endeavor involved a tremendous amount of time and effort between business and
technical resources to come up with the proper data foundation. As such, data architects
have been tasked with coming up with the day model and subsequent database, and the
whole development process is dependent on it.

For over two decades, my expertise has been repeatedly utilized. It has been my
personal observation that, although an extremely important skillset for developers of
data-centric applications, it seems to be one that was forgotten or even set aside. As a
result, I’ve seen projects that were unsuccessful due to the lack data architecture and
data modeling skillsets. The fact is that laying down the foundation is probably the single
most important piece of a data-centric and data-driven solution. Without the proper
foundation, downstream applications would have to “muscle” a solution and try to make
up for problems in the day model. It took me years of experience to finally be able to
provide the expertise over and over again. So what if this expertise could be packaged up
in a way that could be readily used to create a solution? That application would act as a
data architect, armed with the appropriate design techniques needed to come up with a
proper data model and foundation. Essentially, you would be able to deliver a solution on
the fly because it would be readily handled with automation.

Enter today’s paradigm for creating a data model, which has shifted considerably.
Timing is an equally important factor in today’s process. In starting a solution, instead
of having a data model specified fully up front, machine learning enables us to identify
certain data elements and objects that are missing and append them to a model that is
already in place. This eliminates common obstacles that data modelers and architects
encounter when attempting to set the right foundation correctly in the first attempt.
So how does this affect development? Implementation can be considerably shortened
by only having to set into place a baseline foundation and then letting AI continue the
development by identifying missing components. In other words, through machine
learning, a simple schema can be read and utilized by your machine-learning algorithm
in order to determine the proper storage of data as it comes into your landing area.
Consequently, via the machine-learning algorithm, the mechanism can recommend and
even create the proper attributes in accordance with the data sampling to automatically
create a new schema.

So what does that mean for data modeling? It means that you no longer have to make
sure that your schema is currently specified with your database and subsequent RPD.
Machine learning will help to automatically include any data that is beyond the structured
schema, by adding it as a recommendation based on the patterns found in the data.

To sum this up, a suggested process for creating the proper data model is to use a
canonical model that specifies a base foundation for any entity. Then, using machine-
learning algorithms, any subsequent additional attributes that are needed can be
automatically added to the schema and structures.

Chapter 2 ■ Business intelligenCe, Big Data, anD the ClouD

19

Oracle Business Intelligence Cloud Service
In 2014, Oracle released one of the first BI platforms on the cloud as part of its Oracle
Analytics Cloud offering. It was a full-fledged cloud application that at the time was
relatively new. For those practitioners familiar with OBIEE, it essentially offered the
features of 11g.

In 2016, I was implementing OBIEE 12c for a US government agency, but also
presented the BICS product at one of the Oracle Application User Group conferences.
I noted that the data visualization feature and components came in a separate offering.
I sensed that it was only a matter of time before Oracle integrated everything between
OBIEE, Visual Analyzer, and big-data analytics. That time has now come, and I urge those
who are interested and tried it before to give it another try.

Oracle Analytics Cloud
Leading up to the Oracle Analytics Cloud that we have today, BICS was the first
generation of the BI application on the cloud. As previously mentioned, it included in its
suite package the tools needed to develop reporting and analytics from the ground up,
including a database service, a modeling tool, a data loader, and dashboards. From an
industry standpoint, it was one of first on the cloud, and its feature set was more like 11g.

Oracle Analytics Cloud, the second-generation analytics product, is essentially the
“latest and greatest” version (12c) of Oracle’s cloud solution. Moreover, as a go forward
strategic, Oracle will update the cloud version first with new features and the on-premises
version will follow suit.

In terms of features, the Standard version concentrates on visualization (to compete
against data visualization tools such as Tableau, Qlikview, and PowerBI. The enterprise
includes everything to make it a complete holistic solution, including the Big Data
Lake Edition with big data and artificial intelligence components. In addition, it has BI
Publisher for reporting. For advanced analytics, R and mapping are built in. A content
pack is provided free in order to help bootstrap development. Through machine-
learning approaches programmed in R, corrective actions are suggested by the analytics.
Subsequently, the analytics project can be published, exported, and imported to be
shared with others or to embed in a web page to share.

Oracle Database 18c
Oracle announced in October 2017 that the latest version (version 18c) of its flagship
product, the Oracle relational database management system, now uses machine learning
to automatically maintain, administer, and troubleshoot the system. This includes
upgrades, patching, and tuning itself. This technology is able to baseline the system and
then, using machine- learning approaches and techniques, learn what is not “normal”
and suggest ways to correct or modify itself accordingly.

Chapter 2 ■ Business intelligenCe, Big Data, anD the ClouD

20

Oracle Mobile Analytics
As an integral part of Oracle’s overall strategy, it has incorporated programs and
applications to tie in today’s mobile devices. Day by Day and Synopsis are mobile
applications that are part of its next generation of mobile apps that are integrated with the
enterprise layer seamlessly.

ANALYTICS ON THE GO

oracle Business intelligence Mobile is the only mobile app that provides a full range
of functionality—from interactive dashboards to location intelligence—and lets you
initiate business processes right from your mobile device. the app enables you to do
the following:

 – Make business intelligence as easy to use as any consumer mobile
app

 – View, analyze, and act on all your oracle Business intelligence
content on the apple iphone and ipad

 – instantly access new or existing content on mobile devices; no
design changes required

 – increase the use of business intelligence in your organization with
an intuitive and easy-to-use mobile application

www.oracle.com/solutions/business-analytics/business-intelligence/
mobile/bi-mobile/index.html

the user would use the voice interface through the mobile device, which, in turn,
goes through the semantic layer of the enterprise Bi and Big Data lake layer, and
then finally build a visualization in response to your inquiry.

Summary
Oracle, with its recent offering of the Oracle Analytics Cloud platform, has provided a
complete, holistic, analytical solution encompassing business intelligence, big data, and
artificial intelligence all on the ubiquitous cloud.

The two main features of machine learning are as follows:

• Data visualization

• Data preparation

These are game changers offering a whole new paradigm for providing business
intelligence with advanced analytics.

https://www.oracle.com/solutions/business-analytics/business-intelligence/mobile/bi-mobile/index.html
https://www.oracle.com/solutions/business-analytics/business-intelligence/mobile/bi-mobile/index.html

Chapter 2 ■ Business intelligenCe, Big Data, anD the ClouD

21

Through machine learning, insights are possible. Some of these insights involve
things that we, as humans, couldn’t even have thought of. Even when it comes to
effectively handling the sheer amount of data coming from big data or even from an
enterprise data warehouse, artificial intelligence can help identify patterns in the data
that we would not normally be able to do.

23© Rosendo Abellera and Lakshman Bulusu 2018
R. Abellera and L. Bulusu, Oracle Business Intelligence with Machine Learning,
https://doi.org/10.1007/978-1-4842-3255-2_3

CHAPTER 3

The Oracle R Technologies
and R Enterprise

Advances in artificial intelligence (AI) have extended the domain of business intelligence
(BI) to areas of machine learning and predictive analytics as well as big-data analytics.
This has resulted in an expansive set of machine-learning algorithms that can be used
to solve real-world BI problems. One of the most popular and widely used languages for
machine learning and statistical computing is the R open source language. Its extensive
set of algorithms, coupled with its support for rich graphics and data visualization, has
made it the language of choice for data analysis and data science.

This chapter focuses on R technologies for the enterprise. It also outlines the use of
some of the expansive sets of open source R packages as well as the use of R scripts and
Oracle R Enterprise in the Oracle database from a machine-learning perspective. The
chapter explains how Oracle R Enterprise can be used with OBIEE. Finally, it explains
how to perform big-data advanced analytics by using machine learning with the R
ecosystem.

R Technologies for the Enterprise
R is an open source scripting language for machine and statistical learning and advanced
graphics functionality. For the purposes of this chapter, R technologies can be broadly
classified into two categories: open source R and Oracle’s R technologies.

Open Source R
Open source R consists of a rich set of compiled code, functional routines, and related
data in the form of packages and views, called CRAN views, or CRAN task views. CRAN is
an acronym for Comprehensive R Archive Network and consists of user-defined packages
published to its web site, http://cran.r-project.org. Each task view consists of a web
page specific to a functional domain and the details of the corresponding packages for
that domain. Examples of CRAN task views are Genetics, Clinical Trials, and Medical
Imaging in the Health Care Domain; Machine Learning; Statistical Learning; Time Series
Analysis; and Financial Analysis.

https://doi.org/10.1007/978-1-4842-3255-2_3
http://cran.r-project.org/

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

24

R is extensible and comprehensive with the ability to add custom functionality in the
form of new packages. R can be further extended with out-of-the-box features in the form
of knobs that help in additional customization. Either the R project web site or the CRAN
web site can be used to download and install R for free.

 ■ Note details of the r open source project can be found at www.R-project.org.

Table 3-1 describes the widely used CRAN task views for machine learning. These
can also be found at https://cran.r-project.org/web/views/MachineLearning.html.

Table 3-1. CRAN Task Views for Machine Learning

View Name Description

Neural Networks and Deep
Learning

Stuttgart Neural Network Simulator (RSNNS)
User-extensible artificial neural networks (FCNN)
Deep learning—darch, deepnet, RcppDL, h2o
TensorFlow

Recursive Partitioning Tree-structured models for regression, classification,
and survival analysis; rule-based models and
boosting; recursive partitioning

Random Forests Regression and classification, ensemble learning,
reinforcement learning trees

Regularized and Shrinkage
Methods

Linear, logistic, and multinomial regression models;
gene expression analysis

Boosting and Gradient Descent Gradient boosting and learning models based on
gradient descent for regression tasks

Support Vector Machines Interface to SVMLIB and and SVMLight (only for one-
against-all classification)

Bayesioan Methods Bayesian Additive Regression Trees (BART), genetic
algorithms, etc.

Associative Rules Mining frequent itemsets, maximal itemsets, closed
frequent itemsets and association rules

Fuzzy Rule-Based Systems Fuzzy rule-based systems from data for regression and
classification, rough set theory, and fuzzy rough set
theory

Meta Packages Building predictive models (caret), GBM, GLM (with
elastic net regularization), mlr, and deep learning
(feed-forward multilayer networks)

GUI Graphical user interface for data mining in R

(continued)

http://www.r-project.org/
https://cran.r-project.org/web/views/MachineLearning.html
https://cran.r-project.org/web/views/Bayesian.html
https://cran.r-project.org/web/views/ChemPhys.html
https://cran.r-project.org/web/views/ClinicalTrials.html
https://cran.r-project.org/web/views/Cluster.html
https://cran.r-project.org/web/views/DifferentialEquations.html
https://cran.r-project.org/web/views/Distributions.html
https://cran.r-project.org/web/views/Econometrics.html
https://cran.r-project.org/web/views/Environmetrics.html
https://cran.r-project.org/web/views/ExperimentalDesign.html
https://cran.r-project.org/web/views/ExtremeValue.html

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

25

Oracle’s R Technologies
Oracle’s R technologies consist of the following:

• Oracle R Distribution

• ROracle

• Oracle R Enterprise (ORE)

• Oracle R Advanced Analytics for Hadoop

Each is descibed in the subsections that follow.

Oracle R Distribution
Oracle R Distribution is a free R software redistribution of open source R. This contains
functionality to dynamically load math libraries for high-performance computations and
learning, including multithreaded execution. The primary math libraries include Intel
Math Kernel Library, AMD Core Math Library, and Solaris Sun Performance Library.
Mathematical functions such as matrix functions, component analysis, fast Fourier series
transformations, and vector analysis can be transparently done using these libraries.
Oracle R Distribution also comes with enhancements to open source R and is available
on Oracle Enterprise Linux, Solaris, AIX, and Windows. Oracle Support is included for
customers of the Oracle Advanced Analytics option and Big Data Appliance as well as
Oracle R Enterprise. Use of Oracle R Distribution also enables scalability across the client
and database for embedded R execution. As of this writing, the latest version of Oracle R
Distribution is 3.3.0.

View Name Description

Visualization Various plots and graphs for visualization in R
including scatter plots, feature sets, ggplots, pairs
plots, plots for exploratory data analysis, trellis charts,
and plots for learning models including random
forests and SVMs, prediction functions, etc.

Statistical Learning Various alogirthms based on statistics and probability
for data mining, inference, and prediction

Miscellaneous Model selection and validation algorithms, evidential
classifiers that quantify the class of test pattern,
classification models for determining and handling
missing values and numerical data, feature-based and
graph-based data for prediction of a response variable

Table 3-1. (continued)

https://cran.r-project.org/web/views/Genetics.html
https://cran.r-project.org/web/views/Graphics.html
https://cran.r-project.org/web/views/HighPerformanceComputing.html

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

26

ROracle
ROracle is a database-interface-compliant Oracle driver for R using Oracle Call Interface
(OCI) libraries. Reengineered and optimized for connectivity between R and Oracle DB,
ROracle is an open source R CRAN package managed by Oracle. It primarily enables
execution of SQL statements from the R interface and transactional support for data
manipulation language (DML) operations. ROracle is also used by Oracle R Enterprise
to connect between R and Oracle DB. ROracle connectivity is faster while reading from
Oracle table to R data.frame, and writing from R data.frame to Oracle table, as compared
to RODBC and RJDBC. ROracle also is scalable across all data types (primarily, Oracle
NUMBER, VARCHAR2, TIMESTAMP, and RAW data types) as well as large resultsets. As of this
writing, ROracle 3-1.11 is the latest version of ROracle.

 ■ Note rOracle can be used to connect to Oracle dB from the Oracle r distribution.
either the Oracle instant Client or the Oracle standard database Client must be installed
for rOracle to be used. the sQl*plus sQl interface can also be used with Oracle instant
Client when connecting using rOracle. there is no need to create ORACLE_HOME when Oracle
instant Client is used.

To use the ROracle package, first the Oracle Database must be installed. Then
Oracle R must be installed, followed by installation of the ROracle package and database
interface (DBI) package. Once this setup has been done, a connection can be established
between Oracle DB and Oracle R by first loading the ROracle library and the Oracle DB
driver, and then creating a database connection. Once this is completed, standard DDL,
DML, and/or commit/rollback operations can be executed. When you’re finished using
database operations, the DB connection needs to be closed and the database driver
unloaded. Listing 3-1 gives an example of using ROracle; the codeloads the ROracle
package and then retrieves results from an Oracle schema table. The built-in RConsole
can be used to run ROracle methods.

Listing 3-1. Connecting to and Retrieving Results from an Oracle DB Table by Using
ROracle from Oracle R

SQL> alter user testr quota unlimited on users;
User altered.

This allocates unlimited quota to the user testr on the tablespace users.

SQL> create table temp_tab(cd varchar2(10 char) constraint temp_tab_pk
primary key,
 2 descr varchar2(30 char) not null,
 3 eff_start_date date not null,
 4 eff_end_date date);

Table created.

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

27

The following script must be executed in the R console.

library(ROracle)
drvr <- dbDriver("Oracle")
conn <- dbConnect(drvr, username = "myusername", password = "mypassword")
select_resultset <- dbSendQuery(conn, "select * from myusername.temp_tab")
fetch(select_resultset)
row_cnt <- dbGetRowCount(select_resultset)
if (row_cnt == 0) {
 warning("No results returned!")
}
dbClearResult(select_resultset)
dbDisconnect(conn)
dbUnloadDriver(drvr)

Here is the output of the code executed in RGui in:

> library(ROracle)
Loading required package: DBI
Warning messages:
1: package 'ROracle' was built under R version 3.3.0
2: package 'DBI' was built under R version 3.2.5
> drvr <- dbDriver("Oracle")
> conn <- dbConnect(drvr, username = "testr", password = "testr")
> select_resultset <- dbSendQuery(conn, "select * from testr.temp_tab")
> fetch(select_resultset)
[1] CD DESCR EFF_START_DATE EFF_END_DATE
<0 rows> (or 0-length row.names)
> row_cnt <- dbGetRowCount(select_resultset)
> if (row_cnt == 0) {
+ warning("No results returned!")
+ }
Warning message:
No results returned!
> dbClearResult(select_resultset)
[1] TRUE
> dbDisconnect(conn)
[1] TRUE
> dbUnloadDriver(drvr)
[1] TRUE
>

An Oracle instance can also be specified in dbConnect by using the DB instance
name attribute, as as shown here:

conn <- dbConnect(drvr, username = "myusername", password = "mypassword",
dbname="mydbinstance")

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

28

Instead of using dbDriver("Oracle"), the Oracle method Oracle() can be used to
instantiate an Oracle instance:

drvr <- Oracle()

Additionally, two other arguments, SYSDBA and external_credentials, can be set
to connect as SYSDBA and external authentication, respectively. They are specified as
SYSDBA = TRUE|FALSE and external_credentials=TRUE|FALSE. These are supported in
the ROracle 1-1.11 version.

Listing 3-2 gives example code for writing data from an R data.frame to an Oracle table,
and subsequently reading from the same table into an R data.frame and displaying it.

Listing 3-2. Connecting to and Writing Data from an R data.frame into an Oracle DB
Table, and Reading the Same Table Data into an R data.frame and Displaying It Using
ROracle from Oracle R

library(ROracle)
drvr <- dbDriver("Oracle")
conn <- dbConnect(drvr, username = "testr", password = "testr",
dbname="orcl")
insertStr <- "insert into testr.temp_tab values (:1, :2, :3, :4)";
cd <- "CD13";
descr <- "Description for Code 13";
eff_start_date <- "2017-01-01";
eff_start_date <- as.POSIXct(eff_start_date);
eff_end_date <- "2017-12-31";
eff_end_date <- as.POSIXct(eff_end_date);
The TZ env variable in R must be set as also the corresponding ORA_SDTZ
env var to the same value
Sys.setenv(TZ = "EST") # EST value is obtained from SESSIONTIMEZONE value
in Oracle
Sys.setenv(ORA_SDTZ = "EST")
dbGetQuery(conn, insertStr, data.frame(cd, descr, eff_start_date, eff_end_
date));
dbCommit(conn)

Selecting data into R data.frame and displaying it
select_resultset <- dbSendQuery(conn, "select * from testr.temp_tab")
data <- fetch(select_resultset)
dim(data)
data
dbClearResult(select_resultset)
dbDisconnect(conn)
dbUnloadDriver(drvr)

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

29

Here’s the output of running the code in Listing 3-2:

> library(ROracle)
Loading required package: DBI
Warning messages:
1: package 'ROracle' was built under R version 3.3.0
2: package 'DBI' was built under R version 3.2.5
> drvr <- dbDriver("Oracle")
 > conn <- dbConnect(drvr, username = "testr", password = "testr",

dbname="orcl")
> dbListTables(conn)
 [1] "TEMP_TAB"
> Sys.timezone()
[1] "EST"
> Sys.setenv(TZ = "EST")
> Sys.setenv(ORA_SDTZ = "EST")
> dbGetQuery(conn, insertStr, data.frame(cd, descr, eff_start_date, eff_end_
date));
[1] TRUE
> dbCommit(conn)
[1] TRUE
> select_resultset <- dbSendQuery(conn, "select * from testr.temp_tab")
> data <- fetch(select_resultset)
> dim(data)
[1] 1 4
> data
 CD DESCR EFF_START_DATE EFF_END_DATE
1 CD13 Description for Code 13 2017-01-01 2017-12-31
> dbClearResult(select_resultset)
[1] TRUE
> dbDisconnect(conn)
[1] TRUE
> dbUnloadDriver(drvr)
[1] TRUE
>

A set of rows based on bind parameter values (that is, the actual values substituted
for :1, :2, :3, :4 when the code in Listing 3-2 is executed) can also be read from the
Oracle table into an R data.frame and displayed. Listing 3-3 gives the example code.

Listing 3-3. Connecting to and Writing Data from an R data.frame into an Oracle DB
Table, and Reading the Same Table Data into an R data.frame and Displaying it Using
ROracle from Oracle R

library(ROracle)
drvr <- dbDriver("Oracle")

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

30

conn <- dbConnect(drvr, username = "testr", password = "testr",
dbname="orcl")
dbListTables(conn)

Selecting data based on code value CODE13 into R data.frame and displaying
it
select_resultset <- dbSendQuery(conn, "select * from testr.temp_tab where cd
= :1", data = data.frame(cd='CODE13'))
data1 <- fetch(select_resultset)
dim(data1)
data1
dbClearResult(select_resultset)
dbDisconnect(conn)
dbUnloadDriver(drvr)

Here’s the output of running the code in Listing 3-3:

> library(ROracle)
> drvr <- dbDriver("Oracle")
> conn <- dbConnect(drvr, username = "testr", password = "testr",
dbname="pdborcl")
> dbListTables(conn)
[1] "TEMP_TAB"
> select_resultset <- dbSendQuery(conn, "select * from testr.temp_tab where
cd = :1", data = data.frame(cd='CD13'))
> data1 <- fetch(select_resultset)
> dim(data1)
[1] 1 4
> data1
 CD DESCR EFF_START_DATE EFF_END_DATE
1 CD13 Description for Code 13 2017-01-01 2017-12-31
> dbClearResult(select_resultset)
[1] TRUE
> dbDisconnect(conn)
[1] TRUE
> dbUnloadDriver(drvr)
[1] TRUE
>

Oracle R Advanced Analytics for Hadoop
Oracle R Advanced Analytics for Hadoop (ORAAH) is a component of the Oracle Big Data
Connectors software suite. The latest version of ORAAH is 2.7.0. It integrates Hadoop and
Apache Hive inside a Hadoop cluster with Oracle Database (with the Advanced Analytics
option) and R (via an R interface that includes the R engine and open source R packages).
Working on data in the Hadoop Distributed File System (HDFS) can be done using

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

31

Hive-based Hibernate Query Languuage (HQL) and also via HDFS data mappings as direct
input to machine-learning routines. The latter can then be executed as MapReduce jobs
that call custom R mappers and/or reducers, or by using Apache Spark. Hive-based HQL
enables data preparation, joins, and view creation. Source data can be in the form of an
HDFS comma-separated values (CSV) data set or Hive tables, or an HDFS CSV data set
cached into Apache Spark as a resilient distributed dataset (RDD). ORAAH Spark-based
algorithms perform better compared to Spark MLlib-based algorithms, as also is the case
with ORAAH Spark-based algorithms vs. corresponding MapReduce algorithms.

Table 3-2 shows the primary algorithms in a Hadoop cluster that are supported
by the latest release of ORAAH. These algorithms are for machine and statistical
learning and enable parallized and distributed execution. In addition, the GLM and LM
algorithms have the ability to work on big data and scale across the enterprise and are
faster than corresponding Apache Spark’s MLIib models.

Table 3-2. Primary Machine-Learning Algorithms Supported by ORAAH

Algorithm Name Description

Linear regression For regression—both Spark and
MapReduce based

Logistic regression
LM

Mult-layer perception feed-forward neural
networks (MLP NN) with Spark caching
enabled

Generalized linear models (GLM) with
Spark caching enabled

For classification, based on Apache Spark
MLlib

For regression, based on Apache Spark
MLlib and MapReduce

For classification, based on MapReduce
and Spark as of v 2.7.0

Principal component analysis (PCA) For attribute importance, based on Spark
and MapReduce

k-means For clustering, based on Spark and
MapReduce

Non-negative matrix factorization (NMF)
Low-rank matrix factorization (LMF)

Gaussion mixture model

Correlation and covariance matrix
computations

Least absolute shrinkage and selection
operator (LASSO)

Decision trees

Random forest

Support vector machines

For feature extraction, based on MapReduce
For feature extraction, based on MapReduce

New in version 2.7.0, based on Apache
Spark MLlib

For statistical computation and learning,
based on MapReduce

Based on Spark

Based on Spark

Based on Spark

Based on Spark

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

32

 ■ Note Further information about Oraah, including the various alogrithms supported
and benchmarking, can be found at Oracle’s web site: www.oracle.com/technetwork/
database/database-technologies/bdc/r-advanalytics-for-hadoop/overview/

index.html.

examples of real-world use cases implementing some of these alogrithms using hive and
Oraah can be found at https://blogs.oracle.com/R/entry/oracle_r_advanced_
analytics_for.

Oracle R Enterprise
Oracle R Enterprise (ORE) is by far the most important of the Oracle R technologies
and comes with the Oracle Advanced Analytics option of Oracle Database. ORE boosts
and extends open source R execution by leveraging Oracle in-database computing on
stored data directly, thereby resulting in reduced latency, high-performance computing,
multithreaded parallel execution of data and tasks, scalability, and reduced or minimal
memory usage.

From an architectural standpoint, ORE consists of the following:

• Database server machine with Oracle DB installed that has
libraries and PL/SQL programs to support the ORE client

• R engine installed on Oracle DB that supports embedded R
execution and executes in-database statistics and machine-
learning functions. Each DB R engine ORE server and ORE client
packages. The Oracle DB spawns multiple R engines for data
parallelism. The in-DB R engine has a native Oracle DB feature-
set that is capable of tight SQL integration and DBMS package-
based functionality

• Oracle R Distribution

• R Oracle for database connectivity

• Client R engine with client ORE packages, open source R (or
Oracle R Distribution) and ROracle

• Database R script repository that stores R scripts inside Oracle
Database that can be called by name directly from SQL

• Database R datastore that stores R objects inside Oracle DB

http://www.oracle.com/technetwork/database/database-technologies/bdc/r-advanalytics-for-hadoop/overview/index.html
http://www.oracle.com/technetwork/database/database-technologies/bdc/r-advanalytics-for-hadoop/overview/index.html
http://www.oracle.com/technetwork/database/database-technologies/bdc/r-advanalytics-for-hadoop/overview/index.html
https://blogs.oracle.com/R/entry/oracle_r_advanced_analytics_for
https://blogs.oracle.com/R/entry/oracle_r_advanced_analytics_for

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

33

Figure 3-1 gives an overview of the ORE architecture.

From an enhancement perspective, ORE extends open source R in the following
manner:

• ORE transparency layer

• Embedded R execution (via the embedded R engine)—both R
interface and SQL interface

• Predictive analytics

As of this writing, the latest version of Oracle R Enterprise is 1.5.0.

 ■ Note additional information about Ore, including enhancements in Ore 1.5.0, can
be found at www.oracle.com/technetwork/database/database-technologies/r/
r-enterprise/overview/index.html.

From an enterprise standpoint, ORE has the following characteristics:

• ORE provides the required optimization in terms of memory
allocation and multithreaded execution without the hassle of
supplemented packages, as it enables in-database execution of R
scripts and models directly on data in Oracle DB. Large data-sets
can be loaded into memory and run using function invocation
without copies of the data being made, thereby eliminating R’s
call-by-value semantics. This is also true while executing open
source R packages from the CRAN set.

Figure 3-1. An overview of Oracle R enterprise architecture

http://www.oracle.com/technetwork/database/database-technologies/r/r-enterprise/overview/index.html
http://www.oracle.com/technetwork/database/database-technologies/r/r-enterprise/overview/index.html

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

34

• The in-database computation and analysis of data through R is
done transparently. Basic R operations can be coded as R data.
frames. The corresponding R functions are exposed as overloaded
function definitions, and their execution is pushed to Oracle DB.
The statistical and machine-learning operations are executed on
data in Oracle tables. ORE provides ore.frame objects (a subclass
of data.frame) that get substituted for database tables, thereby
generating SQL, for in-DB execution on data stored in Oracle. This
kind of transparency layer provides reduced latency and optimal
performance in terms of operational efficiency, and at a big-data
set scale.

• Using the embedded R engine(s) spawned by Oracle DB, ORE
allows data- and task- parallelism via its embedded R execution
support. Taking advantage of more memory availability and
database-enabled data parallelism, embedded R execution
enables execution of R scripts (including those that are based
on open source CRAN packages) embedded in SQL and PL/SQL
routines. This type of processing is called lights-out processing.
The R scripts can be stored in the database R script repository
and invoked by name in calling SQL statements. This can be done
dynamically too. Embedded R execution is exposed through both
R and SQL APIs. The output of such execution can be structuredd
data, XML representations of R objects and graphics, or PNG
graphics via BLOB columns in Oracle table(s). The latter allows
seamless integration with other applications such as OBIEE
RPDs and dashboards by passing results from R for business
intelligence and advanced analytics. Table 3-3 lists these APIs
(both R interface and SQL interface) for ORE v1.5.0.

• ORE also allows interfacing with in-DB predictive analytics
algorithms through R. Examples include OREeda (exploratory
data analysis), OREdm (data mining) and OREpredict. OREeda
can implement linear models, stepwise regression, generalized
linear models, neural networks, and random forest algorithms as
well as base SAS equivalent functionality.

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

35

Table 3-3. ORE Embedded Execution API (for R Interface and SQL Interface)

API R Interface API SQL Interface Description

ore.doEval rqEval Executes function f without input data
argument.

ore.tableApply rqTableApply Executes function f with ore.frame
input data argument provided via first
parameter to f (as data.frame).

ore.groupApply rqGroupApply Executes function f by partitioning data
as per values in an index column. Each
data partition is provided as a data.
frame argument to the first parameter of
f. Parallel execution of each call of f is
enabled.

ore.rowApply rqRowEval Executes function f by passing a chunk
of rows of the provided input data. Each
input chunk of data is passed as a data.
frame to the first parameter of f. Parallel
execution of each call of f is enabled.

ore.indexApply N/A Executes function f without input data
argument but with an index of the
execution calls 1 through n, where n is
the number of function calls. Parallel
execution of each call of f is enabled.

ore.scriptCreate sys.rqScriptCreate Stores the R script into the ORE R script
repository with the given name and the
associated function.

ore.scriptDrop sys.rqScriptDrop Drops the R script from the ORE R script
respository with the given name.

ore.scriptLoad Loads the R script with the given name
from the ORE R script repository for
subsequent execution of the function
associated with the R script.

In the Description column, the function f refers to the R function associated with each API.

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

36

OREeda consists of database-enabled ORE versions of R models for linear and
stepwise regression, generalized linear models, neural networks, and random forest
classification in parallel. It exposes these via the functions: ore.lm() for linear regression
and least squares regression, ore.stepwise() for stepwise least squares regression,
ore.glm for generalized linear models and logistic regression, ore.neural() for neural
network models for pattern recognition, and ore.randomForest() for classification,
respectively. All of these work on data in an ore.frame and can be used to create R
models based on data in Oracle DB.

OREdm has Oracle Data Mining algorithms equivalent to implementing
classification, regression, clustering, attribute importance, association rules, feature
extraction, and anomaly detection. These algorithms be used to build models with data
in Oracle tables. Here’s a list of the alorithms:

• Classification

• Decision tree

• GLM classification—binary logistic regression

• Naïve Bayes

• Support vector machine

• Random forest—new in ORE V1.5.0

• Regression

• GLM regression (linear regression and ridge regression)

• Support vector machine

• Clustering

• k-means (a distance-based clustering algorithm)

• Orthogonal partitioning cluster, or O-Cluster (ore.odmOC)

• Attribute importance (minimum descriptor length—ore.odmAI)

• Association rules

• Apriori (ore.odmAssocRules)

• Feature extraction

• Non-negative matrix factorization (ore.odmNMF)

• Principal component analysis—new in V1.5.0

• Singular value decomposition—new in V1.5.0

• Anamoly detection

• Support vector machine

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

37

OREpredict gives the ability to use select R models to score in-DB data in an ore.
frame object. Normally, data to score using R models must be in R data.frame. ORE
allows for these native R models to be transparently translated into SQL during scoring
operation. Examples are in-DB SQL and R predictive models for behaviorial analytics.
OREpredict has the following algorithms:

• Linear model

• Generalized linear model

• Negative binomial generalized linear model

• Multinomial log linear model

• k-means clustering

• Hierarchical clustering

• Neural network

• Recursive partitioning and regression tree

ORE provides the backup, recovery, and security of the data needed to be analyzed at
the enterprise level.

ORE inherently takes care of the semantic data mappings from Oracle tables into R data.
frames, and vice versa, that would otherwise have been needed for direct database access
using RODBC, RJDBC, and ROracle packages or during analytical model creation involving R.

Table 3-4 lists the primary Oracle R Enterprise packages

Table 3-4. Primary ORE Packages

Package Functionality

DBI Supplemental packages for database interface for R

ORE Oracle R Enterprise

OREbase Functionality related to R’s base package

OREgraphics Functionality related to R’s graphics package

OREstats Functionality related to R’s statistics package

OREeda Package for exploratory data analysis

OREdm Package for data mining (Oracle Data Mining)

OREpredict Package for scoring data in Oracle database using R model predictions

ORExml Functionality for XML generation within R

bitops Functions for bitwise operations

png Supplemental package for read/write PNG images from/to R and
Oracle DB

OBIEEAdvanced
Analytics

Advanced analytics and machine learning R functions supported in
ORE for integration with OBIEE

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

38

OBIEE integration with R graphics also includes parameter controls that can be used
to customize graphs such as graph plots and charts.

Using ORE for Machine Learning and Business
Intelligence with OBIEE: Start-to-Finish
Pragmatics
This section details the end-to-end pragmatics of using a machine-learning algorithm
with ORE and the subsequent incorporation of its output for business intelligence
via OBIEE dashboards. We will first show an example of an R program that uses the
randomForest() algorithm to predict the origin of wine. Next, we’ll show an example of
how this program can be modified to exhibit embedded R execution in Oracle DB using
the ORE R interface. Then we’ll demonstrate an example of using the same program
to exhibit embedded R execution using the SQL interface. This example explains how
to obtain output from ORE including a structured table, XML, and a graph (PNG).
Finally, we’ll detail how the output from ORE execution can be integrated within OBIEE
dashboards for predictive analytics.

Using the ORD randomForest Algorithm to
Predict Wine Origin
This is done using the random forest R model, which is an extension of the decision tree
model.

 ■ Note a good explanation of decision trees and random forests can be found at
https://medium.com/towards-data-science/decision-trees-and-random-forests-

df0c3123f991 and https://medium.com/towards-data-science/decision-trees-
and-random-forests-for-classification-and-regression-pt-1-dbb65a458df. a
comparative use of decision trees and random forests can be found at http://whrc.org/
wp-content/uploads/2016/02/DecisionTrees_RandomForest_v2.pdf.

