

Advanced Information and Knowledge Processing

Series Editors
Professor Lakhmi Jain
Lakhmi.jain@unisa.edu.au
Professor Xindong Wu
xwu@cs.uvm.edu

Also in this series

Gregoris Mentzas, Dimitris Apostolou,
Andreas Abecker and Ron Young
Knowledge Asset Management
1-85233-583-1

Michalis Vazirgiannis, Maria Halkidi and
Dimitrios Gunopulos
Uncertainty Handling and Quality Assessment in
Data Mining
1-85233-655-2

Asunción Gómez-Pérez,
Mariano Fernández-López and Oscar Corcho
Ontological Engineering
1-85233-551-3

Arno Scharl (Ed.)
Environmental Online Communication
1-85233-783-4

Shichao Zhang, Chengqi Zhang and
Xindong Wu
Knowledge Discovery in Multiple Databases
1-85233-703-6

Jason T.L. Wang, Mohammed J. Zaki,
Hannu T.T. Toivonen and Dennis Shasha (Eds)
Data Mining in Bioinformatics
1-85233-671-4

C.C. Ko, Ben M. Chen and Jianping Chen
Creating Web-based Laboratories
1-85233-837-7

Manuel Graña, Richard Duro, Alicia d’Anjou
and Paul P. Wang (Eds)
Information Processing with Evolutionary
Algorithms
1-85233-886-0

Colin Fyfe
Hebbian Learning and Negative Feedback
Networks
1-85233-883-0

Yun-Heh Chen-Burger and Dave Robertson
Automating Business Modelling
1-85233-835-0

Dirk Husmeier, Richard Dybowski and
Stephen Roberts (Eds)
Probabilistic Modeling in Bioinformatics and
Medical Informatics
1-85233-778-8

Ajith Abraham, Lakhmi Jain and
Robert Goldberg (Eds)
Evolutionary Multiobjective Optimization
1-85233-787-7

K.C. Tan, E.F. Khor and T.H. Lee
Multiobjective Evolutionary Algorithms and
Applications
1-85233-836-9

Nikhil R. Pal and Lakhmi Jain (Eds)
Advanced Techniques in Knowledge Discovery
and Data Mining
1-85233-867-9

Amit Konar and Lakhmi Jain
Cognitive Engineering
1-85233-975-6

Miroslav Kárný (Ed.)
Optimized Bayesian Dynamic Advising
1-85233-928-4

Yannis Manolopoulos, Alexandros Nanopoulos,
Apostolos N. Papadopoulos and
Yannis Theodoridis
R-trees: Theory and Applications
1-85233-977-2

Sanghamitra Bandyopadhyay, Ujjwal Maulik,
Lawrence B. Holder and Diane J. Cook (Eds)
Advanced Methods for Knowledge Discovery
from Complex Data
1-85233-989-6

Marcus A. Maloof (Ed.)
Machine Learning and Data Mining for
Computer Security
1-84628-029-X

Sifeng Liu and Yi Lin
Grey Information
1-85233-995-0

Vasile Palade, Cosmin Danut Bocaniala and
Lakhmi Jain (Eds)
Computational Intelligence in Fault Diagnosis
1-84628-343-4

Mitra Basu and Tin Kam Ho (Eds)
Data Complexity in Pattern Recognition
1-84628-171-7

Samuel Pierre (Ed.)
E-learning Networked Environments and
Architectures
1-84628-351-5

Arno Scharl and Klaus Tochtermann (Eds)
The Geospatial Web
1-84628-826-5

Ngoc Thanh Nguyen
Advanced Methods for Inconsistent Knowledge
Management
1-84628-888-3

Mikhail Prokopenko (Ed.)
Advances in Applied Self-organizing Systems
978-1-84628-981-1

Andras Kornai
Mathematical Linguistics
978-1-84628-985-9

Amnon Meisels

978-1-84800-039-1
Distributed Search by Constrained Agents

Machine Learning for Audio,
Image and Video Analysis
Theory and Applications

Francesco Camastra • Alessandro Vinciarelli

ABC

Francesco Camastra, PhD
Polo Universitario Guglielmo Marconi,
University of Pisa, Italy

Alessandro Vinciarelli, PhD
IDIAP Research Institute, Martigny,
Switzerland

AI&KP ISSN 1610-3947
ISBN: 978-1-84800-006-3 e-ISBN: 978-1-84800-007-0

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

© Springer-Verlag London Limited 2008

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted
under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or
transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case
of reprographic reproduction in accordance with the terms of licences issued by the Copyright Licensing
Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers.

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free for
general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions that
may be made.

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

Springer Science+Business Media
springer.com

Library of Congress Control Number: 2007932413

To our parents and families

Contents

1 Introduction . 1
1.1 Two Fundamental Questions . 1

1.1.1 Why Should One Read The Book? 1
1.1.2 What Is the Book About? . 2

1.2 The Structure of the Book . 4
1.2.1 Part I: From Perception to Computation 4
1.2.2 Part II: Machine Learning . 5
1.2.3 Part III: Applications . 6
1.2.4 Appendices . 7

1.3 How to Read This Book . 7
1.3.1 Background and Learning Objectives 8
1.3.2 Difficulty Level . 8
1.3.3 Problems . 8
1.3.4 Software . 9

1.4 Reading Tracks . 9

Part I From Perception to Computation

2 Audio Acquisition, Representation and Storage 13
2.1 Introduction . 13
2.2 Sound Physics, Production and Perception 15

2.2.1 Acoustic Waves Physics . 15
2.2.2 Speech Production . 18
2.2.3 Sound Perception . 20

2.3 Audio Acquisition . 22
2.3.1 Sampling and Aliasing . 23
2.3.2 The Sampling Theorem** . 25
2.3.3 Linear Quantization . 27
2.3.4 Nonuniform Scalar Quantization 30

2.4 Audio Encoding and Storage Formats . 32

VIII Contents

2.4.1 Linear PCM and Compact Discs 32
2.4.2 MPEG Digital Audio Coding . 34
2.4.3 AAC Digital Audio Coding . 35
2.4.4 Perceptual Coding . 36

2.5 Time-Domain Audio Processing . 38
2.5.1 Linear and Time-Invariant Systems 38
2.5.2 Short-Term Analysis . 40
2.5.3 Time-Domain Measures . 41

Problems . 46

References . 49

3 Image and Video Acquisition, Representation and Storage . 51
3.1 Introduction . 51
3.2 Human Eye Physiology . 52

3.2.1 Structure of the Human Eye . 52
3.3 Image Acquisition Devices . 54

3.3.1 Digital Camera . 54
3.4 Color Representation . 57

3.4.1 Human Color Perception . 57
3.4.2 Color Models . 59

3.5 Image Formats . 66
3.5.1 Image File Format Standards . 66
3.5.2 JPEG Standard . 68

3.6 Video Principles . 72
3.7 MPEG Standard . 73

3.7.1 Further MPEG Standards . 75
3.8 Conclusions . 77
Problems . 78

References . 79

Part II Machine Learning

4 Machine Learning . 83
4.1 Introduction . 83
4.2 Taxonomy of Machine Learning . 84

4.2.1 Rote Learning . 84
4.2.2 Learning from Instruction . 85
4.2.3 Learning by Analogy . 85

4.3 Learning from Examples . 85
4.3.1 Supervised Learning . 86
4.3.2 Reinforcement Learning . 86
4.3.3 Unsupervised Learning . 87

Contents IX

4.4 Conclusions . 88

References . 89

5 Bayesian Theory of Decision . 91
5.1 Introduction . 91
5.2 Bayes Decision Rule . 92
5.3 Bayes Classifier� . 95
5.4 Loss Function . 96

5.4.1 Binary Classification . 98
5.5 Zero-One Loss Function . 99
5.6 Discriminant Functions . 100

5.6.1 Binary Classification Case . 101
5.7 Gaussian Density . 101

5.7.1 Univariate Gaussian Density . 102
5.7.2 Multivariate Gaussian Density . 102
5.7.3 Whitening Transformation . 104

5.8 Discriminant Functions for Gaussian Likelihood. 106
5.8.1 Features Are Statistically Independent 106
5.8.2 Covariance Matrix Is The Same for All Classes 107
5.8.3 Covariance Matrix Is Not the Same for All Classes . . 109

5.9 Receiver Operating Curves . 109
5.10 Conclusions . 111
Problems . 112

References . 115

6 Clustering Methods . 117
6.1 Introduction . 117
6.2 Expectation and Maximization Algorithm� 119

6.2.1 Basic EM� . 120
6.3 Basic Notions and Terminology . 122

6.3.1 Codebooks and Codevectors . 122
6.3.2 Quantization Error Minimization 124
6.3.3 Entropy Maximization . 124
6.3.4 Vector Quantization . 125

6.4 K-Means . 127
6.4.1 Batch K-Means . 128
6.4.2 Online K-Means . 129
6.4.3 K-Means Software Packages . 132

6.5 Self-Organizing Maps . 132
6.5.1 SOM Software Packages . 134
6.5.2 SOM Drawbacks . 134

6.6 Neural Gas and Topology Representing Network 134
6.6.1 Neural Gas . 135

X Contents

6.6.2 Topology Representing Network 135
6.6.3 Neural Gas and TRN Software Package 137
6.6.4 Neural Gas and TRN Drawbacks 137

6.7 General Topographic Mapping� . 137
6.7.1 Latent Variables� . 137
6.7.2 Optimization by EM Algorithm� 139
6.7.3 GTM versus SOM� . 140
6.7.4 GTM Software Package . 141

6.8 Fuzzy Clustering Algorithms . 141
6.8.1 FCM . 142

6.9 Hierarchical Clustering . 142
6.10 Conclusion . 144
Problems . 145

References . 147

7 Foundations of Statistical Learning
and Model Selection . 149
7.1 Introduction . 149
7.2 Bias-Variance Dilemma . 150

7.2.1 Bias-Variance Dilemma for Regression 150
7.2.2 Bias-Variance Decomposition for Classification� 151

7.3 Model Complexity . 153
7.4 VC Dimension and Structural Risk Minimization 156
7.5 Statistical Learning Theory� . 159

7.5.1 Vapnik-Chervonenkis Theory . 161
7.6 AIC and BIC Criteria . 163

7.6.1 Akaike Information Criterion . 163
7.6.2 Bayesian Information Criterion 164

7.7 Minimum Description Length Approach 165
7.8 Crossvalidation . 166

7.8.1 Generalized Crossvalidation . 166
7.9 Conclusion . 168
Problems . 168

References . 171

8 Supervised Neural Networks
and Ensemble Methods . 173
8.1 Introduction . 173
8.2 Artificial Neural Networks and Neural Computation 174
8.3 Artificial Neurons . 175
8.4 Connections and Network Architectures 179
8.5 Single-Layer Networks . 180

Contents XI

8.5.1 Linear Discriminant Functions and Single-Layer
Networks . 181

8.5.2 Linear Discriminants and the Logistic Sigmoid 182
8.5.3 Generalized Linear Discriminants and the Perceptron183

8.6 Multilayer Networks . 186
8.6.1 The Multilayer Perceptron . 186

8.7 Multilayer Networks Training . 188
8.7.1 Error Back-Propagation for Feed-Forwards Networks*188
8.7.2 Parameter Update: The Error Surface 190
8.7.3 Parameters Update: The Gradient Descent* 192
8.7.4 The Torch Package . 194

8.8 Learning Vector Quantization . 194
8.8.1 The LVQ PAK Software Package 196

8.9 Ensemble Methods . 197
8.9.1 Classifier Diversity and Ensemble Performance* 198
8.9.2 Creating Ensemble of Diverse Classifiers 200

8.10 Conclusions . 204
Problems . 204

References . 207

9 Kernel Methods . 211
9.1 Introduction . 211
9.2 Lagrange Method and Kuhn Tucker Theorem 213

9.2.1 Lagrange Multipliers Method . 213
9.2.2 Kuhn Tucker Theorem . 215

9.3 Support Vector Machines for Classification 216
9.3.1 Optimal Hyperplane Algorithm 217
9.3.2 Support Vector Machine Construction 220
9.3.3 Algorithmic Approaches to Solve Quadratic

Programming . 222
9.3.4 Sequential Minimal Optimization 223
9.3.5 Other Optimization Algorithms 225
9.3.6 SVM and Regularization Methods� 226

9.4 Multiclass Support Vector Machines . 228
9.4.1 One-versus-Rest Method . 228
9.4.2 One-versus-One Method . 229
9.4.3 Other Methods . 229

9.5 Support Vector Machines for Regression 229
9.5.1 Regression with Quadratic ε-Insensitive Loss 230
9.5.2 Kernel Ridge Regression . 233
9.5.3 Regression with Linear ε-Insensitive Loss 235
9.5.4 Other Approaches to Support Vector Regression 236

9.6 Gaussian Processes . 237
9.6.1 Regression with Gaussian Processes 238

XII Contents

9.7 Kernel Fisher Discriminant . 239
9.7.1 Fisher’s Linear Discriminant . 239
9.7.2 Fisher Discriminant in Feature Space 240

9.8 Kernel PCA . 242
9.8.1 Centering in Feature Space . 243

9.9 One-Class SVM . 245
9.9.1 One-Class SVM Optimization . 247

9.10 Kernel Clustering Methods . 249
9.10.1 Kernel K-Means . 249
9.10.2 One-Class SVM Extensions . 251
9.10.3 Spectral Clustering . 252

9.11 Software Packages . 254
9.12 Conclusion . 255
Problems . 256

References . 259

10 Markovian Models for Sequential Data . 265
10.1 Introduction . 265
10.2 Hidden Markov Models . 266

10.2.1 Emission Probability Functions 269
10.3 The Three Problems . 270
10.4 The Likelihood Problem and the Trellis** 271
10.5 The Decoding Problem** . 274
10.6 The Learning Problem** . 278

10.6.1 Parameter Initialization . 279
10.6.2 Estimation of the Initial State Probabilities 280
10.6.3 Estimation of the Transition Probabilities 280
10.6.4 Emission Probability Function Parameters

Estimation . 281
10.7 HMM Variants . 284
10.8 N -gram Models and Statistical Language Modeling 286

10.8.1 N -gram Models . 287
10.8.2 The Perplexity . 287
10.8.3 N -grams Parameter Estimation 288
10.8.4 The Sparseness Problem and the Language Case 289

10.9 Discounting and Smoothing Methods
for N -gram Models** . 292
10.9.1 The Leaving-One-Out Method . 292
10.9.2 The Turing Good Estimates . 294
10.9.3 Katz’s Disconting Model . 295

10.10 Building a Language Model with N -grams 296
Problems . 297

References . 301

Contents XIII

11 Feature Extraction Methods and Manifold Learning
Methods . 305
11.1 Introduction . 305
11.2 The Curse of Dimensionality� . 307
11.3 Data Dimensionality . 308

11.3.1 Local Methods . 308
11.3.2 Global Methods . 309

11.4 Principal Component Analysis . 313
11.4.1 Nonlinear Principal Component Analysis 315

11.5 Independent Component Analysis . 316
11.5.1 Statistical Independence . 318
11.5.2 ICA Estimation . 318
11.5.3 ICA by Mutual Information Minimization 322
11.5.4 FastICA Algorithm . 323

11.6 Multidimensional Scaling Methods . 325
11.6.1 Sammon’s Mapping . 325

11.7 Manifold Learning . 326
11.7.1 The Manifold Learning Problem 327
11.7.2 Isomap . 328
11.7.3 Locally Linear Embedding . 329
11.7.4 Laplacian Eigenmaps . 331

11.8 Conclusion . 333
Problems . 333

References . 337

Part III Applications

12 Speech and Handwriting Recognition . 345
12.1 Introduction . 345
12.2 The General Approach . 346
12.3 The Front End . 349

12.3.1 The Handwriting Front End . 349
12.3.2 The Speech Front End . 351

12.4 HMM Training . 353
12.4.1 Lexicon and Training Set . 353
12.4.2 Hidden Markov Models Training 355

12.5 Recognition and Performance Measures 356
12.5.1 Recognition . 356
12.5.2 Performance Measurement . 357

12.6 Recognition Experiments . 359
12.6.1 Lexicon Selection . 360
12.6.2 N -gram Model Performance . 361
12.6.3 Cambridge Database Results . 363

XIV Contents

12.6.4 IAM Database Results . 366
12.7 Speech Recognition Results . 367
12.8 Applications . 368

12.8.1 Applications of Handwriting Recognition 369
12.8.2 Applications of Speech Recognition 371

References . 373

13 Automatic Face Recognition . 381
13.1 Introduction . 381
13.2 Face Recognition: General Approach . 383
13.3 Face Detection and Localization . 385

13.3.1 Face Segmentation and Normalization
with TorchVision . 387

13.4 Lighting Normalization . 387
13.4.1 Center/Surround Retinex . 388
13.4.2 Gross and Brajovic’s Algorithm 389
13.4.3 Normalization with TorchVision 389

13.5 Feature Extraction . 390
13.5.1 Holistic Approaches . 390
13.5.2 Local Approaches . 392
13.5.3 Feature Extraction with TorchVision 393

13.6 Classification . 397
13.7 Performance Assessment . 399

13.7.1 The FERET Database . 400
13.7.2 The FRVT database . 401

13.8 Experiments . 402
13.8.1 Data and Experimental Protocol 402
13.8.2 Euclidean Distance-Based Classifier 403
13.8.3 SVM-Based Classification . 405

References . 407

14 Video Segmentation and Keyframe Extraction 413
14.1 Introduction . 413
14.2 Applications of Video Segmentation . 414
14.3 Shot Boundary Detection . 416

14.3.1 Pixel-Based Approaches . 417
14.3.2 Block-Based Approaches . 418
14.3.3 Histogram-Based Approaches . 420
14.3.4 Clustering-Based Approaches . 420
14.3.5 Performance Measures . 422

14.4 Shot Boundary Detection with Torchvision 423
14.5 Keyframe Extraction . 424
14.6 Keyframe Extraction with Torchvision and Torch 426

Contents XV

References . 427

Part IV Appendices

A Statistics . 433
A.1 Fundamentals . 433

A.1.1 Probability and Relative Frequency 433
A.1.2 The Sample Space . 434
A.1.3 The Addition Law . 434
A.1.4 Conditional Probability . 437
A.1.5 Statistical Independence . 438

A.2 Random Variables . 439
A.2.1 Fundamentals . 439
A.2.2 Mathematical Expectation . 441
A.2.3 Variance and Covariance . 442

B Signal Processing . 445
B.1 Introduction . 445
B.2 The Complex Numbers . 445
B.3 The z -Transform. 447

B.3.1 z-Transform Properties . 449
B.3.2 The Fourier Transform . 451
B.3.3 The Discrete Fourier Transform 452

B.4 The Discrete Cosine Transform . 453

C Matrix Algebra . 457
C.1 Introduction . 457
C.2 Fundamentals . 457
C.3 Determinants . 458
C.4 Eigenvalues and Eigenvectors . 460

D Mathematical Foundations of Kernel Methods 463
D.1 Introduction . 463
D.2 Scalar Products, Norms and Metrics . 464
D.3 Positive Definite Kernels and Matrices . 465

D.3.1 How to Make a Mercer Kernel . 469
D.4 Conditionate Positive Definite Kernels and Matrices 471
D.5 Negative Definite Kernels and Matrices 472
D.6 Relations Between Positive and Negative Definite Kernels . . . 474
D.7 Metric Computation by Mercer Kernels 476
D.8 Hilbert Space Representation of Positive Definite Kernels . . . 478
D.9 Conclusions . 480

XVI Contents

References . 481

Index . 483

1

Introduction

1.1 Two Fundamental Questions

There are two fundamental questions that should be answered before buying,
and even more before reading, a book:

• Why should one read the book?
• What is the book about?