Listing 3-4 gives example code for this. It builds the R model and subsequently
tests the built model on test data to predict the origins of wines depending on the Wine
class. It outputs a table of the predicted results as well as PNG graph that displays the
predicted wine origin output vis-à-vis the output table. The source data for this consists
of modifying the Wine data set obtained at https://archive.ics.uci.edu/ml/machine-
learning-databases/wine/wine.data. Also, the article at https://datascienceplus.
com/predicting-wine-quality-using-random-forests/ was referred to as a sample
example for this.

https://medium.com/towards-data-science/decision-trees-and-random-forests-df0c3123f991
https://medium.com/towards-data-science/decision-trees-and-random-forests-df0c3123f991
https://medium.com/towards-data-science/decision-trees-and-random-forests-for-classification-and-regression-pt-1-dbb65a458df
https://medium.com/towards-data-science/decision-trees-and-random-forests-for-classification-and-regression-pt-1-dbb65a458df
http://whrc.org/wp-content/uploads/2016/02/DecisionTrees_RandomForest_v2.pdf
http://whrc.org/wp-content/uploads/2016/02/DecisionTrees_RandomForest_v2.pdf
https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data
https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data
https://datascienceplus.com/predicting-wine-quality-using-random-forests/
https://datascienceplus.com/predicting-wine-quality-using-random-forests/

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

39

Listing 3-4. Using R randomForest Model to Predict Wine Origin (R code along with its
output)

> library(randomForest)
randomForest 4.6-12
Type rfNews() to see new features/changes/bug fixes.
Warning message:
package 'randomForest' was built under R version 3.2.5
> winedata <- read.csv("winedata.csv", header=TRUE, sep=',') # The file
winedata.csv is present in the working directory from where the R
interface was invoked
> head(winedata)
 class Alcohol Malic.acid Ash Alcanility.of.ash Magnesium Total.phenols
Flavanoids

1 1 14.23 1.71 2.43 15.6 127 2.80 3.06
2 1 13.20 1.78 2.14 11.2 100 2.65 2.76
3 1 13.16 2.36 2.67 18.6 101 2.80 3.24
4 1 14.37 1.95 2.50 16.8 113 3.85 3.49
5 1 13.24 2.59 2.87 21.0 118 2.80 2.69
6 1 14.20 1.76 2.45 15.2 112 3.27 3.39
 Nonflavanoid.phenols Proanthocyanins Color.intensity Hue OD280.OD315.
of.diluted.wines

1 0.28 2.29 5.64 1.04 3.92
2 0.26 1.28 4.38 1.05 3.40
3 0.30 2.81 5.68 1.03 3.17
4 0.24 2.18 7.80 0.86 3.45
5 0.39 1.82 4.32 1.04 2.93
6 0.34 1.97 6.75 1.05 2.85
 Proline
1 1065
2 1050
3 1185
4 1480
5 735
6 1450
> winedata$origin <- ifelse(winedata$class == 1, 'Origin1',
+ ifelse(winedata$class == 2, 'Origin2',
+ ifelse(winedata$class == 3, 'Origin3', '')))
> winedata$origin <- as.factor(winedata$origin)
> head(winedata$origin)
[1] Origin1 Origin1 Origin1 Origin1 Origin1 Origin1
Levels: Origin1 Origin2 Origin3
> table(winedata$origin)

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

40

Origin1 Origin2 Origin3
 489 549 336
> set.seed(123)
> sample_size <- 0.70 * nrow(winedata)
> sampledata <-sample(seq_len(nrow(winedata)), sample_size)
> training_data <- winedata[sampledata,]
> test_data <- winedata[-sampledata,]
> wine.rf <- randomForest(origin ~ . - class, data = training_data)
> wine.rf
Call:
 randomForest(formula = origin ~ . - class, data = training_data)
 Type of random forest: classification
 Number of trees: 500
No. of variables tried at each split: 3

 OOB estimate of error rate: 0%
Confusion matrix:
 Origin1 Origin2 Origin3 class.error
Origin1 349 0 0 0
Origin2 0 387 0 0
Origin3 0 0 225 0
> origin_pred <- predict(wine.rf, newdata = test_data)
> table(origin_pred, test_data$origin)

origin_pred Origin1 Origin2 Origin3
 Origin1 140 0 0
 Origin2 0 162 0
 Origin3 0 0 111
> pairs(table(origin_pred, test_data$origin), main="Wine Origin Predictors")
>

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

41

Figure 3-2 shows the graph from Listing 3-4.

Using Embedded R Execution in Oracle DB and the ORE
R Interface to Predict Wine Origin
In this section, we’ll modify Listing 3-4 to use the ORE embedded R execution function
for the R interface. It uses the ore.doEval() function for the same functionality. The
modified code is given in Listing 3-5 and the corresponding PNG graph is shown in
Figure 3-3. As you can see, both the outputs of using ore.doEval() and the original R
program are the same. The difference is that the ore.doEval() ORE function is executed
in-database and the results passed to the R terminal on the user’s console.

Figure 3-2. PNG graph output of the pairs plot on the Wine Origin Predictors table data

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

42

Listing 3-5. Using ORE to Build and Test a randomForest() Model

library(ORE)
ore.connect(user="testr", sid="orcl", host="localhost", password="testr")
ore.doEval(function () {
library(randomForest)
The file winedata.csv is in the working directory from where ORE interface
was invoked
winedata <- read.csv("winedata.csv", header=TRUE, sep=',')
head(winedata)
winedata$origin <- ifelse(winedata$class == 1, 'Origin1',
ifelse(winedata$class == 2, 'Origin2',
ifelse(winedata$class == 3, 'Origin3', '')))
winedata$origin <- as.factor(winedata$origin)
head(winedata$origin)
set.seed(123)
sample_size <- 0.70 * nrow(winedata)
sampledata <-sample(seq_len(nrow(winedata)), sample_size)
training_data <- winedata[sampledata,]
test_data <- winedata[-sampledata,]
wine.rf <- randomForest(origin ~ . - class, data = training_data)
origin_pred <- predict(wine.rf, newdata = test_data)
table(origin_pred, test_data$origin)
library(AppliedPredictiveModeling)
transparentTheme(trans = .4)
pairs(table(origin_pred, test_data$origin), main="Wine Origin Predictors")
}, ore.graphics=TRUE, ore.png.height=600, ore.png.width=500)

Here are the steps to follow:

 1. Open an Rterminal using ORE.

 2. Connect to the database. This step is needed to use ORE, even
if no DB-related functions are used.

 3. Load the ORE library.

 4. Code an ore.doEVal function that does the following:

a. Loads the library randomForest.

b. Retrieves the wine data set from source CSV file into the
data.frame named winedata.

c. Displays the first few rows to verify that the data frame
consists of the loaded data.

d. Creates a wine origin classifier variable, winedata$origin,
based on the first column class in the winedata data set.

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

43

e. Splits the data in winedata into a training data set and
test data set. Approximately 70% of data gets sampled as
training data, and the remaining as test data.

f. Applies the randomForest() model on the training data
set, resulting in a wine predictor class called wine.rf.
The model output shows three predictors at each split,
namely, Origin1, Origin2, and Origin3. The output also
shows a table of the prediction vs. actual values.

g. Displays the Test the model by using predict() on the
test data, and displays the output of the prediction as a
table based on the predict output and test_data$origin
classifier variable

h. Plots a pairs graph by using the the predictor table as
the input data. The PNG graph is displayed in a separate
graph display window.

Here’s the output of the code in Listing 3-5:

> library(ORE)
Loading required package: OREbase
Loading required package: OREcommon

Attaching package: 'OREbase'

The following objects are masked from 'package:base':

 cbind, data.frame, eval, interaction, order, paste, pmax, pmin,
 rbind, table

Loading required package: OREembed
Loading required package: OREstats
Loading required package: MASS
Loading required package: OREgraphics
Loading required package: OREeda
Loading required package: OREmodels
Loading required package: OREdm
Loading required package: lattice
Loading required package: OREpredict
Loading required package: ORExml
> ore.connect(user="testr", sid="orcl", host="localhost", password="testr")
> ore.doEval(function () {
+ library(randomForest)
+ winedata <- read.csv("winedata.csv", header=TRUE, sep=',')
+ head(winedata)
+ winedata$origin <- ifelse(winedata$class == 1, 'Origin1',
+ ifelse(winedata$class == 2, 'Origin2',

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

44

+ ifelse(winedata$class == 3, 'Origin3', '')))
+ winedata$origin <- as.factor(winedata$origin)
+ head(winedata$origin)
+ set.seed(123)
+ sample_size <- 0.70 * nrow(winedata)
+ sampledata <-sample(seq_len(nrow(winedata)), sample_size)
+ training_data <- winedata[sampledata,]
+ test_data <- winedata[-sampledata,]
+ wine.rf <- randomForest(origin ~ . - class, data = training_data)
+ origin_pred <- predict(wine.rf, newdata = test_data)
+ table(origin_pred, test_data$origin)
+ library(AppliedPredictiveModeling)
+ transparentTheme(trans = .4)
+ pairs(table(origin_pred, test_data$origin), main="Wine Origin Predictors")
+ }, ore.graphics=TRUE, ore.png.height=600, ore.png.width=500)

origin_pred Origin1 Origin2 Origin3
 Origin1 140 0 0
 Origin2 0 162 0
 Origin3 0 0 111
>

Figure 3-3 shows the corresponding PNG graph.

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

45

Listing 3-6 shows a detailed version of building a random forest model by using ORE.
It depicts details such as printing the RF model to see important features after building it
using the print() R function, plotting the RF model to see the corresponding RF model
graph using the plot() function, printing the importance output of the model after
building it using the importance() function, and plotting the importance variables after
building it using varIMpPLot() function. Also, the margin of error for accuracy is plotted
using the output of the margin() function with the model and origin classifier obtained
from scoring the RF model on test_data as arguments to it. These outptuts, along with
the original table and pairs plot output, are shown immediately after Listing 3-6.

Figure 3-3. PNG graph output of the pairs plot on the Wine Origin Predictors table data

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

46

Listing 3-6. Using ORE to Build and Test a randomForest() Model— Detailed Version

library(ORE)
ore.connect(user="testr", sid="orcl", host="localhost", password="testr")
ore.is.connected()
ore.doEval(function () { library(randomForest)
The file winedata.csv is in the working directory from where the ORE
interface was invoked
winedata <- read.csv("winedata.csv", header=TRUE, sep=',')
head(winedata)
winedata$origin <- ifelse(winedata$class == 1, 'Origin1',
ifelse(winedata$class == 2, 'Origin2',
ifelse(winedata$class == 3, 'Origin3', '')))
class(winedata$origin)
winedata$origin <- as.factor(winedata$origin)
head(winedata$origin)
set.seed(123)
sample_size <- 0.70 * nrow(winedata)
sampledata <-sample(seq_len(nrow(winedata)), sample_size)
training_data <- winedata[sampledata,]
test_data <- winedata[-sampledata,]
formula <- origin ~ . - class
wine.rf <- randomForest(formula, data=training_data,ntree=100,
importance=TRUE, proximity=TRUE)
head(wine.rf)
class(wine.rf)
print(wine.rf) # Print RF model to see important features
plot(wine.rf) # Plot RF Model to see the corresponding RF model graph
importance(wine.rf) # See the importance of the variables
varImpPlot(wine.rf) # Plot RF Model see the variable Importance
origin_pred <- predict(wine.rf, newdata = test_data)
head(origin_pred)
table(origin_pred, test_data$origin)
plot(margin(wine.rf, test_data$origin)) # Plot margin of error for accuracy
library(AppliedPredictiveModeling)
transparentTheme(trans = .4)
pairs(table(origin_pred, test_data$origin), main="Wine Origin Predictors")
}, ore.graphics=TRUE, ore.png.height=600, ore.png.width=500)

The two primary outputs of the code in Listing 3-6 are print(wine.rf) and
importance(wine.rf), shown here:

> print(wine.rf)

Call:
 randomForest(formula = formula, data = training_data, ntree =
100, importance = TRUE, proximity = TRUE)

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

47

 Type of random forest: classification
 Number of trees: 100
No. of variables tried at each split: 3

 OOB estimate of error rate: 0%
Confusion matrix:
 Origin1 Origin2 Origin3 class.error
Origin1 349 0 0 0
Origin2 0 387 0 0
Origin3 0 0 225 0
> plot(wine.rf)
> importance(wine.rf) # See the importance of the variables
 Origin1 Origin2 Origin3 MeanDecrease
 Accuracy
Alcohol 11.105535 9.526838 7.123277 12.129635
Malic.acid 4.839083 6.448424 4.905585 6.960896
Ash 4.326631 6.724472 5.399456 7.243023
Alcanility.of.ash 4.527594 6.332050 4.863168 6.958164
Magnesium 6.467083 6.776471 4.327440 7.301142
Total.phenols 6.739080 6.357134 6.025438 7.877900
Flavanoids 8.465542 8.610455 11.318216 12.551384
Nonflavanoid.phenols 2.866508 4.082630 3.718137 4.484671
Proanthocyanins 2.909023 5.907274 5.583297 7.075015
Color.intensity 12.855845 12.054849 12.554351 17.634433
Hue 5.896908 7.500771 8.471345 9.225476
OD280.OD315.of.diluted.wines 6.017725 7.304052 8.207104 9.652773
Proline 12.374653 8.791325 6.200598 13.307739
 MeanDecreaseGini
Alcohol 80.459884
Malic.acid 15.259082
Ash 8.053578
Alcanility.of.ash 14.141569
Magnesium 19.983451
Total.phenols 42.076450
Flavanoids 96.234232
Nonflavanoid.phenols 6.998323
Proanthocyanins 14.879801
Color.intensity 109.622069
Hue 50.237897
OD280.OD315.of.diluted.wines 52.182508
Proline 114.973278

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

48

Next is the output of running the code in Listing 3-6, followed by the four graphs
produced from in Figures 3-4 to 3-7.

> library(ORE)
Loading required package: OREbase
Loading required package: OREcommon

Attaching package: 'OREbase'

The following objects are masked from 'package:base':

 cbind, data.frame, eval, interaction, order, paste, pmax, pmin,
 rbind, table

Loading required package: OREembed
Loading required package: OREstats
Loading required package: MASS
Loading required package: OREgraphics
Loading required package: OREeda
Loading required package: OREmodels
Loading required package: OREdm
Loading required package: lattice
Loading required package: OREpredict
Loading required package: ORExml
> ore.connect(user="testr", sid="orcl", host="localhost", password="testr")
> ore.doEval(function () {
+ library(randomForest)
+ winedata <- read.csv("winedata.csv", header=TRUE, sep=',')
+ head(winedata)
+ winedata$origin <- ifelse(winedata$class == 1, 'Origin1',
+ ifelse(winedata$class == 2, 'Origin2',
+ ifelse(winedata$class == 3, 'Origin3', '')))
+ class(winedata$origin)
+ winedata$origin <- as.factor(winedata$origin)
+ head(winedata$origin)
+ set.seed(123)
+ sample_size <- 0.70 * nrow(winedata)
+ sampledata <-sample(seq_len(nrow(winedata)), sample_size)
+ training_data <- winedata[sampledata,]
+ test_data <- winedata[-sampledata,]
+ formula <- origin ~ . - class
+ wine.rf <- randomForest(formula, data=training_data,ntree=100,
importance=TR$
+ print(wine.rf)
+ plot(wine.rf)
+ importance(wine.rf)

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

49

+ varImpPlot(wine.rf)
+ origin_pred <- predict(wine.rf, newdata = test_data)
+ table(origin_pred, test_data$origin)
+ plot(margin(wine.rf, test_data$origin)) # PLot margin of error for
accuracy
+ library(AppliedPredictiveModeling)
+ transparentTheme(trans = .4)
+ pairs(table(origin_pred, test_data$origin), main="Wine Origin Predictors")
+ }, ore.graphics=TRUE, ore.png.height=600, ore.png.width=500)
NULL
>

Figure 3-4. Output of plot(wine.rf)

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

50

Note that the number of trees on the x-ais extend up to 100, as defined by the ntree
parameter value in the call to the randomForest model in Listing 3-6.

In regards to the the importance outputs from the ranDomForest model, these are
MeanDecreaseAccuracy and MeanDecreaseGini. These appear on the x-axis of Figure 3-5.

Figure 3-5. Output of varImpPlot(wine.rf)

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

51

Figure 3-6. Output of plot(margin(wine.rf, test_data$origin))

The importance variables shown in Figure 3-6 are MeanDecreaseAccuracy and
MeanDecreaseGini, respectively.

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

52

Using ore.randomForest Instead of R’s randomForest
Model
This subsection demonstrates how ORE’s ore.randomForest function can be used to
build and score the random forest model for predicting wine origin. We’ve modified the
code in Listing 3-4 to use ore.randomForest; Listing 3-7 provides the modified code, and
its execution output is shown in the code that follows the listing.

Listing 3-7. Use of ore.randomForest to Predict Wine Origin

library(ORE)
ore.connect("testr","orcl","localhost","testr")
library(OREmodels)
The file winedata.csv is in the working directory frm which ORE interface
was invoked
winedata <- read.csv("winedata.csv", header=TRUE, sep=',')

Figure 3-7. Output of pairs(table(origin_pred, test_data$origin), main=“Wine Origin
Predictors”)

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

53

head(winedata)
winedata$origin <- ifelse(winedata$class == 1, 'Origin1',
ifelse(winedata$class == 2, 'Origin2',
ifelse(winedata$class == 3, 'Origin3', '')))
class(winedata$origin)
winedata$origin <- as.factor(winedata$origin)
class(winedata$origin)
head(winedata$origin)
table(winedata$origin)
set.seed(123)
sample_size <- 0.70 * nrow(winedata)
sampledata <-sample(seq_len(nrow(winedata)), sample_size)
training_data <- winedata[sampledata,]
class(training_data)
TRAINING_DATA <- ore.push(training_data)
class(TRAINING_DATA)
test_data <- winedata[-sampledata,]
TEST_DATA <- ore.push(test_data)
class(TEST_DATA)
head(TRAINING_DATA)
head(TEST_DATA)
wine.rf <- ore.randomForest(origin ~ . - class, TRAINING_DATA)
class(wine.rf)
tree15 = grabTree(wine.rf, k = 15, labelVar = TRUE)
origin_pred <- predict(wine.rf, TEST_DATA, type = "all", supplemental.
cols="origin")
res <- table(origin_pred$origin, origin_pred$prediction)
library(AppliedPredictiveModeling)
transparentTheme(trans = .4)
pairs(table(origin_pred$origin, origin_pred$prediction), main="Wine Origin
Predictors")
res

Here’s the output of executing the code in Listing 3-7:

> library(ORE)
Loading required package: OREbase
Loading required package: OREcommon

Attaching package: 'OREbase'

The following objects are masked from 'package:base':

 cbind, data.frame, eval, interaction, order, paste, pmax, pmin,
 rbind, table

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

54

Loading required package: OREembed
Loading required package: OREstats
Loading required package: MASS
Loading required package: OREgraphics
Loading required package: OREeda
Loading required package: OREmodels
Loading required package: OREdm
Loading required package: lattice
Loading required package: OREpredict
Loading required package: ORExml
> ore.connect("testr","orcl","localhost","testr")
> library(OREmodels)
> winedata <- read.csv("winedata.csv", header=TRUE, sep=',')
> head(winedata)
 class Alcohol Malic.acid Ash Alcanility.of.ash Magnesium Total.phenols
1 1 14.23 1.71 2.43 15.6 127 2.80
2 1 13.20 1.78 2.14 11.2 100 2.65
3 1 13.16 2.36 2.67 18.6 101 2.80
4 1 14.37 1.95 2.50 16.8 113 3.85
5 1 13.24 2.59 2.87 21.0 118 2.80
6 1 14.20 1.76 2.45 15.2 112 3.27
 Flavanoids Nonflavanoid.phenols Proanthocyanins Color.intensity Hue
1 3.06 0.28 2.29 5.64 1.04
2 2.76 0.26 1.28 4.38 1.05
3 3.24 0.30 2.81 5.68 1.03
4 3.49 0.24 2.18 7.80 0.86
5 2.69 0.39 1.82 4.32 1.04
6 3.39 0.34 1.97 6.75 1.05
 OD280.OD315.of.diluted.wines Proline
1 3.92 1065
2 3.40 1050
3 3.17 1185
4 3.45 1480
5 2.93 735
6 2.85 1450
> winedata$origin <- ifelse(winedata$class == 1, 'Origin1',
+ ifelse(winedata$class == 2, 'Origin2',
+ ifelse(winedata$class == 3, 'Origin3', '')))
> class(winedata$origin)
[1] "character"
> winedata$origin <- as.factor(winedata$origin)
> class(winedata$origin)
[1] "factor"
> head(winedata$origin)
[1] Origin1 Origin1 Origin1 Origin1 Origin1 Origin1
Levels: Origin1 Origin2 Origin3
> table(winedata$origin)

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

55

Origin1 Origin2 Origin3
 489 549 336
> set.seed(123)
> sample_size <- 0.70 * nrow(winedata)
> sampledata <-sample(seq_len(nrow(winedata)), sample_size)
> training_data <- winedata[sampledata,]
> class(training_data)
[1] "data.frame"
> TRAINING_DATA <- ore.push(training_data)
> class(TRAINING_DATA)
[1] "ore.frame"
attr(,"package")
[1] "OREbase"
> test_data <- winedata[-sampledata,]
> TEST_DATA <- ore.push(test_data)
> class(TEST_DATA)
[1] "ore.frame"
attr(,"package")
[1] "OREbase"
> head(TRAINING_DATA)
 class Alcohol Malic.acid Ash Alcanility.of.ash Magnesium Total.phenols
396 3 12.60 2.46 2.20 18.5 94 1.62
1083 3 13.45 3.70 2.60 23.0 111 1.70
562 2 11.82 1.72 1.88 19.5 86 2.50
1211 2 11.82 1.47 1.99 20.8 86 1.98
1289 3 12.70 3.55 2.36 21.5 106 1.70
63 2 13.67 1.25 1.92 18.0 94 2.10
 Flavanoids Nonflavanoid.phenols Proanthocyanins Color.intensity Hue
396 0.66 0.63 0.94 7.10 0.73
1083 0.92 0.43 1.46 10.68 0.85
562 1.64 0.37 1.42 2.06 0.94
1211 1.60 0.30 1.53 1.95 0.95
1289 1.20 0.17 0.84 5.00 0.78
63 1.79 0.32 0.73 3.80 1.23
 OD280.OD315.of.diluted.wines Proline origin
396 1.58 695 Origin3
1083 1.56 695 Origin3
562 2.44 415 Origin2
1211 3.33 495 Origin2
1289 1.29 600 Origin3
63 2.46 630 Origin2
> head(TEST_DATA)
 class Alcohol Malic.acid Ash Alcanility.of.ash Magnesium Total.phenols
4 1 14.37 1.95 2.50 16.8 113 3.85
6 1 14.20 1.76 2.45 15.2 112 3.27
8 1 14.06 2.15 2.61 17.6 121 2.60
20 1 13.64 3.10 2.56 15.2 116 2.70
21 1 14.06 1.63 2.28 16.0 126 3.00
24 1 12.85 1.60 2.52 17.8 95 2.48

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

56

 Flavanoids Nonflavanoid.phenols Proanthocyanins Color.intensity Hue
4 3.49 0.24 2.18 7.80 0.86
6 3.39 0.34 1.97 6.75 1.05
8 2.51 0.31 1.25 5.05 1.06
20 3.03 0.17 1.66 5.10 0.96
21 3.17 0.24 2.10 5.65 1.09
24 2.37 0.26 1.46 3.93 1.09
 OD280.OD315.of.diluted.wines Proline origin
4 3.45 1480 Origin1
6 2.85 1450 Origin1
8 3.58 1295 Origin1
20 3.36 845 Origin1
21 3.71 780 Origin1
24 3.63 1015 Origin1
> wine.rf <- ore.randomForest(origin ~ . - class, TRAINING_DATA)
> class(wine.rf)
[1] "ore.randomForest" "ore.model"
> tree15 = grabTree(wine.rf, k = 15, labelVar = TRUE)
> origin_pred <- predict(wine.rf, TEST_DATA, type = "all", supplemental.
cols="$
> res <- table(origin_pred$origin, origin_pred$prediction)
> library(AppliedPredictiveModeling)
Warning message:
package 'AppliedPredictiveModeling' was built under R version 3.2.5
> transparentTheme(trans = .4)
> pairs(table(origin_pred$origin, origin_pred$prediction), main="Wine Origin
P$
> res

 Origin1 Origin2 Origin3
 Origin1 140 0 0
 Origin2 0 162 0
 Origin3 0 0 111
>

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

57

Notice that the plot of table(origin_pred$origin, origin_pred.$prediction) is
same as that of table(origin_pred, test_data$origin).

Using Embedded R Execution in Oracle DB with the ORE
SQL Interface to Predict Wine Origin
Listing 3-8 shows the SQL interface of the embeddded R execution equivalent of Listing 3-5
that stores the R code in an Oracle database repository script, which in turn is invoked
by the following SQL SELECT statement. The output image from Listing 3-8 is the same as
that obtained from executing the code in Listing 3-5. The R function code is encapsulated
in a PL/SQL block and subsequently called from a SQL SELECT statement. The image is
generated as a PNG file when lines 24 and 25 are executed. The PL/SQL block and the
subsequent SELECT are saved as a SQL file named rTestRF.sql. The image rTestRF.png
is created in the folder set as the working directory, as shown in line 6 of the code.

To execute the code in Listings 3-8 to 3-13, SQL*Plus can be used. Or a GUI-based
interface such as Oracle SQL Developer can also be used. Open SQL*Plus, log in in using
the specific username and password, cut and paste the code, and press Enter.

Figure 3-8. Output of pairs plot from Listing 3-7

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

58

Listing 3-8. Using SQL Interface of Embedded R Execution to Build and Test a
randomForest() Model

SQL> begin
 2 sys.rqScriptDrop('rTestRF');
 3 sys.rqScriptCreate('rTestRF',
 4 ' function () {
 5 library(randomForest)
 6 setwd("F:/testr/")
 7 winedata <- read.csv("winedata.csv", header=TRUE, sep='','')
 8 head(winedata)
 9 winedata$origin <- ifelse(winedata$class == 1, ''Origin1'',
 10 ifelse(winedata$class == 2, ''Origin2'',
 11 ifelse(winedata$class == 3, ''Origin3'', '''')))
 12 winedata$origin <- as.factor(winedata$origin)
 13 head(winedata$origin)
 14 set.seed(123)
 15 sample_size <- 0.70 * nrow(winedata)
 16 sampledata <-sample(seq_len(nrow(winedata)), sample_size)
 17 training_data <- winedata[sampledata,]
 18 test_data <- winedata[-sampledata,]
 19 wine.rf <- randomForest(origin ~ . - class, data = training_data)
 20 origin_pred <- predict(wine.rf, newdata = test_data)
 21 res <- table(origin_pred, test_data$origin)
 22 res.df <- as.matrix(res)
 23 head(res.df)
 24 png("rTestRF.png")
 25 pairs(table(origin_pred, test_data$origin), main="Wine Origin Predictors")
 26 dev.off()
 27 res.df
 28 }');
 29 end;
 30 /
PL/SQL procedure successfully completed.

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

59

To verify that the script is stored in the Oracle Database R script repository, issue the
query from the ORE DB user account, as shown in Listing 3-9.

Listing 3-9. SQL Query to Verify That the Script rTestRF is Created in Oracle RB

SQL> select * from user_rq_scripts where name = 'rTestRF';

NAME

SCRIPT

rTestRF
 function () {
library(randomForest)
setwd("F:/testr/")
winedata <- read.csv("winedata.csv", header=TRUE, sep=',')
head(winedata)
winedata$origin <- ifelse(winedata$class == 1, 'Origin1',
ifelse(winedata$class == 2, 'Origin2',
ifelse(winedata$class == 3, 'Origin3', '')))
winedata$origin <- as.factor(winedata$origin)
head(winedata$origin)
set.seed(123)
sample_size <- 0.70 * nrow(winedata)
sampledata <-sample(seq_len(nrow(winedata)), sample_size)
training_data <- winedata[sampledata,]
test_data <- winedata[-sampledata,]
wine.rf <- randomForest(origin ~ . - class, data = training_data)
origin_pred <- predict(wine.rf, newdata = test_data)
res <- table(origin_pred, test_data$origin)
res.df <- as.matrix(res)
head(res.df)
png("rTestRF.png")
pairs(table(origin_pred, test_data$origin), main="Wine Origin Predictors")
dev.off()
res.df
}
SQL>

Notice that the NAME column value is rTestRF, and the SCRIPT clob column shows
the definition of the R function, as defined in Listing 3-8.

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

60

The preceding script can be invoked from SQL*Plus by using a SQL SELECT statement
as follows:

select * from table (rqEval(NULL, 'XML', 'rTestRF'));

The first argument is NULL, as the function defined in the script does not take any
input arguments. The second argument is XML, to specify that the output desired is an
XML representation of the R function output, which in this case is an R table. The third
argument is the actual R script name that is stored in the ORE database R script repository.

The output of running the preceding SQL statement is shown in Listing 3-10.

Listing 3-10. SQL Interface of Embedded R Execution Based Query Invocation of Script
rTestRF Defined in Listing 3-8

SQL> set pages 1000
SQL> set long 200000
SQL> select * from table(rqEval(NULL, 'XML', 'rTestRF'));

NAME
--
VALUE
--

<root><table_obj><ROW-table_obj><origin_pred>Origin1</origin_pred>
<Var2>Origin1</Var2><Freq>140</Freq></ROW-table_obj>
<ROW-table_obj><origin_pred>Origin2</origin_pred><Var2>Origin1
</Var2><Freq>0</Freq></ROW-table_obj><ROW-table_obj>
<origin_pred>Origin3</origin_pred><Var2>Origin1</Var2><Freq>0
</Freq></ROW-table_obj><ROW-table_obj><origin_pred>Origin1
</origin_pred><Var2>Origin2</Var2><Freq>0</Freq></ROW-table_obj>
<ROW-table_obj><origin_pred>Origin2</origin_pred><Var2>Origin2
</V"ar2><Freq>162</Freq></ROW-table_obj><ROW-table_obj>
<origin_pred>Origin3</origin_pred><Var2>Origin2</Var2><Freq>0
</Freq></ROW-table_obj><ROW-table_obj><origin_pred>Origin1
</origin_pred><Var2>Origin3</Var2><Freq>0</Freq></ROW-table_obj>
<ROW-table_obj><origin_pred>Origin2</origin_pred><Var2>Origin3
</Var2><Freq>0</Freq></ROW-table_obj><ROW-table_obj><origin_pred>
Origin3</origin_pred><Var2>Origin3</Var2><Freq>111</Freq></ROW-table_obj>
</table_obj></root>

SQL>

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

61

 ■ Note as evident from the preceding XMl output, the table representation of the r
output from Ore is represented by three columns named origin_pred, Var2, and Preq.
these are the column names and the column values. the column values are shown
alongside each column name (as indicated in bold italics in the XMl). the png graph is
created in the working directory specified in line 6 of listing 3-8. the image is generated by
execution of lines 24 and 25 of listing 3-8.

The R table output of Listing 3-8 using the R View call is shown in Figure 3-9. The R
View call is invoked in the R console as follows:

View(res.df)

Figure 3-9. R table output of Listing 3-8 using the View R function

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

62

The corresponding XML output of the VALUE column in Listing 3-10 is shown in
Figure 3-10.

Figure 3-10. XML output of the VALUE column in Listing 3-10

To get the preceding View call output by using SQL SELECT, the res.df output must
be converted to a data.frame output. This can be done by adding the following line of
code after line 27 in Listing 3-8:

res.df.output <- data.frame(res.df)

The query in Listing 3-10 can be modified as shown in Listing 3-11 to get a structured
(relational) table output.

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

63

Listing 3-11. Listing 3-10 Modified to Generate Structured Table Output

SQL> select *
 2 from table(rqEval(
 3 NULL,
 4 'select CAST(''a'' as VARCHAR2(50)) "origin_pred",

CAST(''b'' AS VARCHAR2(50)) "Var2", 1 as "Freq" from dual',
 5 'rTestRF'));

origin_pred
--
Var2 Freq
-- ----------
Origin1
Origin1 140

Origin2
Origin1 0

Origin3
Origin1 0

Origin1
Origin2 0

Origin2
Origin2 162

Origin3
Origin2 0

Origin1
Origin3 0

Origin2
Origin3 0

Origin3
Origin3 111

9 rows selected.

Instead of generating the image to a PNG file, as in Listing 3-8, the output can be
captured in XML format. The difference lies in removing lines 24 and 26 from Listing 3-8
and modifying the SELECT query in Listing 3-10. Listings 3-12 and 3-13 illustrate this
change and the corresponding execution output.

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

64

Listing 3-12. Listing 3-8 Modified to Capture Image Generated in XML Format

SQL> begin
 2 sys.rqScriptDrop('rTestRF_final1');
 3 sys.rqScriptCreate('rTestRF_final1',
 4 ' function () {
 5 library(randomForest)
 6 setwd("F:/testr/")
 7 winedata <- read.csv("winedata.csv", header=TRUE, sep='','')
 8 winedata$origin <- ifelse(winedata$class == 1, ''Origin1'',
 9 ifelse(winedata$class == 2, ''Origin2'',
 10 ifelse(winedata$class == 3, ''Origin3'', '''')))
 11 winedata$origin <- as.factor(winedata$origin)
 12 set.seed(123)
 13 sample_size <- 0.70 * nrow(winedata)
 14 sampledata <-sample(seq_len(nrow(winedata)), sample_size)
 15 training_data <- winedata[sampledata,]
 16 test_data <- winedata[-sampledata,]
 17 wine.rf <- randomForest(origin ~ . - class, data = training_data)
 18 origin_pred <- predict(wine.rf, newdata = test_data)
 19 res <- table(origin_pred, test_data$origin)
 20 pairs(table(origin_pred, test_data$origin), main="Wine Origin

Predictors")
 21 res
 22 }');
 23 end;
 24 /

PL/SQL procedure successfully completed.

SQL>

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

65

Listing 3-13. SQL Interface of Embedded R Execution Based Query Invocation of Script
rTestRF_final1 Defined in Listing 3-12

SQL> set pages 1000
SQL> set long 100000
SQL> select xmltype(a.value).getClobVal() as "XML Output with Image included"
 2 from table(rqEval(NULL,'XML','rTestRF_final1')) a;

XML Output with Image included
--

<root><R-data><table_obj><ROW-table_obj><origin_pred>Origin1</origin_pred>
<Var2>Origin1</Var2><Freq>140</Freq></ROW-table_obj><ROW-table_obj>
<origin_pred>Origin2</origin_pred><Var2>Origin1</Var2><Freq>0</Freq>
</ROW-table_obj><ROW-table_obj><origin_pred>Origin3</origin_pred>
<Var2>Origin1</Var2><Freq>0</Freq></ROW-table_obj><ROW-table_obj>
<origin_pred>Origin1</origin_pred><Var2>Origin2</Var2><Freq>0</Freq>
</ROW-table_obj><ROW-table_obj><origin_pred>Origin2</origin_pred>
<Var2>Origin2</Var2><Freq>162</Freq></ROW-table_obj><ROW-table_obj>
<origin_pred>Origin3</origin_pred><Var2>Origin2</Var2><Freq>0</Freq>
</ROW-table_obj><ROW-table_obj><origin_pred>Origin1</origin_pred>
<Var2>Origin3</Var2><Freq>0</Freq></ROW-table_obj><ROW-table_obj>
<origin_pred>Origin2</origin_pred><Var2>Origin3</Var2><Freq>0</Freq>
</ROW-table_obj><ROW-table_obj><origin_pred>Origin3</origin_pred>
<Var2>Origin3</Var2><Freq>111</Freq></ROW-table_obj></table_obj></R-data>
<images></images></root>

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

66

The XML output of the modified column in Listing 3-13 is shown in Figure 3-11.

Figure 3-11. XML output of the modified VALUE column in Listing 3-13

Generating PNG Graph Using the ORE SQL Interface and
Integrating It with OBIEE Dashboard
In this section, we’ll demonstrate how a PNG graph can be obtained by using the
ORE SQL interface for the wine origin prediction problem using the randomForest R
algorithm. As outlined in earlier examples, we first create two scripts that are stored in
the Oracle DB R script repository. These are named BuildandScoreRF and validateRF.
The first script, BuildandScoreRF, associates an R function that takes input data as an
argument and partitions it into two sets based on random sampling—70% as training
data set, and 30% as test data set. It builds a random-forest-based model based on the
training data set and then scores the model using the predict R function based on the
test data set.

The validaterF script prepares the input data required for the BuildandScoreRF
script from a CSV file of wine data based on the Wine class and other relevant attribuites.
It stores this input data in a database table called and then calls the first script, passing
the prepared data as input to its corresponding R function.

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

67

Listings 3-14 and 3-15 show the code for these two R scripts.
To execute the code in Listings 3-14 to 3-16 and any SELECT statements, open either

SQL*Plus or Oracle SQL Developer. Log in, and copy and paste the code. For SQL*Plus,
press Enter; for Oracle SQL Developer, click the Run Script icon.

Listing 3-14. BuildandScoreRF Script Using SQL Interface That Builds and Scores the
Wine Class Data Using randomForest R Function

begin
 sys.rqscriptDrop('BuildandScoreRF');
 sys.rqScriptcreate('BuildandScoreRF',
'function(winedata) {
library(randomForest)
winedata$origin <- ifelse(winedata$class == 1, ''Origin1'',
ifelse(winedata$class == 2, ''Origin2'',
ifelse(winedata$class == 3, ''Origin3'', '''')))
winedata$origin <- as.factor(winedata$origin)
set.seed(123)
sample_size <- 0.70 * nrow(winedata)
sampledata <-sample(seq_len(nrow(winedata)), sample_size)
training_data <- winedata[sampledata,]
test_data <- winedata[-sampledata,]
wine.rf <- randomForest(origin ~ . - class, data = training_data)
origin_pred <- predict(wine.rf, newdata = test_data)
res <- table(origin_pred, test_data$origin)
pairs(table(origin_pred, test_data$origin), main="Wine Origin Predictors")
res
}');
end;
/

Listing 3-15. validateRF Script Using SQL Interface That Prepares the Input Data and
Calls the BuildandScoreRF Script Based R Function

begin
 sys.rqScriptDrop('validateRF');
 sys.rqScriptCreate('validateRF',
 'function() {
 library(ORE)
 ore.connect("testr","orcl","localhost","testr")
 setwd("F:/testr/")
 inputdata <- read.csv("winedata.csv", header=TRUE, sep='','')
 ore.drop(table="WINE_DATA")
 ore.create(inputdata, table="WINE_DATA")

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

68

 ore.scriptLoad(name = "BuildandScoreRF")
 res1 <- BuildandScoreRF(inputdata)
 res1.df <- data.frame(res1)
 res1.df
 }');
end;
/

To verify that the output of validateRF is accurate, we first query it for SQL tabular
output by executing the following query:

SQL> select *
 2 from table(rqEval(
 3 NULL,
 4 'select CAST(''a'' as VARCHAR2(50)) "origin_pred", CAST(''b'' AS

VARCHAR2(50)) "Var2", 1 as "Freq" from dual',
 5 'validateRF'));

origin_pred
--
Var2 Freq
-- ----------
Origin1
Origin1 140

Origin2
Origin1 0

Origin3
Origin1 0

Origin1
Origin2 0

Origin2
Origin2 162

Origin3
Origin2 0

Origin1
Origin3 0

Origin2
Origin3 0

Origin3
Origin3 111

9 rows selected.

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

69

The output is similar to the that obtained from Listing 3-11. Next we execute the
query shown in Listing 3-16 that generates an IMAGE column corresponding to the PNG
graph output.

 ■ Note the query in listing 3-16 will be used for integration of the two r scripts and the
graph output produced with the OBiee rpd.

Listing 3-16. SQL Based Query for Obtaining PNG Graph Output of validateRF Script
Execution

SQL> select *
 2 from table(rqEval(
 3 NULL,
 4 'PNG',
 5 'validateRF'));

NAME
--
 ID

IMAGE
--

 1
89504E470D0A1A0A0000000D49484452000001E0000001E008060000007DD4BE9500002000494441
54789CEDDD7F901BF57DFFF1D706FFA80DC660E3D824181B9FCE105998160A89EF8A99129B727243
0E42AF6EC28F09A15203ADEF8039481ABE43004FA7E4A0D191528F44CA8CA16E2767DC5E2720116C
0A76F1D171301D8C7C98938E40B0030D0E501FBFFC83EEF70F6637924EBA9374BAFDE8C7F331A319
6B6FF7F3794B27EFEB3E9F5DED5AB66DDB0200009EFA8CE90200006844043000000610C000001840
0003006000010C008001043000000610C0000018400003006000010C008001043000000610C00000
18400003006000010C008001043000000610C0000018400003006000010CA35A5B5B655996D2E9B4
BB2C1C0ECBB22CB5B6B666AD6B59962CCB1AF56F2FF4F6F6BA7D3A8FDEDEDEA2B72FA7DE4ABCC6DC
9A9D47EE7B5B69B9B57BFDFB026A01010CA30281802429954AB9CB62B19824696060C05DE6047428
........
SQL>

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

70

The output of the query in Listing 3-16 when viewed from SQL Developer is shown
in Figure 3-12. Notice the BLOB output for the IMAGE column. Double-clicking the IMAGE
column and choosing View as Image displays the PNG graph.

Integrating the PNG Graph with OBIEE
Integrating the R PNG graph output with OBIEE 12c requires either downloading an
existing repository or creating a new repository and integrating it with the OBIEE12c
repository. In this section, we’ll download the existing SampleAppLite repository and
modify it to reflect out wine origin prediction graph.

Pre-Steps Required for OBIEE 12c Integration
Before downlaoding the SampleAppLite repository from the OBIEE12c server, a few
pre-steps must be done so that OBIEE 12c can communicate with the test database and
schema:

 1. In the NQSConfig.INI file located in the
<FusionMiddlewareHome>\user_projects\domains\bi\
config\fmwconfig\biconfig\OBIS folder, make the following
changes:

a. In the [ADVANCE_ANALYTICS_SCRIPT] section. set the value
of TARGET = "ORE"; and set the value of connection pool
as CONNECTION_POOL = "ORCL"."testr/testr:1521";

Figure 3-12. PNG output of the IMAGE column in Listing 3-16

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

71

b. Make sure the ORCL alias is defined in the tnsnames.ora
file of the Oracle DB 12c server.

 2. Restart WebLogic Server and the associated services by
issuing the stop.cmd command followed by start.cmd
command. These are found in the <FusionMiddlewareHome>
\user_projects\domains\bi\bitools\bin folder.

 3. Restart the Oracle Business Intelligence service (from Task
Manager ➤ Services if on Windows).

 4. Download the server RPD file corresponding to
SampleAppLite by using the following command:

<FusionMiddlewareHome>\user_projects\domains\bi\
bitools\bin\datamodel.cmd downloadrpd -O obieenew.
rpd -W Admin123 -U weblogic -P <weblogic_password>
-SI ssi

The RPD is downloaded as the obieenew.rpd file.

Customize the Downloaded SampleAppLite RPD for ORE
returned PNG Graph Integration
The start-to-finish steps for integrating the Wine Origin Prediction graph with the
obieenew.rpd file include the Customization of obieenew.rpd, which is done in the
OBIEE Administration Tool on the client-side.

This consists cf the following primary steps:

 1. Creating an Oracle connection pool

 2. Creating a Physical layer

 3. Creating a Business Model and Mapping layer

 4. Creating a Presentation layer

These are described in the sub-sections that follow.

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

72

Creating an Oracle Connection Pool

Here are the steps involved:

 1. Open obieenew.rpd in offline mode in the OBIEE Admin Tool.
In the Physical layer, choose New Database. Fill in the details
as shown in the dialog box in Figure 3-13.

Figure 3-13. New Database dialog box in OBIEE Admin tool

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

73

 2. Click the Connection Pools tab and create a new connection
pool with the properties shown in Figure 3-14. The Data
Source Name must be specified as the complete connect
descriptor string for the tnsnames alias ORCL.

Figure 3-14. New Connection Pool dialog boxes

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

74

Creating a Physical Layer

Here are the steps involved for creating a Physical layer:

 1. Select orcl_db and right-click and select New Object ➤
Physical Schema. Specify the Name as TESTR. as shown in
Figure 3-15.

 2. Right-click the TESTR schema and select New Physical Table.
A new dialog box appears, as shown in Figure 3-16.

Figure 3-15. New Physical Schema dialog box

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

75

 ■ Note in the physical table dialog box, in the general tab, specify the name as
validaterF, the table type as select, and the default initialization string as the SELECT
statement from listing 3-16, as follows:

select id, image from table(rqEval(NULL, 'PNG', 'validateRF'))

these are highlighted in Figure 3-16.

Figure 3-16. New Physical Table dialog box

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

76

 3. In the Columns tab, define two columns named Id and image.
For the Id column, set the Type too INT and Length for the Id
column, as shown in Figure 3-17. For the image column, set
Type to LONGVARBINARY and Length to 32000, as shown in
Figure 3-18.

Figure 3-17. Id column dialog box of New Physical Table validateRF

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

77

Figure 3-18. image column dialog box of New Physical Table lidateRF

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

78

 4. On the Keys tab, add id under Key Name and under Column,
as shown in Figure 3-19.

Figure 3-19. Keys dialog box of New Physical Table validateRF

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

79

 5. Click OK in the main Physical Table dialog box, as shown in
Figure 3-20.

Figure 3-20. Physical Table dialog box of validateRF table

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

80

 6. The Physical Diagram window is displayed, showing the
validateRF physical table, as shown in Figure 3-21.

 7. Save the RPD and close the Physical Diagram window.

Creating a Business Model and Mapping Layer

Here are the steps for creating a business model and mapping layer:

 1. Click the TESTRF schema in the Physical layer and drag
and drop it into the Business Model and Mapping layer
(BMM layer). Figure 3-22 shows the Physical layer with the
validateRF table and its columns (note that the id column is
marked as a key column, as shown by the yellow key icon to
its left); and the TESTR schema with the validateRF entity in
the BMM layer.

Figure 3-21. Physical Diagram window showing the validateRF physical table

Figure 3-22. Physical layer and Business Model and Mapping layer showing the TESTR
schema with the validateRF table

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

81

 2. Right-click the validateRF entity in the BMM layer to duplicate
it, resulting in validateRF#1. This is illustrated in Figure 3-23.

 3. Expand the validateRF table. Double-click id. The Logical
Column dialog box for id appears, as shown in Figure 3-24.

Figure 3-23. BMM showing duplicated validateRF table appearing as validateRF#1

Figure 3-24. Logical column dialog box for id

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

82

 4. In the Column Source tab, double-click Logical Table Source
Entry . Here you specify the image lookup column. Click
the Edit icon on the right. Specify the lookup expression as
follows:

a. Before the image string already present, type lookup(.

b. Add a comma after the image string.

c. Double-click id to add it to the expression.

d. Change the two consecutive dots after the second
orcl_db to two consecutive double quotes.

e. Add a closing) at the end of the expression.

 5. Click OK. The resulting dialog box is shown Figure 3-25.

Figure 3-25. Lookup Expression Builder for the image column

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

83

 6. Specify the sort order and descriptor id columns for the image
column as follows:

a. Double-click image and click Set Corresponding to the Sort
Order.

b. Select the id column in the resulting dialog box, as shown
in Figure 3-26, and click OK.

c. Repeat this for the descriptor id. The Logical Column dialog
box for image now appears, as shown in Figure 3-27.

Figure 3-26. Setting sort order and descriptor id for image column

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

84

Figure 3-27. Logical Column dialog box for the image column after setting the sort order
and descriptor id

Figure 3-28. Physical and BMM layers corresponding to the TESTR schema with the
validateRF table included

At this point, the Physical and BMM layers appear as shown in Figure 3-28.

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

85

 7. Rick-click the validateRF entity in the BMM layer and select
Business Model Diagram ➤ Whole Diagram, as shown in
Figure 3-29. The BMM diagram is displayed in a new window.
Click the New Join icon in the tool, select the validateRF
object in the BMM diagram, and drag the cursor to the
validateRF#1 object to form a straight line, subsequently
releasing the cursor. The updated BMM diagram appears, as
shown Figure 3-30.

Figure 3-29. BMM diagram—whole diagram for the TESTR schema

Figure 3-30. Updated BMM diagram showing join between validateRF and validateRF#

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

86

Creating a Presentation Layer

Here are the steps for creating a Presentation layer:

 1. Close the BMM diagram and save the RPD. In the
Presentation area, drag and drop the TESTR schema from
the BMM layer to create a New Presentation subject area
named TESTR. The three modified layers appear as shown in
Figure 3-31.

 2. Save the RPD.

Upload the RPD by using this command:

<FusionMiddlewareHome>\user_projects\domains\bi\bitools\bin\datamodel.cmd
uploadrpd -I obieenew.rpd -SI ssi -U weblogic -P <password>
RPD Password: <enter Admin123 at this prompt>
Service Instance: ssi
Operation successful.
RPD upload completed successfully.

Figure 3-31. Physical layer, Business Model and Mapping layer, and Presentation layer
showing the TESTR schema along with the validateRF and validateRF#1 tables in the
Presentation layer

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

87

Creating the OBIEE Analysis and Dashboard with the
Uploaded RPD
This means that obieenew.rpd will be used to create and customize a new analysis and
dashboard in OBIEE 12c Presentation Services.

 1. Log in to OBIEE and click on Administration ➤Reload Files
and Metadata.

 2. Then create an Analysis by clicking New ➤ Analysis. The
schema TESTR now appears under the available subject areas.
Click it, as shown in Figure 3-32.

 3. Drag and drop the id and image columns from the TESTR
subject area to the Selected Columns area. Click Results. The
pairs plot of Wine Origin Prediction is displayed. This graph is
the same as the one generated from the ORE R interface and
SQL interface.

 4. Save the Analysis by clicking the Save icon at the top.

Figure 3-32. New OBIEE Analysis showing TESTR as one of selectable subject areas

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

88

The analysis and the resulting graph (PNG) are shown in Figures 3-33 and 3-34.

Figure 3-33. New analysis basd on the TESTR subject area and the validateRF table

Figure 3-34. Pairs plot of Wine Origin Predictors

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

89

To create a dashboard, click New ➤ Dashboard, specify TESTR Dashboard as the
name, and choose a folder name where it will be saved. Choose a folder in My Folders
or Shared Folders. In the Catalog section at the bottom left, choose the analysis named
Pairs Plot of Wine Origin Prediction, and then drag and drop it onto the empty area to the
right of the dashboard. Click Run to view the dashboard. Figure 3-35 shows the TESTR
dashboard just created.

The TESTR dashboard also shows up under the Dashboards ➤ Components menu,
as shown at the top-right area of the screen. The PNG image is generated via the SQL
SELECT query that was specified in the initial physical table default initialization string
and with the physical table type set to Select. This query calls the R function stored in the
Oracle DB R script repository.

This completes the integration of the PNG graph output obtained from executing the
ORE R script with the OBIEE12c analysis and dashboard. Additionally, multiple graphs
pertaining to the same analysis can be integrated with OBIEE, based on multiple images
generated from the ORE R function. Also, dynamic dashboarding can be done by defining
parameterized R functions corresponding to the R scripts and defining OBIEE variables
and prompts that can be interactively chosen at runtime.

Machine Learning Trending a Match for EDW
OBIEE 12 c provides five analytics alogrithms that can help in machine learning:Cluster,
Outlier, Regr(ession), Trendline, and Evaluate Script. In addition, OBIEE 12 provides the
TimeSeriesForecasting algorithm. Out of these, the primary one matching the requirements
for an enterprise data warehouse (EDW) is TRENDLINE. This section focuses on how
TRENDLINE can be used in the context of an EDW for machine-learning trending.

A multitude of algorithms have already written, and machine learning has been
successfully applied to numerous applications. From the automation of tasks found in
industries such as agriculture and manufacturing, we have now reached an age where
new applications are being sought to automate tasks for knowledge workers.

Figure 3-35. TESTR dashboard showing the Pairs Plot of Wine Origin Prediction

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

90

One such area for this automation is in decision support systems (DSSs), or more
specifically, in enterprise data warehouses (EDWs). Here, the power of computing and
the capability to handle volumes of data are being put to the test with new applications
powered by artificial intelligence. The basic goal of using an EDW is to be able to find a
trend in the data that has been integrated and stored. Often, it is only in the EDW that an
organization has data that is completely gathered, integrated, and further cleansed so that
it can be used to provide some historical insight into the enterprise and expose trends.

With the goal of finding trends, machine-learning application algorithms pertaining
to the discovery of trend lines and basic patterns lends itself to the exact purpose of an
EDW, and thus is the perfect applied AI-powered technology for the future when it comes
to commercial enterprises.

The following sidebar provides the OBIEE 12c documentation that defines
TRENDLINE.

DEFINITION OF TRENDLINE

the TRENDLINE function measures data across time and shows a line chart of a
metric by ordered records.

Currently, the TRENDLINE function can model data as linear and exponential
regression.

TRENDLINE(<numeric_expr>, ([<series>]) BY ([<partitionBy>]),
<model_type>, <result_type>, [number_of_degrees])

Where:

numeric_expr indicates the data to trend. this is usually a measure column. note
that this is the y-axis.

series indicates the x-axis. this is a list of <valueExp> <orderByDirection>,
where <valueExp> is a dimension column, and <orderByDirection> is ASC or DES.
the default is ASC. note that this cannot be an arbitrary combination of numeric
columns.

partitionBy indicates the control break for the trendline.

model_type indicates the type of model to use. Currently, you can specify only
LINEAR.

result_type indicates the type of output. You can specify VALUE or MODEL. VALUE
returns the regression Y values given X in the fit. MODEL returns the parameters in a
JsOn format string.

number_of_degrees is used in polynomial models only. this parameter is optional.

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

91

Consider the following TRENDLINE example. It defines a trendline of Full Quarter
Revenue over Per Name Qtr by Order Type, meaning the result is obtained as a trendline
specific to each Order Type.

TRENDLINE("Calculated Facts"."Full Quarter Revenue", ("Time"."Per Name Qtr")
BY ("Orders"."Order Type"), 'LINEAR', 'VALUE')

Figures 3-32 through 3-35 illustrate the analysis created for TRENDLINE, using the
preceding function and the output obtained.Figure 3-36 shows the corresponding
dashboard view.

Here are the steps required:

 1. Log in to OBIEE Presentation Services and select Analysis
under the SampleSales subject area.

 2. Select Orders and then Order Type. Drag and drop it in the
empty area on the right.

 3. Select Per Name Qtr under Time. Drag and drop it to the right
of Order Type field.

 4. Select Full Quarter Revenue under Calculated Facts. Drag and
drop it to the right of the Per Name Qtr field.

The screenshot of the analysis so far is shown in Figure 3-36.

Figure 3-36. Creating the analysis based on Order Type, Per Name Qtr, and Full Quarter
Revenue

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

92

 5. Duplicate the field Full Quarter Revenue and place it to the
right of the existing field.

 6. Click the circular icon on it and then select and expand the
Analytics node. The built-in OBIEE analytics functions appear,
as shown in Figure 3-37.

Figure 3-37. Selecting the Trendline analytics function as part of the analysis

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

93

 7. Select the Trendline function. In the dialog box that opens,
click f(…).

 8. The formula for the TRENDLINE function is implicitly
populated under the Column Formula area. Complete it as
shown in Figure 3-38.

Figure 3-38. Specifying the TRENDLINE function formula, as shown in the Column
Formula section

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

94

 9. Click OK to close the dialog box. The resulting OBIEE analysis
screen is shown in Figure 3-39.

 10. At the top left, click Results (to the right of Criteria) to display
the graph of the trendline, as shown in Figure 3-40.

Figure 3-39. The OBIEE analysis after adding TRENDLINE to it

Figure 3-40. The resulting graph from the OBIEE analysis of the TRENDLINE

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

95

 11. Clickthe Dashboard View icon to show how the graph appears
in the OBIEE dashboard. The corresponding dashboard view
is shown in Figure 3-41.

The Analysis query issued is as follows:

SELECT
 0 s_0,
 "Sample Sales Lite"."Orders"."Order Type" s_1,
 "Sample Sales Lite"."Time"."Per Name Qtr" s_2,
 TRENDLINE("Sample Sales Lite"."Calculated Facts"."Full Quarter

Revenue",("Sample Sales Lite"."Time"."Per Name Qtr") BY ("Sample Sales
Lite"."Orders"."Order Type"),'LINEAR','VALUE') s_3

FROM "Sample Sales Lite"
ORDER BY 3 ASC NULLS LAST, 2 ASC NULLS LAST
FETCH FIRST 65001 ROWS ONLY

Figure 3-41. Dashboard view of the TRENDLINE analysis from Figure 3-36

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

96

 ■ Note the x-axis has to represent a numeric or date variable for TRENDLINE to work.
however, a string value that belongs to a date or time hierarchy can also be used. here we
have used "Time"."Per Name Qtr".

The corresponding 3D view of the dashboard for the TRENDLINE is shown along
with the table output in Figure 3-42.

Specifying EXPONENTIAL instead of LINEAR for model_type in the formula for
TRENDLINE yields a different analysis, shown in Figure 3-43.

Figure 3-42. 3D view of the dashboard for the TRENDLINE in Figure 3-37 along with the
corresponding table output

Figure 3-43. LINEAR and EXPOENETIAL view of the 3D TRENDLINEof Figure 3-38 along
with the corresponding table output

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

97

Plotting a trellis chart for the preceding data yields the output shown in Figure 3-44.

Creating a dashboard with the trellis chart, 3D graph, and tabular output yields the
graphs shown in Figures 3-45 and 3-46.

Figure 3-44. Trellis chart for the analysis

Figure 3-45. A dashboard of the trellis chart, 3D graph, and tabular output of the
TRENDLINE

Chapter 3 ■ the OraCle r teChnOlOgies and r enterprise

98

Summary
This chapter covered Oracle R technologies. Starting with a brief description of open
source R, the chapter outlined Oracle’s R technologies, such as Oracle R Distribution,
ROracle, Oracle R Advanced Analytics for Hadoop (ORAAH), and Oracle R Enterprise
(ORE). It then explained in detail the end-to-end process of using ORE for machine
learning and BI with OBIEE. We covered using the random forest classification algorithm
of machine learning in multiple ways, namely, using ORD, embedded R execution with
the R interface and SQL interface, generating a corresponding PNG graph, and integrating
it with OBIEE to create an analysis and dashboard. Finally, we touched upon machine-
learning trending a match for EDW and detailed the use of the predefined Trendline
advanced analytics function in OBIEE 12c.

Figure 3-46. A dashboard of trellis charts, 3D graph and tabular output of the
TRENDLINE

99© Rosendo Abellera and Lakshman Bulusu 2018
R. Abellera and L. Bulusu, Oracle Business Intelligence with Machine Learning,
https://doi.org/10.1007/978-1-4842-3255-2_4

CHAPTER 4

Machine Learning
with OBIEE

Even from the early days of business intelligence and analytics, there have been ample
promises about what this type of solution can provide for decision-makers. Because of
the new technologies that have been developed in recent years, business intelligence and
analytics have once again garnered a lot of attention as more functionalities appear that
finally seem to be delivering on the promise.

The Marriage of Artificial Intelligence and
Business Intelligence
At the turn of the century, advances in computing opened a whole new world for
data warehousing. At that time, a big push for what was to become known as business
intelligence and analytics was the priority. It was the primary focus for organizations
looking to effectively use their corporate data for some kind of competitive advantage
and to affect the company’s bottom line. Today, almost all organizations are using some
form of business intelligence and analytics, with mainstream adoption experienced
during the past decade. As we look back, we can see that we rode the wave of BI adoption
up to the peak of what is now referred to as the traditional data warehouse and business
intelligence methods and approaches.

However, a few years ago a slowdown occurred as organizations began to ponder
other methods and approaches while assessing their current environment and lessons
learned. Industry changes had penetrated the data and BI landscape, warranting
a second look at the effectiveness of current tools and technologies. As a result, a
whole new field of vendors sprung up to brandish their new tools, ready to take on the
establishment and leading vendors such as Oracle. The result is a halt to doing business—
or rather, business intelligence—as usual, and allowing a second look at others. Ironically,
this halt may have been beneficial to Oracle as well, as it reassessed and revamped its
toolset to include new components and technologies such as artificial intelligence and
big data.

https://doi.org/10.1007/978-1-4842-3255-2_4

Chapter 4 ■ MaChine Learning with OBiee

100

If we are now in the age of bigdata analytics, what does this truly mean for business
intelligence? Is BI as we know it dead? Moreover, where does artificial intelligence and
machine learning fit in the whole mix? There is no doubt that new methods, technologies,
and tools have changed the landscape for business intelligence and data warehousing.
At the heart of these changes, is what is being called modern data warehousing and
business intelligence, which are using new approaches. They are being used to arrive at
the same previous stated goal of providing “the right information to the right person at
the right time.” This is not a departure from what has always been the ultimate goal of
data warehousing and business intelligence.

So why are vendors and industry experts claiming that BI is dead? Perhaps there
is a new efficiency and effectiveness to what is now being used. Or perhaps this is just a
dramatic attempt to proclaim that the status quo needs to be changed, an opportunity
to usurp the industry leaders. Nevertheless, we must look at the fact that there are,
indeed, new concepts that must be explored in data science. Just as the concept of big
data created a buzz, Hortonworks helped to usher in a new buzz and legitimacy for the
new technologies and tools with its initial public offering (IPO) in December of 2014. Big
data—or at least, the promise of what big data would bring to the world of enterprise data
and BI and analytics—had arrived.

A slew of software companies looking to follow suit and disrupt the industry away
from the traditional data warehouse approach pushed analytical capabilities as the
responsibility of front-end tools—greatly aided by artificial intelligence and machine
learning. With that strategy came a new paradigm and an entirely new approach to
analytics. Perhaps the perfect storm came in the form of a large volume of data coming in
all sorts of formats at an incredible speed. How do we effectively handle this onslaught of
big data?

Handling large amounts of data is not necessarily a new issue. Its predecessors can
be clearly viewed in clickstream data warehousing and web log analysis. So what is the
difference now? The difference is the prevalence of big data in our everyday lives, with
social media and the number of new tools and technologies that have either evolved or
been invented in order to effectively and efficiently handle big data, including machine
learning. Now a new age for artificial intelligence is expected to be the game changer
affecting our everyday lives. Just as BI pushed us to new technologies for utilizing and
managing data for decision-making and analysis, recent advances in artificial intelligence
are helping tackle old issues and have ushered in new methods, approaches, and tools to
handle big data analytics and predictive analytics.

Indeed, back-end vendors have begun to offer hardware solutions to handle all
the data coming into their enterprises with superb parallel processing and in-memory
capabilities. Specifically, for Oracle, this includes its Exadata and Exalytics offerings. And
so it seems that these advanced analytical applications and software on the front end
have also evolved, to complement the capabilities on the back end.

The mid 1990s can be seen as the start of this revolution for analytical applications.
At this time, new approaches and technologies began to converge with data warehousing
and business intelligence. A new company and market was formed by Informatica
for extract, transform, and load (ETL); new technologies from Cognos enabled new
capabilities and even ushered old ways of doing analysis and statistics; and approaches
and methodologies, such as Kimball’s dimensional modeling for handling back-end data,
provided best practices that enabled practitioners to deliver.

Chapter 4 ■ MaChine Learning with OBiee

101

It was an age of enlightenment for implementing and developing BI solutions, as
lessons were learned and best practices began to form for delivering world-class BI and
analytical solutions—on time and under budget. As it became clear that BI and analytics
was more than just a passing technological fad and that it offered the next big thing for
the enterprise, successful independent BI software companies became targets of large
enterprise software companies looking for strategic acquisitions that would help them
provide BI and analytics offerings.

Around 2007, the top software companies began their plans for entering into the
BI market. Each acquired the appropriate companies to complete their portfolio and
provide the capabilities for enterprise business intelligence. For example, that year saw
Oracle acquiring Hyperion, IBM acquiring Cognos, and SAP acquiring Business Objects.
They all reached their goal and for a decade afterward began improving and perfecting
their offerings, riding on the wave of demand for enterprise business intelligence.

So if the last decade provided a period of improvement for many vendors, it all came
to a sudden halt around 2012 as new methods, tools, and technologies began to signal
that business intelligence and analytic strategies had to be revamped in light of a new
trend affecting business intelligence. That new trend was—and is—big data, and it posed
a challenge to the status quo. With this new trend came a barrage of partnerships as
companies looked to collaborate in order to offer capable offerings in the new BI and big
data analytics landscape.

We are now in the age of data science, where new methods are used to provide
sophisticated, meaningful analysis for decision-making. More corporations are building
data science departments and hiring resources with this specific set of skills. In order to
satisfy the requirements and needs of this new data science-centric environment, new
advanced tools must be created. For Oracle Corporation, this comes in the form of OBIEE
12c and its Visual Analyzer.

Evolution of OBIEE to Its Current Version
Oracle is the “King of the Hill” when it comes to databases and data management tools.
With the right strategic acquisitions, Oracle was also able to perfect its downstream
applications for decision support and analysis with its Oracle BI Suite of tools. In the past
decade, Oracle went from having almost no business intelligence products or services
to becoming a major player and thought leader after 2007, when it made its strategic
acquisitions. As indicated by industry analysts, Oracle then experienced a surge and
enjoyed a top position for its product offerings for nearly a decade, usurping the once
prominent independent vendors such as Cognos that had previously dominated the
business intelligence and analytics landscape.

After Oracle acquired Siebel, Oracle released its first version of the software as
Oracle Business Intelligence Enterprise Edition (OBIEE). The first major release was its
10g version. But for all the fanfare of Oracle’s “new” product, OBIEE 10g was really just
the Siebel product rebranded as Oracle immediately after its acquisition. It was as if the
only big change to the product was that the front page replaced the Siebel logo with the
Oracle logo. Under the hood, the technical components of the software were not changed
or altered – even keeping naming schemes for the program files clearly evident and
indicative of its Siebel roots, for instance. For all intents and purposes, OBIEE remained
the same software program and package formerly known as Siebel Analytics.

Chapter 4 ■ MaChine Learning with OBiee

102

In terms of its front-end and visualization aspects, it was “Siebel-esque.” Although it
may have been advanced in its development as a browser-based application, many users
considered it cumbersome and not necessarily user-friendly or intuitive. But despite
such criticism, the software package as a whole worked and offered an end-to-end BI
solution. In contrast, other software vendors had to modify and transform their flagship
BI products from client-server to being thin-client and browser-based. Siebel Systems,
“late in the game” as a vendor in the BI industry, was able to bank on lessons learned and
use best practices and the latest technologies in the development of its product.

So it was with OBIEE 10g that early practitioners gathered around Oracle’s “new”
BI product and rode the wave of its prominence and success into the lucrative BI and
analytics market. This period allowed new practitioners and implementers “to cut their
teeth” and gain experience with BI by learning it within a closed system instead of having
to create one from scratch. As a result, the program became largely popular among BI
offerings, and users and practitioners learned to cope with the software as it existed. We
all waited with baited breath for Oracle’s promise of an improved holistic program with
new features and a change in the look and feel of the program.

Oracle took its first big step toward creating a new Oracle BI product based on the
new foundation and suite gathered from the various software packages acquired. It
came in the form of OBIEE 11g, which provided integrations of the various programs
and the Google-like front end. This version was a welcome improvement for its front-
end look and feel. Moreover, in 11g, improvements continued in the integration of all
the components of a holistic BI suite. The menu for reports and analysis development
reflected a keen distinction for different types of reporting and analysis. The new menu
listed a selection for Analysis (that is, the former Answers in 10g) for ad hoc analysis
primarily using OBIEE and separately called out Interactive Reporting for use with BI
Publisher (that is, the former standalone product called XML Publisher).

Moreover, OBIEE 11g began to include ETL components with Oracle Data Integrator
(ODI), and cube components with Essbase. For the first time, OBIEE truly began to feel
and act as a single product offering. Even administration of the suite took on a whole
new look and process for enterprise management. It seemed as if it was finally getting
everything together for delivering business intelligence and analytics. Were we finally at
the plateau? Was this all that we needed? The software package seemed to be complete,
and Oracle’s concentration was now on improving and enhancing the foundation. For the
traditional data warehousing and business intelligence methods and approaches, Oracle
with its 11g product dominated the market and enjoyed a dominant position as a top
leader for business intelligence and analytics for many years.

But what happened next changed everything. The industry experienced—and still
continues to experience—a huge change in the way data is handled and analyzed—
dubbed as big-data analytics. Consequently, Oracle's business intelligence offering
responded to that change.

In 2012, Oracle released OBIEE 12c. For many practitioners, it was the holistic BI
product offering that we had been waiting for. Oracle had finally brought everything
together as a cohesive BI suite for the enterprise plus included the data discovery
components for big data. It was an integration of software as well as resources and staff to
finally create what is truly now the Oracle Business Intelligence Suite.

Chapter 4 ■ MaChine Learning with OBiee

103

The Birth and History of Machine
Learning for OBIEE
It is said that it is lonely at the top. Everyone else poses as a challenger, trying to knock
you off your pedestal. Oracle, a leader in databases and data management systems, was
poised to remain at the top and continually provide data-centric solutions based on its
RDBMS. Challenging this leading database vendor at its own game would clearly be a
tough proposition, because Oracle enjoyed such dominance in the market and essentially
wrote the book on database management. But then came big data. Suddenly the rules
changed, and the game was no longer centered around a relational database.

Consequently, the rules were also being rewritten on how to provide solutions for
business intelligence and analysis. Oracle seemed caught between a rock and a hard
place, where it could, with all its resources, participate in this new market, but in doing
so could also kill its own dominant position and provide for its own demise. Practitioners
of Oracle BI waited with baited breath to see where the next steps would lead their
champion vendor.

Upstarts and previous departmental vendors such as Tableau or Qlik were able
to capitalize on the paradigm shift and the opportunity to fill in some gaps created as
larger players such as Oracle were slow to acknowledge them and offer alternatives. And,
finally, with OBIEE 12c, Oracle seemed to acknowledge the old notion that “if you can’t
beat ’em, join ’em” by providing this major release of their flagship product with big-data
components incorporating such new technologies as machine learning.

Industry changes had penetrated the data and BI landscape to warrant a second
look at the effectiveness of current tools and technologies. As a result, a whole new field
of vendors sprung up, brandishing new tools and ready to take on the establishment and
leading vendors such as Oracle. Business as usual—or rather, business intelligence—
halted, allowing people to take a second look at other vendors. Ironically, although Oracle
may have been targeted as the company to beat, this halt may prove beneficial for Oracle
as well, as it reassesses and revamps its toolset.

If we are now in the age of big data, what does this truly mean for business
intelligence? No doubt that new technologies and tools are being created, aimed at
providing the right information to the right person at the right time. This is the same
familiar goal of business intelligence. It has not changed. But with this push from some
of the world's largest and advanced corporations, artificial intelligence and machine
learning have made their way into the corporate world. Access to these tools and
technologies has reached all levels of the enterprise and all rungs of the corporate ladder.
No longer are artificial intelligence and machine learning reserved for only the most
sophisticated statistical operations for matters of a strategic nature.

Data is now everywhere and readily available. Once very elusive, advances in
technology (such as the Internet) and solutions (such as for business intelligence and
analytics) enable us to access and utilize data. For decades, we struggled to efficiently
and effectively use data systems, but now modern tools help us to help ourselves.
With each new advancement, we have ushered in the age of self-service BI and data
science. Organizations empower their people to get in on the game to allow each level
of the corporate ladder to make necessary decisions that help the organization remain
competitive in the marketplace.