This is the reason why this section, the first of the whole text, proposes some
motivations for potential readers (Section 1.1.1) and an overall description of
the content (Section 1.1.2). If the answers are convincing, further information
can be found in the rest of this chapter: Section 1.2 shows in detail the struc-
ture of the book, Section 1.3 presents some features that can help the reader
to better move through the text, and Section 1.4 provides some reading tracks
targeting specific topics.

1.1.1 Why Should One Read The Book?

One of the most interesting technological phenomena in recent years is the
diffusion of consumer electronic products with constantly increasing acquisi-
tion, storage and processing power. As an example, consider the evolution of
digital cameras: the first models available in the market in the early nineties
produced images composed of 1.6 million pixels (this is the meaning of the
expression 1.6 megapixels), carried an onboard memory of 16 megabytes, and
had an average cost higher than 10,000 U.S. dollars. At the time this book is
being written, the best models are close to or even above 8 megapixels, have
internal memories of one gigabyte and they cost around 1,000 U.S. dollars. In
other words, while resolution and memory capacity have been multiplied by
around five and fifty, respectively, the price has been divided by more than ten.
Similar trends can be observed in all other kinds of digital devices including
videocameras, cellular phones, mp3 players, personal digital assistants (PDA),

2 1 Introduction

etc. As a result, large amounts of digital material are being accumulated and
need to be managed effectively in order to avoid the problem of information
overload.

The same period has witnessed the development of the Internet as ubiq-
uitous source of information and services. In the early stages (beginning of
the nineties), the webpages were made essentially of text. The reason was
twofold: on the one hand the production of digital data different from simple
texts was difficult (see above); on the other hand the connections were so
slow that the download of a picture rather than an audio file was a painful
process. Needless to say, how different the situation is today: multimedia ma-
terial (including images, audio and videos) can be not only downloaded from
the web from a computer, but also through cellular phones and PDAs. As a
consequence, the data must be adapted to new media with tight hardware and
bandwidth constraints.

The above phenomena have led to two major challenges for the scientific
community:

• Data analysis: it is not possible to take profit from large amounts of data
without effective approaches for accessing their content. The goal of data
analysis is to extract the data content, i.e. any information that constitutes
an asset for potential users.

• Data processing : the data are an actual asset if they are accessible every-
where and available at any moment. This requires representing the data
in a form that enables the transmission through physical networks as well
as wireless channels.

This book addresses the above challenges, with a major emphasis on the analy-
sis, and this is the main reason for reading this text. Moreover, even if the
above challenges are among the hottest issues in current research, the tech-
niques presented in this book enable one to address many other engineering
problems involving complex data: automatic reading of handwritten addresses
in postal plants, modeling of human actions in surveillance systems, analysis
of historical documents archives, remote sensing (i.e. extraction of information
from satellite images), etc. The book can thus be useful to almost any person
dealing with audio, image and video data: students at the early stage of their
education that need to lay the ground of their future career, PhD students
and researchers who need a reference in their everyday activity, practitioners
that want to keep the pace of the state-of-the-art.

1.1.2 What Is the Book About?

A first and general answer to the question ‘What is the book about? ’ can be
obtained by defining the two parts of the title, i.e. machine learning (ML) on
one side and audio, image and video analysis on the other side (for a more
detailed description of the content of chapters see Section 1.2):

1.1 Two Fundamental Questions 3

zipcode location

zipcode transcription 4 1 0 3 5

Data Analysis

Machine Learning

Fig. 1.1. Zipcode reading machine. The structure of the machine underlies the
structure of the book: Part I involves the early stages of the data analysis block,
Part II focuses on the machine learning block and Part III shows examples of other
systems.

• ML is a multidisciplinary approach, involving several scientific domains
(e.g. mathematics, computer science, physics, biology, etc.), that enable
computers to automatically learn from data. By learning we mean here a
process that takes as input data and gives as output algorithms capable
of performing, over the same kind of data, a desired task.

• Image, audio and video analysis include any technique capable of extract-
ing from the data high-level information, i.e. information that is not ex-
plicitly stated, but it requires an abstraction process.

As an example, consider a machine for the automatic transcription of zipcodes
written on envelopes. Such machines route the letters towards their correct
destination without human intervention and speed up significantly the mail
delivery process.

The general scheme of such a machine is depicted in Figure 1.1 and it shows
how both components of the title are involved: the image analysis part takes as
input the digital image of the envelope and gives as output the regions actually
containing the zipcode. From the point of view of the machine, the image is
nothing other than an array of numbers and the position of the zipcode, then
of its digits, is not explicitly available. The location of the zipcode is thus an
operation that requires, following the above definition, an abstraction process.

The second stage is the actual transcription of the digits. Handwritten
data are too variable and ambiguous to be transcribed with rules, i.e. with
explicit conditions that must be met in order to transcribe a digit in one
way rather than another. ML techniques address such a problem by using
statistics to model large amounts of elementary information, e.g. the value of
single pixels, and their relations.

4 1 Introduction

The example concerns a problem where the data are images, but similar
approaches can be found also for audio recordings and videos. In all cases,
analysis and ML components interact in order to first convert the raw data
into a format suitable for ML, and then apply ML techniques in order to
perform a task of interest.

In summary, this book is about techniques that enable one to perform
complex tasks over challenging data like audio recordings, images and videos
data where the informations to be extracted are never explicit, but rather
hidden behind the data statistical properties.

1.2 The Structure of the Book

The structure of the machine shown as an example in Section 1.1.2 underlies
the structure of the book. The text is composed of three following parts:

• From Perception to Computation. This part shows how complex data such
as audio, images and videos can be converted into mathematical objects
suitable for computer processing and, in particular, for the application of
ML techniques.

• Machine Learning. This part presents a wide selection of the machine
learning approaches which are, in our opinion, most effective for image,
video and audio analysis. Comprehensive surveys of ML are left to specific
handbooks (see the references in Chapter 4).

• Applications. This part presents few major applications including ML and
analysis techniques: handwriting and speech recognition, face recognition,
video segmentation and keyframe extraction.

The book is then completed by four appendices that provide notions about the
main mathematical instruments used throughout the text: signal processing,
matrix algebra, probability theory and kernel theory. The following sections
describe in more detail the content of each part.

1.2.1 Part I: From Perception to Computation

This part includes the following two chapters:

• Chapter 2: Audio Acquisition, Representation and Storage
• Chapter 3: Image and Video Acquisition, Representation and Storage

The main goal of this part is to show how the physical supports of our auditory
and visual perceptions, i.e. acoustic waves and electromagnetic radiation, are
converted into objects that can be manipulated by a computer. This is the
sense of the name From Perception to Computation.

Chapter 2 focuses on audio data and starts with a description of the hu-
man auditory system. This shows how the techniques used to represent and
store audio data try to capture the same information that seems to be most

1.2 The Structure of the Book 5

important for human ears. Major attention is paid to the most common au-
dio formats and their underlying encoding technologies. The chapter includes
also some algorithms to perform basic operations such as silence detection in
spoken data.

Chapter 3 focuses on images and videos and starts with a description of
the human visual apparatus. The motivation is the same as in the case of
audio data, i.e. to show how the way humans perceive images influences the
engineering approaches to image acquisition, representation and storage. The
rest of the chapter is dedicated to color models, i.e. the way visual sensations
are represented in a computer, and to the most important image and video
formats.

In terms of the machine depicted in Figure 1.1, Part I concerns the early
steps of the analsis stage.

1.2.2 Part II: Machine Learning

This part includes the following chapters:

• Chapter 4: Machine Learning
• Chapter 5: Bayesian Decision Theory
• Chapter 6: Clustering Methods
• Chapter 7: Foundations of Statistical Machine Learning
• Chapter 8: Supervised Neural Networks and Ensemble Methods
• Chapter 9: Kernel Methods
• Chapter 10: Markovian Models for Sequential Data
• Chapter 11: Feature Extraction and Manifold Learning Methods

The main goal of Part II is to provide an extensive survey of the main tech-
niques applied in machine learning. The chapters of Part II cover most of the
ML algorithms applied in state-of-the-art systems for audio, image and video
analysis.

Chapter 4 explains what machine learning is. It provides the basic termi-
nology necessary to read the rest of the book, and introduces few fundamental
concepts such as the difference between supervised and unspervised learning.

Chapter 5 lays the groundwork on which most of the ML techniques are
built, i.e. the Bayesian decision theory. This is a probabilistic framework where
the problem of making decisions about the data, i.e. of deciding whether a
given bitmap shows a handwritten “3” or another handwritten character, is
stated in terms of probabilities.

Chapter 6 presents the so-called clustering methods, i.e. techniques that
are capable of splitting large amounts of data, e.g. large collections of hand-
written digit images, into groups called clusters supposed to contain only
similar samples. In the case of handwritten digits, this means that all samples
grouped in a given cluster should be of the same kind, i.e. they should all
show the same digit.

6 1 Introduction

Chapter 7 introduces two fundamental tools for assessing the performance
of an ML algorithm: The first is the bias-variance decomposition and the
second is the Vapnik-Cervonenkis dimension. Both instruments address the
problem of model selection, i.e. finding the most appropriate model for the
problem at hand.

Chapter 8 describes some of the most popular ML algorithms, namely
neural networks and ensemble techniques. The first is a corpus of techniques
inspired by the organization of the neurons in the brain. The second is the
use of multiple algorithms to achieve a collective performance higher than the
performance of any single item in the ensemble.

Chapter 9 introduces the kernel methods, i.e. techniques based on the
projection of the data into spaces where the tasks of interest can be performed
better than in the original space where they are represented.

Chapter 10 shows a particular class of ML techniques, the so-called
Markovian models, which aim at modeling sequences rather than single ob-
jects. This makes them particularly suitable for any problem where there are
temporal or spatial constraints.

Chapter 11 presents some techniques that are capable of representing the
data in a form where the actual information is enhanced while the noise is
eliminated or at least attenuated. In particular, these techniques aim at re-
ducing the data dimensionality, i.e. the number of components necessary to
represent the data as vectors. This has several positive consequences that are
described throughout the chapter.

In terms of the machine depicted in Figure 1.1, Part II addresses the
problem of transcribing the zipcode once it has been located by the analysis
part.

1.2.3 Part III: Applications

Part II includes the following chapters:

• Chapter 12: Speech and Handwriting Recognition
• Chapter 13: Face Recognition
• Chapter 14: Video Segmentation and Keyframe Extraction

The goal of Part III is to present examples of applications using the tech-
niques presented in Part II. Each chapter of Part III shows an overall system
where analysis and ML components interact in order to accomplish a given
task. Whenever possible, the chapters of this part present results obtained
using publicly available data and software packages. This enables the reader
to perform experiments similar to those presented in this book.

Chapter 12 shows how Markovian models are applied to the automatic
transcription of spoken and handwritten data. The goal is not only to present
two of the most investigated problems of the literature, but also to show how
the same technique can be applied to two kinds of data apparently different
like speech and handwriting.

1.3 How to Read This Book 7

Chapter 13 presents face recognition, i.e. the problem of recognizing the
identity of a person portrayed in a digital picture. The algorithms used in this
chapter are the principal component analysis (one of the feature extraction
methods shown in Chapter 11) and the support vector machines (one of the
algorithms presented in Chapter 9).

Chapter 14 shows how clustering techniques are used for the segmentation
of videos into shots1 and how the same techniques are used to extract from
each shot the most representative image.

Each chapter presents an application as a whole, including both analysis
and ML components. In other words, Part III addresses elements that can be
found in all stages of Figure 1.1.

1.2.4 Appendices

The four appendices at the end of the book provide the main notions about
the mathematical instruments used throughout the book:

• Appendix A: Signal Processing. This appendix presents the main elements
of signal processing theory including Fourier transform, z-transform, dis-
crete cosine transform and a quick recall of the complex numbers. This
appendix is especially useful for reading Chapter 2 and Chapter 12.

• Appendix B: Statistics. This appendix introduces the main statistical no-
tions including space of the events, probability, mean, variance, statistical
independence, etc. The appendix is useful to read all chapters of Parts II
and III.

• Appendix C: Matrix Algebra. This appendix gives basic notions on matrix
algebra and provides a necessary support for going through some of the
mathematical procedures shown in Part II.

• Appendix D: Kernel Theory. This appendix presents kernel theory and it
is the natural complement of Chapter 9.

None of the appendices present a complete and exhaustive overview of the
domain they are dedicated to, but they provide sufficient knowledge to read
all the chapters of the book. In other words, the goal of the appendices is not
to replace specialized monographies, but to make this book as self-consistent
as possible.

1.3 How to Read This Book

This section explains some features of this book that should help the reader
to better move through the different parts of the text:

1 A shot is an unbroken sequence of images captured with a video camera.

8 1 Introduction

• Backgorund and Learning Goal Information: at the beginning of each chap-
ter, the reader can find information about required background and learn-
ing goals.

• Difficulty Level of Each Section: sections requiring a deeper mathematical
background are signaled.

• Problems: at the end of the chapters of Parts I and II (see Section 1.2)
there are problems aimed at testing the skills acquired by reading the
chapter.

• Software: whenever possible, the text provides pointers to publicly avail-
able data and software packages. This enable the reader to immediately
put in practice the notions acquired in the book.

The following sections provide more details about each of the above features.

1.3.1 Background and Learning Objectives

At the beginning of each chapter, the reader can find two lists: the first is
under the header What the reader should know before reading this chapter,
the second is under the header What the reader should know after reading
this chapter. The first list provides information about the preliminary notions
necessary to read the chapter. The book is mostly self-contained and the back-
ground can often be found in other chapters or in the appendices. However,
in some cases the reader is expected to have the basic knowledge provided in
the average undergraduate studies. The second list sets a certain number of
goals to be achieved by reading the chapter. The objectives are designed to
be a measure of a correct understanding of the chapter content.

1.3.2 Difficulty Level

The titles of some sections show a ∗ or ∗∗ symbol at the end. 2 The meaning is
that the content of the sections requires a background available only at the end
of the undergraduate studies (one star) or at the level of PhD and beyond (two
stars). This is not supposed to discourage the readers, bur rather to help them
to better focus on the sections that are more accessible to them. On the other
hand, the assignment of the difficulty level is mostly based on the experience
of the authors. Graduate and undergraduate study programs are different
depending on universities and countries and what the authors consider difficult
can be considered accessible in other situations. In other words, the difficulty
level has to be considered a warning rather than a prescription.

1.3.3 Problems

At the end of each chapter, the reader can find some problems. In some cases
the problems propose to demonstrate theorems or to solve exercices, in other
2 Sections with no stars are supposed to be accessible to anybody.

1.4 Reading Tracks 9

cases they propose to perform experiments using publicly available software
packages (see below).

1.3.4 Software

Whenever possible, the book provides pointers to publicly available software
packages and data. This should enable the readers to immediately apply in
practice the algorithms and the techniques shown in the text. All packages
are widely used in the scientific community and are accompanied by extensive
documentation (provided by the package authors). Moreover, since data and
packages have typically been applied in several works presented in the litera-
ture, the readers have the possibility to repeat the experiments performed by
other researchers and practitioners.

1.4 Reading Tracks

The book is not supposed to be read as a whole. Readers should start from
their needs and identify the chapters most likely to address them. This sec-
tion provides few reading tracks targeted at developing specific competences.
Needless to say, the tracks are simply suggestions and provide an orientation
through the content of the book, rather than a rigid prescription.

• Introduction to Machine Learning. This track includes Appendix A, and
Chapters 4, 5 and 7:
– Target Readers: students and practitioners that study machine learning

for the first time.
– Goal : to provide the first and fundamental notions about ML, including

what ML is, what can be done with ML, and what are the problems
that can be addressed using ML.

• Kernel Methods and Support Vector Machines. This track includes Appen-
dix D, Chapter 7 and Chapter 9. Chapter 13 is optional.
– Target Readers: experienced ML practitioners and researchers that

want to include kernel methods in their toolbox or background.
– Goal : to provide competences necessary to understand and use support

vector machines and kernel methods. Chapter 13 provides an exam-
ple of application, i.e. automatic face recognition, and pointers to free
packages implementing support vector machines.

• Markov Models for Sequences. This track includes Appendix A, Chapter 5
and Chapter 10. Chapter 12 is optional.
– Target Readers: experienced ML practitioners and researchers that

want to include Markov models in their toolbox or background.
– Goal : to provide competences necessary to understand and use hidden

Markov models and N -gram models. Chapter 12 provides an example
of application, i.e. handwriting recognition, and describes free packages
implementing Markov models.

10 1 Introduction

• Unsupervised Learning Techniques. This track includes Appendix A, Chap-
ter 5 and Chapter 6. Chapter 14 is optional.
– Target Readers: experienced ML practitioners and researchers that

want to include clustering techniques in their toolbox or background.
– Goal : to provide competences necessary to understand and use the

main unsupervised learning techniques. Chapter 14 provides an exam-
ple of application, i.e. shot detection in videos.

• Data processing. This track includes Appendix B, Chapter 2 and 3.
– Target Readers: students, researchers and practitioners that work for

the first time with audio and images.
– Goal : to provide the basic competences necessary to acquire, represent

and store audio files and images.

Acknowledgements

This book would not have been possible without the help of several persons.
First of all we wish to thank Lakhmi Jain and Catherine Brett who managed
the book proposal submission. Then we thank those who helped us to sig-
nificantly improve the original manuscript: the copyeditor at Springer-Verlag
and our colleagues and friends Fabien Cardinaux, Matthias Dolder, Sarah
Favre, Maurizio Filippone, Giulio Giunta, Itshak Lapidot, Guillaume Lathoud,
Sébastien Marcel, Daniele Mastrangelo, Franco Masulli, Alexei Podzhnoukov,
Guillermo Aradilla Zapata. Finally, we thank the Department of Applied Sci-
ences at Parthenope University (Naples, Italy) and the IDIAP Research In-
stitute (Martigny, Switzerland) for letting us dedicate a significant amount of
time and energy to this book.

2

Audio Acquisition, Representation and Storage

What the reader should know to understand this chapter

• Basic notions of physics.
• Basic notions of calculus (trigonometry, logarithms, exponentials, etc.)

What the reader should know after reading this chapter

• Human hearing and speaking physiology.
• Signal processing fundamentals.
• Representation techniques behind the main audio formats.
• Perceptual coding fundamentals.
• Audio sampling fundamentals.

2.1 Introduction

The goal of this chapter is to provide basic notions about digital audio process-
ing technologies. These are applied in many everyday life products such as
phones, radio and television, videogames, CD players, cellular phones, etc.
However, although there is a wide spectrum of applications, the main prob-
lems to be addressed in order to manipulate digital sound are essentially three:
acquisition, representation and storage. The acquisition is the process of con-
verting the physical phenomenon we call sound into a form suitable for digital
processing, the representation is the problem of extracting from the sound in-
formation necessary to perform a specific task, and the storage is the problem
of reducing the number of bits necessary to encode the acoustic signals.

The chapter starts with a description of the sound as a physical phe-
nomenon (Section 2.2). This shows that acoustic waves are completely deter-
mined by the energy distribution across different frequencies; thus, any sound
processing approach must deal with such quantities. This is confirmed by an

14 2 Audio Acquisition, Representation and Storage

analysis of voicing and hearing mechanisms in humans. In fact, the vocal appa-
ratus determines frequency and energy content of the voice through the vocal
folds and the articulators. Such organs are capable of changing the shape of
the vocal tract like it happens in the cavity of a flute when the player acts
on keys or holes. In the case of sound perception, the main task of the ears
is to detect the frequencies present in an incoming sound and to transmit
the corresponding information to the brain. Both production and perception
mechanisms have an influence on audio processing algorithms.

The acquisition problem is presented in Section 2.3 through the descrip-
tion of the analog-to-digital (A/D) conversion, the process transforming any
analog signal into a form suitable for computer processing. Such a process is
performed by measuring at discrete time steps the physical effects of a signal.
In the case of the sound, the effect is the displacement of an elastic membrane
in a microphone due to the pressure variations determined by acoustic waves.
Section 2.3 presents the two main issues involved in the acquisition process:
the first is the sampling, i.e. the fact that the original signal is continuous in
time, but the effect measurements are performed only at discrete-time steps.
The second is the quantization, i.e. the fact that the physical measurements
are continuous, but they must be quantized because only a finite number of
bits is available on a computer.

The quantization plays an important role also in storage problems because
the number of bits used to represent a signal affects the amount of memory
space needed to store a recording. Section 2.4 presents the main techniques
used to store audio signals by describing the most common audio formats
(e.g. WAV, MPEG, mp3, etc.). The reason is that each format corresponds
to a different encoding technique, i.e. to a different way of representing an
audio signal. The goal of encoding approaches is to reduce the amount of
bits necessary to represent a signal while keeping an acceptable perceptual
quality. Section 2.4 shows that the pressure towards the reduction of the bit-
rate (the amount of bits necessary to represent one second of sound) is due
not only to the emergence of new applications characterized by tighter space
and bandwidth constraints, but also by consumer preferences.

While acquisition and storage problems are solved with relatively few stan-
dard approaches, the representation issue is task dependent. For storage prob-
lems (see above), the goal of the representation is to preserve as much as pos-
sible the information of the acoustic waveforms, in prosody analysis or topic
segmentation, it is necessary to detect the silences or the energy of the signal,
in speaker recognition the main information is in the frequency content of
the voice, and the list could continue. Section 2.5 presents some of the most
important techniques analyzing the variations of the signal to extract useful
information. The corpus of such techniques is called time domain processing
in opposition to frequency-domain methods that work on the spectral repre-
sentation of the signals and are shown in Appendix B and Chapter 12.

Most of the content of this chapter requires basic mathematical notions,
but few points need familiarity with Fourier analysis. When this is the case,

2.2 Sound Physics, Production and Perception 15

the text includes a warning and the parts that can be difficult for unexperi-
enced readers can be skipped without any problem. An introduction to Fourier
analysis and frequency domain techniques is available in Appendix B. Each
section provides references to specialized books and tutorials presenting in
more detail the different issues.

2.2 Sound Physics, Production and Perception

This section presents the sound from both a physical and physiological point
of view. The description of the main acoustic waves properties shows that
the sound can be fully described in terms of frequencies and related energies.
This result is obtained by describing the propagation of a single frequency
sine wave, an example unrealistically simple, but still representative of what
happens in more realistic conditions. In the following, this section provides
a general description of how the human beings interact with the sound. The
description concerns the way the speech production mechanism determines
the frequency content of the voice and the way our ears detect frequencies in
incoming sounds.

For more detailed descriptions of the acoustic properties, the reader can
refer to more extensive monographies [3][16][24] and tutorials [2][11]. The psy-
chophysiology of hearing is presented in [23][30], while good introductions to
speech production mechanisms are provided in [9][17].

2.2.1 Acoustic Waves Physics

The physical phenomenon we call sound is originated by air molecule os-
cillations due to the mechanical energy emitted by an acoustic source. The
displacement s(t) with respect to the equilibrium position of each molecule
can be modeled as a sinusoid:

s(t) = A sin(2πft + φ) = A sin
(

2π

T
t + φ

)
(2.1)

where A is called amplitude and represents the maximum distance from the
equilibrium position (typically measured in nanometers), φ is the phase, T is
called period and it is the time interval length between two instants where s(t)
takes the same value, and f = 1/T is the frequency measured in Hz, i.e. the
number of times s(t) completes a cycle per second. The function s(t) is shown
in the upper plot of Figure 2.1. Since all air molecules in a certain region of
the space oscillate together, the acoustic waves determine local variations of
the density that correspond to periodic compressions and rarefactions. The
result is that the pressure changes with the time following a sinusoid p(t) with
the same frequency as s(t), but amplitude P and phase φ∗ = φ + π/2:

p(t) = P sin
(
2πft + φ +

π

2

)
= P sin

(
2π

T
t + φ +

π

2

)
. (2.2)

16 2 Audio Acquisition, Representation and Storage

−A/−P

0

A/P
Period

time

A
m

pl
itu

de
/P

re
ss

ur
e

Displacement
Pressure

−A/−P

0

A/P
Wavelength

distance

A
m

pl
itu

de
/P

re
ss

ur
e

Displacement
Pressure

Fig. 2.1. Frequence and wavelength. The upper plot shows the displacement of air
molecules with respect to their equilibrium position as a function of time. The lower
plot shows the distribution of pressure values as a function of the distance from the
sound source.

The dashed sinusoid in the upper plot of Figure 2.1 corresponds to p(t) and
it shows that the pressure variations have a delay of a quarter of period
(due to the π/2 added to the phase) with respect to s(t). The maximum
pressure variations correspond, for the highest energy sounds in a common
urban environment, to around 0.6 percent of the atmospheric pressure.

When the air molecules oscillate, they transfer part of their mechanical
energy to surrounding particules through collisions. The molecules that receive
energy start oscillating and, with the same mechanism, they transfer mechanic
energy to further particles. In this way, the acoustic waves propagate through
the air (or any other medium) and can reach listeners far away from the
source. The important aspect of such a propagation mechanism is that there
is no net flow of particles no matter is transported from the point where the
sound is emitted to the point where a listener receives it. Sound propagation
is actually due to energy transport that determines pressure variations and
molecule oscillations at distance x from the source.

The lower plot of Figure 2.1 shows the displacement s(x) of air molecules
as a function of the distance x from the audio source:

s(x) = A sin
(

2π

v
fx + φ

)
= A sin

(
2π

λ
x + φ

)
(2.3)

2.2 Sound Physics, Production and Perception 17

where v is the sound speed in the medium and λ = v/f is the wavelength,
i.e. the distance between two points where s(x) takes the same value (the
meaning of the other symbols is the same as in Equation (2.1). Each point
along the horizontal axis of the lower plot in Figure 2.1 corresponds to a
different molecule of which s(x) gives the displacement. The pressure variation
p(x) follows the same sinusoidal function, but has a quarter of period delay
like in the case of p(t) (dashed curve in the lower plot of Figure 2.1):

p(x) = P sin
(

2π

v
fx + φ +

π

2

)
= P sin

(
2π

λ
x + φ +

π

2

)
. (2.4)

The equations of this section assume that an acoustic wave is completely
characterized by two parameters: the frequency f and the amplitude A. From
a perceptual point of view, A is related to the loudness and f corresponds to
the pitch. While two sounds with equal loudness can be distinguished based
on their frequency, for a given frequency, two sounds with different amplitude
are perceived as the same sound with different loudness. The value of f is mea-
sured in Hertz (Hz), i.e. the number of cycles per second. The measurement
of A is performed through the physical effects that depend on the amplitude
like pressure variations.

The amplitude is related to the energy of the acoustic source. In fact, the
higher is the energy, the higher is the displacement and, correspondently,
the perceived loudness of the sound. From an audio processing point of view,
the important aspect is what happens for a listener at a distance R from the
acoustic source. In order to find a relationship between the source energy and
the distance R, it is possible to use the intensity I, i.e. the energy passing per
time unit through a surface unit. If the medium around the acoustic source
is isotropic, i.e. it has the same properties along all directions, the energy is
distributed uniformly on spherical surfaces of radius R centered in the source.
The intensity I can thus be expressed as follows:

I(R) =
W

4πR2
(2.5)

where W = ∆E/∆t is the source power, i.e. the amount of energy ∆E emitted
in a time interval of duration ∆t. The power is measured in watts (W) and
the intensity in watts per square meter (W/m2). The relationship between I
and A is as follows:

I = 2Zπ2f2A2 (2.6)

where Z is a characteristic of the medium called acoustic impedance .
Since the only sounds that are interesting in audio applications are those

that can be perceived by human beings, the intensities can be measured
through their ratio I/I0 to the threshold of hearing (THO) I0, i.e. the min-
imum intensity detectable by human ears. However, this creates a problem
because the value of I0 corresponds to 10−12 W/m2, while the maximum
value of I that can be tolerated without permanent physiological damages is

18 2 Audio Acquisition, Representation and Storage

Imax = 103 W/m2. The ratio I/I0 can thus range across 15 orders of magni-
tude and this makes it difficult to manage different intensity values. For this
reason, the ratio I/I0 is measured using the deciBel (dB) scale:

I∗ = 10 log10

(
I

I0

)
(2.7)

where I∗ is the intensity measured in dB. In this way, the intensity values
range between 0 (I = I0) and 150 (I = Imax). Since the intensity is propor-
tional to the square power of the maximum pressure variation P as follows:

I =
P 2

2Z
, (2.8)

the value of I∗ can be expressed also in terms of db SPL (sound pressure
level):

I∗ = 20 log10

(
P

P0

)
. (2.9)

The numerical value of the intensity is the same when using dB or db SPL,
but the latter unit allows one to link intensity and pressure. This is important
because the pressure is a physical effect relatively easy to measure and the
microphones rely on it (see Section 2.3).

Real sounds are never characterized by a single frequency f , but by an
energy distribution across different frequencies. In intuitive terms, a sound can
be thought of as a “sum of single frequency sounds,” each characterized by a
specific frequency and a specific energy (this aspect is developed rigorously in
Appendix B). The important point of this section is that a sound can be fully
characterized through frequency and energy measures and the next sections
show how the human body interacts with sound using such informations.

2.2.2 Speech Production

Human voices are characterized, like any other acoustic signal, by the energy
distribution across different frequencies. This section provides a high-level
sketch of how the human vocal apparatus determines such characteristics.
Deeper descriptions, especially from the anatomy point of view, can be found
in specialized monographies [23][30].

The voice mechanism starts when the diaphragm pushes air from lungs
towards the oral and nasal cavities. The air flow has to pass through an
organ called glottis that can be considered like a gate to the vocal tract (see
Figure 2.2). The glottis determines the frequency distribution of the voice,
while the vocal tract (composed of larynx and oral cavity) is at the origin of
the energy distribution across frequencies. The main components of the glottis
are the vocal folds and the way they react with respect to air coming from the
lungs enables to distinguish between the two main classes of sounds produced
by human beings. When the vocal folds vibrate, the sounds are called voiced,

2.2 Sound Physics, Production and Perception 19

vocal
tract

(1)

(2)

(3)

Vocal Tract

glottis

air flow

larynx

vocal folds

glottis

oral cavity

lips

nasal cavity

Fig. 2.2. Speech production. The left figure shows a sketch of the speech production
apparatus (picture by Matthias Dolder); the right figure shows the glottal cycle:
the air flows increases the pressure below the glottis (1), the vocal folds open to
reequilibrate the pressure difference between larynx and vocal tract (2), once the
equlibrium is achieved the vocal folds close again (3). the cycle is repated as long as
air is pushed by the lungs.

otherwise they are called unvoiced. For a given language, all words can be
considered like sequences of elementary sounds, called phonemes, belonging
to a finite set that contains, for western languages, 35-40 elements on average
and each phoneme is either voiced or unvoiced.

When a voiced phoneme is produced, the vocal folds vibrate following the
cycle depicted in Figure 2.2. When air arrives at the glottis, the pressure dif-
ference with respect to the vocal tract increases until the vocal folds are forced
to open to reestablish the equilibrium. When this is reached, the vocal folds
close again and the cycle is repeated as long as voiced phonemes are produced.
The vibration frequency of the vocal folds is a characteristic specific of each
individual and it is called fundamental frequency F0, the single factor that
contributes more than anything else to the voice pitch. Moreover, most of the
energy in human voices is distributed over the so-called formants, i.e. sound
components with frequencies that are integer multiples of F0 and correspond
to the resonances of the vocal tract. Typical F0 values range between 60 and
300 Hz for adult men and small children (or adult women) respectively. This
means that the first 10-12 formants, on which most of the speech energy is dis-
tributed, correspond to less than 4000 Hz. This has important consequences
on the human auditory system (see Section 2.2.3) as well as on the design of
speech acquisition systems (see Section 2.3).

The production of unvoiced phonemes does not involve the vibration of
the vocal folds. The consequence is that the frequency content of unvoiced
phonemes is not as defined and stable as the one of voiced phonemes and
that their energy is, on average, lower than that of the others. Examples of
voiced phonemes are the vowels and the phonemes corresponding to the first

20 2 Audio Acquisition, Representation and Storage

sound in words like milk or lag, while unvoiced phonemes can be found at
the beginning of words six and stop. As a further example you can consider
the words son and zone which have phonemes at the beginning where the
vocal tract has the same configuration, but in the first case (son) the initial
phoneme is unvoiced, while it is voiced in the second case. The presence of
unvoiced phonemes at the beginning or the end of words can make it difficult
to detect their boundaries.