Chapter 4 ■ MaChine Learning with OBiee

104

But when we talk about self-service business intelligence, we have to acknowledge
that even though the resources and data are accessible, and technology and tools have
advanced, great insights and predictive analytics don’t necessarily follow. The use of
artificial intelligence is helping us to predict and prescribe in ways that we might not
yet comprehend. For that reason, aid through artificial intelligence may be a welcome
improvement to how we work.

So what is truly meant by big-data analytics? We would suggest that the elements of
the solution would have to address the following:

• Access to lots of pertinent and relevant data

• Performance and processing power

• Friendly user interface

• Ability to readily add pieces of new data

• Visualization of the data to make insights

With these features, an organization could provide the necessary capabilities for
data analysis in the hope that some kind of insight could be gained from data sources that
would otherwise be useless or provide no advantage.

But even with these advancements in technology and tools, can a user truly
utilize these systems and solutions? After all, data analysis is not merely about the
data. There must be some kind of understanding of the business first, in order to form
business insights from raw data. Otherwise, how would you know what kind of target or
analysis is pertinent and being asked of the raw data? How would you know how to put
certain pieces of data together to form some kind of useful intelligence? Even the most
sophisticated system and solution created would be rather useless in those cases where
an understanding of business wasn’t not applied. In addition, considering the business
solution self-service would be rather misleading; the great promise of self-service business
intelligence would not be satisfied—not because of limitations of the system—but
because of the limitations of the person’s understanding about the business. So with a
plethora of tools and technologies in today’s BI landscape claiming ease of use, there are
now numerous claims of platforms offering self-service BI.

Moreover, recent additions, prompted by changes and demands from the industry
for self-service, have pushed OBIEE capabilities, enabling the linking of external data
(such as data from a spreadsheet) to enhance the data already contained and prepared in
the data warehouse. Recent advancements have allowed this to be done dynamically, on
the fly. No longer does the data warehouse sit in a vacuum, dependent on a rigorous and
laborious mechanism in order to be effectively used as a valuable asset for data discovery
and predictive analytics. Indeed, advances like these that allow for data mashups and
data visualizations have spurred more growth in BI, into the realm of advanced analytics
and effective data mining under what is now generally being called data science.

For this new capability of BI and data science, effective tools are needed for the users
and practitioners who warrant access to the voluminous amounts and types of data—
coming in as fast as a thought. The industry needs to be able to gather, transform, and
maintain this data while at the same time enabling users (or even data scientists) to easily
and powerfully serve up and query the data themselves in a self-service capacity.

Chapter 4 ■ MaChine Learning with OBiee

105

We proffer that the self-service BI tool that the industry has been searching for, the one
that can integrate an established enterprise data warehouse with pieces of external data
for data discovery, is now here.

OBIEE on the Oracle Cloud as an Optimal
Platform
Self-service BI revolves around the fact that we can facilitate decision-making that’s based
on data by providing interactive and business-user-driven interfaces to that underlying
data. Data today consists not only of structured data, but also of unstructured data.
This data demands fast processing. It also requires an integrated approach to online
transaction processing (OLTP) and online analytical processing (OLAP) as well as to the
discovery of new information from that data coming from various unstructured sources.
As a result, big data for decision-making must support new data, new analytics, and new
metrics that involve past performance analytics along with predictive analytics.

The common dynamic for all of this is self-service, with such analytics depending
on what is being asked for and who is being asked for in an agile nature. The changing
needs of business users fit perfectly into using the Oracle Cloud as an optimal platform
for accessing Oracle BI and Oracle Big Data. The platform provides real-time analytics
of data, self-service analytics to all types of data, and scale-out adoption of the same.
Interactive data visualization is a major component, with instant self-service access to
that data.

Self-service analytics have becomes a reality made possible by such enabling
technologies. Business analysis processes such as mobile device management, visual
discovery, and spreadsheet analysis have become business-user driven, with no
disconnect across all needed data points through Oracle Cloud.

Machine Learning in OBIEE
OBIEE covers common machine-learning functions available today. This is not an
exhaustive list but presents an initial path that you could easily incorporate into your
current BI solution. Common machine-learning functions include the following:

• BIN and WIDTH_BUCKET(supervised)

• Forecast (supervised)

• Cluster (unsupervised)

• Outlier (unsupervised)

• Regression (supervised)

• EVALUATE_SCRIPT

OBIEE 12c comes with four embedded R functions (Trendline, Regression, Outliers,
and Clusters.) In addition, 12c allows you to create and invoke custom R scripts. This
book will introduce these in further detail in later chapters.

Chapter 4 ■ MaChine Learning with OBiee

106

Summary
This chapter provides a clear view of the capabilities of Oracle BI, which can easily
serve standard needs for ad hoc reporting and research capabilities, and beyond
into advanced analytics. In the past, there was no easy way to access data without a
certain degree of technical knowledge needed to query the database. Today’s tools and
technologies provide AI and machine learning for the corporate world to discover and
extract information and knowledge that may not have even been foreseen. Oracle BI has
extended its capabilities beyond the requirement to understand the business behind
the metric or measurement that you are going after. Rather, the process is now reversed,
as you can find useful information from your data—sometimes even without any prior
knowledge or anticipation—all through the use of artificial intelligence and machine
learning.

We also touched on the concepts of big data and self-service BI. New requirements in
advanced analytics as well as data discovery come into play as we step into an era where
legions of data scientists, armed with their self-service tool in OBIEE, seek to include
external data (or even big data) to readily enhance the established data warehouse or
repository in search of answers to their queries and analysis.

107© Rosendo Abellera and Lakshman Bulusu 2018
R. Abellera and L. Bulusu, Oracle Business Intelligence with Machine Learning,
https://doi.org/10.1007/978-1-4842-3255-2_5

CHAPTER 5

Use Case: Machine Learning
in OBIEE 12c

We’ve covered machine learning as well as the relevance of big data and cloud computing
in regards to BI. You’ve learned about the primary R technologies and the Oracle R
Enterprise, which describe how the R-based algorithms can be used for building models
in Oracle 12c. Using these algorithms in OBIEE dashboards has given you a jump start
on machine learning and OBIEE. All of this, coupled with Chapter 4, which covered the
“why” of machine learning in OBIEE, answers the most sought-after question in BI: why
and how is machine learning a perfect solution for solving business problems, and for
being used in OBIEE for actionable decision support?

This chapter starts by outlining some real-world use cases that extend the one
described in Chapter 3 (predicting the origin of wine). The chapter describes one use case
in detail that leverages machine learning in OBIEE to build an advanced decision-making
solution. The primary focus of this chapter is in describing the real-world use chosen and
how it can be used in OBIEE in combination with the one on predicting the origin of wine
to build a holistic decision-making solution. The step-by-step implementation details
of the preceding use case are discussed in the next chapter. Such real-world decision
support solutions go a long way in providing better business outcomes and business
value and raise the bar in competitive intelligence for enterprises.

Real-World Use Cases
The real-world use cases presented in this section can be broadly classified into two main
categories:

• Predicting the origin of wine

• Using that origin as a base for predictive analytics, to predict the
propensity to buy that wine

https://doi.org/10.1007/978-1-4842-3255-2_5
http://dx.doi.org/10.1007/978-1-4842-3255-2_4
http://dx.doi.org/10.1007/978-1-4842-3255-2_3

Chapter 5 ■ Use Case: MaChine Learning in OBiee 12C

108

Predicting Wine Origin: Using a Machine-Learning
Classification Model
This use case predicts the origin of wine. The wines are classified as belonging to one
of three origins, based on the class of each wine and other attributes. The output of the
prediction is graphed as a pairs plot that is, in turn, integrated with the OBIEE dashboard.

Using Classified Wine Origin as a Base for Predictive
Analytics - Extending BI using machine Learning
techniques in OBIEE
By using the classified wine origin, this use case predicts the propensity to buy that
particular wine. This prediction is different from predicting the wine origin; now we are
predicting the probability that a consumer will buy a wine based on its source from. This
means the probability always falls between the values 0 and 1, with 0 indicating that the
consumer will not buy (or, to be more precise, not likely to buy) a wine based on its origin,
and 1 indicating that it is highly likely that a consumer will buy a wine based on its origin.
Note that in the wine origin prediction use case, the output was three distinct values:
Origin1, Origin2, and Origin3. In contrast, this output is a numerical fractional value
between 0 and 1, both inclusive.

 ■ Note Using the outputs from the Wine Origin prediction model and the propensity to
Buy model in OBiee analyses and dashboards, the business analyst or Bi users can derive
decisions that support taking proper actions that accelerate business processes. in this
manner, Bi can be extended to the predictive analytics domain powered by machine learning
using r/Ore in Oracle 12c and OBiee.

Using the BI Dashboard for Actionable Decision-Making
The use cases of predicting wine origin for a decision-support solution in OBIEE are
multiple. The primary ones are listed here:

• Influence the propensity to buy (as described in the preceding
subsection)

• Forecast the yield based on origin

• Forecast the wine’s quality

• Recommend usage

Chapter 5 ■ Use Case: MaChine Learning in OBiee 12C

109

You can use R-based machine-learning models integrated with OBIEE, or use OBIEE
directly to as follows :

• Propensity to buy can be predicted by using the machine-learning
algorithm called logistic regression or the generalized linear
model (GLM). This can be done in OBIEE by using the built-in
Regression analytics function or by using the R- or ORE-based
logistic regression model and then using the probabilistic value to
determine the outcome.

• Forecasting yield can also be done right in OBIEE by using past
buying trends in combination with time series analysis or the
Evaluate_Script analytics function with a SQL-based model by
scoring the model. Or an R or ORE function similar to one used
for predicting wine origin can be used.

• Predicting quality can be done by using the same random forest
ML model based on the origin or source predictor variable.

• Recommending usage can be done by using an ML algorithm
used for recommendation engines and integrating it in OBIEE
dashboards.

 ■ Note predicting the propensity to buy can aid in decision support in the following ways:

1. Demand of wine

2. revenue and profit obtained per consumer

3. improving quality of wine

Technical and Functional Analysis of the Use
Cases
Regardless of the business use case and the machine-learning model used, using AI-
based machine-learning models that can be used by OBIEE for an actionable decision-
support solution can be broken down into the following steps:

 1. Build an AI-based machine-learning model using R in Oracle.

 2. Score the model on a business data set for graphical output or
predictive analytics.

Chapter 5 ■ Use Case: MaChine Learning in OBiee 12C

110

 3. Integrate the preceding output with OBIEE for visualization
and decision support. This can be a SQL-based script that be
leveraged in OBIEE or PNG output.

a. Interactive graphs can be dynamically driven based on
user-input parameters or controls.

b. A combination of SQL and graph-based output can be
integrated with OBIEE. The former for can be used by
technical users to tweak the KPI, and/or the latter can be
used by technical/business users to create more detailed
visualizations that feed forward-facing analytics.

Figure 5-1 shows the OBIEE dashboard visualization of the initial use case of wine
origin prediction coupled with the propensity to buy use case. These might seem to
be too simple, but it important to know that they are capable of driving user actions as
described in the preceding steps when they are enabled as interactive or SQL-based
controls.

Figure 5-1. Dashboard showing the pairs plot of predicting Wine Origin and using it to
predict Propensity to Buy based on Wine Origin (Source)

Chapter 5 ■ Use Case: MaChine Learning in OBiee 12C

111

Analysis of Graph Output: Pairs Plot of Wine Origin
Prediction Using Random Forest
The pairs plot shows the plots of table(origin_pred, test_set$origin). Here's the
output of table(origin_pred, test_data$origin):

> table(origin_pred, test_data$origin)

origin_pred Origin1 Origin2 Origin3
 Origin1 140 0 0
 Origin2 0 162 0
 Origin3 0 0 111

And here’s the call to the pairs plot in R:

pairs(table(origin_pred, test_set$origin), main="Wine Origin Predictors")

The response variables are written in a diagonal form, from top left to bottom right.
These are outcomes Origin1, Origin2, and Origin3. Then each variable is plotted
against the other. Here we have values of origin_pred plotted against the values of test_
data$origin using a table (or matrix) output. The middle plot in the first column is an
individual pairs plot of Origin1 vs. Origin2—again in table output. This corresponds to
the first row in the preceding table output.

This same plotted is replicated in the top middle row. As you can see, this
corresponds to the second row in the preceding table. There’s no data in the top-left
corner, because it would just be a straight diagonal line plotting origin against origin, as
opposed to origin_pred vs. origin.

The other individual plots can be similarly analyzed to correspond to the appropriate
row(s) in the preceding table output.

Analysis of Graph Output: Predicting Propensity to Buy
Based on Wine Source
The ggplot is a graphics visualization function belonging to the ggplot2 R library. Using
ggplot, a graph or plot is composed of the following:

Data + Aesthetics + Geometry
Here Data is an R data frame. Aesthetics denotes x and y variables and/or the type,

color, and size of the plot elements (point, line, ribbon, bar, etc.). Geometry is the type of
plot; examples include point, line plot, bar plot, ribbon plot, box plot, and density plot. The
primary function to create a custom plot is ggplot(), which allows for combinations of
point, line, ribbon, and so forth. The parameter group is important here. The specification
of the ggplot call sets up the graph canvas with the response variable on the y-axis.

 ■ Note a good introduction to ggplot with its function call, signature, and examples, can
be found at www.r-bloggers.com/part-3a-plotting-with-ggplot2/.

https://www.r-bloggers.com/part-3a-plotting-with-ggplot2/

Chapter 5 ■ Use Case: MaChine Learning in OBiee 12C

112

Here’s the call to the ggplot() function that is used in our example use case to plot
the prediction of propensity to buy based on the wine source:

library(ggplot2)
gg_plot <- ggplot(data=test_set, aes(x=Source, y=p_to_buyPred, group=1)) +
geom_line(aes(colour = p_to_buyPred), size = 1) + geom_point() +
stat_smooth(method="glm", family="binomial", se=FALSE) +
ggtitle("Predicting Propensity to buy based on Wine Source") +
labs(x="Source", y="Predicted Probability - p_to_buyPred")
plot(gg_plot)

 ■ Note geom_line and stat_smooth connect data points that belong to the same group.
By specifying group=1, we are telling ggplot that all data points belong to group = 1.
hence, we get a single (V-shaped) line that connects the three data points plotted by geom_
point() together. in addition, the regression line, as explained next, also appears in the plot.

The call to geom_line() includes colour=p_to_buyPred, which denotes that the
line color is automatically controlled by the levels (predicted probabilities) of the p_to_
buyPred variable; size = 1 indicates the line size is 1 unit. aes indicates the aesthetics of
the line, as stated previously. The stat_smooth() function generates and fits a smoothed
line (a regression line or the line of best fit) on the geom_line and geom_point geometry
as a layer based on the transformation of the original data by the GLM model with link
= "binomial". This is also called plotting regression slope. This is passed as an argument
method = "glm", family="binomial". The argument se indicates whether to display
the confidence interval to use (0.95 by default). . The method argument is the smoothing
method to use (specified in this code as glm, as we used a logistic regression model), and
formula is the formula to use in the smoothing function. The smoothing function helps in
discerning when overplotting occurs. In Figure 5-1, this is shown as the line in the middle
of the plot dissecting the V-shaped lines.

The call to geom_point() without any parameters means the default point shape
(which is a dot) and color (which is black) are used. This function call plots the actual
data points.

ggtitle prints the title of the plot as given in its argument. labs indicates the x-axis
and y-axis labels of the plot, which are "Source" and "Predicted Probability - p_to_
buyPred", respectively. The ggplot can be customized by changing the arguments that
correspond to alpha, color, line type, and size.

Analysis at a More Detailed Level
At a more detailed level, the use case of propensity to buy can be further analyzed by
using a ribbon graph with the geom_ribbon() geometry. We first derive test data by
omitting the propensity_to_buy column from the tsetse data set obtained by sampling
the original data in the Wineptobuy.csv file. We load this data into a data frame referred

Chapter 5 ■ Use Case: MaChine Learning in OBiee 12C

113

to as test_set2. Then, we use test_set2 to derive test_set3. Listing 5-1 shows the full
code for this analysis.

Listing 5-1. Code for Further Analyzing the Use Case of propensity_to_buy

library(ORE)
ore.connect("testr","orcl","localhost","testr")
library(OREmodels)
The file Wineptobuy.csv is assumed to be in the working directory from
where the ORE CLI is called
winedata <- read.csv("Wineptobuy.csv", header=TRUE, row.names = NULL,
sep=',') # loads input data into R data frame
head(winedata) # Displays 6 rows of data in the data frame winedata
summary(winedata) # Gives a statistical summary of the data in winedata data
frame
sapply(winedata, sd) # Applies the standard deviation sd function to each
variable in the data set winedata
The below two lines display a two-way contingency table of response
variable propensity_to_buy and the predictors
Source and origin respectively to ensure there are not any any 0 cells in
the winedata data set. In other words,
xtabs function displays the frequency or count of the levels of
categorical variables as matrix or table - a
cross-tabulation, revealing the relationship between propensity_to_buy and
Source; and between propensity_to_buy
and origin.
xtabs(~propensity_to_buy +Source, data=winedata)
xtabs(~propensity_to_buy +origin, data=winedata)
label <- winedata[,23]
head(label)
library(caTools)
s <- sample.split(label, SplitRatio=3/4) # Derives a sample split s based on
split ratio of 0.75
train_set <- winedata[s, c(2:20, 23)] # Samples the input data into train_
set (columns 2-20, and 23) based on s
test_set <- winedata[!s, c(2:20, 23)] # Samples the data not in train_set
into test_set
head(train_set) # Displays 6 rows of the train_set
nrow(train_set) # Displays count of rows in train set
head(test_set) # Displays 6 rows of the test set
nrow(test_set) # Displays count of rows in test set
Loads a matrix of Source and propensity_to_buy columns in train_set into
sp.tab
sp.tab <- table(train_set$Source, train_set$propensity_to_buy)
sp.tab # Display the above matrix
train_set$Source <- factor(train_set$Source) # This treats source as a
categorical variable
Builds a Logistic Regression Model in R using 'glm' Machine Learning
algorithm with response variable as

Chapter 5 ■ Use Case: MaChine Learning in OBiee 12C

114

propensity_to_buy and predictor variable as Source using the train_set
data set. The family function for the
glm model is "binomial" (indicating that the model is a binomial model)
and the link is logit), and the maximum
iterations to be performed is 100
logitM <- glm(propensity_to_buy ~ Source, data = train_set,
family="binomial", control = glm.control(maxit=100))
Displays a summary of the logitM model just built in terms of the function
call for glm; the deviance residuals
(Min, 1st Quantile, Median, 3rd Quantile, and the Max) which are a measure
of the model fit or in other words the
distribution of of the deviance residuals for observations used in the
model; the table of coefficients with the
coefficients, their standard errors, the z-statistic or the Wald
Z-statistic, and the associated p-values
displayed across, and the Intercept and the predictor variables displayed
down the matrix; the fit indices which
include the null deviance and residual deviance and the AIC (Akaike
Information Criteria). A model with minumum
AIC value is considered to fit without penalty for the model coefficients.
summary(logitM)
anova(logitM)
install.packages("aod")
The wald.test function tests for the Chi-squared test statistic based on
the coeffieicents of the logitM model. In
our case we can test the significance of Source predictor variable using
this function from the aod library of R.
The order of the model coefficients in the table of coefficients is same
as the order of terms in the model. This
is relevant since the wald.test function refers to their coefficients by
their order in the model. In the below
three wald.test calls, the argument b passes the coefficients, Sigma gives
the variance and covariance matrix of
the error terms, and Terms indicates which terms in the model are to be
tested. In our use case these are the
terms 2 and 3. Also, running the function wald.test for Terms 1 and 2; and
1,2 and 3 in addition to terms 2 and 3
gives a chi-squared test statistic with degress of freedom 2, 3 and 2
respectively and the p-value of 1.0 in all three cases thereby showing that
Source is statistically significant.
library(aod)
wald.test(b = coef(logitM), Sigma = vcov(logitM), Terms = 1:2)
wald.test(b = coef(logitM), Sigma = vcov(logitM), Terms = 1:3)
wald.test(b = coef(logitM), Sigma = vcov(logitM), Terms = 2:3)
The exp function below exponentiates the coefficients and analyzes them as
odds-ratios.
exp(coef(logitM))
head(test_set) # Displays 6 rows of the test_set data set

Chapter 5 ■ Use Case: MaChine Learning in OBiee 12C

115

nrow(test_set) # Displays number of rows in test_set
head(data.frame(test_set[,c(1:19)])) # Displays 6 rows of columns 1 to 19 in
test_set
nrow(data.frame(test_set[,c(1:19)])) # Displays count of rows taking columns
1 to 19 in test_set
Uses the predict() function in R to do a prediction of propensity to buy
on a new data set which consists of
all rows and columns 1 to 19 in test_set indicating that the values of the
predictor variables are from this
test_set and that the values of test_set$p_to_buyPred must be predictions
using predict(). This is called scoring
the model. The type of response is response and means the type of
prediction is a predicted probability as opposed
to an actual value.
Note that the original column propensity_to_buy is eliminated in the new
data set (test_set) while scoring model.
It outputs a set of probabilities (as opposed to actual values) that fall
in the closed interval [0,1].
These probabilities are stored in a newly created column p_to_buyPred in
the test_set.
test_set$p_to_buyPred <- predict(logitM, newdata = data.frame(test_
set[,c(1:19)]), type="response")
class(test_set$p_to_buyPred) # Shows the R class of test_set$p_to_buyPred
head(test_set) # Displays 6 rows of test_set which includes the newly
created column p_to_buyPred
test_set$p_to_buyPred <- ifelse(test_set$p_to_buyPred > 0.5,1,0)
Quantifies probabilities into values 1 and 0
misClasificError <- mean(test_set$p_to_buyPred != test_set$propensity_to_
buy) # Displays misclassification error
print(paste('Accuracy',1-misClasificError)) # Displays the accuracy if the
model built and scored.
An accuracy approaching 1 is considered optimal.
The library ROCR is used to load the R functions for plotting the Reciever
Operating Characteristic (ROC). ROC
summarizes the performance of the model by evaluating the cross-
correlation between true +ve rate or sensitivity
and false -ve rate or (1-specificity). Keeping p>0.5, ROC summarizes the
prediction for all possible values of
p>0.5. The area under curve (AUC) is an optimal performance metric for ROC
and the higher value of AUC, the better
the #prediction of the glm model.
This package enables visualizing the performance of scoring classifiers
using the prediction, performance and plot
functions. Its definition can be found at http://rocr.bioinf.mpi-sb.mpg.
de/
library(ROCR)
class(test_set$p_to_buyPred) # Displays the R class of the predicted value
p_to_buyPred of test_set

Chapter 5 ■ Use Case: MaChine Learning in OBiee 12C

116

Used the R prediction() function of GLM to transform the input data
containing predictions into a standard format
Here it transforms two columns of data given by p_to_buyPred (predictions)
and propensity_to_buy into a standard
format and returns an object of class prediction.
pr1 <- prediction(test_set$p_to_buyPred, test_set$propensity_to_buy)
class(pr1) # This gives "prediction" as the class
The performance function is used to do a predictor evaluation. Its
signature is
performance(prediction.obj, measure, x.measure). It works on a prediction
object (pr1 in this case),
and measure is performance measure to used for evaluation ("tpr" or the
true positive rate in this case), and
x.measure is a second performance measure ("fpr" or false positive rate).
The measure is plotted in y-axis and the
x.measure is plotted in the x-axis to result in a 2D curve. Other measures
can also be passed such as "auc" (area
under ROC), "acc" (accuracy), "err" (Error rate) etc.
prf1 <- performance(pr1, measure = "tpr", x.measure = "fpr")
class(prf1) # This gives "performance" as the classpdf("plot_prf1.pdf")
This saves the plotted graph as a PDF file in the working directory
This plots an object of class performance, in our case, prf1. colorize
specifies whether the curve is to be
colorized according to cutoff.
plot(prf1, colorize = TRUE) # , text.adj = c(-0.2,1.7)
dev.off()
This makes a different call to performance() function with the measure to
be evaluated as "auc" or area under ROC
curve. This returns the performance of the above prediction with "auc" as
the evaluation measure. Auc is the area
under ROC curve.
auc1 <- performance(pr1, measure = "auc")
auc1 <- auc1@y.values[[1]]
auc1 # "auc" closer to 1 or equaling 1 indicates a goodness of fit and a
better prediction performance of the model
library(ROCR)
p <- predict(logitM, newdata= data.frame(test_set[,c(1:19)]),
type="response")
class(p)
pr <- prediction(p, test_set$propensity_to_buy)
class(pr)
prf <- performance(pr, measure = "tpr", x.measure = "fpr")
class(prf)
plot(prf, colorize = TRUE) # , text.adj = c(-0.2,1.7)
auc <- performance(pr, measure = "auc")
auc <- auc@y.values[[1]]
auc
test_set2 <- data.frame(test_set[,c(1:19)])

Chapter 5 ■ Use Case: MaChine Learning in OBiee 12C

117

head(test_set2)
The within R function uses the test_set3 data set as its argument and
generates a data.frame that is used for the
ribbon layer data. The very first line inside the within generates the
predicted probabilities along with the
standard errors that aid in plotting a confidence interval. The argument
se is specified to indicate whether to
display confidence interval to use (0.95 by default) and also enables to
plot a confidence interval. The
type="link" gives the estimates on the link scale.
The remaining lines back transform both the predicted values and
confidence intervals into probabilities.
The cbind does a column-wise bind of the data frame test_set2 with the
predicted outcome column scored by
the predict function that is passed as the second argument to cbind. For
logistic regression model, the confidence
intervals are based on the profiled log-likelihood function. The lower and
upper indicate the lower and upper
confidence limits.
test_set3 <- cbind(test_set2, predict(logitM, newdata=test_set2, type =
"link", se = TRUE))
test_set3 <- within(test_set3, {
PredictedProb <- plogis(fit)
lower <- plogis(fit - (1.96 * se.fit))
upper <- plogis(fit + (1.96 * se.fit))
})
head(test_set3)
library(ggplot2)
pdf("test_set3_ribbon.pdf") # The below line sets up the graph canvas with
response variable on y-axis
ggplot(test_set3, aes(x = Source, y = PredictedProb, group=PredictedProb)) +
geom_line(aes(colour = PredictedProb), size = 1) + geom_point() + # Plots
the actual data points
geom_ribbon(aes(ymin = lower, ymax = upper, fill = PredictedProb), alpha =
0.25) + # alpha fades out connect lines
scale_fill_gradient(low="red", high="green") + # Defines a continuous color
scale for the ribbon layer
ggtitle("Predicting Propensity to buy based on Wine Source") + # Title of
the final plot
ylab("Predicted Probability - p_to_buyPred") # Specify label for y-axis.
This also serves as the graph legend
dev.off()

The scale_fill_gradient() function is used to define a continuous color scale. In
our case, high values will be filled with a green color, and low-probability values will have
a red color. The plot is a ribbon plot (continuous), so adding the scale_fill_gradient()
layer makes it a continuous scale with a colored ribbon fill—green for high, and red for
low.

Chapter 5 ■ Use Case: MaChine Learning in OBiee 12C

118

The following code segment from Listing 5-1 is relevant to our discussion of further
analysis:

test_set3 <- cbind(test_set2, predict(logitM, newdata=test_set2, type =
"link", se = TRUE))
test_set3 <- within(test_set3, {
PredictedProb <- plogis(fit)
lower <- plogis(fit - (1.96 * se.fit))
upper <- plogis(fit + (1.96 * se.fit))
})
head(test_set3)

Here’s an explanation of the code:
To see what's in test_set2, we run the head(test_set2) R command in the

command line to get this output:

> head(test_set2)
 origin class Alcohol Malic.acid Ash Alcanility.of.ash Magnesium
1 Origin1 1 14.22 1.70 2.30 16.3 118
2 Origin1 1 14.10 2.16 2.30 18.0 105
3 Origin1 1 14.12 1.48 2.32 16.8 95
4 Origin1 1 14.21 4.04 2.44 18.9 111
5 Origin1 1 13.05 1.73 2.04 12.4 92
6 Origin1 1 13.77 1.90 2.68 17.1 115
 Total.phenols Flavanoids Nonflavanoid.phenols Proanthocyanins Color.
intensity

1 3.20 3.00 0.26 2.03 6.38
2 2.95 3.32 0.22 2.38 5.75
3 2.20 2.43 0.26 1.57 5.00
4 2.85 2.65 0.30 1.25 5.24
5 2.72 3.27 0.17 2.91 7.20
6 3.00 2.79 0.39 1.68 6.30
 Hue OD280.OD315.of.diluted.wines Proline Origin1 Origin2 Origin3 Source
1 0.94 3.31 970 1.000 0.000 0 Origin1
2 1.25 3.17 1510 1.000 0.000 0 Origin1
3 1.17 2.82 1280 1.000 0.000 0 Origin1
4 0.87 3.33 1080 0.996 0.004 0 Origin1
5 1.12 2.91 1150 1.000 0.000 0 Origin1
6 1.13 2.93 1375 1.000 0.000 0 Origin1
>

The last column, Source, gives the wine origin source predicted using the random
forest algorithm with its output displayed as a pairs plot. We see that as the values for
Origin1 and Origin3 equal 1 or almost approach 1, the source is predicted as Origin1.
As the values in the Origin2 column are either 0 or approach close to 0, the Source is
Origin2.

Chapter 5 ■ Use Case: MaChine Learning in OBiee 12C

119

The within R function uses the test_set3 data set as its argument and generates a
data frame that is used for the ribbon layer data.

The very first line in the preceding code generates the predicted probabilities along
with the standard errors that aid in plotting a confidence interval. The type="link" gives
the estimates on the link scale. The remaining lines back-transform both the predicted
values and confidence intervals into probabilities.

To see the output of test_set3, we run the head(test_set3) command to get the
following output:

> head(test_set3)
 origin class Alcohol Malic.acid Ash Alcanility.of.ash Magnesium
1 Origin1 1 14.22 1.70 2.30 16.3 118
2 Origin1 1 14.10 2.16 2.30 18.0 105
3 Origin1 1 14.12 1.48 2.32 16.8 95
4 Origin1 1 14.21 4.04 2.44 18.9 111
5 Origin1 1 13.05 1.73 2.04 12.4 92
6 Origin1 1 13.77 1.90 2.68 17.1 115
 Total.phenols Flavanoids Nonflavanoid.phenols Proanthocyanins Color.

intensity
1 3.20 3.00 0.26 2.03 6.38
2 2.95 3.32 0.22 2.38 5.75
3 2.20 2.43 0.26 1.57 5.00
4 2.85 2.65 0.30 1.25 5.24
5 2.72 3.27 0.17 2.91 7.20
6 3.00 2.79 0.39 1.68 6.30
 Hue OD280.OD315.of.diluted.wines Proline Origin1 Origin2 Origin3 Source
1 0.94 3.31 970 1.000 0.000 0 Origin1
2 1.25 3.17 1510 1.000 0.000 0 Origin1
3 1.17 2.82 1280 1.000 0.000 0 Origin1
4 0.87 3.33 1080 0.996 0.004 0 Origin1
5 1.12 2.91 1150 1.000 0.000 0 Origin1
6 1.13 2.93 1375 1.000 0.000 0 Origin1
 fit se.fit residual.scale upper lower PredictedProb
1 28.56607 94471.71 1 1 0 1
2 28.56607 94471.71 1 1 0 1
3 28.56607 94471.71 1 1 0 1
4 28.56607 94471.71 1 1 0 1
5 28.56607 94471.71 1 1 0 1
6 28.56607 94471.71 1 1 0 1

 ■ Note the columns fit, se.fit, residual.scale, upper, lower, and PredictedProb
give the fitness, standard error of fit, residual scale, predicted values along with upper and
lower confidence limits, and the predicted probabilities. the confidence intervals are at a
95% level.

Chapter 5 ■ Use Case: MaChine Learning in OBiee 12C

120

We then use the geom_ribbon() geometric function coupled with geom_line() and
geom_point(), as shown in Listing 5-2, to arrive at the ribbon plot shown in Figure 5-2.
Using ggplot in conjunction with geom_ribbon() enables you to plot a graph with
predicted probabilities and 95% confidence intervals. This is evident in the call to geom_
ribbon(), where the aesthetics are given using the lower and upper values of confidence
limits (in the code lines in bold in Listing 5-1). This is shown in the following code
segment from Listing 5-1:

library(ggplot2)
pdf("test_set3_ribbon.pdf")
ggplot(test_set3, aes(x = Source, y = PredictedProb, group=PredictedProb)) +
geom_line(aes(colour = PredictedProb), size = 1) + geom_point() +
geom_ribbon(aes(ymin = lower, ymax = upper, fill = PredictedProb), alpha =
0.25) +
scale_fill_gradient(low="red", high="green") +
ggtitle("Predicting Propensity to buy based on Wine Source") +
ylab("Predicted Probability - p_to_buyPred")
dev.off()

The primary plot is the ggplot obtained by specifying the aesthetics as the wine
Source for the x-axis, and the PredictedProb (as obtained from Listing 5-1) for the y-axis
that are grouped by PredictedProb itself. This is plotted as a single line connecting
two points for Origin1 and Origin 3, as these correspond to a probability of value 1. The
ribbon layer itself is plotted in green, as specified by fill = PredictedProb and the
call to the scale_fill_gradient() function that has low="red" and high="green".
As the highest value of PredictedProb is 1, the fill color for the ribbon is green and the
red color for Origin2 being masked by the layer itself. The measuring scale or legend
for both geom_line() and geom_ribbon() appear alongside the ribbon and line as part
of the graph. The value of alpha gives the transparency level for the ribbon plot. The
scale_fill_gradient() pairs with the geom_ribbon() resulting in the compound graph
in Figure 5-2. The entire plot is saved as an image file in PDF format.

g <- ggplot(test_set3, aes(x = Source, y = PredictedProb,
group=PredictedProb)) +
geom_line(aes(colour = PredictedProb), size = 1) + geom_point() +
geom_ribbon(aes(ymin = lower, ymax = upper, fill = PredictedProb), alpha =
0.25) +
scale_fill_gradient(low="red", high="green") +
ggtitle("Predicting Propensity to buy based on Wine Source") +
ylab("Predicted Probability - p_to_buyPred")

Chapter 5 ■ Use Case: MaChine Learning in OBiee 12C

121

Use Case(s) of Predicting Propensity to Buy
We can use multiple layers of the ribbon geometry to build a graph that depicts the way
decision-making can be based on. By adding the code shown in Listing 5-2 to our code
example in Listing 5-1, we can show the areas above and below the ribbon that in turn
help in decision-making. The result of executing this code is shown in Figure 5-3.