The sounds produced at the glottis level must still pass through the vocal
tract where several organs play as articulators (e.g. tongue, lips, velum, etc.).
The position of such organs is defined articulators configuration and it changes
the shape of the vocal tract. Depending on the shape, the energy is concen-
trated on certain frequencies rather than on others. This makes it possible
to reconstruct the articulator configuration at a certain moment by detecting
the frequencies with the highest energy. Since each phoneme is related to a
specific articulator configuration, energy peak tracking, i.e. the detection of
highest energy frequencies along a speech recording, enables, in principle, to
reconstruct the voiced phoneme sequences and, since most speech phonemes
are voiced, the corresponding words. This will be analyzed in more detail in
Chapter 12.

2.2.3 Sound Perception

This section shows how the human auditory peripheral system (APS), i.e.
what the common language defines as ears, detects the frequencies present in
incoming sounds and how it reacts to their energies (see Figure 2.3). The def-
inition peripheral comes from the fact that no cognitive functions, performed
in the brain, are carried out at its level and its only role is to acquire the
information contained in the sounds and to transmit it to the brain. In ma-
chine learning terms, the ear is a basic feature extractor for the brain. The
description provided here is just a sketch and more detailed introductions to
the topic can be found in other texts [23][30].

The APS is composed of three parts called outer, middle and inner ear.
The outer ear is the pinna that can be observed at both sides of the head.
Following recent experiments, the role of the outer ear, considered minor so
far, seems to be important in the detection of the sound sources position.
The middle ear consists of the auditory channel, roughly 1.3 cm long, which
connects the external environment with the inner ear. Although it has such
a simple structure, the middle ear has two important properties, the first is
that it optimizes the transmission of frequencies between around 500 and 4000
Hz, the second is that it works as an impedance matching mechanism with
respect to the inner ear. The first property is important because it makes
the APS particularly effective in hearing human voices (see previous section),
the second one is important because the inner ear has an acoustic impedance
higher than air and all the sounds would be reflected at its entrance without
an impedance matching mechanism.

2.2 Sound Physics, Production and Perception 21

auditory
channel

cochleapinna oval
window

Fig. 2.3. Auditory peripheral system. The peripheral system can be divided into
outer (the pinna is the ear part that can be seen on the sides of the head), middle
(the channel bringing sounds toward the cochlea) and inner part (the cochlea and
the hair cells). Picture by Matthias Dolder.

The main organ of the inner ear is the cochlea, a bony spiral tube around
3.5 cm long that coils 2.6 times. Incoming sounds penetrate into the cochlea
through the oval window and propagate along the basilar membrane (BM), an
elastic membrane that follows the spiral tube from the base (in correspondence
of the oval window) to the apex (at the opposite extreme of the tube). In
the presence of incoming sounds, the BM vibrates with an amplitude that
changes along the tube. At the base the amplitude is at its minimum and
it increases constantly until a maximum is reached, after which point the
amplitude decreases quickly so that no more vibrations are observed in the
rest of the BM length. The important aspect of such a phenomenon is that
the point where the maximum BM displacement is observed depends on the
frequency. In other words, the cochlea operates a frequency-to-place conversion
that associates each frequency f to a specific point of the BM. The frequency
that determines a maximum displacement at a certain position is called the
characteristic frequency for that place. The nerves connected to the external
cochlea walls in correspondence of such a point are excited and the information
about the presence of f is transmitted to the brain.

The frequency-to-place conversion is modeled in some popular speech
processing algorithms through the critical band analysis. In such an approach,
the cochlea is modeled as a bank of bandpass filters, i.e. as a device composed
of several filters stopping all frequencies outside a predefined interval called

22 2 Audio Acquisition, Representation and Storage

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.2

0.4

0.6

0.8

1
Mel and Bark Scales

frequency (Hz)

W
ar

pe
d

N
or

m
al

iz
ed

 fr
eq

ue
nc

y

Bark Scale
Mel Scale

Fig. 2.4. Frequency normalization. Uniform sampling on the vertical axis induces
on the horizontal axis frequency intervals more plausible from a perceptual point of
view. Frequencies are sampled more densely when they are lower than 4kHz, the
region covered by the human auditory system.

critical band and centered around a critical frequency fj . The problem of find-
ing appropriate fj values is addressed by selecting frequencies such that the
perceptual difference between fi and fi+1 is the same for all i. This condition
can be achieved by mapping f onto an appropriate scale T (f) and by selecting
frequency values such that T (fi+1) − T (fi) has the same values for every i.
The most popular transforms are the Bark scale:

b(f) = 13 · arctan(0.00076f) + 3.5 · arctan

(
f2

75002

)
, (2.10)

and the Mel scale

B(f) = 1125 · ln
(

1 +
f

700

)
. (2.11)

Both above functions are plotted in Figure 2.4 and have finer resolution at
lower frequencies. This means that ears are more sensitive to differences at
low frequencies than at high frequencies.

2.3 Audio Acquisition

This section describes the audio acquisition process, i.e. the conversion of
sound waves, presented in the previous section from a physical and physiolog-
ical point of view, into a format suitable for machine processing. When the
machine is a digital device, e.g. computers and digital signal processors (DSP),
such a process is referred to as analog-to-digital (A/D) conversion because an
analogic signal (see below for more details) is transformed into a digital ob-
ject, e.g. a series of numbers. In general, the A/D conversion is performed
by measuring one or more physical effects of a signal at discrete time steps.
In the case of the acoustic waves, the physical effect that can be measured

2.3 Audio Acquisition 23

more easily is the pressure p in a certain point of the space. Section 2.2 shows
that the signal p(t) has the same frequency as the acoustic wave at its origin.
Moreover, it shows that the square of the pressure is proportional to the sound
intensity I. In other words, the pressure variations capture the information
necessary to fully characterize incoming sounds.

In order to do this, microphones contain an elastic membrane that vibrates
when the pressure at its sides is different (this is similar to what happens in
the ears where an organ called eardrum captures pressure variations). The
displacement s(t) at time t of a membrane point with respect to the equi-
librium position is proportional to the pressure variations due to incoming
sounds, thus it can be used as an indirect measure of p at the same instant t.
The result is a signal s(t) which is continuous in time and takes values over a
continuous interval S = [−Smax, Smax]. On the other hand, the measurement
of s(t) can be performed only at specific instants ti (i = 0, 1, 2, . . . , N) and no
information is available about what happens between ti and ti+1. Moreover,
the displacement measures can be represented only with a finite number B
of bits, thus only 2B numbers are available to represent the non countable
values of S. The above problems are called sampling and quantization, re-
spectively, and have an important influence on the acquisition process. They
can be studied separately and are introduced in the following sections.

Extensive descriptions of the acquisition problem can be found in signal
processing [22][28] and speech recognition [15] books.

2.3.1 Sampling and Aliasing

During the sampling process, the displacement of the membrane is measured
at regular time steps. The number F of measurements per second is called sam-
pling frequency or sampling rate and, correspondently, the length Tc = 1/F
of the time interval between two consecutive measurements is called sampling
period. The relationship between the analog signal s(t) and the sampled signal
s[n] is as follows:

s[n] = s(nTc) (2.12)

where the square brackets are used for sampled discrete-time signals and the
parentheses are used for continuous signals (the same notation will be used
throughout the rest of this chapter).

As an example, consider a sinusoid s(t) = A sin(2πft + φ). After the sam-
pling process, the resulting digital signal is:

s[n] = A sin(2πfnTc + φ) = A sin(2πf0n + φ) (2.13)

where f0 = f/F is called normalized frequency and it corresponds to the
number of sinusoid cycles per sampling period. Consider now the infinite set
of continuous signals defined as follows:

sk(t) = A sin(2kπFt + 2πft + φ) (2.14)

24 2 Audio Acquisition, Representation and Storage

−A

0

A

time

A
m

pl
itu

de

Aliasing

Fig. 2.5. Aliasing. Two sinusoidal signals are sampled at the same rate F and result
in the same sequence of points (represented with circles).

where k ∈ (0, 1, . . . ,∞), and the corresponding digital signals sampled at
frequence F :

sk[n] = A sin(2kπn + 2πf0n + φ). (2.15)

Since sin(α + β) = sinα cos β + cos α sin β, the sinus of a multiple of 2π is
always null, and the cosine of a multiple of 2π is always 1, the last equation
can be rewritten as follows:

sk[n] = A sin(2πf0n + φ) = s[n] (2.16)

where k ∈ (0, 1, . . . ,∞), then there are infinite sinusoidal functions that are
transformed into the same digital signal s[n] through an A/D conversion per-
formed at the same rate F .

Such problem is called aliasing and it is depicted in Figure 2.5 where
two sinusoids are shown to pass through the same points at time instants
tn = nT . Since every signal emitted from a natural source can be represented
as a sum of sinusoids, the aliasing can possibly affect the sampling of any
signal s(t). This is a major problem because does not allow a one-to-one
mapping between incoming and sampled signals. In other words, different
sounds recorded with a microphone can result, once they have been acquired
and stored on a computer, into the same digital signal.

However, the problem can be solved by imposing a simple constraint on
F . Any acoustic signal s(t) can be represented as a superposition of sinusoidal
waves with different frequencies. If fmax is the highest frequency represented
in s(t), the aliasing can be avoided if:

F > 2fmax (2.17)

where 2fmax is called the critical frequency, Nyquist frequency or Shannon
frequency. The inequality is strict; thus the aliasing can still affect the sampling
process when F = 2fmax. In practice, it is difficult to know the value of fmax,
then the microphones apply a low-pass filter that eliminates all frequencies

2.3 Audio Acquisition 25

below a certain threshold that corresponds to less than F/2. In this way the
condition in Equation (2.17) is met. 1

The demonstration of the fact that the condition in Equation (2.17) en-
ables us to avoid the aliasing problem is given in the so-called sampling the-
orem, one of the foundations of signal processing. Its demonstration is given
in the next subsection and it requires some deeper mathematical background.
However, it is not necessary to know the demonstration to understand the rest
of this chapter; thus unexperienced readers can go directly to Section 2.3.3
and continue the reading without problems.

2.3.2 The Sampling Theorem**

Aliasing is due to the effect of sampling in the frequency domain. In order
to identify the conditions that enable to establish a one-to-one relationship
between continuous signals s(t) and corresponding digital sampled sequences
s[n], it is thus necessary to investigate the relationship between the Fourier
transforms of s(t) and s[n] (see Appendix B).

The FT of s(t) is given by:

Sa(jω) =
∫ ∞

−∞
s(t)e−jωtdt, (2.18)

while the FT of the sampled signal is:

Sd(ejω) =
∞∑

n=−∞
s[n]e−jωn. (2.19)

However, the above Sd form is not the most suitable to show the relationship
with Sa, thus we need to find another expression. The sampling operation can
be thought of as the product between the continuous signal s(t) and a periodic
impulse train (PIT) p(t):

p(t) =
∞∑

n=−∞
δ(t − nTc), (2.20)

where Tc is the sampling period, and δ(k) = 1 for k = 0 and δ(k) = 0
otherwise. The result is a signal sp(t) that can be written as follows:

sp(t) = s(t)p(t) = s(t)
∞∑

n=−∞
δ(t − nTc). (2.21)

1 Since the implementation of a low-pass filter that actually stops all frequencies
above a certain threshold is not possible, it is more correct to say that the ef-
fects of the aliasing problem are reduced to a level that does not disturb human
perception. See [15] for a more extensive description of this issue.

26 2 Audio Acquisition, Representation and Storage

The PIT can be expressed as a Fourier series:

p(t) =
1
Tc

∞∑
k=−∞

ej 2π
Tc

kt =
1
Tc

∞∑
k=−∞

ejΩTc kt (2.22)

and sp(t) can thus be reformulated as follows:

sp(t) =
s(t)
Tc

∞∑
k=−∞

ej 2π
Tc

kt =
s(t)
Tc

∞∑
k=−∞

ejΩTc kt. (2.23)

The FT of sp(t) is thus:

Sp(Ω) =
1
Tc

∞∑
k=−∞

∫ ∞

−∞
s(t)ejΩTc kt−jΩtdt (2.24)

and this can be interpreted as an infinite sum of shifted and scaled replicas of
the FT of s(t):

Sp(jΩ) =
1
Tc

∞∑
k=−∞

Sa(j(Ω − kΩTc
)), (2.25)

where each term of the sum is shifted by integer multiples of ΩTc
with respect

to its neighbors.
The above situation is illustrated in Figure 2.6. The sampling induces repli-

cations of Sp(jΩ) centered around integer multiples of ΩTc
, in correspondence

of the impulses of the PIT Fourier transform. Each replication is 2Ωmax wide,
where Ωmax = 2πfmax is the highest angular frequency represented in the
original signal s(t). The kth replication of Sp(jΩ) stops at Ω = kΩTc

+Ωmax,
while the (k + 1)th one starts at (k + 1)ΩTc

− Ωmax. The condition to avoid
overlapping between consecutive replications is thus:

ΩTc
> 2Ωmax. (2.26)

Since Ω = 2πf , Equation (2.26) corresponds to:

F > 2fmax. (2.27)

This result is known as sampling theorem, and it is typically formulated as
follows:

Theorem 2.1. In order for a band-limited (i.e. one with a zero power spec-
trum for frequencies f > fmax) baseband (f > 0) signal to be reconstructed
fully, it must be sampled at a rate F ≥ 2fmax.

Figure 2.6 shows what happens when the above condition is met (first
and second plot from above) and when is not (third and fourth plot from
above). Equation (2.26) is important because the overlapping between Sp(Ω)
replications is the frequency domain effect of the aliasing. In other words, the
aliasing can be avoided if signals are sampled at a rate F higher or equal than
the double of the highest frequency fmax.

2.3 Audio Acquisition 27

S
p(jΩ

)

0−Ω
m

Ω
m

−Ω
T

Ω
T

−2Ω
T

2Ω
T

FT of s
p
(t)

P
(jΩ

)

0−Ω
T

Ω
T

−2Ω
T

2Ω
T

FT of p(t)

S
p(jΩ

)

0−Ω
T

Ω
T

−2Ω
T

2Ω
T

−3Ω
T

3Ω
T

−4Ω
T

4Ω
T

FT of s
p
(t)

0−Ω
T

Ω
T

−2Ω
T

2Ω
T

−3Ω
T

3Ω
T

−4Ω
T

4Ω
T

P
(jΩ

)

FT of p(t)

Fig. 2.6. Sampling effect in the frequency domain. The first two plots from above
show the sampling effect when ΩTc > 2Ωm. The replications of Sp(jΩ)m, centered
around the pulses in P (jΩ), are separated and the aliasing is avoided. In the third
and fourth plot where the distance between the pulses in P (jΩ) is lower than 2Ωm

and the aliasing takes place.

2.3.3 Linear Quantization

The second problem encountered in the acquisition process is the quantization,
i.e. the approximation of a continuous interval of values by a relatively small
set of discrete symbols or integer values. In fact, while the s[n] measures range,
in general, in a continuous interval S = [−Smax, Smax], only 2B discrete values
are at disposition when B bits are available in a digital device. This section
focuses on linear quantization methods, i.e. on quantization techniques that

28 2 Audio Acquisition, Representation and Storage

split the s[n] range into 2B intervals and represent all the s[n] values lying
in one of them with the same number. Other quantization techniques, called
vectorial, will be described in Chapter 8.

The quantization can be thought of as a process that transforms a sequence
of continuous values s[n] into a sequence of discrete values ŝ[n]. The most
straightforward method to perform such a task is the so-called linear pulse
code modulation (PCM) [27]. The PCM splits the interval S into 2B uniform
intervals of length ∆:

∆ =
Smax

2B−1
. (2.28)

Each interval is given a code corresponding to one of the 2B numbers that can
be described with B bits and ŝ[n] is obtained in one of the following ways:

ŝ[n] = sign(c[n])∆
2 + c[n]∆

ŝ[n] = c[n]∆ (2.29)

where c[n] is the code of the interval where s[n] falls. The two equations
correspond to the situation depicted in left (mid-riser quantizer) and right
(mid-tread quantizer) plots of Figure 2.7, respectively.

The use of ŝ[n] to represent s[n] introduces an error ε[n] = s[n]− ŝ[n]. This
leads to the use of the Signal to Noise Ratio (SNR) as a performance measure
for quantization methods:

SNR = 10 log10

{ ∑M−1
n=0 s2[n]∑M−1

n=0 (s[n] − ŝ[n])2

}
(2.30)

where M is the number of samples in the data. Since
∑

n s2[n] is the energy
of a signal (see Section 2.5 for more details), the above equation is nothing
but the ratio between the energy of the signal and the energy of the noise
introduced by the quantization. The use of the logarithm (multiplied by 10)
enables to use the dB as a measure unit (see Section 2.2). Higher SNR values
correspond to better quantization performances because, for a given signal,
the energy of the noise becomes smaller when the the values of the differences
s[n] − ŝ[n] decrease.

The main limit of the SNR is that it might hide temporal variations of the
performance. Local deteriorations can be better detected by using short term
SNR measures extracted from segments of predefinite length N . The average
of local SNR values is called segmental SNR (SEGSNR) and it corresponds
to the following expression:

SEGSNR =
10
L

L−1∑
t=0

log10

{ ∑N−1
n=0 s2[tN + n]∑N−1

n=0 (s[tN + n] − ŝ[tN + n])2

}
(2.31)

where L is the number of N long segments spanning the M samples of the
signal. The SEGSNR tends to penalize encoders with different performance
for different signal energy and frequency ranges.