Listing 5-2. Code Segment for Adding Multiple Areas Below and Above the Ribbon Layer

library(ggplot2)
g <- ggplot(test_set3, aes(x = Source, y = PredictedProb,
group=PredictedProb)) +
geom_line(aes(colour = PredictedProb), size = 1) + geom_point() +
geom_ribbon(aes(ymin = lower, ymax = upper, fill = PredictedProb), alpha =
0.25)
The ggplot_build function returns a list of data frames (one for each
layer) and a panel object with information
about the actual x- and y- axis ranges for plot in context. In our case
this is ribbon plot

Figure 5-2. test_set3_ribbon.pdf (ribbon plot of test_set for predicted probilities)

Chapter 5 ■ Use Case: MaChine Learning in OBiee 12C

122

res <- ggplot_build(g)
bottom <- res[[2]]$panel_ranges[[1]]$y.range[1] # This sets the floor y-axis
plot range for ggplot2 (ribbon plot)
top <- res[[2]]$panel_ranges[[1]]$y.range[2] # This sets the ceil y-axis
plot range ffor ggplot2 (ribbon plot)
ggplot(test_set3, aes(x = Source, y = PredictedProb, group=PredictedProb)) +
geom_ribbon(aes(ymin = lower, ymax = upper, fill = PredictedProb),
alpha=0.25) + # layer for the ribbon
geom_ribbon(aes(ymin=bottom, ymax=lower), fill="red", alpha=0.25) + # layer
below the ribbon
geom_ribbon(aes(ymin=upper, ymax=top), fill="green", alpha=0.25) + # layer
above the ribbon
geom_point() + geom_line()

Figure 5-3. Graph showing areas below and above the ribbon plot (based on use case of
propensity to buy)

Chapter 5 ■ Use Case: MaChine Learning in OBiee 12C

123

In the preceding graph, we can see that the area in red represents the use case for
wine of Origin2, and that the demand for this wine is low. We can thereby deduce that
either the quality of the wine needs improvement or the source of production needs more
concentration.

However, the green area above the ribbon suggests that the demand, and hence
supply, of the wine sourced from Origin1 and Origin3 is high. Therefore, the revenue
and profit for the wine from these sources is also high.

When this output is integrated with OBIEE, the preceding conclusions can be made
actionable by providing controls such as parameters and action filters that users can
leverage to enable in business decision support.

Here's the output of the combination of code in Listings 5-1 and 5-2:

> ore.connect("testr","orcl","localhost","testr")
> library(OREmodels)
> winedata <- read.csv("Wineptobuy.csv", header=TRUE, row.names = NULL, sep=',$
> head(winedata)
 id origin class Alcohol Malic.acid Ash Alcanility.of.ash Magnesium
1 1 Origin1 1 14.37 1.95 2.50 16.8 113
2 2 Origin1 1 14.20 1.76 2.45 15.2 112
3 3 Origin1 1 14.06 2.15 2.61 17.6 121
4 4 Origin1 1 13.64 3.10 2.56 15.2 116
5 5 Origin1 1 14.06 1.63 2.28 16.0 126
6 6 Origin1 1 12.85 1.60 2.52 17.8 95
 Total.phenols Flavanoids Nonflavanoid.phenols Proanthocyanins Color.
intensity

1 3.85 3.49 0.24 2.18 7.80
2 3.27 3.39 0.34 1.97 6.75
3 2.60 2.51 0.31 1.25 5.05
4 2.70 3.03 0.17 1.66 5.10
5 3.00 3.17 0.24 2.10 5.65
6 2.48 2.37 0.26 1.46 3.93
 Hue OD280.OD315.of.diluted.wines Proline Origin1 Origin2 Origin3 Source
1 0.86 3.45 1480 1.000 0.000 0.000 Origin1
2 1.05 2.85 1450 0.994 0.004 0.002 Origin1
3 1.06 3.58 1295 1.000 0.000 0.000 Origin1
4 0.96 3.36 845 1.000 0.000 0.000 Origin1
5 1.09 3.71 780 1.000 0.000 0.000 Origin1
6 1.09 3.63 1015 1.000 0.000 0.000 Origin1
 origin.1 id.1 propensity_to_buy
1 Origin1 1 1
2 Origin1 2 1
3 Origin1 3 1
4 Origin1 4 1
5 Origin1 5 1
6 Origin1 6 1

Chapter 5 ■ Use Case: MaChine Learning in OBiee 12C

124

> summary(winedata)
 id origin class Alcohol Malic.acid
 Min. : 1 Origin1:140 Min. :1.00 Min. :11.03 Min. :0.740
 1st Qu.:104 Origin2:162 1st Qu.:1.00 1st Qu.:12.37 1st Qu.:1.530
 Median :207 Origin3:111 Median :2.00 Median :13.05 Median :1.830
 Mean :207 Mean :1.93 Mean :13.00 Mean :2.343
 3rd Qu.:310 3rd Qu.:3.00 3rd Qu.:13.67 3rd Qu.:3.100
 Max. :413 Max. :3.00 Max. :14.75 Max. :5.800
 Ash Alcanility.of.ash Magnesium Total.phenols
 Min. :1.360 Min. :10.60 Min. : 70.00 Min. :0.980
 1st Qu.:2.210 1st Qu.:17.00 1st Qu.: 89.00 1st Qu.:1.740
 Median :2.360 Median :19.00 Median : 97.00 Median :2.230
 Mean :2.366 Mean :19.43 Mean : 99.58 Mean :2.276
 3rd Qu.:2.580 3rd Qu.:21.50 3rd Qu.:107.00 3rd Qu.:2.800
 Max. :3.230 Max. :30.00 Max. :162.00 Max. :3.880
 Flavanoids Nonflavanoid.phenols Proanthocyanins Color.intensity
 Min. :0.340 Min. :0.1300 Min. :0.410 Min. : 1.280
 1st Qu.:1.200 1st Qu.:0.2700 1st Qu.:1.140 1st Qu.: 3.300
 Median :2.140 Median :0.3400 Median :1.460 Median : 4.600
 Mean :2.011 Mean :0.3658 Mean :1.538 Mean : 4.934
 3rd Qu.:2.780 3rd Qu.:0.4500 3rd Qu.:1.870 3rd Qu.: 5.850
 Max. :5.080 Max. :0.6600 Max. :3.580 Max. :13.000
 Hue OD280.OD315.of.diluted.wines Proline
 Min. :0.5400 Min. :1.270 Min. : 278.0
 1st Qu.:0.7600 1st Qu.:1.830 1st Qu.: 510.0
 Median :0.9600 Median :2.780 Median : 678.0
 Mean :0.9618 Mean :2.587 Mean : 749.5
 3rd Qu.:1.1300 3rd Qu.:3.140 3rd Qu.: 985.0
 Max. :1.7100 Max. :4.000 Max. :1680.0
 Origin1 Origin2 Origin3 Source origin.1
 Min. :0.0000 Min. :0.0000 Min. :0.0000 Origin1:140 Origin1:140
 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000 Origin2:162 Origin2:162
 Median :0.0000 Median :0.0020 Median :0.0000 Origin3:111 Origin3:111
 Mean :0.3395 Mean :0.3922 Mean :0.2683
 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:0.9760
 Max. :1.0000 Max. :1.0000 Max. :1.0000
 id.1 propensity_to_buy
 Min. : 1 Min. :0.0000
 1st Qu.:104 1st Qu.:0.0000
 Median :207 Median :1.0000
 Mean :207 Mean :0.6077
 3rd Qu.:310 3rd Qu.:1.0000
 Max. :413 Max. :1.0000
> sapply(winedata, sd)

Chapter 5 ■ Use Case: MaChine Learning in OBiee 12C

125

 id origin
 119.3670809 0.7773550
 class Alcohol
 0.7773550 0.7667311
 Malic.acid Ash
 1.1720914 0.2931987
 Alcanility.of.ash Magnesium
 3.4096871 14.2594176
 Total.phenols Flavanoids
 0.6270436 0.9700433
 Nonflavanoid.phenols Proanthocyanins
 0.1293551 0.5520653
 Color.intensity Hue
 2.1460253 0.2289449
OD280.OD315.of.diluted.wines Proline
 0.7162199 311.4138632
 Origin1 Origin2
 0.4731436 0.4869368
 Origin3 Source
 0.4421105 0.7773550
 origin.1 id.1
 0.7773550 119.3670809
 propensity_to_buy
 0.4888445
> xtabs(~propensity_to_buy +Source, data=winedata)
 Source
propensity_to_buy Origin1 Origin2 Origin3
 0 0 162 0
 1 140 0 111
> xtabs(~propensity_to_buy +origin, data=winedata)
 origin
propensity_to_buy Origin1 Origin2 Origin3
 0 0 162 0
 1 140 0 111
> label <- winedata[,23]
> head(label)
[1] 1 1 1 1 1 1
> library(caTools)
Warning message:
package 'caTools' was built under R version 3.2.5
> s <- sample.split(label, SplitRatio=3/4)
> train_set <- winedata[s, c(2:20, 23)]
> test_set <- winedata[!s, c(2:20, 23)]
> head(train_set)

Chapter 5 ■ Use Case: MaChine Learning in OBiee 12C

126

 origin class Alcohol Malic.acid Ash Alcanility.of.ash Magnesium
1 Origin1 1 14.37 1.95 2.50 16.8 113
3 Origin1 1 14.06 2.15 2.61 17.6 121
4 Origin1 1 13.64 3.10 2.56 15.2 116
6 Origin1 1 12.85 1.60 2.52 17.8 95
7 Origin1 1 13.87 1.90 2.80 19.4 107
9 Origin1 1 13.51 1.80 2.65 19.0 110
 Total.phenols Flavanoids Nonflavanoid.phenols Proanthocyanins Color.intensity
1 3.85 3.49 0.24 2.18 7.80
3 2.60 2.51 0.31 1.25 5.05
4 2.70 3.03 0.17 1.66 5.10
6 2.48 2.37 0.26 1.46 3.93
7 2.95 2.97 0.37 1.76 4.50
9 2.35 2.53 0.29 1.54 4.20
 Hue OD280.OD315.of.diluted.wines Proline Origin1 Origin2 Origin3 Source
1 0.86 3.45 1480 1.000 0.000 0 Origin1
3 1.06 3.58 1295 1.000 0.000 0 Origin1
4 0.96 3.36 845 1.000 0.000 0 Origin1
6 1.09 3.63 1015 1.000 0.000 0 Origin1
7 1.25 3.40 915 0.996 0.004 0 Origin1
9 1.10 2.87 1095 1.000 0.000 0 Origin1
 propensity_to_buy
1 1
3 1
4 1
6 1
7 1
9 1
> nrow(train_set)
[1] 310
> head(test_set)
 origin class Alcohol Malic.acid Ash Alcanility.of.ash Magnesium
2 Origin1 1 14.20 1.76 2.45 15.2 112
5 Origin1 1 14.06 1.63 2.28 16.0 126
8 Origin1 1 13.73 1.50 2.70 22.5 101
10 Origin1 1 13.05 1.65 2.55 18.0 98
11 Origin1 1 13.88 1.89 2.59 15.0 101
18 Origin1 1 13.74 1.67 2.25 16.4 118
 Total.phenols Flavanoids Nonflavanoid.phenols Proanthocyanins
2 3.27 3.39 0.34 1.97
5 3.00 3.17 0.24 2.10
8 3.00 3.25 0.29 2.38
10 2.45 2.43 0.29 1.44
11 3.25 3.56 0.17 1.70
18 2.60 2.90 0.21 1.62

Chapter 5 ■ Use Case: MaChine Learning in OBiee 12C

127

 Color.intensity Hue OD280.OD315.of.diluted.wines Proline Origin1 Origin2
2 6.75 1.05 2.85 1450 0.994 0.004
5 5.65 1.09 3.71 780 1.000 0.000
8 5.70 1.19 2.71 1285 0.998 0.002
10 4.25 1.12 2.51 1105 1.000 0.000
11 5.43 0.88 3.56 1095 0.996 0.002
18 5.85 0.92 3.20 1060 1.000 0.000
 Origin3 Source propensity_to_buy
2 0.002 Origin1 1
5 0.000 Origin1 1
8 0.000 Origin1 1
10 0.000 Origin1 1
11 0.002 Origin1 1
18 0.000 Origin1 1
> nrow(test_set)
[1] 103
> sp.tab <- table(train_set$Source, train_set$propensity_to_buy)
> sp.tab

 0 1
 Origin1 0 98
 Origin2 122 0
 Origin3 0 90
> train_set$Source <- factor(train_set$Source)
> logitM <- glm(propensity_to_buy ~ Source, data = train_set,
family="binomial$
> summary(logitM)

Call:
glm(formula = propensity_to_buy ~ Source, family = "binomial",
 data = train_set, control = glm.control(maxit = 100))

Deviance Residuals:
 Min 1Q Median 3Q Max
-8.861e-07 -8.861e-07 8.861e-07 8.861e-07 8.861e-07

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.857e+01 9.779e+04 0 1
SourceOrigin2 -5.713e+01 1.313e+05 0 1
SourceOrigin3 1.838e-05 1.413e+05 0 1

(Dispersion parameter for binomial family taken to be 1)

 Null deviance: 4.1559e+02 on 309 degrees of freedom
Residual deviance: 2.4340e-10 on 307 degrees of freedom
AIC: 6

Chapter 5 ■ Use Case: MaChine Learning in OBiee 12C

128

Number of Fisher Scoring iterations: 27

> anova(logitM)
Analysis of Deviance Table

Model: binomial, link: logit

Response: propensity_to_buy

Terms added sequentially (first to last)

 Df Deviance Resid. Df Resid. Dev
NULL 309 415.59
Source 2 415.59 307 0.00
> # install.packages("aod")
> library(aod)
Warning message:
package 'aod' was built under R version 3.2.5
> wald.test(b = coef(logitM), Sigma = vcov(logitM), Terms = 1:2)
Wald test:

Chi-squared test:
X2 = 1.9e-07, df = 2, P(> X2) = 1.0
> wald.test(b = coef(logitM), Sigma = vcov(logitM), Terms = 1:3)
Wald test:

Chi-squared test:
X2 = 2.7e-07, df = 3, P(> X2) = 1.0
> wald.test(b = coef(logitM), Sigma = vcov(logitM), Terms = 2:3)
Wald test:

Chi-squared test:
X2 = 2.6e-07, df = 2, P(> X2) = 1.0
> exp(coef(logitM))
 (Intercept) SourceOrigin2 SourceOrigin3
 2.547343e+12 1.541085e-25 1.000018e+00
> head(test_set)
 origin class Alcohol Malic.acid Ash Alcanility.of.ash Magnesium
2 Origin1 1 14.20 1.76 2.45 15.2 112
5 Origin1 1 14.06 1.63 2.28 16.0 126
8 Origin1 1 13.73 1.50 2.70 22.5 101
10 Origin1 1 13.05 1.65 2.55 18.0 98
11 Origin1 1 13.88 1.89 2.59 15.0 101
18 Origin1 1 13.74 1.67 2.25 16.4 118
 Total.phenols Flavanoids Nonflavanoid.phenols Proanthocyanins

Chapter 5 ■ Use Case: MaChine Learning in OBiee 12C

129

2 3.27 3.39 0.34 1.97
5 3.00 3.17 0.24 2.10
8 3.00 3.25 0.29 2.38
10 2.45 2.43 0.29 1.44
11 3.25 3.56 0.17 1.70
18 2.60 2.90 0.21 1.62
 Color.intensity Hue OD280.OD315.of.diluted.wines Proline Origin1 Origin2
2 6.75 1.05 2.85 1450 0.994 0.004
5 5.65 1.09 3.71 780 1.000 0.000
8 5.70 1.19 2.71 1285 0.998 0.002
10 4.25 1.12 2.51 1105 1.000 0.000
11 5.43 0.88 3.56 1095 0.996 0.002
18 5.85 0.92 3.20 1060 1.000 0.000
 Origin3 Source propensity_to_buy
2 0.002 Origin1 1
5 0.000 Origin1 1
8 0.000 Origin1 1
10 0.000 Origin1 1
11 0.002 Origin1 1
18 0.000 Origin1 1
> nrow(test_set)
[1] 103
> head(data.frame(test_set[,c(1:19)]))
 origin class Alcohol Malic.acid Ash Alcanility.of.ash Magnesium
1 Origin1 1 14.20 1.76 2.45 15.2 112
2 Origin1 1 14.06 1.63 2.28 16.0 126
3 Origin1 1 13.73 1.50 2.70 22.5 101
4 Origin1 1 13.05 1.65 2.55 18.0 98
5 Origin1 1 13.88 1.89 2.59 15.0 101
6 Origin1 1 13.74 1.67 2.25 16.4 118
 Total.phenols Flavanoids Nonflavanoid.phenols Proanthocyanins Color.
intensity

1 3.27 3.39 0.34 1.97 6.75
2 3.00 3.17 0.24 2.10 5.65
3 3.00 3.25 0.29 2.38 5.70
4 2.45 2.43 0.29 1.44 4.25
5 3.25 3.56 0.17 1.70 5.43
6 2.60 2.90 0.21 1.62 5.85
 Hue OD280.OD315.of.diluted.wines Proline Origin1 Origin2 Origin3 Source
1 1.05 2.85 1450 0.994 0.004 0.002 Origin1
2 1.09 3.71 780 1.000 0.000 0.000 Origin1
3 1.19 2.71 1285 0.998 0.002 0.000 Origin1
4 1.12 2.51 1105 1.000 0.000 0.000 Origin1
5 0.88 3.56 1095 0.996 0.002 0.002 Origin1
6 0.92 3.20 1060 1.000 0.000 0.000 Origin1
> nrow(data.frame(test_set[,c(1:19)]))
[1] 103

Chapter 5 ■ Use Case: MaChine Learning in OBiee 12C

130

> test_set$p_to_buyPred <- predict(logitM, newdata = data.frame(test_
set[,c(1$
> class(test_set$p_to_buyPred)
[1] "numeric"
> head(test_set)
 origin class Alcohol Malic.acid Ash Alcanility.of.ash Magnesium
2 Origin1 1 14.20 1.76 2.45 15.2 112
5 Origin1 1 14.06 1.63 2.28 16.0 126
8 Origin1 1 13.73 1.50 2.70 22.5 101
10 Origin1 1 13.05 1.65 2.55 18.0 98
11 Origin1 1 13.88 1.89 2.59 15.0 101
18 Origin1 1 13.74 1.67 2.25 16.4 118
 Total.phenols Flavanoids Nonflavanoid.phenols Proanthocyanins
2 3.27 3.39 0.34 1.97
5 3.00 3.17 0.24 2.10
8 3.00 3.25 0.29 2.38
10 2.45 2.43 0.29 1.44
11 3.25 3.56 0.17 1.70
18 2.60 2.90 0.21 1.62
 Color.intensity Hue OD280.OD315.of.diluted.wines Proline Origin1 Origin2
2 6.75 1.05 2.85 1450 0.994 0.004
5 5.65 1.09 3.71 780 1.000 0.000
8 5.70 1.19 2.71 1285 0.998 0.002
10 4.25 1.12 2.51 1105 1.000 0.000
11 5.43 0.88 3.56 1095 0.996 0.002
18 5.85 0.92 3.20 1060 1.000 0.000
 Origin3 Source propensity_to_buy p_to_buyPred
2 0.002 Origin1 1 1
5 0.000 Origin1 1 1
8 0.000 Origin1 1 1
10 0.000 Origin1 1 1
11 0.002 Origin1 1 1
18 0.000 Origin1 1 1
> test_set$p_to_buyPred <- ifelse(test_set$p_to_buyPred > 0.5,1,0)
> misClasificError <- mean(test_set$p_to_buyPred != test_set$propensity_to_buy)
> print(paste('Accuracy',1-misClasificError))
[1] "Accuracy 1"
> ####
> library(ROCR)
Loading required package: gplots

Attaching package: 'gplots'

The following object is masked from 'package:stats':

 lowess

Chapter 5 ■ Use Case: MaChine Learning in OBiee 12C

131

Warning messages:
1: package 'ROCR' was built under R version 3.2.5
2: package 'gplots' was built under R version 3.2.5
> # p1 <- predict(logitM, newdata= data.frame(test_set[,c(1:19)]),
type="respo$
> class(test_set$p_to_buyPred)
[1] "numeric"
> pr1 <- prediction(test_set$p_to_buyPred, test_set$propensity_to_buy)
> class(pr1)
[1] "prediction"
attr(,"package")
[1] "ROCR"
> prf1 <- performance(pr1, measure = "tpr", x.measure = "fpr")
> class(prf1)
[1] "performance"
attr(,"package")
[1] "ROCR"
> pdf("plot_prf1.pdf")
> plot(prf1, colorize = TRUE) # , text.adj = c(-0.2,1.7)
> dev.off()
null device
 1
> auc1 <- performance(pr1, measure = "auc")
> auc1 <- auc1@y.values[[1]]
> auc1
[1] 1
> ####
> library(ROCR)
> p <- predict(logitM, newdata= data.frame(test_set[,c(1:19)]),
type="response$
> class(p)
[1] "numeric"
> pr <- prediction(p, test_set$propensity_to_buy)
> class(pr)
[1] "prediction"
attr(,"package")
[1] "ROCR"
> prf <- performance(pr, measure = "tpr", x.measure = "fpr")
> class(prf)
[1] "performance"
attr(,"package")
[1] "ROCR"
> # plot(prf, colorize = TRUE) # , text.adj = c(-0.2,1.7)
> auc <- performance(pr, measure = "auc")
> auc <- auc@y.values[[1]]
> auc
[1] 1
> test_set2 <- data.frame(test_set[,c(1:19)])

Chapter 5 ■ Use Case: MaChine Learning in OBiee 12C

132

> head(test_set2)
 origin class Alcohol Malic.acid Ash Alcanility.of.ash Magnesium
1 Origin1 1 14.20 1.76 2.45 15.2 112
2 Origin1 1 14.06 1.63 2.28 16.0 126
3 Origin1 1 13.73 1.50 2.70 22.5 101
4 Origin1 1 13.05 1.65 2.55 18.0 98
5 Origin1 1 13.88 1.89 2.59 15.0 101
6 Origin1 1 13.74 1.67 2.25 16.4 118
 Total.phenols Flavanoids Nonflavanoid.phenols Proanthocyanins
Color.intensity

1 3.27 3.39 0.34 1.97 6.75
2 3.00 3.17 0.24 2.10 5.65
3 3.00 3.25 0.29 2.38 5.70
4 2.45 2.43 0.29 1.44 4.25
5 3.25 3.56 0.17 1.70 5.43
6 2.60 2.90 0.21 1.62 5.85
 Hue OD280.OD315.of.diluted.wines Proline Origin1 Origin2 Origin3 Source
1 1.05 2.85 1450 0.994 0.004 0.002 Origin1
2 1.09 3.71 780 1.000 0.000 0.000 Origin1
3 1.19 2.71 1285 0.998 0.002 0.000 Origin1
4 1.12 2.51 1105 1.000 0.000 0.000 Origin1
5 0.88 3.56 1095 0.996 0.002 0.002 Origin1
6 0.92 3.20 1060 1.000 0.000 0.000 Origin1
> test_set3 <- cbind(test_set2, predict(logitM, newdata=test_set2, type = "lin$
> test_set3 <- within(test_set3, {
+ PredictedProb <- plogis(fit)
+ lower <- plogis(fit - (1.96 * se.fit))
+ upper <- plogis(fit + (1.96 * se.fit))
+ })
> head(test_set3)
 origin class Alcohol Malic.acid Ash Alcanility.of.ash Magnesium
1 Origin1 1 14.20 1.76 2.45 15.2 112
2 Origin1 1 14.06 1.63 2.28 16.0 126
3 Origin1 1 13.73 1.50 2.70 22.5 101
4 Origin1 1 13.05 1.65 2.55 18.0 98
5 Origin1 1 13.88 1.89 2.59 15.0 101
6 Origin1 1 13.74 1.67 2.25 16.4 118
 Total.phenols Flavanoids Nonflavanoid.phenols Proanthocyanins Color.intensity
1 3.27 3.39 0.34 1.97 6.75
2 3.00 3.17 0.24 2.10 5.65
3 3.00 3.25 0.29 2.38 5.70
4 2.45 2.43 0.29 1.44 4.25
5 3.25 3.56 0.17 1.70 5.43
6 2.60 2.90 0.21 1.62 5.85
 Hue OD280.OD315.of.diluted.wines Proline Origin1 Origin2 Origin3 Source

Chapter 5 ■ Use Case: MaChine Learning in OBiee 12C

133

1 1.05 2.85 1450 0.994 0.004 0.002 Origin1
2 1.09 3.71 780 1.000 0.000 0.000 Origin1
3 1.19 2.71 1285 0.998 0.002 0.000 Origin1
4 1.12 2.51 1105 1.000 0.000 0.000 Origin1
5 0.88 3.56 1095 0.996 0.002 0.002 Origin1
6 0.92 3.20 1060 1.000 0.000 0.000 Origin1
 fit se.fit residual.scale upper lower PredictedProb
1 28.56607 97787.51 1 1 0 1
2 28.56607 97787.51 1 1 0 1
3 28.56607 97787.51 1 1 0 1
4 28.56607 97787.51 1 1 0 1
5 28.56607 97787.51 1 1 0 1
6 28.56607 97787.51 1 1 0 1
> library(ggplot2)
Warning message:
package 'ggplot2' was built under R version 3.2.5
> g <- ggplot(test_set3, aes(x = Source, y = PredictedProb, group=PredictedPro$
+ geom_line(aes(colour = PredictedProb), size = 1) + geom_point() +
+ geom_ribbon(aes(ymin = lower, ymax = upper, fill = PredictedProb), alpha = 0$
> res <- ggplot_build(g)
> bottom <- res[[2]]$panel_ranges[[1]]$y.range[1]
> top <- res[[2]]$panel_ranges[[1]]$y.range[2]
> ggplot(test_set3, aes(x = Source, y = PredictedProb, group=PredictedProb)) +
+ geom_ribbon(aes(ymin = lower, ymax = upper, fill = PredictedProb),
alpha=0.2$
+ geom_ribbon(aes(ymin=bottom, ymax=lower), fill="red", alpha=0.25) +
+ geom_ribbon(aes(ymin=upper, ymax=top), fill="green", alpha=0.25) +
+ geom_point() + geom_line()

Summary
This chapter briefly discussed the primary use case of predicting wine origin as well as its
extension to predict analytics by way of predicting the propensity to buy a particular wine
based on its origin. It explained multiple options for plotting the output in both cases; we
created pairs plots as well as compound plots involving lines, points, and ribbons. You
also saw how a regression line can be fit into the resulting graph.

135© Rosendo Abellera and Lakshman Bulusu 2018
R. Abellera and L. Bulusu, Oracle Business Intelligence with Machine Learning,
https://doi.org/10.1007/978-1-4842-3255-2_6

CHAPTER 6

Implementing Machine
Learning in OBIEE 12c

Chapter 3 highlighted the use of a machine-learning model, namely, the randomForest
algorithm, taking a business use case of predicting wine origin and integrating its results
with OBIEE 12c. It explained how this is implemented using R and Oracle R Enterprise
(ORE) and then its graphical output integrated with OBIEE dashboards for BI purposes.
Chapter 5 discussed additional business use cases for leveraging machine learning in
OBIEE that helps build a decision support solution. One of them extended the Wine
Origin Prediction use case to predict propensity to buy based on the origin of the wine.
Such real-world decision support solutions go a long way in providing better business
outcomes and business value and raise the bar in competitive intelligence for enterprises.

This chapter focuses on implementing the preceding business case by using R-
and ORE-based algorithms in Oracle 12c for building and scoring the model and then
incorporating the output in OBIEE 12c visually or otherwise. Finally, it describes the steps
for building interactive dashboards based on the machine-learning output by way of
dynamic user-based input.

Business Use Case Problem
Description and Solution
The Wine Origin Prediction use case classifies the origin of wines into Origin1, Origin2,
or Origin3 based on the class of each wine and other attributes. Depending on the origin,
the problem at hand is to predict the propensity to buy a particular wine. The latter
was presented as one of four example use cases that are real-world business problems
as outcomes associated with wine origin. This was highlighted in Chapter 5, as well
as the methods to solve each of them using machine learning and/or OBIEE-based
functionality.

https://doi.org/10.1007/978-1-4842-3255-2_6
http://dx.doi.org/10.1007/978-1-4842-3255-2_3
http://dx.doi.org/10.1007/978-1-4842-3255-2_5
http://dx.doi.org/10.1007/978-1-4842-3255-2_5

Chapter 6 ■ ImplementIng maChIne learnIng In OBIee 12C

136

Technically Speaking
Analyzing the preceding business use case from a data science perspective, the problem
of predicting the propensity to buy has a binary outcome of 1 or 0. An outcome of 1
denotes the customer will buy the wine from that source, and 0 denotes the customer
will not buy that wine. Though this sounds like a classification problem, it is in fact more
meaningful to treat this as prediction of probability that a customer will buy a particular
wine or not based on from where it is sourced.

Solutions to solving this problem exist using both R and ORE, and this chapter
discusses them in depth. Before we delve into the programming and graphics part of
it, we will discuss the foundation behind the machine-learning algorithm used to solve
this kind of prediction—that is, one that involves a binary outcome of probabilities. This
requires some explanation of mathematical concepts behind the model to be built as well
as scoring the model for predicted output.

 ■ Note From the plethora of machine-learning algorithms available, the closest one
that can be applied to predicting probabilities (binary outcomes) is the generalized linear
model, also called logistic regression. It outputs a probability value that is bounded between
0 and 1 and hence is accurate in terms of prediction. Using a linear model such as linear
regression for this problem can result in the predicted probabilities being below 0 or above
1. In contrast, the logistic regression outcomes are confined to the bounded set [0,1], which
is not the actual values but the probabilistic values, and hence can be directly interpreted
as such.

First Part of Solution
The wine Source variable in our use case is called the categorical variable, and the
propensity to buy is called the response variable. Our machine-learning model using
logistic regression predicts a probability between 0 and 1, which can be converted into a
binary response by using a certain threshold. For example, if p >= 0.5, then the probability
is 1; otherwise, it is 0, where p is the predicted probability value.

Listing 6-1 shows the code for predicting a wine source (similar to Listing in
Chapter 3). It uses the ore.randomForest machine-learning algorithm to predict wine
origin and assigns the column name Source to the predicted origin column.

Listing 6-1. Using ore.randomForest to Predict Wine Origin

library(ORE)
ore.connect("testr","orcl","localhost","testr")
library(OREmodels)
winedata <- read.csv("winedata.csv", header=TRUE, row.names = NULL, sep=',')
head(winedata)
winedata$origin <- ifelse(winedata$class == 1, 'Origin1',

http://dx.doi.org/10.1007/978-1-4842-3255-2_3

Chapter 6 ■ ImplementIng maChIne learnIng In OBIee 12C

137

ifelse(winedata$class == 2, 'Origin2',
ifelse(winedata$class == 3, 'Origin3', '')))
class(winedata$origin)
winedata$origin <- as.factor(winedata$origin)
class(winedata$origin)
head(winedata$origin)
table(winedata$origin)
set.seed(123)
sample_size <- 0.70 * nrow(winedata)
sampledata <-sample(seq_len(nrow(winedata)), sample_size)
training_data <- winedata[sampledata,]
class(training_data)
TRAINING_DATA <- ore.push(training_data)
class(TRAINING_DATA)
test_data <- winedata[-sampledata,]
TEST_DATA <- ore.push(test_data)
class(TEST_DATA)
head(TRAINING_DATA)
head(TEST_DATA)
wine.rf <- ore.randomForest(origin ~ . - class, TRAINING_DATA)
class(wine.rf)
tree15 = grabTree(wine.rf, k = 15, labelVar = TRUE)
origin_pred <- predict(wine.rf, TEST_DATA, type = "all", supplemental.
cols="origin")
res <- table(origin_pred$origin, origin_pred$prediction)
library(AppliedPredictiveModeling)
transparentTheme(trans = .4)
pairs(table(origin_pred$origin, origin_pred$prediction), main="Wine Origin
Predictors")
test_data$id <- seq_len(nrow(test_data))
row.names(test_data) <- test_data$id
head(test_data[,c(16,1,15)])
origin_pred2 <- ore.pull(origin_pred)
origin_pred2$id <- seq_len(nrow(origin_pred2))
head(origin_pred2)
row.names(origin_pred2) <- origin_pred2$id
head(test_data)
head(origin_pred2)
head(origin_pred2[,c(6,5,4)])
df1 <- test_data[,c(16,15,1:14)]
df2 <- origin_pred2[, c(1:6)]
class(df1)
df1_new <- df1[order(df1$origin),]
head(df1_new)
df2_new <- df2[order(df2$origin),]
head(df2_new)
nrow(df1_new)
nrow(df2_new)

Chapter 6 ■ ImplementIng maChIne learnIng In OBIee 12C

138

data_set <- data.frame(df1_new, df2_new)
nrow(data_set)
head(data_set)
colnames(data_set)[20] <- "Source"
head(data_set)
data_set$propensity_to_buy <- ifelse((data_set$Source == 'Origin1'), 1,
ifelse((data_set$Source == 'Origin2'), 0,
ifelse((data_set$Source == 'Origin3'), 1, '')))
class(data_set)
nrow(data_set)
head(data_set)
write.csv(data_set, "Wineptobuy.csv", row.names=FALSE)

The output of Listing 6-1 is shown here, with comments inserted to explain the code:

> library(ORE) # load the ORE library, which is the primary library for
Oracle R Enterprise execution
Loading required package: OREbase
Loading required package: OREcommon

Attaching package: 'OREbase'

The following objects are masked from 'package:base':

 cbind, data.frame, eval, interaction, order, paste, pmax, pmin,
 rbind, table

Loading required package: OREembed
Loading required package: OREstats
Loading required package: MASS
Loading required package: OREgraphics
Loading required package: OREeda
Loading required package: OREmodels
Loading required package: OREdm
Loading required package: lattice
Loading required package: OREpredict
Loading required package: ORExml
> ore.connect("testr","orcl","localhost","testr") # connect to DB by calling
ore.connect
> library(OREmodels) # load the OREmodels library for calling ORE machine
learning model(s)
> winedata <- read.csv("winedata.csv", header=TRUE, row.names = NULL,
sep=',') # Read input data from .csv file into a data.frame R object
> head(winedata) # Display 6 rows in the input data frame. This displays the
various columns which includes predictor variable(s), attributes
 class Alcohol Malic.acid Ash Alcanility.of.ash Magnesium Total.phenols

Chapter 6 ■ ImplementIng maChIne learnIng In OBIee 12C

139

1 1 14.23 1.71 2.43 15.6 127 2.80
2 1 13.20 1.78 2.14 11.2 100 2.65
3 1 13.16 2.36 2.67 18.6 101 2.80
4 1 14.37 1.95 2.50 16.8 113 3.85
5 1 13.24 2.59 2.87 21.0 118 2.80
6 1 14.20 1.76 2.45 15.2 112 3.27
 Flavanoids Nonflavanoid.phenols Proanthocyanins Color.intensity Hue
1 3.06 0.28 2.29 5.64 1.04
2 2.76 0.26 1.28 4.38 1.05
3 3.24 0.30 2.81 5.68 1.03
4 3.49 0.24 2.18 7.80 0.86
5 2.69 0.39 1.82 4.32 1.04
6 3.39 0.34 1.97 6.75 1.05
 OD280.OD315.of.diluted.wines Proline
1 3.92 1065
2 3.40 1050
3 3.17 1185
4 3.45 1480
5 2.93 735
6 2.85 1450
> winedata$origin <- ifelse(winedata$class == 1, 'Origin1', # Create a
origin column in the winedata data frame based on 'class' predictor
+ ifelse(winedata$class == 2, 'Origin2',
+ ifelse(winedata$class == 3, 'Origin3', '')))
> class(winedata$origin) # Display the R class of the newly created 'origin'
column
[1] "character"
> winedata$origin <- as.factor(winedata$origin) # Convert 'origin' into a
categorical variable by applying the factor() R function
> class(winedata$origin) # Display the R class of the converted 'origin'
column
[1] "factor"
> head(winedata$origin) # Displays number of distinct classes for 'origin'
as levels of the 'origin' predictor
[1] Origin1 Origin1 Origin1 Origin1 Origin1 Origin1
Levels: Origin1 Origin2 Origin3
> table(winedata$origin) # Display count of each distinct 'origin' value

Origin1 Origin2 Origin3
 489 549 336
> set.seed(123) # set the seed for sampling the input winedata data set
> sample_size <- 0.70 * nrow(winedata) # set the sample size for sampling
the winedata data set. Here we use a sample size of 70%
> sampledata <-sample(seq_len(nrow(winedata)), sample_size) # Randomly
sample the winedata based on the sample size set above
> training_data <- winedata[sampledata,] # Split the winedata data set into
training_data containing 70% of the samples
> class(training_data) # Display the R class for training_data

Chapter 6 ■ ImplementIng maChIne learnIng In OBIee 12C

140

[1] "data.frame"
> TRAINING_DATA <- ore.push(training_data) # Store the training_data in the
DB in an ore.frame object callexd TRAINING_DATA
> class(TRAINING_DATA)
[1] "ore.frame"
attr(,"package")
[1] "OREbase"
> test_data <- winedata[-sampledata,] # Create a test_data set in R that
contains the reamining data in the same set
> TEST_DATA <- ore.push(test_data) # Store the test_data in the DB in an
ore.frame object called TEST_DATA
> class(TEST_DATA)
[1] "ore.frame"
attr(,"package")
[1] "OREbase"
> head(TRAINING_DATA) # Display 6 rows of the TRAINING_DATA data set. Notice
that it contains an additional 'origin' column
 class Alcohol Malic.acid Ash Alcanility.of.ash Magnesium Total.phenols
396 3 12.60 2.46 2.20 18.5 94 1.62
1083 3 13.45 3.70 2.60 23.0 111 1.70
562 2 11.82 1.72 1.88 19.5 86 2.50
1211 2 11.82 1.47 1.99 20.8 86 1.98
1289 3 12.70 3.55 2.36 21.5 106 1.70
63 2 13.67 1.25 1.92 18.0 94 2.10
 Flavanoids Nonflavanoid.phenols Proanthocyanins Color.intensity Hue
396 0.66 0.63 0.94 7.10 0.73
1083 0.92 0.43 1.46 10.68 0.85
562 1.64 0.37 1.42 2.06 0.94
1211 1.60 0.30 1.53 1.95 0.95
1289 1.20 0.17 0.84 5.00 0.78
63 1.79 0.32 0.73 3.80 1.23
 OD280.OD315.of.diluted.wines Proline origin
396 1.58 695 Origin3
1083 1.56 695 Origin3
562 2.44 415 Origin2
1211 3.33 495 Origin2
1289 1.29 600 Origin3
63 2.46 630 Origin2 # This too contains an
additional column 'origin'
> head(TEST_DATA) # Display 6 rows of the TEST_DATA data set
 class Alcohol Malic.acid Ash Alcanility.of.ash Magnesium Total.phenols
4 1 14.37 1.95 2.50 16.8 113 3.85
6 1 14.20 1.76 2.45 15.2 112 3.27
8 1 14.06 2.15 2.61 17.6 121 2.60
20 1 13.64 3.10 2.56 15.2 116 2.70
21 1 14.06 1.63 2.28 16.0 126 3.00
24 1 12.85 1.60 2.52 17.8 95 2.48
 Flavanoids Nonflavanoid.phenols Proanthocyanins Color.intensity Hue

Chapter 6 ■ ImplementIng maChIne learnIng In OBIee 12C

141

4 3.49 0.24 2.18 7.80 0.86
6 3.39 0.34 1.97 6.75 1.05
8 2.51 0.31 1.25 5.05 1.06
20 3.03 0.17 1.66 5.10 0.96
21 3.17 0.24 2.10 5.65 1.09
24 2.37 0.26 1.46 3.93 1.09
 OD280.OD315.of.diluted.wines Proline origin
4 3.45 1480 Origin1
6 2.85 1450 Origin1
8 3.58 1295 Origin1
20 3.36 845 Origin1
21 3.71 780 Origin1
24 3.63 1015 Origin1

The next part of the output shows building the random forest model by calling
the ore.randomForest() function using class as predictor variable and origin as the
response variable and working on the TRAINING_DATA data set. It grows a specific number
of decision trees and averages the output from them and uses this information. to arrive
at the classification.

> wine.rf <- ore.randomForest(origin ~ . - class, TRAINING_DATA)
> class(wine.rf) # Display the class of the object returned by the build
model. It is of class "ore.model"
[1] "ore.randomForest" "ore.model"
grabTree() extracts a particular decision tree and k represents which tree
to use. labelVar set to TRUE means the 'split var' and
'prediction' columns in the output frame are assigned meaningful labels.
> tree15 = grabTree(wine.rf, k = 15, labelVar = TRUE)
Score the built model on TEST_DATA by calling predict(). type="all"
specifies that both predicted values and matrix of vote counts are
returned in the output. supplemental.cols="origin" specifies that the
'origin' column from the TEST_DATA data set must be included in the
predicted results
> origin_pred <- predict(wine.rf, TEST_DATA, type = "all", supplemental.
cols="$
Outputs a table of counts for 'origin' levels, namely, Origin1, Origin2,
Origin3 and the actual response prediction, and stores it in
a 'res' object

> res <- table(origin_pred$origin, origin_pred$prediction
> library(AppliedPredictiveModeling)
Warning message:
package 'AppliedPredictiveModeling' was built under R version 3.2.5
> transparentTheme(trans = .4)
Plots a pairs plot of the above table with heading 'Wine Origin
Predictors'

Chapter 6 ■ ImplementIng maChIne learnIng In OBIee 12C

142

> pairs(table(origin_pred$origin, origin_pred$prediction), main="Wine Origin
P$
Create a new column id and assign it to each row of the test_data data
set. Seq_len() creates a sequence upto count of rows in test_data
> test_data$id <- seq_len(nrow(test_data))
> row.names(test_data) <- test_data$id # Assigns the id column for each row
with the corresponding value of the sequence created for id
> head(test_data[,c(16,1,15)]) # Display the 16th, 1st, and 15th columns for
6 rows in test_data with ids 1 to 6
 id class origin
1 1 1 Origin1
2 2 1 Origin1
3 3 1 Origin1
4 4 1 Origin1
5 5 1 Origin1
6 6 1 Origin1
> origin_pred2 <- ore.pull(origin_pred) # Retrieve the origin_pred result
scored from DB to an R object
Warning message:
ORE object has no unique key - using random order
> origin_pred2$id <- seq_len(nrow(origin_pred2)) # Create a unique index for
the rows in origin_pred2 and assign it to a new column 'id'
> head(origin_pred2) # Display 6 rows of the origin_pred2 data for ids 1 to 6
 Origin1 Origin2 Origin3 prediction origin id
1 1.000 0.000 0.000 Origin1 Origin1 1
2 0.994 0.004 0.002 Origin1 Origin1 2
3 1.000 0.000 0.000 Origin1 Origin1 3
4 1.000 0.000 0.000 Origin1 Origin1 4
5 1.000 0.000 0.000 Origin1 Origin1 5
6 1.000 0.000 0.000 Origin1 Origin1 6
> row.names(origin_pred2) <- origin_pred2$id # Assigns the id column for
each row to corresponding value of the sequence created for id
> head(test_data) # Display 6 rows of test_data after adding 'origin' and
'id' columns.
 class Alcohol Malic.acid Ash Alcanility.of.ash Magnesium Total.phenols
1 1 14.37 1.95 2.50 16.8 113 3.85
2 1 14.20 1.76 2.45 15.2 112 3.27
3 1 14.06 2.15 2.61 17.6 121 2.60
4 1 13.64 3.10 2.56 15.2 116 2.70
5 1 14.06 1.63 2.28 16.0 126 3.00
6 1 12.85 1.60 2.52 17.8 95 2.48
 Flavanoids Nonflavanoid.phenols Proanthocyanins Color.intensity Hue
1 3.49 0.24 2.18 7.80 0.86
2 3.39 0.34 1.97 6.75 1.05
3 2.51 0.31 1.25 5.05 1.06
4 3.03 0.17 1.66 5.10 0.96
5 3.17 0.24 2.10 5.65 1.09
6 2.37 0.26 1.46 3.93 1.09

Chapter 6 ■ ImplementIng maChIne learnIng In OBIee 12C

143

 OD280.OD315.of.diluted.wines Proline origin id
1 3.45 1480 Origin1 1
2 2.85 1450 Origin1 2
3 3.58 1295 Origin1 3
4 3.36 845 Origin1 4
5 3.71 780 Origin1 5
6 3.63 1015 Origin1 6
> head(origin_pred2) # Display 6 rows of origin_pred2 along with id column
 Origin1 Origin2 Origin3 prediction origin id
1 1.000 0.000 0.000 Origin1 Origin1 1
2 0.994 0.004 0.002 Origin1 Origin1 2
3 1.000 0.000 0.000 Origin1 Origin1 3
4 1.000 0.000 0.000 Origin1 Origin1 4
5 1.000 0.000 0.000 Origin1 Origin1 5
6 1.000 0.000 0.000 Origin1 Origin1 6
> head(origin_pred2[,c(6,5,4)]) # Display 6 rows of origin_pred2 containg
only the 6th, 5th, and 4th columns
 id origin prediction
1 1 Origin1 Origin1
2 2 Origin1 Origin1
3 3 Origin1 Origin1
4 4 Origin1 Origin1
5 5 Origin1 Origin1
6 6 Origin1 Origin1
> df1 <- test_data[,c(16,15,1:14)] # Assign a data frame called df1 for the
subset of test_data with 16th, 15th, and 1 to 14th, columns
> df2 <- origin_pred2[, c(1:6)] # Assign a data frame called df2 for the
subset of origin_pred2 with columns 1st to 6th.
> class(df1)
[1] "data.frame"
> df1_new <- df1[order(df1$origin),] # Sort the df1 data frame on the origin
column and assign the sorted data to the df1_new data frame
> head(df1_new) # Display 6 rows of sorted data in df1_new
 id origin class Alcohol Malic.acid Ash Alcanility.of.ash Magnesium
1 1 Origin1 1 14.37 1.95 2.50 16.8 113
2 2 Origin1 1 14.20 1.76 2.45 15.2 112
3 3 Origin1 1 14.06 2.15 2.61 17.6 121
4 4 Origin1 1 13.64 3.10 2.56 15.2 116
5 5 Origin1 1 14.06 1.63 2.28 16.0 126
6 6 Origin1 1 12.85 1.60 2.52 17.8 95
 Total.phenols Flavanoids Nonflavanoid.phenols Proanthocyanins Color.
intensity

1 3.85 3.49 0.24 2.18 7.80
2 3.27 3.39 0.34 1.97 6.75
3 2.60 2.51 0.31 1.25 5.05
4 2.70 3.03 0.17 1.66 5.10
5 3.00 3.17 0.24 2.10 5.65
6 2.48 2.37 0.26 1.46 3.93

Chapter 6 ■ ImplementIng maChIne learnIng In OBIee 12C

144

 Hue OD280.OD315.of.diluted.wines Proline
1 0.86 3.45 1480
2 1.05 2.85 1450
3 1.06 3.58 1295
4 0.96 3.36 845
5 1.09 3.71 780
6 1.09 3.63 1015
> df2_new <- df2[order(df2$origin),] # Sort the df2 data frame on the origin
column and assign the sorted data to the df2_new data frame
> head(df2_new) # Display 6 rows of the df2_new sorted data frame
 Origin1 Origin2 Origin3 prediction origin id
1 1.000 0.000 0.000 Origin1 Origin1 1
2 0.994 0.004 0.002 Origin1 Origin1 2
3 1.000 0.000 0.000 Origin1 Origin1 3
4 1.000 0.000 0.000 Origin1 Origin1 4
5 1.000 0.000 0.000 Origin1 Origin1 5
6 1.000 0.000 0.000 Origin1 Origin1 6
> nrow(df1_new) # Display count of rows in df1_new
[1] 413
> nrow(df2_new) # Display count of rows in df2_new
[1] 413
> data_set <- data.frame(df1_new, df2_new) # Create a combined data frame of
df1_new and df2_new and store it in data_set data frame
> nrow(data_set) # Display count of rows in data_set
[1] 413
> head(data_set) # Display 6 rows of data_set
 id origin class Alcohol Malic.acid Ash Alcanility.of.ash Magnesium
1 1 Origin1 1 14.37 1.95 2.50 16.8 113
2 2 Origin1 1 14.20 1.76 2.45 15.2 112
3 3 Origin1 1 14.06 2.15 2.61 17.6 121
4 4 Origin1 1 13.64 3.10 2.56 15.2 116
5 5 Origin1 1 14.06 1.63 2.28 16.0 126
6 6 Origin1 1 12.85 1.60 2.52 17.8 95
 Total.phenols Flavanoids Nonflavanoid.phenols Proanthocyanins
Color.intensity

1 3.85 3.49 0.24 2.18 7.80
2 3.27 3.39 0.34 1.97 6.75
3 2.60 2.51 0.31 1.25 5.05
4 2.70 3.03 0.17 1.66 5.10
5 3.00 3.17 0.24 2.10 5.65
6 2.48 2.37 0.26 1.46 3.93
 Hue OD280.OD315.of.diluted.wines Proline Origin1 Origin2 Origin3

prediction

Chapter 6 ■ ImplementIng maChIne learnIng In OBIee 12C

145

1 0.86 3.45 1480 1.000 0.000 0.000 Origin1
2 1.05 2.85 1450 0.994 0.004 0.002 Origin1
3 1.06 3.58 1295 1.000 0.000 0.000 Origin1
4 0.96 3.36 845 1.000 0.000 0.000 Origin1
5 1.09 3.71 780 1.000 0.000 0.000 Origin1
6 1.09 3.63 1015 1.000 0.000 0.000 Origin1
 origin.1 id.1
1 Origin1 1
2 Origin1 2
3 Origin1 3
4 Origin1 4
5 Origin1 5
6 Origin1 6
> colnames(data_set)[20] <- "Source" # Assign the label "Source" to the
20th column in the data_set data frame
> head(data_set)
 id origin class Alcohol Malic.acid Ash Alcanility.of.ash Magnesium
1 1 Origin1 1 14.37 1.95 2.50 16.8 113
2 2 Origin1 1 14.20 1.76 2.45 15.2 112
3 3 Origin1 1 14.06 2.15 2.61 17.6 121
4 4 Origin1 1 13.64 3.10 2.56 15.2 116
5 5 Origin1 1 14.06 1.63 2.28 16.0 126
6 6 Origin1 1 12.85 1.60 2.52 17.8 95
 Total.phenols Flavanoids Nonflavanoid.phenols Proanthocyanins
Color.intensity

1 3.85 3.49 0.24 2.18 7.80
2 3.27 3.39 0.34 1.97 6.75
3 2.60 2.51 0.31 1.25 5.05
4 2.70 3.03 0.17 1.66 5.10
5 3.00 3.17 0.24 2.10 5.65
6 2.48 2.37 0.26 1.46 3.93
 Hue OD280.OD315.of.diluted.wines Proline Origin1 Origin2 Origin3 Source
1 0.86 3.45 1480 1.000 0.000 0.000 Origin1
2 1.05 2.85 1450 0.994 0.004 0.002 Origin1
3 1.06 3.58 1295 1.000 0.000 0.000 Origin1
4 0.96 3.36 845 1.000 0.000 0.000 Origin1
5 1.09 3.71 780 1.000 0.000 0.000 Origin1
6 1.09 3.63 1015 1.000 0.000 0.000 Origin1
 origin.1 id.1
1 Origin1 1
2 Origin1 2
3 Origin1 3
4 Origin1 4
5 Origin1 5
6 Origin1 6
> data_set$propensity_to_buy <- ifelse((data_set$Source == 'Origin1'), 1,
create a new column propensity_to_buy based on 'Source' column
+ ifelse((data_set$Source == 'Origin2'), 0,

Chapter 6 ■ ImplementIng maChIne learnIng In OBIee 12C

146

+ ifelse((data_set$Source == 'Origin3'), 1, '')))
> class(data_set) # Display class of final data_set
[1] "data.frame"
> nrow(data_set) # Display count of rows in final data_set
[1] 413
> head(data_set) # Display 6 rows in final data_set
 id origin class Alcohol Malic.acid Ash Alcanility.of.ash Magnesium
1 1 Origin1 1 14.37 1.95 2.50 16.8 113
2 2 Origin1 1 14.20 1.76 2.45 15.2 112
3 3 Origin1 1 14.06 2.15 2.61 17.6 121
4 4 Origin1 1 13.64 3.10 2.56 15.2 116
5 5 Origin1 1 14.06 1.63 2.28 16.0 126
6 6 Origin1 1 12.85 1.60 2.52 17.8 95
 Total.phenols Flavanoids Nonflavanoid.phenols Proanthocyanins Color.
intensity

1 3.85 3.49 0.24 2.18 7.80
2 3.27 3.39 0.34 1.97 6.75
3 2.60 2.51 0.31 1.25 5.05
4 2.70 3.03 0.17 1.66 5.10
5 3.00 3.17 0.24 2.10 5.65
6 2.48 2.37 0.26 1.46 3.93
 Hue OD280.OD315.of.diluted.wines Proline Origin1 Origin2 Origin3 Source
1 0.86 3.45 1480 1.000 0.000 0.000 Origin1
2 1.05 2.85 1450 0.994 0.004 0.002 Origin1
3 1.06 3.58 1295 1.000 0.000 0.000 Origin1
4 0.96 3.36 845 1.000 0.000 0.000 Origin1
5 1.09 3.71 780 1.000 0.000 0.000 Origin1
6 1.09 3.63 1015 1.000 0.000 0.000 Origin1
 origin.1 id.1 propensity_to_buy
1 Origin1 1 1
2 Origin1 2 1
3 Origin1 3 1
4 Origin1 4 1
5 Origin1 5 1
6 Origin1 6 1
> write.csv(data_set, "Wineptobuy.csv", row.names=FALSE) # Write the data
contained in data_set to a new .csv file in working directory
>

Chapter 6 ■ ImplementIng maChIne learnIng In OBIee 12C

147

Second Part of Solution
Now that we have the wine origin predicted and a new data set created with the column
Source, we need to use this to predict the propensity to buy. As stated at the beginning of
this section, we will use the logistic regression machine-learning algorithm that fits the
data by applying a generalized linear model. The predictor variable used is Source, and
response variable is propensity_to_buy. Listing 6-2 shows the code.

Listing 6-2. Using Logistic Regression to Determine the Propensity to Buy Based on the
Wine Source

library(ORE)
ore.connect("testr","orcl","localhost","testr")
library(OREmodels)
winedata <- read.csv("Wineptobuy.csv", header=TRUE, row.names = NULL,
sep=',')
head(winedata)
summary(winedata)
sapply(winedata, sd)
xtabs(~propensity_to_buy +Source, data=winedata)
xtabs(~propensity_to_buy +origin, data=winedata)
label <- winedata[,23]
head(label)
library(caTools)
s <- sample.split(label, SplitRatio=3/4)
train_set <- winedata[s, c(2:20, 23)]
test_set <- winedata[!s, c(2:20, 23)]
head(train_set)
nrow(train_set)
head(test_set)
nrow(test_set)
sp.tab <- table(train_set$Source, train_set$propensity_to_buy)
sp.tab
train_set$Source <- factor(train_set$Source)
logitM <- glm(propensity_to_buy ~ Source, data = train_set,
family="binomial", control = glm.control(maxit=100))
summary(logitM)
anova(logitM)
install.packages("aod")
library(aod)
wald.test(b = coef(logitM), Sigma = vcov(logitM), Terms = 1:2)
wald.test(b = coef(logitM), Sigma = vcov(logitM), Terms = 1:3)
wald.test(b = coef(logitM), Sigma = vcov(logitM), Terms = 2:3)
exp(coef(logitM))
head(test_set)
nrow(test_set)
head(data.frame(test_set[,c(1:19)]))

Chapter 6 ■ ImplementIng maChIne learnIng In OBIee 12C

148

nrow(data.frame(test_set[,c(1:19)]))
test_set$p_to_buyPred <- predict(logitM, newdata = data.frame(test_
set[,c(1:19)]), type="response")
class(test_set$p_to_buyPred)
head(test_set)
test_set$p_to_buyPred <- ifelse(test_set$p_to_buyPred > 0.5,1,0)
misClasificError <- mean(test_set$p_to_buyPred != test_set$propensity_to_
buy)
print(paste('Accuracy',1-misClasificError))
####
library(ROCR)
class(test_set$p_to_buyPred)
pr1 <- prediction(test_set$p_to_buyPred, test_set$propensity_to_buy)
class(pr1)
prf1 <- performance(pr1, measure = "tpr", x.measure = "fpr")
class(prf1)
pdf("plot_prf1.pdf")
plot(prf1, colorize = TRUE) # , text.adj = c(-0.2,1.7)
dev.off()
auc1 <- performance(pr1, measure = "auc")
auc1 <- auc1@y.values[[1]]
auc1
####
library(ROCR)
p <- predict(logitM, newdata= data.frame(test_set[,c(1:19)]),
type="response")
class(p)
pr <- prediction(p, test_set$propensity_to_buy)
class(pr)
prf <- performance(pr, measure = "tpr", x.measure = "fpr")
class(prf)
plot(prf, colorize = TRUE) # , text.adj = c(-0.2,1.7)
auc <- performance(pr, measure = "auc")
auc <- auc@y.values[[1]]
auc
test_set2 <- data.frame(test_set[,c(1:19)])
test_set3 <- cbind(test_set2, predict(logitM, newdata=test_set2, type =
"link", se = TRUE))
test_set3 <- within(test_set3, {
PredictedProb <- plogis(fit)
LL <- plogis(fit - (1.96 * se.fit))
UL <- plogis(fit + (1.96 * se.fit))
})
head(test_set3)

Chapter 6 ■ ImplementIng maChIne learnIng In OBIee 12C

149

The next part shows the ggplot2 function. A description of ggplot is given in
Chapter 5 in the section “Analysis of Graph Output: Predicting Propensity to Buy Based
on Wine Source.”

library(ggplot2)
pdf("test_set3_ribbon.pdf")
ggplot(test_set3, aes(x = Source, y = PredictedProb, group=PredictedProb)) +
geom_line(aes(colour = PredictedProb), size = 1) + geom_point() +
geom_ribbon(aes(ymin = LL, ymax = UL, fill = PredictedProb), alpha =
0.25) +
scale_fill_gradient(low="red", high="green") +
ggtitle("Predicting Propensity to buy based on Wine Source") +
ylab("Predicted Probability - p_to_buyPred")
dev.off()
fillc_train <- train_set$Source # c("Origin1", "Origin2", "Origin3")
train_set <- cbind(train_set, fillc_train)
library(ggplot2)
pdf("WineOriginTrainingDataGLMPlot_test_bar.pdf")
ggplot(data=train_set, aes(x=Source, y=propensity_to_buy, fill = Source)) +
geom_bar(stat="identity", width=0.25) +
scale_fill_manual("legend", values = c("Origin1" = "green", "Origin2" =
"orange", "Origin3" = "blue"))
dev.off()
fillc_test <- test_set$Source
test_set <- cbind(test_set, fillc_test)
library(ggplot2)
pdf("WineOriginTestDataGLMPlot_test_bar.pdf")
ggplot(data=test_set, aes(x=Source, y=p_to_buyPred, fill = Source)) +
geom_bar(stat="identity", width=0.25) +
scale_fill_manual("legend", values = c("Origin1" = "green", "Origin2" =
"orange", "Origin3" = "blue"))
dev.off()
library(ggplot2)
pdf("WineOriginTrainingDataGLMPlot_test_lineNpoint.pdf")
ggplot(data=train_set, aes(x=Source, y=propensity_to_buy, group=1)) +
geom_line(aes(colour = propensity_to_buy), size = 1) + geom_point() +
stat_smooth(method="glm", family="binomial", se=FALSE)
dev.off()
library(ggplot2)
pdf("WineOriginTestDataGLMPlot_test_lineNpoint.pdf")
ggplot(data=test_set, aes(x=Source, y=p_to_buyPred, group=1)) +
geom_line(aes(colour = p_to_buyPred), size = 1) + geom_point() +
stat_smooth(method="glm", family="binomial", se=FALSE)
dev.off()

http://dx.doi.org/10.1007/978-1-4842-3255-2_5

Chapter 6 ■ ImplementIng maChIne learnIng In OBIee 12C

150

Here's the output from executing the code in Listing 6-2:

> library(ORE) # load the ORE library which is the primary library for
Oracle R Enterprise execution
Loading required package: OREbase
Loading required package: OREcommon

Attaching package: 'OREbase'

The following objects are masked from 'package:base':

 cbind, data.frame, eval, interaction, order, paste, pmax, pmin,
 rbind, table

Loading required package: OREembed
Loading required package: OREstats
Loading required package: MASS
Loading required package: OREgraphics
Loading required package: OREeda
Loading required package: OREmodels
Loading required package: OREdm
Loading required package: lattice
Loading required package: OREpredict
Loading required package: ORExml
> ore.connect("testr","orcl","localhost","testr") # Using ORE requires
connecting to the Oracle DB
> library(OREmodels) # load the OREmodels library for calling ORE machine
learning model(s)
The file Wineptobuy.csv is assumed to be in the working directory from
where the ORE CLI is called
> winedata <- read.csv("Wineptobuy.csv", header=TRUE, row.names =$ # Loads
input data in .csv file into an R data frame called winedata
> head(winedata) # Displays 6 rows of data in the data frame winedata
 id origin class Alcohol Malic.acid Ash Alcanility.of.ash Magnesium
1 1 Origin1 1 14.37 1.95 2.50 16.8 113
2 2 Origin1 1 14.20 1.76 2.45 15.2 112
3 3 Origin1 1 14.06 2.15 2.61 17.6 121
4 4 Origin1 1 13.64 3.10 2.56 15.2 116
5 5 Origin1 1 14.06 1.63 2.28 16.0 126
6 6 Origin1 1 12.85 1.60 2.52 17.8 95
 Total.phenols Flavanoids Nonflavanoid.phenols Proanthocyanins
Color.intensity

1 3.85 3.49 0.24 2.18 7.80
2 3.27 3.39 0.34 1.97 6.75
3 2.60 2.51 0.31 1.25 5.05
4 2.70 3.03 0.17 1.66 5.10
5 3.00 3.17 0.24 2.10 5.65
6 2.48 2.37 0.26 1.46 3.93

Chapter 6 ■ ImplementIng maChIne learnIng In OBIee 12C

151

 Hue OD280.OD315.of.diluted.wines Proline Origin1 Origin2 Origin3 Source
1 0.86 3.45 1480 1.000 0.000 0.000 Origin1
2 1.05 2.85 1450 0.994 0.004 0.002 Origin1
3 1.06 3.58 1295 1.000 0.000 0.000 Origin1
4 0.96 3.36 845 1.000 0.000 0.000 Origin1
5 1.09 3.71 780 1.000 0.000 0.000 Origin1
6 1.09 3.63 1015 1.000 0.000 0.000 Origin1
 origin.1 id.1 propensity_to_buy
1 Origin1 1 1
2 Origin1 2 1
3 Origin1 3 1
4 Origin1 4 1
5 Origin1 5 1
6 Origin1 6 1
> summary(winedata) # Gives a statistical summary of the data in winedata
data frame as shown below for each variable/attribute
 id origin class Alcohol Malic.acid
 Min. : 1 Origin1:140 Min. :1.00 Min. :11.03 Min. :0.740
 1st Qu.:104 Origin2:162 1st Qu.:1.00 1st Qu.:12.37 1st Qu.:1.530
 Median :207 Origin3:111 Median :2.00 Median :13.05 Median :1.830
 Mean :207 Mean :1.93 Mean :13.00 Mean :2.343
 3rd Qu.:310 3rd Qu.:3.00 3rd Qu.:13.67 3rd Qu.:3.100
 Max. :413 Max. :3.00 Max. :14.75 Max. :5.800
 Ash Alcanility.of.ash Magnesium Total.phenols
 Min. :1.360 Min. :10.60 Min. : 70.00 Min. :0.980
 1st Qu.:2.210 1st Qu.:17.00 1st Qu.: 89.00 1st Qu.:1.740
 Median :2.360 Median :19.00 Median : 97.00 Median :2.230
 Mean :2.366 Mean :19.43 Mean : 99.58 Mean :2.276
 3rd Qu.:2.580 3rd Qu.:21.50 3rd Qu.:107.00 3rd Qu.:2.800
 Max. :3.230 Max. :30.00 Max. :162.00 Max. :3.880
 Flavanoids Nonflavanoid.phenols Proanthocyanins Color.intensity
 Min. :0.340 Min. :0.1300 Min. :0.410 Min. : 1.280
 1st Qu.:1.200 1st Qu.:0.2700 1st Qu.:1.140 1st Qu.: 3.300
 Median :2.140 Median :0.3400 Median :1.460 Median : 4.600
 Mean :2.011 Mean :0.3658 Mean :1.538 Mean : 4.934
 3rd Qu.:2.780 3rd Qu.:0.4500 3rd Qu.:1.870 3rd Qu.: 5.850
 Max. :5.080 Max. :0.6600 Max. :3.580 Max. :13.000
 Hue OD280.OD315.of.diluted.wines Proline
 Min. :0.5400 Min. :1.270 Min. : 278.0
 1st Qu.:0.7600 1st Qu.:1.830 1st Qu.: 510.0
 Median :0.9600 Median :2.780 Median : 678.0
 Mean :0.9618 Mean :2.587 Mean : 749.5
 3rd Qu.:1.1300 3rd Qu.:3.140 3rd Qu.: 985.0
 Max. :1.7100 Max. :4.000 Max. :1680.0
 Origin1 Origin2 Origin3 Source origin.1
 Min. :0.0000 Min. :0.0000 Min. :0.0000 Origin1:140 Origin1:140

Chapter 6 ■ ImplementIng maChIne learnIng In OBIee 12C

152

 1st Qu.:0.0000 1st Qu.:0.0000 1st
Qu.:0.0000 Origin2:162 Origin2:162
 Median :0.0000 Median :0.0020 Median :0.0000 Origin3:111 Origin3:111
 Mean :0.3395 Mean :0.3922 Mean :0.2683
 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:0.9760
 Max. :1.0000 Max. :1.0000 Max. :1.0000
 id.1 propensity_to_buy
 Min. : 1 Min. :0.0000
 1st Qu.:104 1st Qu.:0.0000
 Median :207 Median :1.0000
 Mean :207 Mean :0.6077
 3rd Qu.:310 3rd Qu.:1.0000
 Max. :413 Max. :1.0000
> sapply(winedata, sd) # Applies the standard deviation sd function to each
variable in the data set winedata
 id origin
 119.3670809 0.7773550
 class Alcohol
 0.7773550 0.7667311
 Malic.acid Ash
 1.1720914 0.2931987
 Alcanility.of.ash Magnesium
 3.4096871 14.2594176
 Total.phenols Flavanoids
 0.6270436 0.9700433
 Nonflavanoid.phenols Proanthocyanins
 0.1293551 0.5520653
 Color.intensity Hue
 2.1460253 0.2289449
OD280.OD315.of.diluted.wines Proline
 0.7162199 311.4138632
 Origin1 Origin2
 0.4731436 0.4869368
 Origin3 Source
 0.4421105 0.7773550
 origin.1 id.1
 0.7773550 119.3670809
 propensity_to_buy
 0.4888445

The following two lines display a two-way contingency table of the response variable
propensity_to_buy and the predictors Source and origin, respectively, to ensure that
there are no 0 cells in the winedata data set. In other words, the xtabs function displays
the frequency, or count, of the levels of categorical variables as a matrix or table—a cross-
tabulation, revealing the relationship between propensity_to_buy and Source, and
between propensity_to_buy and origin.

Chapter 6 ■ ImplementIng maChIne learnIng In OBIee 12C

153

> xtabs(~propensity_to_buy +Source, data=winedata)
 Source
propensity_to_buy Origin1 Origin2 Origin3
 0 0 162 0
 1 140 0 111
> xtabs(~propensity_to_buy +origin, data=winedata)
 origin
propensity_to_buy Origin1 Origin2 Origin3
 0 0 162 0
 1 140 0 111
> label <- winedata[,23]
> head(label)
[1] 1 1 1 1 1 1
> library(caTools)
Warning message:
package 'caTools' was built under R version 3.2.5
> s <- sample.split(label, SplitRatio=3/4) # Derives a sample split s based
on split ratio of 0.75
> train_set <- winedata[s, c(2:20, 23)] # Samples the input data into train_
set (columns 2-20, and 23) based on s
> test_set <- winedata[!s, c(2:20, 23)] # Samples the data not in train_set
into test_set
> head(train_set) # Displays 6 rows in the train_set
 origin class Alcohol Malic.acid Ash Alcanility.of.ash Magnesium
1 Origin1 1 14.37 1.95 2.50 16.8 113
3 Origin1 1 14.06 2.15 2.61 17.6 121
4 Origin1 1 13.64 3.10 2.56 15.2 116
5 Origin1 1 14.06 1.63 2.28 16.0 126
6 Origin1 1 12.85 1.60 2.52 17.8 95
7 Origin1 1 13.87 1.90 2.80 19.4 107
 Total.phenols Flavanoids Nonflavanoid.phenols Proanthocyanins Color.
intensity
1 3.85 3.49 0.24 2.18 7.80
3 2.60 2.51 0.31 1.25 5.05
4 2.70 3.03 0.17 1.66 5.10
5 3.00 3.17 0.24 2.10 5.65
6 2.48 2.37 0.26 1.46 3.93
7 2.95 2.97 0.37 1.76 4.50
 Hue OD280.OD315.of.diluted.wines Proline Origin1 Origin2 Origin3 Source
1 0.86 3.45 1480 1.000 0.000 0 Origin1
3 1.06 3.58 1295 1.000 0.000 0 Origin1
4 0.96 3.36 845 1.000 0.000 0 Origin1
5 1.09 3.71 780 1.000 0.000 0 Origin1
6 1.09 3.63 1015 1.000 0.000 0 Origin1
7 1.25 3.40 915 0.996 0.004 0 Origin1
 propensity_to_buy

Chapter 6 ■ ImplementIng maChIne learnIng In OBIee 12C

154

1 1
3 1
4 1
5 1
6 1
7 1
> nrow(train_set) # Displays count of rows in train set
[1] 310
> head(test_set) # Displays 6 rows in the test_set
 origin class Alcohol Malic.acid Ash Alcanility.of.ash Magnesium
2 Origin1 1 14.20 1.76 2.45 15.2 112
9 Origin1 1 13.51 1.80 2.65 19.0 110
10 Origin1 1 13.05 1.65 2.55 18.0 98
11 Origin1 1 13.88 1.89 2.59 15.0 101
13 Origin1 1 14.38 3.59 2.28 16.0 102
17 Origin1 1 13.83 1.65 2.60 17.2 94
 Total.phenols Flavanoids Nonflavanoid.phenols Proanthocyanins
2 3.27 3.39 0.34 1.97
9 2.35 2.53 0.29 1.54
10 2.45 2.43 0.29 1.44
11 3.25 3.56 0.17 1.70
13 3.25 3.17 0.27 2.19
17 2.45 2.99 0.22 2.29
 Color.intensity Hue OD280.OD315.of.diluted.wines Proline Origin1 Origin2
2 6.75 1.05 2.85 1450 0.994 0.004
9 4.20 1.10 2.87 1095 1.000 0.000
10 4.25 1.12 2.51 1105 1.000 0.000
11 5.43 0.88 3.56 1095 0.996 0.002
13 4.90 1.04 3.44 1065 1.000 0.000
17 5.60 1.24 3.37 1265 1.000 0.000
 Origin3 Source propensity_to_buy
2 0.002 Origin1 1
9 0.000 Origin1 1
10 0.000 Origin1 1
11 0.002 Origin1 1
13 0.000 Origin1 1
17 0.000 Origin1 1
> nrow(test_set) # Displays count of rows in test set
[1] 103
Loads a matrix of Source and propensity_to_buy columns in train_set into
sp.tab
> sp.tab <- table(train_set$Source, train_set$propensity_to_buy)
> sp.tab # Display the above matrix

Chapter 6 ■ ImplementIng maChIne learnIng In OBIee 12C

155

 0 1
 Origin1 0 104
 Origin2 122 0
 Origin3 0 84
> train_set$Source <- factor(train_set$Source) # This treats source as a
categorical variable

We build a logistic regression model in R by using the glm machine-learning
algorithm with the response variable as propensity_to_buy and the predictor variable
as Source, using the train_set data set. The family function for the glm model is
"binomial" (indicating that the model is a binomial model), the link is logit, and the
maximum iterations to be performed is 100:

> logitM <- glm(propensity_to_buy ~ Source, data = train_set,
family="binomial$

We display a summary of the logitM model just built in terms of the function call for
glm: the deviance residuals (the minimum, first quantile, median, third quantile, and the
maximum), which are a measure of the model fit or, in other words, the distribution of the
deviance residuals for observations used in the model; the table of coefficients, with the
coefficients, their standard errors, the z-statistic or the Wald Z-statistic, and the associated
p-values displayed across, and the intercept and the predictor variables displayed down
the matrix; the fit indices, which include the null deviance and residual deviance and the
Akaike information criterion (AIC). A model with a minimum AIC value is considered to
fit without penalty for the model coefficients.