2.3 Audio Acquisition 29

−3∆−∆/2

−2∆−∆/2

−∆−∆/2

 −∆/2

∆/2

∆+∆/2

2∆+∆/2

3∆+∆/2

111

110

101

100

000

001

010

011

−S
max

S
max

s[n]

Mid−Riser Quantizer (3 bits)

−4∆

−3∆

−2∆

−∆

 0

∆

2∆

3∆

111

110

101

100

000

001

010

011

−S
max

S
max

s[n]

Mid−Tread Quantizer (3 bits)

Fig. 2.7. Uniform quantization. The left plot shows a mid-riser quantizer, while the
right plot shows a mid-tread quantizer.

In the case of the PCM, the upper bound of ε[n] is ∆; in fact the maximum
value that the difference s[n] − ŝ[n] can assume is the length of the interval
where s[n] falls. The lower bound of the SNR is thus:

SNRPCM = 10 log10

{
1

∆2

M−1∑
n=0

s2[n]

}
. (2.32)

The above expression shows the main limits of the PCM: if the SNR of lower
energy signals decreases to a point that the perceptual quality of the quan-
tized signal becomes unacceptable, the only way to improve the quantization
performance is to reduce ∆, i.e. to increase the number of bits B. On the
other hand, it can happen that the same ∆ value that makes unacceptable
the perceptual quality for lower-energy signals can be tolerated in the case of
higher-energy sounds. For the latter, an increase of B is thus not necessary
and it leads to an improvement of the SNR that goes beyond the human ear
sensibility. This is not desirable, because the number of bits must be kept as
low as possible in order to reduce the amount of memory necessary to store
the data as well as the amount of bits that must be transmitted through a
line.

The solutions proposed to address such a problem are based on the fact
that the SNR is a ratio and can be kept constant by adapting the quantization
error ε[n] to the energy of the signal for any sample n. In other words, the SNR
is kept at an acceptable level for all energy values by allowing higher quanti-
zation errors for higher-energy signals. Such an approach is used in differential
PCM (DPCM), delta modulation (DM) and adaptive DPCM (ADPCM) [10].
However, satisfactory results can be obtained with two simple variants of
the PCM that simply use a non uniform quantization interval. The variants,
known as µ-law and A-law PCM, are currently applied in telecommunications
and are described in the next section.

30 2 Audio Acquisition, Representation and Storage

2.3.4 Nonuniform Scalar Quantization

The previous section has shown that the SNR value can be kept constant at
different energies by adapting the quantization error ε[n] to the signal energy:
the higher the energy of the signal, the higher the value of the quantization
error that can be tolerated. This section shows how such a result can be
obtained through functions called logarithmic companders and describes two
quantization techniques based on such an approach and commonly applied in
telecommunications: µ-law and A-law PCM.

A logarithmic compander is a function that uses a logarithm to compress
part of the domain where it is defined:

y[n] = ln(|s[n]|)sign(s[n]), (2.33)

where y[n] ∈ Y = [− ln(Smax), ln(Smax)], sign(x) = 1 when x ≥ 0 and
sign(x) = −1 when x < 0 (see Section 2.3.3 for the meaning of symbols). If
the uniform quantization is performed over Y (the vertical axis of Figure 2.8),
then ŷ[n] − y[n] = ε[n] and:

ŝ[n] = exp(y[n])sign(s[n]) = s[n] exp(ε[n]) (2.34)

Since Y is quantized uniformly, ε[n] can be approximated with the length
∆Y of the quantization interval. When ε[n] → 0, the above equation can be
rewritten as follows using a Taylor series expansion:

ŝ[n] � s[n](1 + ε[n]) (2.35)

and the expression of the SNR (see Equation (2.30)) for the logarithmic com-
pander corresponds to

SNRlog =
M−1∑
n=0

1
∆2

Y

=
M

∆2
Y

; (2.36)

thus, for a given signal length, SNRlog does not depend on the energy. This
happens because the uniform quantization of Y induces a nonuniform quan-
tization on S such that the quantization step is proportional to the signal
energy. When the energy of the signal increases, the quantization error is
increased as well and the SNR of Equation (2.30) is kept constant.

The compander in Equation (2.33) brings to the above effect only when
ε[n] → 0, but this is not possible for real applications. For this reason two
variants are used in real applications2:

2 There is no noticeable difference between the performance of the two companders,
the A-law compander is used in Europe and other countries affiliated to the ITU
(with A = 87.56), while the µ-law compander is mostly used in the USA (with
µ = 255).

2.3 Audio Acquisition 31

−S S/2 0 S/2 S
−S

S/2

0

S/2

S

s[n]

y[
n]

µ−Law Compander (µ=255)

−S S/2 0 S/2 S
−S

S/2

0

S/2

S

s[n]

y[
n]

A−Law Compander (A=87.55)

Fig. 2.8. Nonuniform quantization. The logarithmic companders induce finer quan-
tization on lower-energy signals. Intervals with the same width on the vertical axis
correspond to intervals with different width on the horizontal axis.

y[n] = Smax

log
(
1 + µ |s[n]|

Smax

)
log(1 + µ)

sign(s[n]) (2.37)

which is called the µ-law and

y[n] =

⎧⎪⎪⎨⎪⎪⎩
Smax

A
|s[n]|
Smax

1+log Asign(s[n]); 0 < |s[n]|
Smax

< 1
A

Smax

1+log
(
A

|s[n]|
Smax

)
1+log A sign(s[n]); 1

A < |s[n]|
Smax

< 1

(2.38)

which is called the A-law. It can be demonstrated that both above quantizers
lead to an SNR independent of the signal energy.

In telephone communications, an SNR of around 35 dB is considered ac-
ceptable. While a uniform quantizer requires 12 bits to guarantee such an
SNR all over the energy spectrum, A-law and µ-law can achieve the same
result by using only 8 bits [35]. For this reason, the above nonuniform quan-
tization techniques are recommended by the International Communications
Union and are applied to transmit speech through telephone networks [15].

32 2 Audio Acquisition, Representation and Storage

2.4 Audio Encoding and Storage Formats

The number B of bits used to represent audio samples plays an important
role in transmission and storage problems. In fact, the higher is B, the bigger
is the amount of data to be transmitted through a channel and the larger
is the memory space needed to store a recording. The amount of bits per
time unit necessary to represent a signal is called bit-rate and it must be kept
as low as possible to respect application constraints such as bandwidth and
memory. On the other hand, a reduction of the bit-rate is likely to degradate
the perceptual quality of the data and this, beyond a certain limit, is not
tolerated by users (Section 2.3 shows that the reduction of B decreases the
SNR of audio acquisition systems). The domain targeting techniques capable
of reducing the bit-rate while still preserving a good perceptual quality is
called audio encoding.

The main encoding methods result in audio formats (e.g. MPEG, WAV,
mp3, etc.), i.e. into standardized ways of representing and organizing audio
data inside files that can be used by computer applications. For this reason,
this section presents not only encoding technologies, but also audio formats
that make use of them. In particular, it will be shown how the development of
new encoding methods and the definition of new formats is typically driven by
two main factors: the first is the emergence of new applications that have bit-
rate constraints tighter than the previous ones, the second is the expectation of
users that accept different perceptual qualities depending on the applications.

The encoding problem is the subject of monographies [5] and tutori-
als [29][35] that provide extensive introductions to the different algorithms
and formats. For the MPEG audio format and coding technique, both tutor-
ial level [4][7][26] articles and monographies [21] are available.

2.4.1 Linear PCM and Compact Discs

The earliest encoding approach is the linear PCM presented in Section 2.3.
Although simple, such a technique is the most expensive in terms of bit-rate
(see below) and the most effective for what concerns perceptual quality. Since
it reproduces the whole information contained in the original waveform, the
linear PCM is said lossless, in opposition to lossy approaches that discard
selectively part of the original signal (see the rest of this section for more
detail). In general, the samples are represented with B = 16 bits because this
makes the quantization error small enough to be inaudible even by trained
listeners (the so-called golden ears [29]). The sampling frequency commonly
used for high-fidelity audio is F = 44.1 kHz and this leads to a bit rate of
2BF = 1, 411, 200 bits per second. The factor 2 accounts for the two aural
channels in a stereo recording.

Although high, such a bit-rate could be accomodated on the first supports
capable of storing digital audio signals, i.e. digital audio tapes (DAT) and
compact discs (CD). These last in particular started to spread in the early

2.4 Audio Encoding and Storage Formats 33

eighties, although invented in the sixties, and they are now, together with CD
players, some of the most important consumer electronic products. One hour
of high fidelity stereo sound at the 16-bit PCM rate requires roughly 635 MB.
A CD can actually store around 750 MB, but the difference is needed for error
correction bits, i.e. data required to recover acquisition errors. Since CDs have
been used mainly to replace old vinyl recordings that were often shorter, the
one-hour limit was largely accepted by users, and still is. For this reason, there
was no pressure to decrease the PCM bit-rate in order to store more sound on
CDs. At the same time, the perceptual improvement determined by the use of
digital rather than analogic supports was so high, that the user expectations
increased significantly and the CD-quality is currently used as a reference for
any other encoding technique [26].

The linear PCM is the basis for several other formats that are used in
conditions where the memory space is not a major problem: Windows WAV,
Apple AIFF and Sun AU. In fact, such formats, with different values of B
and F , are used to store sound on hard disks that are today large enough to
contain hours of recordings and that promise to grow at a rate that makes
the space constraint marginal.

The same does not apply to telephone communications where a high bit-
rate results into an uneffective use of the lines. For this reason, the first efforts
in reducing the bit-rate came from that domain. On the other hand, the devel-
opment of encoding techniques for phone communications has an important
advantage: since consumers are used to the fact that the so-called telephone
speech is not as natural as in other applications (e.g. radio and television),
their expectations are significantly lower and the bit-rate can be reduced with
simple modifications of the linear PCM.

Section 2.3 shows that the main limit of the linear PCM is that the quanti-
zation error does not change with the signal energy. In this way, the parameter
B must be kept at a level that leads to an SNR acceptable at low energies,
but high beyond human earing sensibility at higher energies. In other words,
there is a waste of bits at higher energies. The A-law and µ-law logarithmic
companders address such a problem by adapting the quantization errors to
the amplitude of the signals and reduce by roughly one third the bit-rate nec-
essary to achieve a certain perceptual quality. For this reason the logarithmic
companders are currentliy adviced by the International Telecommunications
Union (ITU) and are widely applied with A = 87.55 and µ = 255.

One of the most important lessons in the phone case, is that user expec-
tations are not directed towards the highest possible quality, but simply at
keeping constant the perceptual level in a given application. For this reason,
the performance of an encoder is measured not only with the SNR, but also
with the mean opinion score (MOS), a subjective test involving several näıve
listeners, i.e. people that do not know encoding technologies (this might bias
their evaluations). Each listener is asked to give a score between 1 (bad) and
5 (excellent) to a given encoded sound and the resulting MOS value is the av-
erage of all judgments given by the assessors. An MOS of 4.0 or more defines

34 2 Audio Acquisition, Representation and Storage

good or toll quality where the encoded signal cannot be distinguished from
the original one. An MOS between 3.5 and 4.0 is considered acceptable for
telephone communications [15]. The test can be performed unformally, but
the results are accepted in the official organizations only if they respect the
rigorous protocols given by the ITU [1].

2.4.2 MPEG Digital Audio Coding

Logarithmic companders and other approaches based on the adaptation of
the noise to the signal energy (see Section 2.3) obtain significant reductions of
the bit-rate. However, these are not sufficient to respect bandwidth and space
constraints imposed by applications developed in the last years. Multimedia,
streaming, online applications, content diffusion on cellular phones, wireless
transmission, etc. require to go beyond the reduction by one-third achieved
with A-law and µ-law encoding techniques. Moreover, user expectations cor-
respond now to CD-like quality and any degradation with respect to such a
perceptual level would not be accepted. For this reason, several efforts were
made in the last decade to improve encoding approaches.

MPEG is the standard for multimedia (see Chapter 3), its digital audio
coding technique is one of the major results in audio coding and it involves
several major changes with respect to the linear PCM. The first is that the
MPEG architecture is organized in Layers containing sets of algorithms of
increasing complexity. Table 2.1 shows the bit-rates achieved at each layer
and the corresponding compression rates with respect to the 16-bit linear
PCM.

The second important change is the application of an analysis and syn-
thesis approach implemented in layers I and II. This consists in representing
the incoming signals with a set of compact parameters, in the case of sound
frequencies, which can be extracted in the encoding phase and used to recon-
struct the signal in the following decoding step (for a detailed description of
the algorithms of the first two layers, see [29]). An average MOS of 4.7 and
4.8 has been reported for monaural layer I and II codecs operating at 192 and
128 kbits/sec [25].

Table 2.1. MPEG audio layers. This table reports bit-rates (central column) and
compression rates (right column), compared to CD bit-rate, achieved at different
layers in the MPEG coding architecture. The compression rate is the ratio between
CD and MPEG bit-rate at the same audio quality level.

Layer Bit-rate Compression

I 384 kb/sec 4
II 192 kb/sec 8
III 128 kb/sec 12

2.4 Audio Encoding and Storage Formats 35

The third major novelty is the application of psychoacoustic principles
capable of identifying and discarding perceptually irrelevant frequencies in
the signal. By perceptually irrelevant it is meant that a frequency cannot be
perceived by human ears even if it is present in the signal, thus it can be
discarded without degradation of the perceptual quality. Such an approach
is called perceptual coding and, since part of the original signal is removed,
the encoding approach is defined lossy. The application of the psychoacoustic
principles is performed at layer III and it reduces by 12 the bit-rate of the
linear PCM while achieving an average MOS between 3.1 and 3.7 [25]. The
MPEG layer III is commonly called mp3 and it is used extensively on the web
because of its high compression rate (see Table 2.1). In fact, the good tradeoff
between perceptual quality and size makes the mp3 files easy to download
and exchange. The format is now so popular that it gives the name to a new
class of products, i.e. the mp3 players.

The main improvements of the mp3 with respect to previous formats come
from the application of perceptual coding. Section 2.4.4 provides a description
of the main psychoacoustic phenomena used in mp3.

2.4.3 AAC Digital Audio Coding

The acronym AAC stands for advanced audio coding and the corresponding
encoding technique is considered as the natural successor of the mp3 (see the
previous section) [29]. The structures of mp3 and AAC are similar, but the
latter improves some of the algorithms included in the different layers.

AAC contains two major improvements with respect to mp3. The first is
the higher adaptivity with respect to the characteristics of the audio. Different
analysis windows (see Section 2.5) are used when the incoming sound has
frequencies concentrated in a narrow interval or when strong components are
separated by more than 220 Hz. The result is that the perceptual coding gain is
maximized, i.e. most of the bits are allocated for perceptually relevant sound
parts. The second improvement is the use of a predictor for the quantized
spectrum. Some audio signals are relatively stationary and the same spectrum
can be used for subsequent analysis frames (see Section 2.5). When several
contiguous frames use the same spectrum, this must be encoded only the first
time and, as a consequence, the bit-rate is reduced. The predictor is capable
of deciding in advance wheather the next frame requires to compute a new
spectrum or not.

In order to serve different needs, the AAC provides three profiles of decreas-
ing complexity: the main profile offers the highest quality, the low-complexity
profile does not include the predictor and the sampling-rate-scaleable profile
has the lowest complexity (see [26] for details about each profile). The main
profile AAC has shown higher performance the other formats in several com-
parisons3: at a bit-rate of 128 kb/sec, listeners cannot distinguish between

3 The results can be found on www.apple.com/quicktime/technologies/aac/.

36 2 Audio Acquisition, Representation and Storage

original and coded stereo sound. If the bit-rate is decreased at 96 kb/sec,
AAC has a quality higher than mp3 at 128 kb/sec. On the other hand, if both
AAC and mp3 have a bit-rate of 128 kb/sec, the AAC shows a significantly
superior performance.

2.4.4 Perceptual Coding

The main issue in perceptual coding is the identification of the frequencies that
must be coded to preserve perceptual quality or, conversely, of the frequencies
that can be discarded and for which no bits must be allocated. The selection, in
both above senses, is based on three psychoacoustic phenomena: the existence
of critical bands, the absolute threshold of hearing (TOH) and the masking.
Critical band analysis has been introduced at the end of Section 2.2, the other
two phenomena are briefly described in the following.

Section 2.2 defines the TOH as the lowest energy that a signal must carry
to be heard by humans (corresponding to an intensity I0 = 1012 Watts per
square meter). This suggests as a first frequency removal criterion that any
spectral component with an energy lower than the TOH should not be coded.
However, perceptual experiments have shown that the above TOH does not
apply to any frequency and that the minimum audible energy is a function of
f [12]:

Tq(f) = 3.64
(

f

103

)−0.8

− 6.5e−0.6(f

103
−3.3)2 + 10−3

(
f

103

)4

(dBSPL).

(2.39)
The function Tq(f) is referred to as absolute TOH and it enables to achieve

better bit-rate reduction by removing any spectral component with energy
E0 < Tq(f0). Absolute TOH is plotted in Figure 2.9, the lowest energy values
correspond to frequencies ranging between 50 and 4000 Hz, not surprisingly
those that propagate better through the middle ear (see Section 2.2). The
main limit of the Tq(f) introduced above is that it applies only to pure tones
in noiseless environments, while sounds in everyday life have a more complex
structure. In principle, it is possible to decompose any complex signal into a
sum of waves with a single frequency f0 and to remove those with energy lower
than Tq(f0), but this does not take into account the fact that the perception
of different frequencies is not independent.