> summary(logitM)

Call:
glm(formula = propensity_to_buy ~ Source, family = "binomial",
 data = train_set, control = glm.control(maxit = 100))

Deviance Residuals:
 Min 1Q Median 3Q Max
-8.861e-07 -8.861e-07 8.861e-07 8.861e-07 8.861e-07

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.857e+01 9.493e+04 0 1
SourceOrigin2 -5.713e+01 1.292e+05 0 1
SourceOrigin3 -1.927e-05 1.420e+05 0 1

(Dispersion parameter for binomial family taken to be 1)

 Null deviance: 4.1559e+02 on 309 degrees of freedom
Residual deviance: 2.4340e-10 on 307 degrees of freedom
AIC: 6

Chapter 6 ■ ImplementIng maChIne learnIng In OBIee 12C

156

Number of Fisher Scoring iterations: 27

> anova(logitM)
Analysis of Deviance Table

Model: binomial, link: logit

Response: propensity_to_buy

Terms added sequentially (first to last)

 Df Deviance Resid. Df Resid. Dev
NULL 309 415.59
Source 2 415.59 307 0.00
> # install.packages("aod")

The wald.test function tests for the chi-squared test statistic based on the
coefficients of the logitM model. In our case, we can test the significance of the Source
predictor variable by using this function from the aod library of R. The order of the model
coefficients in the table of coefficients is the same as the order of terms in the model. This
is relevant because the wald.test function refers to its coefficients by their order in the
model. In the following three wald.test calls, the argument b passes the coefficients,
Sigma gives the variance and covariance matrix of the error terms, and Terms indicates
which terms in the model are to be tested. In our use case, these are the terms 2 and 3.
Also, running the function wald.test for terms 1 and 2, and for 1, 2, and 3 in addition
to terms 2 and 3, gives a chi-squared test statistic with degrees of freedom 2, 3, and 2,
respectively, and the p-value of 1.0 in all three cases, thereby showing that Source is
statistically significant.

> library(aod)
Warning message:
package 'aod' was built under R version 3.2.5
> wald.test(b = coef(logitM), Sigma = vcov(logitM), Terms = 1:2)
Wald test:

Chi-squared test:
X2 = 2e-07, df = 2, P(> X2) = 1.0
> wald.test(b = coef(logitM), Sigma = vcov(logitM), Terms = 1:3)
Wald test:

Chi-squared test:
X2 = 2.7e-07, df = 3, P(> X2) = 1.0
> wald.test(b = coef(logitM), Sigma = vcov(logitM), Terms = 2:3)
Wald test:

Chapter 6 ■ ImplementIng maChIne learnIng In OBIee 12C

157

Chi-squared test:
X2 = 2.6e-07, df = 2, P(> X2) = 1.0
> exp(coef(logitM)) # The exp function exponentiates the coefficients and
analyzes them as odds-ratios.
 (Intercept) SourceOrigin2 SourceOrigin3
 2.547392e+12 1.541056e-25 9.999807e-01
> head(test_set) # Displays 6 rows of the test_set data set
 origin class Alcohol Malic.acid Ash Alcanility.of.ash Magnesium
2 Origin1 1 14.20 1.76 2.45 15.2 112
9 Origin1 1 13.51 1.80 2.65 19.0 110
10 Origin1 1 13.05 1.65 2.55 18.0 98
11 Origin1 1 13.88 1.89 2.59 15.0 101
13 Origin1 1 14.38 3.59 2.28 16.0 102
17 Origin1 1 13.83 1.65 2.60 17.2 94
 Total.phenols Flavanoids Nonflavanoid.phenols Proanthocyanins
2 3.27 3.39 0.34 1.97
9 2.35 2.53 0.29 1.54
10 2.45 2.43 0.29 1.44
11 3.25 3.56 0.17 1.70
13 3.25 3.17 0.27 2.19
17 2.45 2.99 0.22 2.29
 Color.intensity Hue OD280.OD315.of.diluted.wines Proline Origin1 Origin2
2 6.75 1.05 2.85 1450 0.994 0.004
9 4.20 1.10 2.87 1095 1.000 0.000
10 4.25 1.12 2.51 1105 1.000 0.000
11 5.43 0.88 3.56 1095 0.996 0.002
13 4.90 1.04 3.44 1065 1.000 0.000
17 5.60 1.24 3.37 1265 1.000 0.000
 Origin3 Source propensity_to_buy
2 0.002 Origin1 1
9 0.000 Origin1 1
10 0.000 Origin1 1
11 0.002 Origin1 1
13 0.000 Origin1 1
17 0.000 Origin1 1
> nrow(test_set) # Displays number of rows in test_set
[1] 103
> head(data.frame(test_set[,c(1:19)])) # Displays 6 rows of columns 1 to 19
in test_set
 origin class Alcohol Malic.acid Ash Alcanility.of.ash Magnesium
1 Origin1 1 14.20 1.76 2.45 15.2 112
2 Origin1 1 13.51 1.80 2.65 19.0 110
3 Origin1 1 13.05 1.65 2.55 18.0 98
4 Origin1 1 13.88 1.89 2.59 15.0 101
5 Origin1 1 14.38 3.59 2.28 16.0 102
6 Origin1 1 13.83 1.65 2.60 17.2 94
 Total.phenols Flavanoids Nonflavanoid.phenols Proanthocyanins Color.
intensity

Chapter 6 ■ ImplementIng maChIne learnIng In OBIee 12C

158

1 3.27 3.39 0.34 1.97 6.75
2 2.35 2.53 0.29 1.54 4.20
3 2.45 2.43 0.29 1.44 4.25
4 3.25 3.56 0.17 1.70 5.43
5 3.25 3.17 0.27 2.19 4.90
6 2.45 2.99 0.22 2.29 5.60
 Hue OD280.OD315.of.diluted.wines Proline Origin1 Origin2 Origin3 Source
1 1.05 2.85 1450 0.994 0.004 0.002 Origin1
2 1.10 2.87 1095 1.000 0.000 0.000 Origin1
3 1.12 2.51 1105 1.000 0.000 0.000 Origin1
4 0.88 3.56 1095 0.996 0.002 0.002 Origin1
5 1.04 3.44 1065 1.000 0.000 0.000 Origin1
6 1.24 3.37 1265 1.000 0.000 0.000 Origin1
> nrow(data.frame(test_set[,c(1:19)])) # Displays count of rows taking
columns 1 to 19 in test_set
[1] 103

We use the predict() function in R to predict the propensity to buy on a new data
set that consists of all rows and of columns 1 to 19 in test_set, indicating that the values
of the predictor variables are from this test_set and that the values of test_set$p_to_
buyPred must be predictions using predict(). This is called scoring the model. The
type of response is response and means the type of prediction is a predicted probability
as opposed to an actual value. Note that the original column propensity_to_buy is
eliminated in the new data set (test_set) while scoring the model. It outputs a set of
probabilities (as opposed to actual values) that fall in the closed interval [0,1]. These
probabilities are stored in a newly created column p_to_buyPred in test_set.

> test_set$p_to_buyPred <- predict(logitM, newdata = data.frame(test_set[,c(1$
> class(test_set$p_to_buyPred) # Shows the R class of test_set$p_to_buyPred
[1] "numeric"
> head(test_set) # Displays 6 rows of test_set which includes the newly
created column p_to_buyPred
 origin class Alcohol Malic.acid Ash Alcanility.of.ash Magnesium
2 Origin1 1 14.20 1.76 2.45 15.2 112
9 Origin1 1 13.51 1.80 2.65 19.0 110
10 Origin1 1 13.05 1.65 2.55 18.0 98
11 Origin1 1 13.88 1.89 2.59 15.0 101
13 Origin1 1 14.38 3.59 2.28 16.0 102
17 Origin1 1 13.83 1.65 2.60 17.2 94
 Total.phenols Flavanoids Nonflavanoid.phenols Proanthocyanins
2 3.27 3.39 0.34 1.97
9 2.35 2.53 0.29 1.54
10 2.45 2.43 0.29 1.44
11 3.25 3.56 0.17 1.70
13 3.25 3.17 0.27 2.19
17 2.45 2.99 0.22 2.29
 Color.intensity Hue OD280.OD315.of.diluted.wines Proline Origin1 Origin2

Chapter 6 ■ ImplementIng maChIne learnIng In OBIee 12C

159

2 6.75 1.05 2.85 1450 0.994 0.004
9 4.20 1.10 2.87 1095 1.000 0.000
10 4.25 1.12 2.51 1105 1.000 0.000
11 5.43 0.88 3.56 1095 0.996 0.002
13 4.90 1.04 3.44 1065 1.000 0.000
17 5.60 1.24 3.37 1265 1.000 0.000
 Origin3 Source propensity_to_buy p_to_buyPred
2 0.002 Origin1 1 1
9 0.000 Origin1 1 1
10 0.000 Origin1 1 1
11 0.002 Origin1 1 1
13 0.000 Origin1 1 1
17 0.000 Origin1 1 1
> test_set$p_to_buyPred <- ifelse(test_set$p_to_buyPred > 0.5,1,0)
Quantifies probabilities into values 1 and 0
> misClasificError <- mean(test_set$p_to_buyPred != test_set$propensity_to_
buy) # Displays misclassification error
> print(paste('Accuracy',1-misClasificError)) # Displays the accuracy of the
model built and scored.
[1] "Accuracy 1"
> ####

An accuracy approaching 1 is considered optimal. The library ROCR is used to load
the R functions for plotting the receiver operating characteristic (ROC). ROC summarizes
the performance of the model by evaluating the cross-correlation between true +ve rate
(or sensitivity) and false -ve rate (or 1-specificity). Keeping p > 0.5, ROC summarizes the
prediction for all possible values of p > 0.5. The area under the curve (AUC) is an optimal
performance metric for ROC; the higher the value of AUC, the better the prediction of
the glm model. This package enables visualizing the performance of scoring classifiers by
using the prediction, performance, and plot functions. Its definition can be found
at http://rocr.bioinf.mpi-sb.mpg.de/.

> library(ROCR)
Loading required package: gplots

Attaching package: 'gplots'

The following object is masked from 'package:stats':

 lowess

Warning messages:
1: package 'ROCR' was built under R version 3.2.5
2: package 'gplots' was built under R version 3.2.5
> class(test_set$p_to_buyPred) # Displays the R class of the predicted value
p_to_buyPred of test_set
[1] "numeric"

http://rocr.bioinf.mpi-sb.mpg.de/

Chapter 6 ■ ImplementIng maChIne learnIng In OBIee 12C

160

We use the R prediction() function of GLM to transform the input data containing
predictions into a standard format. Here it transforms two columns of data given by
p_to_buyPred (predictions) and propensity_to_buy into a standard format and returns
an object of class prediction.

> pr1 <- prediction(test_set$p_to_buyPred, test_set$propensity_to_buy)
> class(pr1) # This gives "prediction" as the class
[1] "prediction"
attr(,"package")
[1] "ROCR"

The performance function is used to do a predictor evaluation. Its signature is
performance(prediction.obj, measure, x.measure). It works on a prediction object
(pr1 in this case), measure is the performance measure used for evaluation ("tpr", or the
true positive rate in this case), and x.measure is a second performance measure ("fpr",
or false positive rate). The measure is plotted on the y-axis, and the x.measure is plotted
on the x-axis, to result in a 2D curve. Other measures can also be passed, such as "auc"
(area under ROC), "acc" (accuracy), and "err" (error rate).

> prf1 <- performance(pr1, measure = "tpr", x.measure = "fpr")
> class(prf1) # This gives "performance" as the class
[1] "performance"
attr(,"package")
[1] "ROCR"
> pdf("plot_prf1.pdf") # This saves the plotted graph as a PDF file in the
working directory

The following plots an object of class performance, in our case, prf1. colorize
specifies whether the curve is to be colorized according to the cut-off.

> plot(prf1, colorize = TRUE) # , text.adj = c(-0.2,1.7)
> dev.off()
null device
 1

This makes a different call to the performance() function, with the measure to be
evaluated as "auc", or area under the ROC curve. This returns the performance of the
preceding prediction with "auc" as the evaluation measure, the area under ROC curve.

> auc1 <- performance(pr1, measure = "auc")
> auc1 <- auc1@y.values[[1]]
> auc1 # "auc" closer to 1 or equaling 1 indicates a goodness of fit and a
better prediction performance of the model
[1] 1
> ####
> library(ROCR)
> p <- predict(logitM, newdata= data.frame(test_set[,c(1:19)]),
type="response$

Chapter 6 ■ ImplementIng maChIne learnIng In OBIee 12C

161

> class(p)
[1] "numeric"
> pr <- prediction(p, test_set$propensity_to_buy)
> class(pr)
[1] "prediction"
attr(,"package")
[1] "ROCR"
> prf <- performance(pr, measure = "tpr", x.measure = "fpr")
> class(prf)
[1] "performance"
attr(,"package")
[1] "ROCR"
> plot(prf, colorize = TRUE) # , text.adj = c(-0.2,1.7)
> auc <- performance(pr, measure = "auc")
> auc <- auc@y.values[[1]]
> auc
[1] 1
> test_set2 <- data.frame(test_set[,c(1:19)])
> # test_set2$p_to_buyPred <- predict(logitM, newdata=test_set2, type =
"link"$

The within R function uses the test_set3 data set as its argument and generates
a data.frame that is used for the ribbon layer data. The very first line inside within
generates the predicted probabilities along with the standard errors that aid in plotting
a confidence interval. The argument se is specified to indicate whether to display a
confidence interval to use (0.95 by default) and also enables us to plot a confidence
interval. The type="link" gives the estimates on the link scale. The remaining lines
back-transform both the predicted values and confidence intervals into probabilities. The
cbind does a column-wise bind of the data frame test_set2 with the predicted outcome
column scored by the predict function that is passed as the second argument to cbind.
For the logistic regression model, the confidence intervals are based on the profiled
log-likelihood function. The lower and upper indicate the lower and upper confidence
limits, respectively.

> test_set3 <- cbind(test_set2, predict(logitM, newdata=test_set2, type =
"lin$
> test_set3 <- within(test_set3, {
+ PredictedProb <- plogis(fit)
+ lower <- plogis(fit - (1.96 * se.fit))
+ upper <- plogis(fit + (1.96 * se.fit))
+ })
> head(test_set3)
 origin class Alcohol Malic.acid Ash Alcanility.of.ash Magnesium
1 Origin1 1 14.20 1.76 2.45 15.2 112
2 Origin1 1 13.51 1.80 2.65 19.0 110
3 Origin1 1 13.05 1.65 2.55 18.0 98
4 Origin1 1 13.88 1.89 2.59 15.0 101
5 Origin1 1 14.38 3.59 2.28 16.0 102

Chapter 6 ■ ImplementIng maChIne learnIng In OBIee 12C

162

6 Origin1 1 13.83 1.65 2.60 17.2 94
 Total.phenols Flavanoids Nonflavanoid.phenols Proanthocyanins Color.
intensity

1 3.27 3.39 0.34 1.97 6.75
2 2.35 2.53 0.29 1.54 4.20
3 2.45 2.43 0.29 1.44 4.25
4 3.25 3.56 0.17 1.70 5.43
5 3.25 3.17 0.27 2.19 4.90
6 2.45 2.99 0.22 2.29 5.60
 Hue OD280.OD315.of.diluted.wines Proline Origin1 Origin2 Origin3 Source
1 1.05 2.85 1450 0.994 0.004 0.002 Origin1
2 1.10 2.87 1095 1.000 0.000 0.000 Origin1
3 1.12 2.51 1105 1.000 0.000 0.000 Origin1
4 0.88 3.56 1095 0.996 0.002 0.002 Origin1
5 1.04 3.44 1065 1.000 0.000 0.000 Origin1
6 1.24 3.37 1265 1.000 0.000 0.000 Origin1
 fit se.fit residual.scale upper lower PredictedProb
1 28.56609 94925.73 1 1 0 1
2 28.56609 94925.73 1 1 0 1
3 28.56609 94925.73 1 1 0 1
4 28.56609 94925.73 1 1 0 1
5 28.56609 94925.73 1 1 0 1
6 28.56609 94925.73 1 1 0 1
> library(ggplot2)
> pdf("test_set3_ribbon.pdf") # The following line sets up the graph canvas
with response variable on y-axis
> ggplot(test_set3, aes(x = Source, y = PredictedProb, group=PredictedProb))
+
+ geom_line(aes(colour = PredictedProb), size = 1) + geom_point() + # Plots
the actual data points
+ geom_ribbon(aes(ymin = LL, ymax = UL, fill = PredictedProb), alpha =
0.25) + # alpha fades out connection lines
+ scale_fill_gradient(low="red", high="green") + # Defines a continuous
color scale for the ribbon layer
+ ggtitle("Predicting Propensity to buy based on Wine Source") + # Title of
the final plot
+ ylab("Predicted Probability - p_to_buyPred") # Specify label for y-axis.
This also serves as the graph legend
> dev.off()
windows
 2
> fillc_train <- train_set$Source # c("Origin1", "Origin2", "Origin3")
> train_set <- cbind(train_set, fillc_train)
> library(ggplot2)

This plots a bar graph with heights of the bars from train_set data, where the y
values are in propensity_to_buy (when stat="identity" is specified). scale_fill_
manual() adds a manual scale as opposed to hue in the legend of the bar graph color.

Chapter 6 ■ ImplementIng maChIne learnIng In OBIee 12C

163

Here, Origin1 is filled in green, Origin2 is filled in orange, and Origin3 is filled in blue.
The width of each bar is 0.25 units. The final graph is saved in a PDF file.

> pdf("WineOriginTrainingDataGLMPlot_test_bar.pdf")
> ggplot(data=train_set, aes(x=Source, y=propensity_to_buy, fill = Source))
+
+ geom_bar(stat="identity", width=0.25) +
+ scale_fill_manual("legend", values = c("Origin1" = "green", "Origin2" =
"or$
> dev.off()
null device
 1
> fillc_test <- test_set$Source
> test_set <- cbind(test_set, fillc_test)
> library(ggplot2)
> pdf("WineOriginTestDataGLMPlot_test_bar.pdf") # This plots a bar graph
with values of p_to_buyPred along the y-axis using data in test_set.
> ggplot(data=test_set, aes(x=Source, y=p_to_buyPred, fill = Source)) +
+ geom_bar(stat="identity", width=0.25) +
+ scale_fill_manual("legend", values = c("Origin1" = "green", "Origin2" =
"or$
> dev.off()
null device
 1
> library(ggplot2)
> pdf("WineOriginTrainingDataGLMPlot_test_lineNpoint.pdf")

This plots a connected line graph using train_set with data points for the same
group to which Source and propensity_to_buy belong. Here, this group is #, specified
as 1. This tells ggplot to plot all data points in group 1. We get a single V-spaged line
that connects Origin1, Origin2, #, and Origin3. The measuring scale, or legend, for
geom_line() appears alongside the line as part of the graph. The color argument in
geom_line() is specified as propensity_to_buy, which means it is autocontrolled by
the levels of this variable. The stat_smooth() function generates and fits a smoothed
line (a regression line or the line of best fit) on the geom_line and geom_point geometry
as a layer based on the transformation of the original data as done by the glm model
with link="binomial". This is also called plotting regression slope. This is passed as an
argument method="glm", family="binomial". The argument se is specified to indicate
whether to display a confidence interval to use (0.95 by default). The method argument
is the smoothing method to use (specified in this code as glm, as we used a logistic
regression model), and formula is the formula to use in the smoothing function. The
smoothing function helps in discerning when overplotting occurs.

> ggplot(data=train_set, aes(x=Source, y=propensity_to_buy, group=1)) +
+ geom_line(aes(colour = propensity_to_buy), size = 1) + geom_point() +
+ stat_smooth(method="glm", family="binomial", se=FALSE)
Warning: Ignoring unknown parameters: family
> dev.off()

Chapter 6 ■ ImplementIng maChIne learnIng In OBIee 12C

164

null device
 1
> library(ggplot2)
> pdf("WineOriginTestDataGLMPlot_test_lineNpoint.pdf") # This is similar to
the plot above but works on test_set.
> ggplot(data=test_set, aes(x=Source, y=p_to_buyPred, group=1)) +
+ geom_line(aes(colour = p_to_buyPred), size = 1) + geom_point() +
+ stat_smooth(method="glm", family="binomial", se=FALSE)
Warning: Ignoring unknown parameters: family
> dev.off()
null device
 1
>

The AUC plot and the GLM plots (based on source vs. propensity to buy) are shown
in Figures 6-1 to 6-6.

Figure 6-1. AUC plot for the executed GLM model

Chapter 6 ■ ImplementIng maChIne learnIng In OBIee 12C

165

Figure 6-2. WineOriginTrainingDataGLMPlot_test_lineNpoint.pdf

Figure 6-3. WineOriginTestDataGLMPlot_test_lineNpoint.pdf

Chapter 6 ■ ImplementIng maChIne learnIng In OBIee 12C

166

Figure 6-4. test_set3_ribbon.pdf (ribbon plot of test_set for predicted probilities)

Figure 6-5. WineOriginTrainingDataGLMPlot_test_bar.pdf

Chapter 6 ■ ImplementIng maChIne learnIng In OBIee 12C

167

Figure 6-6. WineOriginTestDataGLMPlot_test_bar.pdf

Let’s look at the matrix (or table) of source vs. propensity to buy in both train_set
and test_set:

> table(train_set$Source, train_set$propensity_to_buy)

 0 1
 Origin1 0 99
 Origin2 122 0
 Origin3 0 89
> table(test_set$Source, test_set$p_to_buyPred)

 0 1
 Origin1 0 34
 Origin2 40 0
 Origin3 0 29
>

These table outputs indicate that there are some cells in both tables that have 0 as
values. This might result in significant codes not being displayed in the summary of the
glm model, as shown below.

Chapter 6 ■ ImplementIng maChIne learnIng In OBIee 12C

168

type='response' simply applies the logistic transform to predicted log-odds scores,
so the predictions are on the scale of probability.

The coefficients are the estimated values of the model with values on the scale of the
log odds.

Summary of Logit Model
The output of the preceding summary(logitM) command is as follows:

> summary(logitM)

Call:
glm(formula = propensity_to_buy ~ Source, family = "binomial",
 data = train_set, control = glm.control(maxit = 100))

Deviance Residuals:
 Min 1Q Median 3Q Max
-8.861e-07 -8.861e-07 8.861e-07 8.861e-07 8.861e-07

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.857e+01 9.493e+04 0 1
SourceOrigin2 -5.713e+01 1.292e+05 0 1
SourceOrigin3 -1.927e-05 1.420e+05 0 1

(Dispersion parameter for binomial family taken to be 1)

 Null deviance: 4.1559e+02 on 309 degrees of freedom
Residual deviance: 2.4340e-10 on 307 degrees of freedom
AIC: 6

Number of Fisher Scoring iterations: 27

This summary gives information about and the convergence of the model.
An analysis of our GLM model’s output can be done as follows:

• summary(logitM)

• Model information and model convergence
status

• Call

• Dispersion parameter

• Number of Fisher scoring iterations

Chapter 6 ■ ImplementIng maChIne learnIng In OBIee 12C

169

• Table of coefficients

• Coefficients

• Significant codes

• Testing individual parameters

• Wald chi-squared statistics

• Confidence intervals of individual parameters

• Overall goodness-of-fit

• Null deviance

• Residual deviance

• Akaike information criterion (AIC)

• anova(logitM)

• Analysis of deviance table

Out of these metrics, AIC, null deviance, and residual deviance, along with the
confusion matrix and ROC curve, give the performance of the glm model. These are
outlined here:

AIC, as noted previously, stands for Akaike information criterion and represents the
measure of fit that costs the model for the number of coefficients involved in the model.
A model with a lower AIC value is recommended. In our example use case, an AIC of 6, as
shown in the output of summary(logitM), indicates that the model is a good fit.

Null deviance represents the response predicted by a model with only an intercept.
The lower the value, the better the model.

Residual deviance represents predicted by a model with the use of independent
variables. The lower the value, the better the model.

A confusion matrix defines a table of actual vs. predicted values. This is useful for
determining the accuracy of the model and helps in avoiding overfitting. The actual and
predicted values are presented as Good and Bad, and the cell values are represented by
true positive, true negative, false positive, and false negative values. It looks like Table 6-1.

Table 6-1. Sample Confusion Matrix in Regard to Logistic Regression

Predicted

Good Bad

Actual Good True +ve (d) False -ve (c)

Bad False +ve (b) True -ve (a)

(Source: www.analyticsvidhya.com)

http://www.analyticsvidhya.com/

Chapter 6 ■ ImplementIng maChIne learnIng In OBIee 12C

170

The details about the ROC curve are presented in a later subsection.
The lines in bold give information about the data set being used as the training data

set (that is, train_set), the labels of response and predictor variables (propensity_to_
buy and Source, respectively), and the type of logistic regression algorithm used for fitting
(glm, or generalized linear model, of the binary(logit) family). It also gives the type of
scoring model for parameter estimation.

Here the model is using the Fisher scoring algorithm for maximum likelihood
estimation. The maxit parameter to the glm model gives the number of iterations to fit the
model, which enables us to determine the maximum likelihood estimates.

 ■ Note Fisher scoring is an ascending steps algorithm for getting results; it maximizes
the likelihood by getting successively closer and closer to the maximum (top) by taking
a subsequent step (also called an iteration). It is aware of the fact that it has reached the
top, and taking a subsequent step does not increase the likelihood. It is known to be an
efficient procedure—not many iterations are usually needed—and generally converges
to an answer. If the number of Fisher scoring iterations is large, it means the glm model
is not optimal in terms of convergence. this might happen if the sample data set is small
or the correlation between predictor variables is not collinear. this is a numerical analysis
algorithm that is an alternative to the newton-raphson method.

In the glm model, the binomial link uses the logit link. This indicates that we are
fitting a logit model, and the response variable is log odds, mathematically denoted as
follows:

logit(p) = l0g(p/(1-p))

logit(p) takes values in the closed interval [0,1] and outputs real values on the
y-axis. The inverse-logit function data points on x-axis and outputs values in the closed
interval [0,1] on the y-axis. When the data involved is discrete, overdispersion can occur
if there are discrepancies between the observed responses and their predicted values,
and these values are larger than what the binomial(link=logit) model would predict.

 ■ Note You can refer to the mathematics behind the glm algorithm, as detailed in
https://onlinecourses.science.psu.edu/stat504/node/225. Other web sites
also explain the concepts behind the logistic regression model, such as https://
datascienceplus.com/perform-logistic-regression-in-r/ and www.r-bloggers.
com/how-to-perform-a-logistic-regression-in-r/ etc.

https://onlinecourses.science.psu.edu/stat504/node/225
https://datascienceplus.com/perform-logistic-regression-in-r/
https://datascienceplus.com/perform-logistic-regression-in-r/
http://www.r-bloggers.com/how-to-perform-a-logistic-regression-in-r/
http://www.r-bloggers.com/how-to-perform-a-logistic-regression-in-r/

Chapter 6 ■ ImplementIng maChIne learnIng In OBIee 12C

171

A dissection of the summary output of the glm model is given here:

=>Model information and model convergence status
->Call:

The two lines under call provide information about the data set being used as
the training data (that is, train_set), the labels of response and predictor variables
(propensity_to_buy and Source, respectively), and the type of logistic regression
algorithm used for fitting (glm, or generalized linear model of the binary(logit) family).
The maxit parameter to the glm model gives the number of iterations to fit the model,
which enables us to determine the maximum likelihood estimates.

->Deviance residuals

The deviance residuals output is a description of the distribution of calculated
deviance associated with each data point used in the glm model. This is output in a
nonparametric form. The deviance residuals are the standard residuals that the glm
model outputs.

->Dispersion parameter for the binomial family is assumed to be 1.

The dispersion parameter is printed by default with GLMs, but adds more value with
count models. This simply means that the dispersion parameter for the binomial family is
assumed to be 1.

-> Number of Fisher scoring iterations

It gives the type of scoring model for parameter estimation, how the model was
estimated. A linear model is usually estimated with equations that are solvable with
output in closed form, but GLMs are estimated using an iterative approach. The Newton-
Raphson method is used by default. Here, the model uses the Fisher scoring algorithm for
maximum likelihood estimation.

 ■ Note In numerical analysis, Newton's method (also known as the Newton–Raphson
method, named after Isaac newton and Joseph raphson) is a method for finding
successively better approximations to the roots (or zeros) of a real-valued function. It is
one example of a root-finding algorithm. It is an alternative to the Fisher scoring method
previously described. Further discussion of this method can be found at www.math.ubc.
ca/~anstee/math104/104newtonmethod.pdf.

http://www.math.ubc.ca/~anstee/math104/104newtonmethod.pdf
http://www.math.ubc.ca/~anstee/math104/104newtonmethod.pdf

Chapter 6 ■ ImplementIng maChIne learnIng In OBIee 12C

172

=>Table of coefficients

The coefficients and Signif. codes give details about the covariates.

->Coefficients

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.857e+01 9.493e+04 0 1
SourceOrigin2 -5.713e+01 1.292e+05 0 1
SourceOrigin3 -1.927e-05 1.420e+05 0 1

 Null deviance: 4.1559e+02 on 309 degrees of freedom
Residual deviance: 2.4340e-10 on 307 degrees of freedom
AIC: 6

Our model has one predictor, the Source, and the intercept, called the constant. The
following outlines how the output can be analyzed:

Under the Estimate column in the second row, the value gives the coefficient
associated with the variable listed to the left. It is the estimated amount by which the log
odds of propensity_to_buy would increase if the Source were one unit higher (Source
with value Origin2). Similarly, the third row with Source having Origin3 as value.

The log odds of propensity_to_buy when Source is 00 is given in the first row (above
the second row). Log odds is an interpretation of simple predictions to odds ratios in the
glm model.

The next column, Std. Error, gives the standard error associated with these
estimates (as outlined in the second row). It is an estimate of how much, on average,
these estimates would spread around if the model were rerun identically, but with new
data, over and over. Dividing the estimate by the standard error, the quotient obtained
is assumed to be normally distributed with large enough estimates. This value is listed
in the column z value. The final column, Pr(>|z|), lists the two-tailed p-values that
correspond to those z-values in a standard normal distribution.

->Significant codes

Additional significant codes information appears as stars to the right of the last
column. This information follows the key that appears directly below the coefficients
table. In our case, we don't see these stars, as there are zeros as values in the tables
table(train_set$Source, train_set$propensity_to_buy, and table(test_set$Source,
test_set$p_to_buyPred).

=> Testing individual parameters
->Wald chi-squared statistics
> library(aod)
Warning message:
package 'aod' was built under R version 3.2.5
> wald.test(b = coef(logitM), Sigma = vcov(logitM), Terms = 1:2)

Chapter 6 ■ ImplementIng maChIne learnIng In OBIee 12C

173

Wald test:

Chi-squared test:
X2 = 2e-07, df = 2, P(> X2) = 1.0
> wald.test(b = coef(logitM), Sigma = vcov(logitM), Terms = 1:3)
Wald test:

Chi-squared test:
X2 = 2.7e-07, df = 3, P(> X2) = 1.0
> wald.test(b = coef(logitM), Sigma = vcov(logitM), Terms = 2:3)
Wald test:

Chi-squared test:
X2 = 2.6e-07, df = 2, P(> X2) = 1.0

=> Confidence intervals of individual parameters
->Overall goodness-of-fit

The overall goodness-of-fit is governed by three metrics: the null deviance, residual
deviance, and AIC.

Null deviance measures the response predicted by the model having only an
intercept (a reduced model with no predictors). This is the case of a reduced model.

Residual deviance is the response predicted by a model with the predictor variables
included. In other words, these two give the lack of fit of the glm model; the lower the
value, the better the model. In this manner, it is a metric for goodness-of-fit.

The difference in degrees of freedom associated with these two is only 2. In our case,
we had one predictor, Source; but with two estimated values for its values Origin2 and
Origin3, so two additional degrees of freedom were used.

-> AIC

AIC is another metric for goodness-of-fit that measures how well the model fits
the data. In other words, this tells how costly the model is, based on the number of
coefficients it has to estimate. A recommended model is one with a lower AIC value. In
our case, this value is 6 and can be treated as a properly fitting model.

AUC Curve
This pertains to the ROC of the GLM model. It provides a performance characteristic of
the model by evaluating the true positive rate (also called sensitivity) and false negative
rate (also derived as 1- specificity). Considering p > 0.5, a plot of ROC gives a best-fit
scenario of the success rate by giving a prediction of all possible values of p > 0.5. The area
under the curve, also called AUC, is a performance metric for the ROC curve. AOC gives
the index of accuracy, or concordance index.

Chapter 6 ■ ImplementIng maChIne learnIng In OBIee 12C

174

 ■ Note the higher the aOC, the better the prediction capability of the model.

Figure 6-1 depicts the AUC curve of our logistic regression model to predict the
propensity to buy. Given our data values for Source and the corresponding propensity to
buy, we see that AUC is a perfect, flipped, L-shaped, right-angled curve that starts with 0
on the x-axis and extends to 1 on the y-axis, and then curves in a right-angled fashion to
the right, ending at an x = 1 value.

This is because the data we started from has the value 1 for Origin1 and Origin3,
and 0 for Origin2, and the corresponding values in the propensity_to_buy column are 1
and 0. And the predicted probabilities are also 1 and 0 for the respective Source values.