In particular, components with a certain frequency can stop the perception
of other frequencies in the auditory system. Such an effect is called masking
and it modifies significantly the curve in Figure 2.9. The waves with a given
frequency f excite the auditory nerves in the region where they reach their
maximum amplitude (the nerves are connected to the cochlea walls). When
two waves of similar frequency occur together and their frequency is around
the center of a critical band (see Section 2.2), the excitation induced by one of
them can prevent from hearing the other. In other words, one of the two sounds
(called masker) masks the other one (called maskee). From an encoding point

2.4 Audio Encoding and Storage Formats 37

100 1000 10000
−20

0

20

40

60

Absolute Threshold of Hearing

frequency (Hz)

T
q(f

)
S

P
L

(d
B

)

100 1000 10000
−20

0

20

40

60

Absolute Threshold of Hearing with Masking

frequency (Hz)

T
q(f

)
S

P
L

(d
B

)

Fig. 2.9. Absolute TOH. The TOH is plotted on a logarithmic scale and shows how
the energy necessary to hear frequencies between 50 and 4000 kHz is significantly
lower than the energy needed for other frequencies.

of view, this is important because no bits accounting for maskee frequencies
need to be allocated in order to preserve good perceptual quality. The inclusion
of masking in audio encoding is a complex process (see [29] for a detailed
description for application in MPEG coding). For the sake of simplicity, we will
show only how masker and maskee frequencies are identified in the two most
common cases: tone masking noise (TMN) and noise masking tone (NMT).

The first step is to find tone and noise frequencies. The f values cor-
responding to masker tones are identified as peaks in the power spectrum
with a difference of at least 7 Barks with respect to neighboring peaks. Noise
maskers are detected through the geometric mean of frequencies represented
between to consecutives tonal maskers. TMN takes place when noise masks
tones with lower energy. Empirical models show that this happens when the
difference between tone and noise energies is below a threshold TT (b) that can
be calculated as follows:

TT (b) = EN − 6.025 − 0.275 · g + Sm(b − g) (2.40)

where b and g are the Bark frequencies of tone and noise, respectively, EN is
the noise energy and Sm(h) is the spread of masking function given by

Sm(h) = 15.81 + 7.5 · (h + 0.474) − 17.5
√

1 + (h + 0.474)2 (2.41)

38 2 Audio Acquisition, Representation and Storage

where h is the Bark frequency difference between noise and tone. The expres-
sion of the threshold for the NMT is similar:

TN (b) = ET − 2.025 − 0.175 · g + Sm(b − g) (2.42)

where ET is the tone energy. Although Equations (2.40) and (2.42) seem to
be symmetric, there is an important difference between TMN and NMT: in
the first case only tones with signal-to-mask ratio (SMR) between -5 and 5 dB
can be masked, while in the second case the SMR range where the masking
takes place is between 21 and 28 dB. A tone can thus mask noise with energies
roughly 100 to 1,000 times higher, while a noise can mask tones with energies
from around one-third to three times its energy. The lower plot in Figure 2.9
shows the effect of a masking tone noise of frequency 1 kHz and energy 69
dB. The energy necessary to hear frequencies close to 1 kHz is significantly
higher than the corresponding TOH and this enables to reduce the number
of bits necessary to encode the frequency region where masking takes place.

2.5 Time-Domain Audio Processing

The result of the acquisition process is a sequence of quantized physical mea-
sures {s[n]} = (s[1], s[2], . . . , s[N]). Since both n and s[n] are discrete, such se-
quences are referred to as digital signals and their form is particularly suitable
for computer processing. This section presents some techniques that extract
useful information from the analysis of the variations across the sequences. The
corpus of such techniques is called time-domain audio processing in opposition
to frequency-domain techniques which operate on frequency distributions (see
Appendix B for more details).

After presenting the fundamental notion of system and related properties,
the rest of this section focuses on how to extract information related to energy
and frequency. The subject of this section is covered in more detail in several
speech and signal processing texts [15][22][33].

2.5.1 Linear and Time-Invariant Systems

Any operator T mapping a sequence s[n] into another digital signal y[n] is
called discrete-time system:

y[n] = T{s[n]}, (2.43)

the element y[n] is a function of a single sample s[n], of a subset of the samples
of {s[n]} or of the whole input digital signal {s[n]}. In the following, we show
three examples corresponding to each of these situations: The ideal delay
(function of a single sample), the moving average (function of a subset), and
the convolution (function of the whole signal).

The ideal delay system is as follows:

2.5 Time-Domain Audio Processing 39

y[n] = s[n − n0] (2.44)

where n0 is an integer constant and y[n] is function of the the only sample
s[n − n0]. The moving average is:

y[n] =
1

K1 + K2 + 1

K2∑
k=−K1

s[k] (2.45)

where K1 and K2 are two integer constants and y[n] = T{s[n]} is function of
the samples in the interval between n−K2 and n+K1. The expression of the
convolution is:

y[n] =
∞∑

k=−∞
s[k]w[n − k] (2.46)

where w[n] is another digital signal and y[n] is a function of the whole sequence
{s[n]}.

A system is said linear when it has the following properties:

T{s1[n] + s2[n]} = T{s1[n]} + T{s2[n]}
T{as[n]} = aT{s[n]} (2.47)

where s1[n] and s2[n] are two different digital signals and a is a constant. The
first property is called additivity and the second homogeneity or scaling. The
two properties can be combined into the so-called superposition principle:

T{as1[n] + bs2[n]} = aT{s1[n]} + bT{s2[n]}. (2.48)

Given a signal ŝ[n] = s[n − n0], a system is said to be time invariant when:

ŷ[n] = T{ŝ[n]} = y[n − n0]. (2.49)

The above equation means that a shift of the origin in the input digital signal
determines the same shift in the output sequence. In other words, the effect of
the system at a certain point of the sequence does not depend on the sample
where T starts to operate.

When a system is LTI, i.e. both linear and time-invariant, the output se-
quence y[n] can be obtained in a peculiar way. Consider the so-called impulse,
i.e. a digital signal δ[n] such that δ[n] = 1 for k = 0 and δ[n] = 0 otherwise,
the output of a system can be written as follows:

y[n] = T

{ ∞∑
k=−∞

s[k]δ[n − k]

}
=

∞∑
k=−∞

s[k]T{δ[n − k]}, (2.50)

and the above equation can be rewritten as:

y[n] =
∞∑

k=−∞
s[k]h[n − k] (2.51)

40 2 Audio Acquisition, Representation and Storage

which corresponds to the convolution between the input signal s[n] and h[n−
k], i.e. the response of the system to an impulse at time n. As a consequence,
an LTI system is completely determined by its impulse response h[n], in the
sense that h[n] can be used to obtain y[n] for any other input signal s[n]
through a convolution operation s[n] ∗ h[n]. 4

2.5.2 Short-Term Analysis

Figure 2.11 shows a speech waveform sampled at 8 kHz. Such a value of F
is common for spoken data because the highest formant frequencies in the
human voice are around 4 kHz (see Section 2.2) and the lowest point of the
absolute TOH curve for the human auditory system corresponds roughly to
such frequency (see Figure 2.9). Speech data are thus low-pass filtered at
4 kHz and sampled at 8 KHz to meet the sampling theorem conditions. The
waveform of Figure 2.11 shows two important aspects: the first is that different
segments of the signal have different properties (e.g. speech and silence), the
second is that the signal properties change relatively slowly, i.e. they are stable
if an interval short enough is taken into account (e.g. 20 − 30 ms). Such
assumptions underly the short-term analysis, an approach which takes into
account segments short enough to be considered as sustained sounds with
stable properties.

In mathematical terms this means that the value of the property Q[n] at
time nT , where T = 1/F is the sampling period, can be expressed as follows:

Q[n] =
∞∑

m=−∞
K(s[m])w[n − m] (2.52)

where K is a transform, either linear or nonlinear, possibly dependent upon a
set of adjustable parameters, and w[n] is the so-called analysis window. Two
analysis windows are commonly applied: the first is called rectangular and the
second is called Hamming. The latter has been introduced to avoid the main
problems determined by the rectangular window, i.e. the presence of too high
secondary lobes in the Fourier transform (see Appendix B). The rectangular
window is defined as follows:

w[n] =

⎧⎨⎩
1 : 0 ≤ l ≤ N − 1
0 : l < 0
0 : l ≥ N

and the Hamming window:

4 The advantages of this property are particularly evident in the frequency domain.
In fact, the Fourier transform of a convolution between two signals corresponds
to the product between the Fourier transforms of the single signals, and this
simplifies significantly the analysis of the effect of a system in the frequency
domain.

2.5 Time-Domain Audio Processing 41

w[n] =

⎧⎨⎩
0.54 − 0.46 cos(2πn

N−1) : 0 ≤ l ≤ N − 1
0 : l < 0
0 : l ≥ N.

In both above cases, as well as for any finite window, it is necessary to
set the parameter N , the so-called window length. The value of N must be
the tradeoff between two conflicting requirements: the first is that the window
must be short enough to detect rapid changes of Q, the second is that it must
be long enough to smooth local random fluctuations. Moreover, no window
length gives satisfactory results for every application and different choices
must be made for different tasks. In the case of spoken data, it is common to
have a window corresponding to few fundamental periods T0 = 1/F0, where
F0 is the fundamental frequency (see Section 2.2). In more general terms, the
problem is addressed by observing that the variations of Q can be studied
through the Fourier transform (FT) of Q[n] (the unexperienced reader can
move directly to Section 2.5.3). In this case high frequencies in the spectrum
correspond to rapid Q variations, while low frequencies components are due
to slow changes.

Since Equation (2.52) can be interpreted as a discrete convolution, the FT
of Q[n] can be obtained as a product of the FT’s of K(s[n]) and w[n]. The
effect of N on the frequency with which Q changes can thus be evaluated
through the FT of the window. Figure 2.10 shows the spectra of rectangular
windows of different length. The windows act as a low-pass filters with cutoff
frequencies fr = F/N (fh = 2F/N for the Hamming windows). The conse-
quence is that the longer is the window, the narrower is the band of accepted
frequencies. In other words, long windows tend to mask rapid changes and
vice versa for short windows. In speech recognition (see Chapter 12) the win-
dow is typically 10-30 ms long. The reason is that physiological measurements
performed using X-rays have shown that during such a time humans cannot
significantly change the shape of the vocal tract.

2.5.3 Time-Domain Measures

This section presents the most important properties that can be extracted
from a signal in the time domain. All of the properties are obtained with a
short-term approach and provide a rough but meaningful representation of
the audio signals (particular attention will be paid to speech data).

The first two properties are short-time energy and average magnitude.
They carry the same kind of information, but the second one is less sensitive
to local fluctuations. They are especially important to detect silences or to
distinguish between voiced and unvoiced segments in spoken data, but they
also play a role for the reduction of the bit-rate during the quantization. In
fact, higher quantization errors can be allowed for higher energy signals (see
Section 2.3). The short-time energy E[n] of a signal can be extracted through
the following convolution:

42 2 Audio Acquisition, Representation and Storage

0 50 100 150 200 250 300 350 400 450 500

10
0

10
2

frequency (Hz)

m
ag

ni
tu

de

Window Length 128 msec

0 50 100 150 200 250 300 350 400 450 500
10

−2

10
0

10
2

frequency (Hz)

m
ag

ni
tu

de

Window Length 64 msec

0 50 100 150 200 250 300 350 400 450 500
10

−2

10
0

10
2

frequency (Hz)

m
ag

ni
tu

de

Window Length 32 msec

Fig. 2.10. Window effect in the frequency domain. The three plots show the spec-
trum of rectangular windows of length 128, 64 and 32 ms, respectively. All spectra
show a first minimum in correspondence of fr = F/∆t Hz, where ∆t is the length of
the window. This means that variations of frequency higher than fr are filtered and
that longer windows tend to smooth higher frequency variations (and vice versa).

E[n] =
∞∑

m=−∞
s2[n]w[n − m]. (2.53)

The use of the square makes E[n] too sensitive to the highest values of s[n]
that can be due to local random fluctuations. Moreover, the lowest energy
parts of the signal tend to be suppressed as it can be observed in Figure 2.11:
the energy of the unvoiced phonemes at the end of the word six is so much
lower than the other parts of the words that it can be difficult to distinguish
them with respect to the silence. For this reason, E[n] is often replaced with
the short-term average magnitude M [n]:

M [n] =
∞∑

m=−∞
|s[n]w[n − m]|. (2.54)

The dynamic range of M [n] is smaller and the differences are smoother
than in the E[n] case. This can be seen at the end of the word six in Figure 2.11

2.5 Time-Domain Audio Processing 43

0 0.5 1 1.5 2 2.5

Waveform

time (sec)

s[
n]

0 0.5 1 1.5 2 2.5

Short Time Energy

time (sec)

E
[n

]

0 0.5 1 1.5 2 2.5

Short Time Average Magnitude

time (sec)

M
[n

]

0 0.5 1 1.5 2 2.5

Short Time Zero Crossing

time (sec)

Z
[n

]

Fig. 2.11. Time domain processing. The plots show (from the top to the bottom) a
waveform, the short-time energy, the short-time average magnitude, the short-time
average zero crossing rate. The sampling rate is 8000 Hz and the window is 12.5 µs
long.

where the unvoiced phonemes have an average magnitude lower, but still
comparable with the M [n] value of voiced phonemes.

The length of the window should correspond more or less to a pitch pe-
riod (see Section 2.2). Shorter windows detect uninteresting local fluctuations,
while longer windows miss changes that should not be neglected. Since the
pitch of human voices ranges between 50 (for male voices) and 400 kHz (for
small children and women), no window length is optimal for any case, How-

44 2 Audio Acquisition, Representation and Storage

ever, satisfactory results can be achieved, on average, with a 20-30 ms long
analysis frame. Energy and magnitude are often used as features in speech
recognition systems [15] as well as in multimedia content analysis where they
have been applied to detect emotional states [18], to identify audio segments
likely to attract the attention [20], to perform affective analysis [14].

Another important aspect of a signal is the frequency content. This is typ-
ically obtained through the Fourier transform (see Appendix B), but a simple
time domain measure, called short time average zero-crossing rate ZCR, en-
ables us to obtain a rough idea of the frequencies represented in the data.
Such a measure can be obtained as follows:

Z[n] =
1

2N

∞∑
m=−∞

|sign(s[m]) − sign(s[m − 1])|w[n − m] (2.55)

where w(l) is a rectangular window of length N . If s(t) is a sinusoid of fre-
quency f , then there are two zero crossings every T seconds, where T = 1/f .
If s(t) is sampled at a rate F > 2f for a time ∆t corresponding to a high
multiple of T , the average number of zero crossings Z can be obtained as
follows:

Z � 2f

F
(2.56)

where f/F is nothing else than the number of sinusoid cycles per sampling
period. For this reason, Z[n] provides a rough description of the frequency
content in s[n]. The lowest plot of Figure 2.11 shows the value of Z[n] for
the spoken utterance used as example so far: on average, the Z[n] value is
between 0.1 and 0.2 in the spoken segments and this corresponds, using Equa-
tion (2.56), to frequencies between 400 and 800 Hz. This is compatible with
the fact that the speaker is a woman (and the fundamental frequencies are up
to 300 Hz for women) and with the fact that the energy of the speech tends
to concentrate below 3000 Hz. The value of Z[n] in the silence segments is,
on average, between 0.5 and 0.6 and this accounts for frequencies between
2000 and 2400 Hz. The reason is that the energy of nonspeech segments is
concentrated on high-frequency noise. However, the above frequencies values
must be considered indicative and must be used to discriminate rather than to
describe different segments. The ZCR has been used in several audio process-
ing technologies including the detection of word boundaries [32], speech-music
discrimination [8][34], audio classification [19].

The property examined next is the autocorrelation function φ[k] which has
a different expression depending on the kind of signal under examination. For
finite energy signals φ[k] is defined as follows:

φ[k] =
∞∑

m=−∞
s[m]s[m + k]. (2.57)

A signal is said to be finite energy when the following sum is finite:

2.5 Time-Domain Audio Processing 45

E =
∞∑

n=−∞
s2[n]. (2.58)

for constant power signals the expression is:

φ[k] = lim
N→∞

1
2N + 1

N∑
m=−N

s[m]s[m + k]. (2.59)

A signal is said to be constant power when the following sum is constant:

P =
T∑

n=−T

s2[n0 − n] (2.60)

for any n0 and T . P can be thought of as the signal power, i.e. the average sig-
nal energy per time unit. The autocorrelation function has several important
properties. The first is that if s[n] = s[n+mp], where m is an integer number,
then φ[k] = φ[k + mp]. in other words, the autocorrelation function of a peri-
odic signal is periodic with the same period. The second is that φ[k] = φ[−k],
i.e. the autocorrelation function is even and it attains its maximum for k = 0:

|φ[k]| ≤ φ[0] ∀k. (2.61)

The value of φ[0] corresponds to the total energy of the signal which is thus
a particular case of the autocorrelation function.

Equation (2.57) is valid for the signal as a whole, but in audio processing
the analysis is performed, in general, on an analysis frame. This requires the
definition of a short-term autocorrelation function:

Rn[k] =
∞∑

m=−∞
s[m]w[n − m]s[m + k]w[n − m − k]. (2.62)

Such an expression corresponds to the value of φ[k] calculated over the in-
tersection of two windows shifted by k sampling periods with respect to each
other. If k > N (where N is the window length), then Rn[k] = 0 because
there is no intersection between the two windows.