=> anova(logitM)
-> Analysis of deviance table

The anova function in R enables us to test the effects of factors by analyzing the pf
deviance table. In our logistic regression model, there was one explanatory variable and
the corresponding factor, Source. The glm model fit the intercept-only model, outputting
the same statistics as shown against the NULL deviance (below the coefficients): deviance
= 415.59. This is shown by the anova output here:

Analysis of Deviance Table

Model: binomial, link: logit

Response: propensity_to_buy

Terms added sequentially (first to last)

 Df Deviance Resid. Df Resid. Dev
NULL 309 415.59

Source 2 415.59 307 0.00

Implementing the Solution Using the ORE SQL Interface
Now that we have the initial solution, we implement it by using the ORE SQL interface for
integration with OBIEE 12c. The steps for implementing this are as follows:

 1. Create an R function as a script in the R script repository by
using sys.rqScriptCreate to creates an input table in the
Oracle DB to hold Wine Source data along with a column
propensity_to_buy based on the Source column. The code is
shown in Listing 6-3.

Chapter 6 ■ ImplementIng maChIne learnIng In OBIee 12C

175

Listing 6-3. R Script That Creates an Oracle Table Based on the input .csv File

begin
sys.rqScriptDrop('CreateInputTable');
sys.rqScriptCreate('CreateInputTable',
'function(dat) {
 library(ORE)
 ore.connect("testr","orcl","localhost","testr")
 setwd("F:/testr")
 dat <- read.csv("Wineptobuy.csv")
 ore.drop(table="WINE_SOURCE_DATA")
 ore.create(dat, table="WINE_SOURCE_DATA")
 }');
end;
/

 2. Execute the preceding code to create the WINE_SOURCE_DATA
table in the testr schema. This is done using the following
select statement:

select * from table (rqEval(NULL, 'XML', 'CreateInputTable'));

Here’s the output of executing this select statement:

--
SQL> select * from table (rqEval(NULL, 'XML', 'CreateInputTable'));

NAME
--
VALUE
--

<root><ANY_obj><ROW-ANY_obj><value></value></ROW-ANY_obj></ANY_obj></root>

SQL>

 3. Create an R function that builds the logistic regression model
for predicting the propensity to buy based on the wine
source and then scores the model on test data. The machine-
learning algorithm of the GLM is used for this. This function
is associated with an R script to be saved in the R script
repository of ORE. Listing 6-4 shows the code.

Chapter 6 ■ ImplementIng maChIne learnIng In OBIee 12C

176

Listing 6-4. GLM-Based Logistic Regression Model to Build and Score the Propensity to
Buy Based on the Wine Source

begin
 sys.rqscriptDrop('BuildandScoreptobuy');
 sys.rqScriptcreate('BuildandScoreptobuy',
'function(table_name) {
ore.sync(table=table_name)
ore.attach()
winedata <- ore.pull(ore.get(table_name))
winedata$ID <- 1:nrow(winedata)
sapply(winedata, sd)
xtabs(~propensity_to_buy +Source, data=winedata)
xtabs(~propensity_to_buy +origin, data=winedata)
label <- winedata[,23]
library(caTools)
s <- sample.split(label, SplitRatio=3/4)
train_set <- winedata[s, c(2:20, 23)]
test_set <- winedata[!s, c(2:20, 23)]
sp.tab <- table(train_set$Source, train_set$propensity_to_buy)
train_set$Source <- factor(train_set$Source)
logitM <- glm(propensity_to_buy ~ Source, data = train_set,
family="binomial", control = glm.control(maxit=100))
library(aod)
head(data.frame(test_set[,c(1:19)]))
p_to_buyPred <- predict(logitM, newdata = data.frame(test_set[,c(1:19)]),
type="response")
p_to_buyPred <- ifelse(p_to_buyPred > 0.5,1,0)
misClasificError <- mean(p_to_buyPred != test_set$propensity_to_buy)
p_to_buyPred[as.integer(rownames(p_to_buyPred))] <- p_to_buyPred
res <- cbind(data.frame(test_set[,c(1:19)]), PRED = p_to_buyPred)
res1.df <- data.frame(res[,c(1,2,19,20)])
library(ggplot2)
gg_plot <- ggplot(data=test_set, aes(x=Source, y=p_to_buyPred, group=1)) +
geom_line(aes(colour = p_to_buyPred), size = 1) + geom_point() +
stat_smooth(method="glm", family="binomial", se=FALSE) +
ggtitle("Predicting Propensity to buy based on Wine Source") +
labs(x="Source", y="Predicted Probability - p_to_buyPred")
plot(gg_plot)
res1.df
}');
end;
/

Chapter 6 ■ ImplementIng maChIne learnIng In OBIee 12C

177

 4. Create an R function that calls the preceding
BuildandScoreptobuy function to execute it inside the ORE
engine spawned by Listing Oracle 12c DB to output the
predicted probability of the propensity to buy based on the
wine source. Listing 6-5 shows the code.

Listing 6-5. R Function That Calls the BuildandScoreptobuy Function to Output
Predicted Probability of Propensity to Buy Based on the Source

begin
sys.rqScriptDrop('CallPtoBuy');
sys.rqScriptCreate('CallPtoBuy',
'function(dat, input_table_name) {
 input_table_name <- "WINE_SOURCE_DATA"
 ore.scriptLoad(name = "BuildandScoreptobuy")
 res1 <- BuildandScoreptobuy(input_table_name)
 res1.df <- data.frame(res1)
 res1.df
 }');
end;
/

The code in Listing 6-5 can be executed in multiple ways
by using the ORE SQL interface, to output XML, individual
columns, or a PNG image graph. The following SELECT
statements show this can be done:

 a. Outputting XML:

The initial SQL SELECT for the getting the XML output for
the integrated graph is as follows:

select * from table(rqTableEval(cursor(select *
from WINE_SOURCE_DATA),

cursor(select 1 as "ore.connect", 'WINE_SOURCE_
DATA' as "input_table_name" from dual),
'XML',
'CallPtoBuy'));

Chapter 6 ■ ImplementIng maChIne learnIng In OBIee 12C

178

The output can be improvised so that it is visible as XML when
opened from Internet Explorer or other XML display software.
The following query does the trick to achieve this:

select xmltype(a.value).getClobVal() as "XML Output with image included"
from table(rqTableEval(cursor(select * from WINE_SOURCE_DATA),
cursor(select 1 as "ore.connect", 'WINE_SOURCE_DATA' as "input_table_name"
from dual),
'XML',
'CallPtoBuy')) a;

Chapter 6 ■ ImplementIng maChIne learnIng In OBIee 12C

179

Chapter 6 ■ ImplementIng maChIne learnIng In OBIee 12C

180

 b. Outputting individual columns:

SQL> select * from table(rqTableEval(cursor(select * from WINE_SOURCE_DATA),
 2 cursor(select 1 as "ore.connect", 'WINE_SOURCE_DATA' as "input_table_
name" from dual),
 3 'select "origin", "class","Source", 1 "PRED" from WINE_SOURCE_DATA a',
 4 'CallPtoBuy'));

origin
--
 class

Source
--
 PRED

Origin1
 1
Origin1
 1

Origin1
 1
Origin1
 1

Origin1
 1
Origin1
 1

Origin1
 1
Origin1
 1

Origin1
 1
Origin1

Chapter 6 ■ ImplementIng maChIne learnIng In OBIee 12C

181

 1

Origin1
 1
Origin1
 1

Origin1
 1
Origin1
 1

Origin1
 1
Origin1
 1

Origin1
 1
Origin1
 1

Origin1
 1
Origin1
 1

Origin1
 1
Origin1
 1

Origin1
 1
Origin1
 1

Origin1
 1
Origin1
 1

Origin1
 1
Origin1
 1

Chapter 6 ■ ImplementIng maChIne learnIng In OBIee 12C

182

Origin1
 1
Origin1
 1

Origin1
 1
Origin1
 1

Origin2
 2
Origin2
 0

Origin2
 2
Origin2
 0

......

103 rows selected.

 c. Outputting a PNG graph:

SQL>select id, image from table(rqTableEval(cursor(select * from WINE_
SOURCE_DATA),
 cursor(select 1 as "ore.connect", 'WINE_SOURCE_DATA' as "input_table_

name" from dual),
 'PNG',
 'CallPtoBuy'));

SQL> select id, image from table(rqTableEval(cursor(select * from WINE_
SOURCE_DATA),
 2 cursor(select 1 as "ore.connect", 'WINE_SOURCE_DATA' as "input_

table_name" from dual),
 3 'PNG',
 4 'CallPtoBuy'));

 ID

IMAGE
--
 1

Chapter 6 ■ ImplementIng maChIne learnIng In OBIee 12C

183

89504E470D0A1A0A0000000D49484452000001E0000001E008060000007DD4BE9500002000494441
54789CECDD6B701BE79A27F67F032078274851574A962C8B775D6C89B22D03E3736AB333734269C5
28991AED566EAA64CBD4EC4C2AD497A3DA0FA7E6A476BDB5159F9A1D22134FAD349BA9782A959495
AA73142922D7D94A65667C08D19628DBBA5014015D2D93922551BCDF00F49B0F4D800DB0890B8946
77A3FFBF2A9648400D3CB8F583F7F6BC92104280888888F2CA61740044444476C4044C4444640026
60222222033001EB2C140A191D42C158CF73C9D78188CCC6D209589224CD9FDEDEDE9CDE4F6F6F2F
24494AB8DF4C4EE83E9F0F57AE5CC9FAB8B5C8D773914FEAE72BF9B9CCC67A8E8DC591AFE7D14CAF
59F2FB5E4FA74F9FC6E9D3A735EFDFEFF7275CEEF7FBE1F3F900E8FB998AC5A5FE3C25C748B41E96
4EC000D0D3D3032144FCA7A7A707478F1ED5F5432984407D7D7DDE8ECB9411CF859EF47EBEC83C5A
5B5B71FBF6ED84CB2E5EBC88CECE4E0C0E0E265C7EE1C2059C3C791280BEEF9158B2557FA66EDFBE
CD244CB9232C0C80E8E9E95971B9D7EB15DDDDDD09BF0310004430188C5F1EBBCCEBF56ADE76EC27
76BCFABAD8ED048341CDDB51DF7E6767E78AE362B1ABEF27765D2631E4EBB9D08A53EB3EB2395EFD
38D5F1245F17FB3BF9B98CFDA8757777AFB82C3936F5F5E95EFFE4C7901CA7D6638C893D5E214456
B166725FEAF75BEC477DDFA99ECF4C1E7736EFB974B797C97B3CF97125DFB6D6E5C99FA36C3E53D9
BEEEC9C7AB5FDB6C9E83D58ED7FA4CAE764E59CB6320732BD8041CBBDCEBF5AE7893AA939210CA49
2B3979AAAF4F3E116A7DE8B58ED3BA1DF571EADBECECEC4C882176021422F1A4ABC773A14E065A71
A8EF37F9A49CEEB94CF538934F46C97F277F4988DDCF6A2741ADC7AF1563BAC79C2CDD7390EA249B
6DACD9DE576767E7AAF7B5DAC95E7DDBD9BCEF9365FBDE49F73CAB9F97D8172FADCB537D1653DD5F
BAC79FEEF165F27FB49E8374093855D24E774E49F718C8DC0A2E01C7DEE05A276EF5F5C9621F72AD
EB574B0CABDD96FA365325E05427EDE40FD55A5AC0E99E0BADD645F26D69DD6EECB274CF65268F33
DD635A2D76F5EDAEF638D4F1247F9949F59833B92ED573A4F57EC934D674F7952CD3E73317EF7BB5
B5BC77D2BDDE9D9D9D095FB262BF77777727FCAE4E78D97CA6D2BD57B5A85BD3C99FC95C3C07999E
9FD6F318C8BC2C3F067CF4E8D1844912478F1E4530184C18176A6C6C8CFF3E3C3C0C60E5A4A54020
80E1E1610C0F0FC3EBF526DC47434383E67D6BFDDF5C181E1EC6BE7DFB122E533F86D564FB5C0483
41CDF8BD5E6FFC7902563EFED8F5E99ECB74DADBDBE1F57AD73461ACB3B313172F5E04005CB97205
9D9D9D191D97E9634EB6DA73A047AC99DC97FA358E49F57CE6F27D0FACFD794CE5C48913F1F1DE8B
172FC6DFABC78E1DC3850B1700008383833871E244D6B7BDD6F7AA508DFF060281848958B97A0E92
CF4FAB9D53D6FB7923F3B17C024E9E7824329894E1F57A571C2384405757579EA2D6C75A9E8BF55A
EF73D9D7D70721043A3B3BE35F20329934F6F39FFF1CE7CF9F07A04CCA59CB49395F72196BECA4DB
DDDD1D9F68A796EAF934FBFBBEA1A121FE3C9D3F7F1EEDEDED0080FAFA7A04020100C0EDDBB7537E
314865BD8F5F0881603088F3E7CF1B36B1D1ECAF2165C7F209385B8D8D8DF10F73A6D70783C135DD
D65A353636AE9811AAC737DC868606CDF80381C08A96B2D6F5B97CFCE7CE9D8310025EAF37A32543
F5F5F5F07ABDF0FBFD080402F193753A993EE664AB3D0799C836D6D5EEABB7B7377E024E77C24D7E
3E73F9BE07D6FE3CA6127B9E628F53ADB3B333BE1C692D5F2AB37DAFAEB6042B76DFC1605097E720
559C7A9D6FC8403A756DE705528C8DC5688D8F244F7CD01A2B4D1E67523F555865DC29797C6AAD63
C0AB1D9BEAE55ACF73B19E8934E99ECB548F33F931C7C6D4B466B8263F1F422C8F8B673251269793
B0B49E03AD19D66B8935D57DADF67CC59EA774CFE77ADFF7C9D63B01494BEC36B45E6BADCBB3FD4C
A57AFC5A8F2FDD5C8C74CF41BAF786D66732DD39259BC740E666CB041CBB3C7682D17A03ABAFCF74
1952BA936E36278BD8FF51C7902E49E4E2B9D09A91199B69AB757DF2F1C9CF65BAC7A9BEEDE4FFAB
BE2DAD04167BEED33D6EAD63533DE664B1FB48F5FF931F43F26B9969ACE9EE2BF9F9521FA375BDD6
17AEB5BEEFB5A47BEF649B8063FF2739EED59EBF6C3F53E91E7FB2E4E733DDFB3FDBF786D66732D5
39652D8F81CC4B12420890E9F5F6F6E2E38F3F465F5F5F5EEF579224F4F4F464DCC59B4FA150080D
0D0DB0C25BD84AB112517ED86E0CD80A62E34FEA891E1F7FFC71BCFA0F29AE5CB982EEEE6EA3C3C8
88956225A2FC70191D00ADD4DEDE8EEEEEEE84D99EDDDDDD9CE9B824D69AF47ABD79EF11C8969562
25A2FC62173411119101D8054D444464002660222222033001131111198009988888C8004CC04444
44066002262222328025D701CBB28CD7AF5F1B1D46DE6DD8B001737373989B9B333A144A525D5D8D
70388C999919A343A1245555551042606A6ACAE850F2AEB6B6D6E81028054B266000B62DE92796B6
1F2373E26B635E7C6DC86CD8054D444464002660222222033001131111198009988888C8004CC044

Chapter 6 ■ ImplementIng maChIne learnIng In OBIee 12C

184

4444066002262222320013301111910198808988880CC0044C444464002660222222033001131111
198009988888C8004CC044444406600226222232405E12F0E5CB97313030A079DDD9B367D1D1D181
4F3FFD34E5......

When the preceding SELECT statement is run and its output is viewed in Oracle SQL
Developer, we get the graph shown in Figure 6-7. This graph is based on the ggplot graph
that plots source vs. predicted probability (p_to_buyPred).

Figure 6-7. PNG output of the logistic regression model to predict propensity to buy wine
based on its source

Chapter 6 ■ ImplementIng maChIne learnIng In OBIee 12C

185

Another graph we are interested in for the GLM machine-learning algorithm is the
AUC curve. This code is shown in Listing 6-6.

Listing 6-6. GLM-Based Logistic Regression Model to Build and Score Propensity to Buy
Based on Wine Source That Plots the AUC Curve

begin
-- sys.rqscriptDrop('BuildandScoreptobuyAUC');
 sys.rqScriptcreate('BuildandScoreptobuyAUC',
'function(table_name) {
ore.sync(table=table_name)
ore.attach()
winedata <- ore.pull(ore.get(table_name))
winedata$ID <- 1:nrow(winedata)
sapply(winedata, sd)
xtabs(~propensity_to_buy +Source, data=winedata)
xtabs(~propensity_to_buy +origin, data=winedata)
label <- winedata[,23]
library(caTools)
s <- sample.split(label, SplitRatio=3/4)
train_set <- winedata[s, c(2:20, 23)]
test_set <- winedata[!s, c(2:20, 23)]
sp.tab <- table(train_set$Source, train_set$propensity_to_buy)
train_set$Source <- factor(train_set$Source)
logitM <- glm(propensity_to_buy ~ Source, data = train_set,
family="binomial", control = glm.control(maxit=100))
library(aod)
head(data.frame(test_set[,c(1:19)]))
p_to_buyPred <- predict(logitM, newdata = data.frame(test_set[,c(1:19)]),
type="response")
p_to_buyPred <- ifelse(p_to_buyPred > 0.5,1,0)
misClasificError <- mean(p_to_buyPred != test_set$propensity_to_buy)
p_to_buyPred[as.integer(rownames(p_to_buyPred))] <- p_to_buyPred
res <- cbind(data.frame(test_set[,c(1:19)]), PRED = p_to_buyPred)
res1.df <- data.frame(res[,c(1,2,19,20)])
library(ROCR)
pr1 <- prediction(p_to_buyPred, test_set$propensity_to_buy)
class(pr1)
prf1 <- performance(pr1, measure = "tpr", x.measure = "fpr")
class(prf1)
plot(prf1, colorize = TRUE) # , text.adj = c(-0.2,1.7)
res1.df
}');
end;
/

Chapter 6 ■ ImplementIng maChIne learnIng In OBIee 12C

186

The code for calling this R function is shown in Listing 6-7.

Listing 6-7. Code for Calling the BuildandScoreptobuyAUC

begin
sys.rqScriptDrop('CallPtoBuyAUC');
sys.rqScriptCreate('CallPtoBuyAUC',
'function(dat, input_table_name) {
 input_table_name <- "WINE_SOURCE_DATA"
 ore.scriptLoad(name = "BuildandScoreptobuyAUC")
 res1 <- BuildandScoreptobuyAUC(input_table_name)
 res1.df <- data.frame(res1)
 res1.df
 }');
end;
/

Executing the following SELECT statement to call the function in Listing 6-7 and gives
the graph shown in Figure 6-8.

select * from table(rqTableEval(cursor(select * from WINE_SOURCE_DATA),
cursor(select 1 as "ore.connect", 'WINE_SOURCE_DATA' as "input_table_name"
from dual),
 'PNG',
 'CallPtoBuyAUC'));

The AUC shows an inverted L, which means the GML model built and scored is ideal
for the data in context. The larger the area, the more perfect the model.

Chapter 6 ■ ImplementIng maChIne learnIng In OBIee 12C

187

Integrating PNG Output with the OBIEE
Dashboard
Following the steps outlined in the subsection “Integrating the PNG Graph with OBIEE”
in Chapter 3, the PNG image shown in Figure 6-7 can be integrated with OBIEE. Once the
image is integrated, an analysis and subsequent dashboard can be created in OBIEE. Here
we list the primary steps involved; some steps have already been provided in Chapter 3.:

 1. Create a new physical table of type SELECT in the Physical layer
(using the OBIEE RPD downloaded from the WebLogic server
and opening it offline in the BI Administration Tool). We already
have the connection pool created from Chapter 3. The query
used to generate the PNG output of the machine-learning
algorithm for logistic regression is used as the initialization string
value for the SELECT-type table. This is shown in Figure 6-9.

Figure 6-8. PNG output of the logistic regression model shows the AUC for predicting wine
propensity to buy based on its source

http://dx.doi.org/10.1007/978-1-4842-3255-2_3
http://dx.doi.org/10.1007/978-1-4842-3255-2_3
http://dx.doi.org/10.1007/978-1-4842-3255-2_3

Chapter 6 ■ ImplementIng maChIne learnIng In OBIee 12C

188

This new table is named CallPtoBuy. The RPD can be
downloaded using the following command:

datamodel.cmd downloadrpd -O obieenew.rpd -W Admin123 -U
weblogic -P <password> -SI ssi -S localhost -N 9502 -Y

Figure 6-9. Physical table properties created in OBIEE RPD for the Propensity to Buy PNG
graph to be integrated with OBIEE12c

Chapter 6 ■ ImplementIng maChIne learnIng In OBIee 12C

189

 2. Add the new table to the Business Mapping and Modeling
layer. The dialog boxes in Figures 6-10 and 6-11 show the
logical column properties and the expression to be built for
the ID column and the IMAGE column.

Figure 6-10. Logical column ID properties

Chapter 6 ■ ImplementIng maChIne learnIng In OBIee 12C

190

Figure 6-11. Logical expression to be specified for the ID column that includes both the ID
and IMAGE column

The logical expression looks like the following:

lookup("orcl_db".""."TESTR"."CallPtoBuy"."IMAGE",
"orcl_db".""."TESTR"."CallPtoBuy"."ID")

 3. The modified RPD needs to be uploaded to the WebLogic
server by using the following command:

datamodel.cmd uploadrpd -I obieenew08062017.rpd -W Admin123 -U
weblogic -P <password> -SI ssi -S localhost -N 9502
Service Instance: ssi

Operation successful.
RPD upload completed successfully.

Chapter 6 ■ ImplementIng maChIne learnIng In OBIee 12C

191

 4. Restart WebLogic Server.

a. Log in to OBIEE12c using the URL localhost:9502/
analytics.

b. Click Administration ➤ Maintenance and
Troubleshooting.

c. Then click Reload Files and Metadata.

d. Under Analysis and Interactive Reporting, click Analysis.

e. Select the TESTR subject area.

f. Expand CallPtoBuy in the Criteria tab. Then drag and
drop the ID and IMAGE columns under the Selected
Columns area to its right.

g. Click Results.

Figure 6-12. Output graph of wine source vs. predicted probability based on machine-
learning GLM algorithm executed in ORE and integrated with OBIEE 12c

Chapter 6 ■ ImplementIng maChIne learnIng In OBIee 12C

192

Figure 6-13. Output graph of wine source vs. predicted Probability based on machine-
learning GLM algorithm executed in ORE and integrated with OBIEE 12c

Chapter 6 ■ ImplementIng maChIne learnIng In OBIee 12C

193

Figure 6-14. Dashboard showing the pairs plot of predicting wine origin and using it to
predict the propensity to buy

h. The graph of Source vs. Predicted Probability
(ptobuyPred) appears as shown in Figures 6-12 and 6-13.

Figure 6-14 displays the final dashboard showing the pairs plot of predicting wine
origin and then using the origin to predict the propensity to buy.

Summary
This chapter covered the implementation of machine learning in OBIEE 12c. Starting
with a brief description of a business problem and solution, it detailed how the machine-
learning algorithm of logistic regression, based on the GLM model, can be used to predict
the propensity to buy a wine based on its origin. The chapter then showed the various
options of the model output via XML, structured tabular results, and a PNG graph.
Finally, it outlined how the PNG image can be integrated with an OBIEE dashboard and
merged with the Wine Origin Prediction graph to result in a final dashboard that shows
both side by side. Executable code and its output of execution were provided wherever
necessary.

195© Rosendo Abellera and Lakshman Bulusu 2018
R. Abellera and L. Bulusu, Oracle Business Intelligence with Machine Learning,
https://doi.org/10.1007/978-1-4842-3255-2

��������� A
Actionable intelligence, 11
Akaike information criterion

(AIC), 155, 173
Ambiguity, 3
anova function, 174
Area under the curve (AUC), 159, 173, 174
Artificial intelligence (AI)

actionable intelligence, 11
advanced corporations, 7
definition, 2–3
learning aspect, 3
mainstream, 6
predictive tasks, 4
Principia Mathematica, 2
software applications, 14
technologies, 11

��������� B
Back-end vendors, 100
Big-data analytics, 8

vs. business intelligence, 12–13
elements, 104
goals, 13
improvement for, 101
services, 6

BuildandScoreptobuyAUC, 186
BuildandScoreptobuy function, 177
BuildandScoreRF, 66
Business case

AIC, 155
AUC curve, 159

anova function, 174
GLM plots, 164
ROC, 173

categorical variable, 136
ggplot2 function, 149
logistic regression, 147–148, 150–152
logitM model, 155, 156
logit model

AIC, 169, 173
anova(logitM), 169
coefficients and Signif, 172
confusion matrix, 169
constant, 172
deviance residuals, 171
dispersion parameter, 171
Estimate column, 172
Fisher scoring, 170
glm model, 168, 170–171
logit(p), 170
null deviance, 169, 173
residual deviance, 169, 173
significant codes, 172
training data, 171

ORE SQL interface
BuildandScoreptobuy

function, 176–177
GLM-Based Logistic Regression

Model, 185
input .csv file, 175
PNG graph, 182–184
R function, 186
SELECT statements, 177
XML output, 177, 180, 182

performance function, 160
PNG graph (see PNG graph)
predict() function, 158
prediction() function, 160
predict wine origin, 137
propensity_to_buy and Source, 152–155
response variable, 136

Index

https://doi.org/10.1007/978-1-4842-3255-2

■ INDEX

196

ROC, 159
source vs. propensity, 167
test_set2, 161
test_set3 data, 161
test_set3_ribbon.pdf, 166
train_set data, 162–163
wald.test function, 156
wine origin, 136–146
WineOriginTestDataGLMPlot_

test_bar.pdf, 167
WineOriginTestDataGLMPlot_

test_lineNpoint.pdf, 165
WineOriginTrainingDataGLMPlot_

test_bar.pdf, 166
WineOriginTrainingDataGLMPlot_

test_lineNpoint.pdf, 165
Business intelligence (BI), 4, 99

vs. big-data analytics, 12–13
cloud advantage, 13
Cloud at Customer, 14

Business Objects, 101

��������� C
Cloud advantage, 13
Cloud at Customer, 14
Clustering, 6
Cognos, 101
Comma-separated values (CSV), 31
CRAN views, 23

��������� D
Data manipulation language (DML), 26
Data modeling, 17
Data preparation, 18
Data visualization, 14–16
Decision support systems

(DSSs), 9, 12, 17, 90
Decision trees, 31

��������� E
Enterprise data warehouses

(EDWs), 9, 89, 90
Extract, transform, and load (ETL), 12, 100

��������� F
Fisher scoring algorithm, 170

��������� G
Gaussion mixture model, 31
Generalized linear model (GLM), 31
ggplot() function, 112

��������� H
Hadoop Distributed File System (HDFS), 30
Hive-based Hibernate Query Languuage

(HQL), 30
Hyperion, 101

��������� I, J, K
Initial public offering (IPO), 100

��������� L
Least absolute shrinkage and selection

operator (LASSO), 31
Linear regression, 31
Logistic regression, 31
Logit model

AIC, 169, 173
anova(logitM), 169
coefficients and Signif, 172
confusion matrix, 169
constant, 172
deviance residuals, 171
dispersion parameter, 171
Estimate column, 172
Fisher scoring, 170
glm model, 170–171
GLM model’s output, 168
logit(p), 170
null deviance, 169, 173
residual deviance, 169, 173
significant codes, 172
training data, 171

logitM model, 155, 156
Log-likelihood function, 161
Low-rank matrix factorization (LMF), 31

��������� M
Machine learning (ML)

algorithms, 4, 31
birth and history, 103–104
CRAN task views, 24–25
definition, 2

Business case (cont.)

■ INDEX

197

EDW, 89–90
Full Quarter Revenue, 92
functions, 105
LINEAR and EXPOENETIAL view, 96
predict outcomes, 4
reinforcement learning, 6
supervised learning, 6
Trellis chart, 97–98
TRENDLINE function, 90–96
unsupervised learning, 6
vendors, 7

Modern data warehousing, 100
Mult-layer perception, 31

��������� N
Newton-Raphson method, 171
Non-negative matrix factorization

(NMF), 31

��������� O
OBIEE 12c

business case (see Business case)
Oracle, 16
R PNG graph output, 70
wine origin (see Wine origin)

Online analytical processing
(OLAP), 8, 12, 105

Online transaction processing
(OLTP), 8, 105

Oracle Analytics Cloud, 19
Oracle-Based Optimization Engine

(OBOE), 12
Oracle Big Data SQL, 17
Oracle Business Intelligence Enterprise

Edition (OBIEE), 8, 19
evolution of, 101–102

birth and history of, 103–104
machine learning

functions, 105
Oracle Cloud, 105

Oracle Business Intelligence Mobile, 20
Oracle Call Interface (OCI) libraries, 26
Oracle Cloud, 105
Oracle Database 18c, 19
Oracle Data Integrator (ODI), 102
Oracle R Advanced Analytics for Hadoop

(ORAAH), 30
Oracle R Distribution, 25
Oracle R Enterprise (ORE)

algorithms, 36
architecture, 33
build and test a randomForest()

model, 42–52
definition, 32
Embedded Execution API, 35
embedded R execution, 33, 34
generate structured table output, 63
lights-out processing, 34
modified capture image generated, 64
modified VALUE column, 66
OBIEE analysis and dashboard, 87–89
OREpredict algorithms, 37
ore.randomForest, 52–57
packages, 37
PNG graph

BMM diagram, 85
BuildandScoreRF Script, 67
business model and mapping

layer, 80
duplicated validateRF, 81
Id column dialog box, 76
image column dialog box, 77
IMAGE column output, 70
keys dialog box, 78
logical column dialog box, 81, 84
Lookup Expression Builder, 82
OBIEE Administration Tool, 71, 72
OBIEE 12c integration, 70–71
Oracle Connection Pool, 72–73
physical and BMM layers, 84
Physical Diagram window, 80
physical layer, 74–75
Physical Table dialog box, 79
presentation layer, 86
setting sort order and descriptor, 83
SQL based query, 69–70
TESTR schema, 86
validateRF output, 68
validateRF script, 67–68

predictive analytics, 33
primary packages, 37
R randomForest model, 38–41
SQL interface, 57–60
transparency, 33
VALUE column, XML output of, 62

Oracle’s R technologies
dbDriver(“Oracle”), 28
Open source R, 23–25
ORAAH, 30
Oracle DB Table, 26–27

■ INDEX

198

Oracle R Distribution, 25
ORE (see Oracle R Enterprise (ORE))
R data.frame, 28–30
ROracle, 26

ore.randomForest() function, 141
ORE SQL interface

BuildandScoreptobuy
function, 176–177

GLM-Based Logistic Regression
Model, 185

input .csv File, 175
PNG graph, 182–184
R function, 186
SELECT statements, 177
XML output, 177, 180, 182

��������� P
Pattern recognition, 5
performance function, 160
Plotting regression slope, 163
PNG graph

logical column properties, 189
logical expression, 190
pairs plot, 193
physical layer, 187
RPD, 188
WebLogic server, 190
wine source vs. predicted

probability, 191–192
PowerBI, 19
Predictive analytics, 2
Principal component analysis (PCA), 31
Principia Mathematica, 2

��������� Q
Qlikview, 19

��������� R
Random forest, 31, 38
R-based algorithms. See Wine origin
Receiver operating characteristic

(ROC), 159
Reinforcement learning, 6
Residual deviance, 173
Resilient distributed dataset (RDD), 31

R language, 9
ROracle, 26
R table output, 61

��������� S
scale_fill_gradient() function, 117
Self-service analytics, 105
Self-service BI, 8
stat_smooth() function, 163
Supervised learning, 2, 6
Support vector machines, 31

��������� T
Tableau, 19
Transactional system, 17
TRENDLINE function, 90–96

��������� U
Uncertainty, 3
Unstructured data, 8
Unsupervised learning, 2, 6

��������� V
validateRF, 66
Visual analytics, 15–16

��������� W, X, Y, Z
wald.test function, 156
WebLogic Server, 191, 193
Wine origin

code segment, 121, 123–133
dashboard visualization, 110
decision-support solution, 108–109
extending BI, 108
geom_ribbon(), 120–121
graph output

ggplot, 111–112
pairs plot, 111

predictive analytics, 108
propensity_to_buy, 113–117
R-based machine-learning models, 109
scale_fill_gradient() function, 117
test_set2, 118
test_set3, 119

Oracle’s R technologies (cont.)

	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction
	Artificial Intelligence and Machine Learning
	Overview of Machine Learning
	Patterns, Patterns, Patterns

	Machine-Learning Vendors
	Build or Buy?
	Introduction to Machine-Learning Components in OBIEE
	Oracle BI and Big Data
	R for Oracle BI

	Summary
	Citations

	Chapter 2: Business Intelligence, Big Data, and the Cloud
	The Goal of Business Intelligence
	Big-Data Analytics
	But Why Machine Learning Now?

	A Picture Is Worth a Thousand Words
	Data Modeling
	The Future of Data Preparation with Machine Learning
	Oracle Business Intelligence Cloud Service
	Oracle Analytics Cloud
	Oracle Database 18c

	Oracle Mobile Analytics
	Summary

	Chapter 3: The Oracle R Technologies and R Enterprise
	R Technologies for the Enterprise
	Open Source R
	Oracle’s R Technologies
	Oracle R Distribution
	ROracle
	Oracle R Advanced Analytics for Hadoop
	Oracle R Enterprise

	Using ORE for Machine Learning and Business Intelligence with OBIEE: Start-to-Finish Pragmatics
	Using the ORD randomForest Algorithm to Predict Wine Origin
	Using Embedded R Execution in Oracle DB and the ORE R Interface to Predict Wine Origin
	Using ore.randomForest Instead of R’s randomForest Model
	Using Embedded R Execution in Oracle DB with the ORE SQL Interface to Predict Wine Origin
	Generating PNG Graph Using the ORE SQL Interface and Integrating It with OBIEE Dashboard
	Integrating the PNG Graph with OBIEE
	Pre-Steps Required for OBIEE 12c Integration
	Customize the Downloaded SampleAppLite RPD for ORE returned PNG Graph Integration
	Creating an Oracle Connection Pool
	Creating a Physical Layer
	Creating a Business Model and Mapping Layer
	Creating a Presentation Layer

	Creating the OBIEE Analysis and Dashboard with the Uploaded RPD

	Machine Learning Trending a Match for EDW
	Summary

	Chapter 4: Machine Learning with OBIEE
	The Marriage of Artificial Intelligence and Business Intelligence
	Evolution of OBIEE to Its Current Version
	The Birth and History of Machine Learning for OBIEE
	OBIEE on the Oracle Cloud as an Optimal Platform
	Machine Learning in OBIEE
	Summary

	Chapter 5: Use Case: Machine Learning in OBIEE 12c
	Real-World Use Cases
	Predicting Wine Origin: Using a Machine-Learning Classification Model
	Using Classified Wine Origin as a Base for Predictive Analytics - Extending BI using machine Learning techniques in OBIEE
	Using the BI Dashboard for Actionable Decision-Making

	Technical and Functional Analysis of the Use Cases
	Analysis of Graph Output: Pairs Plot of Wine Origin Prediction Using Random Forest
	Analysis of Graph Output: Predicting Propensity to Buy Based on Wine Source
	Analysis at a More Detailed Level
	Use Case(s) of Predicting Propensity to Buy

	Summary

	Chapter 6: Implementing Machine Learning in OBIEE 12c
	Business Use Case Problem Description and Solution
	Technically Speaking
	First Part of Solution
	Second Part of Solution
	Summary of Logit Model
	AUC Curve
	Implementing the Solution Using the ORE SQL Interface

	Integrating PNG Output with the OBIEE Dashboard
	Summary

	Index