The short-term properties considered so far (energy, average magnitude
and average ZCR) provide a single value for each analysis frame identified
by a specific position of the window. This is not the case of the short-time
autocorrelation function which provides, for each analysis frame, a function of
the lag. Figure 2.12 shows the short-term autocorrelation function obtained
from a window of length N = 401 (corresponding to 50 ms). Upper and lower
plots have been obtained over a speech (t = 1.2 sec. in Figure 2.11) and a
silence segment (t = 1.5 sec. in Figure 2.11) respectively. In the first case
there are clear peaks appearing roughly every 5 msec, and this corresponds to
a fundamental frequency of around 200 Hz. In the second case no periodicity

46 2 Audio Acquisition, Representation and Storage

0 5 10 15 20 25 30 35 40 45 50

Short Time Autocorrelation Function (speech)

lag (msec)

Φ
[n

]

0 5 10 15 20 25 30 35 40 45 50

Short Time Autocorrelation Function (silence)

lag (msec)

Φ
[n

]

Fig. 2.12. Short term autocorrelation function. Upper and lower plots show the
short term autocorrelation function for a speech and a silence point respectively.
The plot in the silence case does not show any periodicity, while in the speech case
there are peaks appearing roughly every 5 msec. This corresponds to a fundamental
frequency of around 200 Hz, a value compatible with the ZCR measures made over
the same signal and with the fact that the speaker is a woman.

is observed and Rn[k] looks rather like a high-frequency noise-like waveform.
The autocorrelation function can thus be used as a further description of the
frequency content that can help in discriminating different parts of the signal.
Figure 2.12 shows that the amplitude of Rn[k] decreases as the lag increases.
The reason is that for higher values of k the intersection between the two
windows decreases and there are less addends in the sum of Equation (2.62).

The autocorrelation function has been used to detect the music meter [6],
pitch detection [31], music and audio retrieval [13][37], audio fingerprint-
ing [36], and so on.

Problems

2.1. Consider a sound of intensity I = 5 dB. Calculate the energy emitted
by its source in a time interval of length ∆t = 22.1 s. Given the air acoustic
impedance Z = 410 Pa · s · m−1, calculate the pressure corresponding to the
maximum compression determined by the same sound wave.

2.2. Human ears are particularly sensitive to frequencies between 50 and 4000
Hz. Given the speed of sound in air (v � 331.4 m · s−1), calculate the wave-
lengths corresponding to such frequencies.

2.5 Time-Domain Audio Processing 47

2.3. Consider a sum of N sinusoids with frequencies f0, 3f0, . . . , (2N + 1)f0:

f(t) =
N∑

n=0

1
2n + 1

sin[2πf0(2n + 1)t] (2.63)

Plot f(t) in the range [0, 10] for f0 = 1 and N = 1, 2, . . . , 100 and observe the
signal f(t) converges to.

2.4. The Mel scale (see Section 2.2.3) maps frequencies f into values B(f)
that are more meaningful from a perceptual point of view. Segment the B(f)
interval [0, 3375] into 20 intervals of the same length and find the frequencies
f corresponding to their limits.

2.5. Extract the waveform from an audio file using HTK (see Chapter 12 for a
description of the HTK software package) and calculate the number of bits N
necessary to represent the sample values. Perform a uniform quantization of
the waveform using a number of bits n ranging from 2 to N −1 and calculate,
for each n, the signal-to-noise ratio (SNR). Plot the SNR as a function of n.

2.6. Calculate sampling frequency and bit-rate of the audio file used in Prob-
lem 2.5.

2.7. Plot the TOH in presence of a masking tone noise of frequency 200 Hz
and intensity 50 dB.

2.8. Consider the system known as moving average (see Section 2.5). Demon-
strate that such system is linear and time invariant.

2.9. Consider an audio file including both speech and silence and extract the
waveform it contains. Obtain magnitude and zero crossing rate as a function
of time using a rectangular analysis window 30 ms long. A pair (M [n], Z[n])
is available for each sample s[n] and can be plotted on a plane where the axes
are magnitude and ZCR. Do sound and speech samples form separate clusters
(see Chapter 6)?

2.10. Demonstrate that the autocorrelation function Rn[k] corresponds to the
short time energy when k = 0 and that |Rn[k]| < Rn[0] for k > 0.

References

1. Methods for the subjective assessment of small impairments in audio systems
including multichannel sound systems. Technical report, International Telecom-
munication Union, 1997.

2. L.L. Beranek. Concert hall acoustics. Journal of the Acoustical Aociety of
America, 92(1), 1992.

3. D.T. Blackstock. Fundamentals of Physical Acoustics. John Wiley and Sons,
2000.

4. J. Bormans, J. Gelissen, and A. Perkis. MPEG-21: The 21st century multimedia
framework. IEEE Signal Processing Magazine, 20(2), 2003.

5. M. Bosi and R.E. Goldberg. Introduction to Digital Audio Coding and Standards.
Kluwer, 2003.

6. J.C. Brown. Determination of meter of musical scores by autocorrelation. Jour-
nal of the Acoustical Aociety of America, 94(4), 1993.

7. I. Burnett, R. Van der Walle, K. Hill, J. Bormans, and F. Pereira. MPEG-21:
goals and achievements. IEEE Multimedia, 10(4), 2003.

8. M.J. Carey, E.S. Parris, and H. Lloyd-Thomas. A comparison of features
for speech-music discrimination. In Proceedings of the IEEE Conference on
Acoustics, Speech and Signal Processing, pages 149–152, 1999.

9. J.C. Catford. Theoretical Acoustics. Oxford University Press, 2002.
10. P. Cummiskey. Adaptive quantization in differential PCM coding of speech.

Bell Systems Technical Journal, 7:1105, 1973.
11. T.F.W. Embleton. Tutorial on sound propagation outdoors. Journal of the

Acoustical Society of America, 100(1), 1996.
12. H. Fletcher. Auditory patterns. Review of Modern Physics, pages 47–65, 1940.
13. A. Ghias, J. Logan, D. Chamberlin, and B.C. Smith. Query by humming:

musical information retrieval in audio database. In Proceedings of the ACM
Conference on Multimedia, pages 231–236, 1995.

14. A. Hanjalic and L.-Q. Xu. Affective video content representation and modeling.
IEEE Transactions on Multimedia, 7(1):143–154, 2005.

15. X. Huang, A. Acero, and H.-W. Hon. Spoken Language Processing: A Guide to
Theory, Algorithm and System Development. Prentice-Hall, 2001.

16. L.E. Kinsler, A.R. Frey, A.B. Coppens, and J.V. Sanders. Fundamentals of
Acoustics. John Wiley and Sons, New York, 2000.

17. P. Ladefoged. Vowels and consonants. Blackwell Publishing, 2001.

50 References

18. C.M. Lee and S.S. Narayanan. Toward detecting emotions in spoken dialogs.
IEEE Transactions on Multimedia, 13(2):293–303, 2005.

19. L. Lu, H. Jiang, and H.J. Zhang. A robust audio classification and segmentation
method. In Proceedings of the ACM Conference on Multimedia, pages 203–211,
2001.

20. Y.-F. Ma, X.-S Hua, L. Lu, and H.-J. Zhang. A generic framework for user
attention model and its application in video summarization. IEEE Transactions
on Multimedia, 7(5):907–919, 2005.

21. B.S. Manjunath, P. Salembier, and T. Sikora, editors. Introduction to MPEG-7.
John Wiley and Sons, Chichester, UK, 2002.

22. S.K. Mitra. Digital Signal Processing - A Computer Based Approach. McGraw-
Hill, 1998.

23. B.C.J. Moore. An Introduction to the Psychology of Hearing. Academic Press,
1997.

24. P.M. Morse and K. Ingard. Theoretical Acoustics. McGraw-Hill, 1968.
25. P. Noll. Wideband speech and audio coding. IEEE Communications Magazine,

(11):34–44, november 1993.
26. P. Noll. MPEG digital audio coding. IEEE Signal Processing Magazine,

14(5):59–81, 1997.
27. B.M. Oliver, J. Pierce, and C.E. Shannon. The philosophy of PCM. Proceedings

of IEEE, 36:1324–1331, 1948.
28. A.V. Oppenheim and R.W. Schafer. Discrete-Time Signal Processing. Prentice-

Hall, 1989.
29. T. Painter and A. Spanias. Perceptual coding of digital audio. Proceedings of

IEEE, 88(4):451–513, 2000.
30. J.O. Pickles. An Introduction to the Physiology of Hearing. Academic Press,

1988.
31. L. Rabiner. On the use of autocorrelation analysis for pitch detection. IEEE

Transactions on Acoustics, Speech and Signal Processing, 25(1):24–33, 1977.
32. L.R. Rabiner and M.R. Sambur. Algorithm for determining the endpoints of

isolated utterances. Journal of the Acoustical Society of America, 56(S1), 1974.
33. L.R. Rabiner and R.W. Schafer, editors. Digital Processing of Speech Signals.

Prentice-Hall, 1978.
34. E. Scheirer and M. Slaney. Construction and evaluation of a robust multifea-

ture speech/music discriminator. In Proceedings of the IEEE Conference on
Acoustics, Speech and Signal Processing, pages 1331–1334, 1997.

35. A. Spanias. Speech coding: a tutorial review. Proceedings of IEEE, 82(10):1541–
1582, 1994.

36. S. Sukittanon and L.E. Atlas. Modulation frequency features for audio finger-
printing. In Proceedings of the IEEE Conference on Acoustics, Speech and Signal
Processing, pages 1773–1776, 2002.

37. E. Wold, T. Blum, D. Keislar, and J. Wheaton. Content-based classification,
search and retrieval of audio. IEEE Multimedia, 3(3), 1996.

3

Image and Video Acquisition, Representation
and Storage

What the reader should know to understand this chapter

• Elementary notions of optics and physics.
• Basic notions of mathematics.

What the reader should know after reading this chapter

• Human eye physiology.
• Image and video acquisition devices.
• Image and video representation.
• Image and video formats and standards.
• Color representation.

3.1 Introduction

The eye is the organ that allows our brain to acquire the visual information
around us. One of the most challanging tasks in the science consists in devel-
oping a machine that can see, that is it can acquire, integrate and interpret
the visual information embedded in still images and videos. This is the topic of
scientific domain called image processing . The topic of image processing is so
large it cannot be described in a single chapter. Therefore for comprehensive
surveys of this topic, the reader can refer to [10][23][27].

The aim of this chapter is to provide an introduction to the image and
video acquisition, representation and storage. Image representation is the first
step towards the realization of an image processing system (IPS) and a video
processing system (VPS). A crucial aspect in the realization of an IPS and
a VPS is the memory occupation. Therefore, we will pay special attention to
image and video storage, describing the main formats.

The chapter is organized as follows: Sections 3.2 and 3.3 present, respec-
tively, human eye physiology and the image acquisition devices; Section 3.4

52 3 Image and Video Acquisition, Representation and Storage

discusses the color representation; Section 3.5 presents the main image formats
paying special attention to JPEG; Sections 3.6 and 3.7 review video principles
and the MPEG standard; in Section 3.8 some conclusions are drawn; finally,
some problems are proposed at the end of the chapter.

3.2 Human Eye Physiology

Electromagnetic radiation enters the human visual system through eyes and
is incident upon the cells of the retina. Although human eyes can detect still
images, they are mainly motion detectors. The eyes can identify static objects
and establish spatial relationships among the different objects in a scene. Basic
eye activity depends on comparing stimuli from neighboring cells. When we
observe a static scene, our eyes perform small repetitive movements called
saccadic that move edges past receptors. The perceptual recognition of human
vision [30] takes place in the brain. The objects in a scene are recognized in the
brain by means of their edges. The information about the object is embedded
along these edges. The recognition process, i.e. the perceptual recognition, is
a result of learning that is performed in the neural organization of the brain.

3.2.1 Structure of the Human Eye

The human eye, whose structure is shown in Figure 3.1, is the organ that gives
us the sense of sight. Light reflected from an object enters the eye through the
cornea, which is the clear dome at the front of the eye. Then the light enters
through the pupil , the circular opening in the center of iris. The light passes
through the crystalline lens, which is located immediately behind the iris and
the pupil. Initially, the light waves are converged first by the cornea and then
by the crystalline lens to a nodal point located immediately behind the back
surface of the crystalline lens. At this stage of vision process, the image is
reversed (turned backwards) and inverted (turned upside-down). The light
passes through the vitreous humor , the clear gelatin that forms 80% of the
overall volume of the eye. Finally, the light is focused on the retina which is
located behind the vitreous humor. We can consider the eye a type of camera,
as shown in Figure 3.2. In this metaphor the retina plays the role of the film,
recording the light photons that interact with the retina.

The transport of the visual signal from the retina of the eye to the brain is
performed through 1.5 million neurons by means of optic nerves. The human
retina contains a big number of photorececeptors organized in a hexagonal
array. The retinal array has three kinds of color sensors (or cones) in the
central part of the retina (fovea centralis). The cone density is high in the
fovea centralis and is low near the peripheral part of the fovea. In the retinal
array there are three different kinds of cones, i.e. red, green and blue sensitive
cones. These cones are responsible of color vision. The three cone classes have

3.2 Human Eye Physiology 53

humor

retina

optic nerves

pupil

cornea

lens
crystalline

vitreous

fovea

Fig. 3.1. The human eye (picture by Matthias Dolder).

different photosensitive pigments. The three pigments have maximum absorp-
tions at a wavelength of ∼ 4,300, 5,300 and 5,600 Angstrom (one Angstrom
is equal to 10−10m) which correspond, respectively, at violet , blue-green and
yellow-green.

The space between the cones is filled by rods which are responsible for
gray vision. The number of rods is larger than the number of cones.

Rods are sensitive to low levels of illuminations and are responsible for the
human capability of seeing in dim light (scotopic light). The cones work at
high illumination levels when many photons are available and the resolution
is maximized at the cost of reduced sensitivity.

The optic nerve in human visual systems enters the eyeball and is put in
connection with rods and cones. It starts as axon benches from the ganglion
cells on one side of the retina. On the other side of the retina rods and cones
are connected to the ganglion cells by means of bipolar cells. Besides, there
are also horizontal nerve cells making lateral connections. The horizontal cells
fuse signals from neighboring receptors in the retina forming a receptive field
of opposing responses in the center and the periphery. Therefore a uniform
illumination produces no stimulus. When the illumination is not uniform, a
stimulus is produced. Some receptive fields use color differences. Therefore the
color differences, in a similar way the one of illumination, produces stimuli,
too.

In the human retina, the number of cones can vary from six to seven
millions, whereas the number of rodes ranges from 110 to 130 millions of
rods. Transmission of the optical signals from rods and cones is performed

54 3 Image and Video Acquisition, Representation and Storage

Fig. 3.2. The human eye can be viewed as a type of camera (pictures by Matthias
Dolder).

by means of fibers in the optic nerve. The optic nerve crosses at the optic
chiasma. In the chiasma the signal are dispatched to the brain, in particular
the signals coming from the right and the left side of the retinas of two eyes
are dispatched, respectively, to the right and the left halves of the brain. Each
half of the brain receives half a image, so the loss of an eye in a person does
not mean full blindness. The extremities of the optical nerve reach the lateral
geniculate bodies and dispatch the signals to the visual cortex . The visual
cortex has the same topology of the retina and represents the first step in the
human visual perception since at this stage the visual information is available.
Visual regions in two brain hemispheres are connected in the corpus callosum,
which joins the visual field halves.

3.3 Image Acquisition Devices

A digital image acquisition is formed by two components, that is a digital
camera and a host computer where the images acquired by the digital camera
are stored. In the following sections we briefly describe how a digital camera
works.

3.3.1 Digital Camera

Digital cameras generally use either charge coupled devices (CCD) or comple-
mentary metal oxide semiconductor (CMOS) sensors and they can be grouped
based on which of them they use.

In the CCD camera there is a n × m rectangular grid of photo diodes
(photosensors). Each photosensor is sensitive to light intensity. The intensity
(or luminous intensity) is a measure of the power emitted by a light source
in a particular direction. For the sake of simplicity, we can represent each
photosensor with a black box that converts light energy into a voltage. The
CCD array produces a continuos electric signal.

3.3 Image Acquisition Devices 55

The structure of the CMOS camera is similar to the CCD one; the only
difference is that the photo diode is replaced by a CMOS sensor. In each
CMOS sensor there is a number of transistors that are used for the electric
signal amplification. Since several transistors are used, the light sensitivity
is lower since some photons are incident on the transistors instead of the
photosensors. CMOS sensors are noisier than CCD sensors, but they consume
less power and are less expensive.

When there is bright sunlight the camera aperture1 does not have to be
large since the camera does not require much light. On the other side, if
the sunlight is not much, for instance when the sun is at sunset, the camera
aperture has to be enlarged since the camera needs more light to form the
image. The camera works like the human eye. The shutter speed2 permits
getting a measure of the exposure time of the camera to the light. In relation
with the light requirement, the shutter opens and closes for an amount of time
equal to the exposure time.

The focal length of a digital camera is given by the distance between the
focal plane of the lens and the surface of the sensor grid. Focal length allows
us to select the magnification degree which is requested to the digital camera.

The elementary unit of the digital image is the pixel, which is an abbre-
viation of picture element. A digital camera can capture images at different
resolutions, i.e. using a different amount of pixels. A digital camera that works
in low resolution usually represents an image using a matrix of 320 × 240
(or 352 × 288) pixels, whereas in medium resolution each image is generally
represented by means of 640 × 480 pixels. At high resolution the image is
represented by 1216 × 912 (or 1600 × 1200) pixels. The spatial resolution of
an image is the image size in pixels, for instance 640 × 480, which corresponds
to the size of the CCD (or CMOS) grid.

Finally, we define two important parameters of the digital camera, i.e. the
field of view and the sensor resolution. The field of view (or FOV) is the area
of the scene that the digital camera can acquire. The FOV is fixed equal to
the horizontal dimension of the inspection region that includes all the objects
of interest. The sensor resolution (or sensor size) SR of a digital camera is
given by:

SR = 2
FOV

OR
(3.1)

where OR stands for the minimum object resolution, i.e. the dimension of the
smallest object that can be seen by the camera.

1 The aperture controls the amount of light that reaches the camera sensor.
2 In a camera, the shutter is a device that allows light to pass for a determined

period of time, with the aim of exposing the CCD (or CMOS) sensor to the
required amount of light to create a permanent image of view. Shutter speed is
the time that the shutter is open.

56 3 Image and Video Acquisition, Representation and Storage

Color Acquisition

In this section we briefly review the process of color acquisition in the digital
cameras. There are many methods for capturing colors. The typical approach
uses red, green and blue (RGB) filters. The filters are spun in front of each
sensor sequentially one after another, and separated images in three colors
are stored at a fast rate. The digital camera acquires RGB components, given
by the light intensity in the three wavelength bands, at each pixel location.
Since each color component is represented by 8 bits it can assume 256 different
values. Hence the overall amount of different colors that can be represented
are 2563 colors, i.e. each pixel can assume one among 16,777,216 colors.

When we use the RGB filter strategy we make the implicit assumption
that the colors in the image do not have to change passing from one filter to
another one. This assumption in some cases cannot be fulfilled.

An alternative solution to RGB strategy is based on the color interpola-
tion (or demosaicing). Demosaicing is a cheaper way of recording the RGB
components of an image. According to this method only one type of filter over
each photosensor is permanently placed. The sensor placements are usually
carried out in accordance with a pattern. The most popular placement is the
so-called Bayer’s pattern [3]. In the Bayer’s pattern each pixel is indicated by
only one of the RGB components, i.e. the pixel is red, or green, or blue. It
can make accurate guesses about the missing color component in each pixel
location by means of demosaicing [24] [28].

High-quality cameras use three different sensors with RGB filters, i.e. one
sensor for each RGB component. The light is directed to the sensors by means
of a beam splitter. Each sensor responds to a narrow color wavelength band.
Hence the camera acquires each of three colors for any pixel.

Grayscale Image

A grayscale (or graylevel) image is simply one in which the only colors are
shades of gray. The reason for differentiating such images from any other sort
of color image is that less information needs to be provided for each pixel.
Since a “gray” color is one in which the red, green and blue components all
have equal RGB components, it is only necessary to specify a single intensity
value for each pixel, unlike the three RGB components required to specify
each pixel in a full color image. The grayscale intensity is stored as an 8-
bit integer giving 256 possible different shades of gray from black to white.
Grayscale images are entirely sufficient for many tasks (e.g. face recognition)
and so there is no need to use more complicated and harder-to-process color
images.

3.4 Color Representation 57

Fig. 3.3. A graylevel image
.

3.4 Color Representation

The elaboration of color images in image processing has been receiving more
attention. This section introduces the basic principles underlying the human
perception of color and reviews the main color models.

The light reflected from an object is absorbed by the cone cells and leads
to the color perception. As we saw in Section 3.2, there are in the retina three
different cone classes responsible for color perception. The human nervous
system is sensitive to light intensity differences across different cones.

In this section we present the principles of human color perception and
describe the main color models [18][29][30].

3.4.1 Human Color Perception

The electromagnetic radiation is perceptible by the human eye when its
wavelength is between 4,000 and 7,700 Angstrom, i.e. between 4 ∗ 10−7 and
7.7 ∗ 10−7 m . The wavelengths of 4,000 and 7,700 correspond, respectively,
to violet and red.

A color image can be represented as a function C(x, y, λ) where (x, y) in-
dividuates the point in the image and λ is the wavelength of the light reflected
from the object. A monochromatic image is an image acquired in a fixed wave-
length λ. The existence of three spectral perception functions VR(λ), VG(λ)
and VB(λ), which correspond to three different types of cones, is the basis
of color vision. The functions VB(λ), VG(λ) and VR(λ) are maximal when
the wavelengths are, respectively, 4,300, 5,300 and 5,600 Angstrom. These
wavelengths do not correspond exactly to blue, green and red. Hence some
researchers use the the nomenclature of short-wavelength, medium-wavelenght
and long-wavelength instead of the more popular R, G and B cones. The cones
provide the human brain with color vision (photopic vision) and can distin-
guish small wavelength modifications. The eye sensitivity changes with the

58 3 Image and Video Acquisition, Representation and Storage

wavelength and the maximum sensitivity corresponds to 5,070 Angstrom. An
object in a scene, as perceived by an image acquisition device (e.g. a camera,
a human eye), can be represented by a radiance function R(λ, x, y) where λ
is the wavelength of a particular color at the point (x, y) of the scene. Weber
formulated a relationship (Weber’s law) between the physical stimuli from an
object (e.g. the monitor luminance) and the subjective human perception. If
we define WL as the just noticeable difference (JND) in the brightness3 re-
quired for distinguishing L and L+WL, the following equation (Weber’s law)
holds:

WL

L
= k (3.2)

where k is a constant, whose value is ∼ 0.015.
Weber’s law states that the larger the brightness L the larger the increase

WL required to perceive the difference between two objects of brightness L
and L + WL. On the other hand, distinguishing two objects of low brightness
is much easier. If we have an object whose brightness is L

10 , the increase in
brightness wl to distinguish another object will be smaller, that is will be one
tenth of WL.

More accurate investigations have proved that Weber’s law does not always
hold. In particular cases Weber’s law has to be substituted by more precise
formulae. For further informations, readers can refer to [5].

Color Quantization

Actual computer monitors have generally 2563 (i.e. 16,777,216) different col-
ors (see Section 3.3). On the other hand, a human eye can usually distinguish
only about 17,000 colors. Therefore, the usual color spaces of the actual com-
puter monitors present a large redundancy if compared with the usual require-
ments of a human user. Removing the color redundancy generally improves
the efficiency of color image processing algorithms. The color redundancy can
be eliminated by mapping the usual color space onto a new space that has
∼17,000 colors (color quantization) . In this way it can simulate the human
color perception, preserving the image quality from a perceptive point of view.

The red color cones have minimum spectral sensitivity; green color cones
have the maximum sensitivity, whereas blue color cones have an intermediate
sensitivity. If we take into account the different sensitivity of three different
color cones, the best policy consists of sampling in different ways the R, G,
and B axes. Therefore, R-axis, B-axis and G-axis have, respectively, 24, 26 and
28 quantization levels. If we use these quantization levels, the overall amount
of available colors is 17,472 which is approximately the same number of the
perceived colors by the human eye. All the colors perceived can be seen as a
linear combination of the basic colors (or primaries), that is red, green and
blue. A human eye can distinguish two different colors only if there is a JND

3 Brightness measures the color intensity (see Section 3.4.2).

3.4 Color Representation 59

(see Section 3.4.1) from each other. The JND is generally not costant due
to the nonlinearity of the human vision. Buchsbaum investigated the visual
nonlinearity of the human eye and his results are supported by physiology.
For further informations, readers can refer to [5].

3.4.2 Color Models

Many color models (or color spaces) have been proposed, and in each model
color stimuli are represented by points in a three-dimensional color space.
No model clearly outperforms the others and the best choice depends on the
application. Color models [7] can be grouped in:

• Colorimetric models which are based on the physical spectral reflectance.
An example of a colorimetric model is the CIE chromaticity diagram.

• Physiologically inspired models which are based on neurophysiology. Ex-
amples of these models are the CIE XYZ and RGB models.

• Psychological models which are based on how colors are perceived by the
humans [13] [14]. An example of a psychological model is HSB .

Color models can be grouped [7] also in an alternative way:

• Hardware-oriented color models. These models are designed taking into
account the properties of the devices (e.g. computer and TV monitors,
printers) used to reproduce colors. Examples of hardware-oriented models
are RGB , CMY , YIQ and YUV .

• User-oriented color models. These models are based on human perception
of colors. Human color feel is based on hue, saturation and brightness per-
ceptions. Hue indicates the wavelength of the percepted color. Saturation
(or chroma) measures the quantity of white present in a color. Highly satu-
rated colors (or pure colors) do not have any white component. Brightness
(or value, or intensity, or lightness) measures the color intensity. Examples
of user-oriented color models are HLS , HCV , HSV and HSB .

A review of the main color spaces is presented in the rest of the section. For
more exhaustive presentation, readers can refer to [2][11][15][20][22][23][30].

The Chromaticity Diagram

The research on color models has been carried out under the auspices of Com-
mission Internationale de l’ Eclairage4 (CIE), an organization based in Paris.
In the twentieth century CIE sponsored research into color perception which
resulted in a class of mathematical models [30]. The common basis of these
models consists in a collection of color-matching experiments, where an ob-
server judges whether two parts of a visual stimulus (e.g. a figure) match
in appearance, i.e. look identical or not. By varying the composition of the

4 This is also called the International Lighting Committee.

60 3 Image and Video Acquisition, Representation and Storage

4000 5000 6000 7000

0.5

1

1.5

1.8

wavelength

tr
is

tim
ul

us
blue

green
red

Fig. 3.4. CIE 1931 standard observer color matching functions for virtual primaries.
Blue, green and red correspond respectively to z, y and x.

light (i.e. an electromagnetic radiation visible to human eyes.) projected onto
either part of the field of view, researchers can investigate properties of hu-
man color vision. It has been found that the light of almost any spectral
composition (i.e. any color) can be matched by mixtures of three suitable
chosen monochromatic primaries. A monochromatic primary is a light of a
single wavelength. By repeating this kind of experiment with many different
observers and averaging the results, and measuring the spectral composition
and poer of each of the light sources, the CIE has defined the so-called stan-
dard observer color matching functions (SOCMF). Assuming that the human
visual system behaves linearly, the CIE then went on to define the SOCMF
in terms of the so-called virtual primaries. Virtual primaries are defined in
such a way that SOCMF are all positive, which is desiderable in practical ap-
plications. These primaries are called virtual since they cannot be physically
obtained. The SOCMF for the virtual primaries are shown in figure 3.4. The
SOMCF are usually called CIE 1931 standard observer color matching func-
tions. The functions are generally indicated with x̄, ȳ, z̄. These functions are
chosen such that ȳ is proportional to the human photopic luminosity function,
which is an experimentally determined measure of the perceived brightness of
monochromatic light of different wavelengths. These functions represent the
basis of the research in color science, even though there have been many revi-
sion since 1931 [30]. If we know the spectral composition of a stimulus E(λ),
we can now determine its chromaticity coordinates as follows.

3.4 Color Representation 61

• First, we compute the tristimulus values X, Y , Z

X =
∫

E(λ)x̄(λ)dλ (3.3)

Y =
∫

E(λ)ȳ(λ)dλ (3.4)

Z =
∫

E(λ)z̄(λ)dλ (3.5)

• Then, we compute the chromaticity coordinates

x =
X

X + Y + Z
(3.6)

y =
Y

X + Y + Z
(3.7)

z =
Z

X + Y + Z
(3.8)

If we add Eequations (3.6), (3.7) and (3.8) we obtain:

x + y + z = 1 (3.9)

Since z = 1 − (x + y), x and y are adequate to specify the chromaticity of a
color. Therefore the chromaticity coordinates x, y are plotted forming the so-
called chromaticity diagram. The chromaticity diagram has several properties.
It represents every physically realizable color as a point. It has a white point
at its center, with more saturated color radiating outwards from white. When
superimposing light coming from two different sources, the resulting color
perceived lies on a straight line between the points representing the component
lights in the diagram. Moreover, we can represent the range of all colors that
can be produced, the so-called color gamut , by means of three primaries as the
triangular area of the chromaticity diagram whose vertices have coordinates
defined by the chromaticities of the primaries. Now we pass to describe the
main color models.

RGB Color Model

The RGB Color Model is the most commonly used hardware-oriented color
model. Color images in monitors and video cameras are represented in RGB
(which is an acronym of Red Green Blue) space and they are usually called
RGB images. Colors in RGB models are obtained as a linear combination of
the primary colors red, green and blue. In the RGB model, RGB coordinates
range from 0 to 1. They are connected with the tristimulus values X,Y,Z by
means of the following equations:

X = 0.490R + 0.310G + 0.200B

Y = 0.177R + 0.831G + 0.010B

Z = 0.000R + 0.010G + 0.990B

62 3 Image and Video Acquisition, Representation and Storage

In the RGB model, white and black are represented, respectively, by the triples
(0,0,0) and (1,1,1). red, green and blue are represented, respectively, by (1,0,0),
(0,1,0) and (0,0,1). Cyan, yellow and magenta, which are secondary colors
obtained respectively by the superposition of green and blue, red and green,
red and blue, are represented by the triples (0,1,1), (1,1,0) and (1,0,1).

CMY Model

CMY color model takes its name from the colors Cyan, Yellow, Magenta.
Although these colors are secondary, cyan, magenta and yellow are the primary
colors of pigments. Cyan, yellow and magenta are called subtractive primaries
because these colors are obtained by subtracting light from white. The CMY
model finds application in color printers. The transformations thath allow
us to pass from RGB to CMY model can be obtained transforming RGB
values into XYZ and then from XYZ coordinates into CMY. An approximate
transformation, inaccurate in some cases, that allows us to pass from RGB to
CMY model is the following:⎡⎣R

G
B

⎤⎦ =

⎡⎣1 − C
1 − M
1 − Y

⎤⎦−
⎡⎣R

G
B

⎤⎦ (3.10)

where R,G,B ∈ [0, 1].

YIQ and YUV Models

The YIQ model represents the grayscale information by means of the lumi-
nance Y . Whereas hue I and saturation Q express the color information and
are often called chrominance components . YIQ coordinates can be obtained
from the RGB model using the following transformation:

Y = 0.299R + 0.587G + 0.114B

I = 0.596R − 0.274G − 0.322B

Q = 0.211R − 0.523G + 0.312B

The YIQ model is used in NTSC (National Television Standard Committee),
which is the television standard in the USA, and for this reason is also called
the NTSC color space.

The YUV model is similar to YIQ. The grayscale is represented by means
of the luminance whereas the chrominance components are U (or Cb) and V
(or Cr). Cb and (or Cr) are respectively called blue difference component and
red difference component . YUV coordinates can be obtained from the RGB
model using the transformation (also called television law):

Y = 0.299R + 0.587G + 0.114B

U = 0.493(B − Y) (3.11)
V = 0.877(R − Y)

3.4 Color Representation 63

Equations (3.11) fully justify the names of the chrominance components. The
YUV model is used in PAL, which is the television standard in Europe (with
the exception of France where the standard is SECAM).

User-Oriented Color Models

Although RGB, CMY and YIQ models are useful for color representation, they
are not similar to human perception. A drawback of the RGB model is the lack
of uniformity. A uniform color space is a space where the Euclidean distance
between two color points corresponds to the perceptual difference between
two corresponding colors in the human vision system. In other words, in a
nonuniform color space, two couples of color points with the same distance do
not show the same degree of perceptual difference. In imaging applications,
it is very popular the use of perceptually uniform color spaces. Hence the
nonuniform RGB space has to be transformed into any perceptually uniform
space. Before we describe these spaces, it is necessary to remark on some facts
described in the following.

Color is an attribute of human visual perception and can described by
color names such as green, blue and so on. Hue is another attribute of human
perception and can be described by primary hues (red, green, blue, purple
and yellow) or by a combination of them. Although black, white and gray are
colors, they are not classified by CIE as hues. Therefore perceived colors can
be divided into two families: achromatic colors and chromatic colors. Achro-
matic colors that are not hues (i.e. Black, White and gray); chromatic colors
that are hues. Hue, described already as a color property of light, can be also
thought as a property of the surface reflecting or transmitting the light. For
instance, a blue glass reflects blue hue. Hence hue is also an attribute of the
human perception and is the chromatic component of our perception. It can
be classified as weak hue or strong hue. The colorfulness of a color is expressed
by the saturation. For instance, the color from a single monochromatic source
of light, which yields the color of a unique wavelength, is highly saturated,
whereas the colors that have hues of different wavelengths have small chroma
and less saturation. For example, gray colors do not have hues and their sat-
uration is null (unsaturated colors). Hence the saturation can be seen as a
measure of colorfulness (or the whiteness) of the color in the human percep-
tion. The lightness (L), also called intensity (I) or value (V), measures the
color brightness. It provides a measure of how much light is reflected from the
colored object or how much light is emitted from a region. The lightness is
proportional to the electromagnetic energy emitted by the object. Finally, the
luminosity helps the human eye in color perception. For instance, a colored
object in the darkness does not appear colorful at all. That being stated, we
pass to describe the color models based on human perception of colors (also
called user oriented color models).

The first user-oriented color model was proposed by Munsell [9][16][21]
about 90 years ago. His model, called the Munsell color space, was designed

64 3 Image and Video Acquisition, Representation and Storage

Black

White

I

H

S

Fig. 3.5. HIS color space. I, S and H indicate, respectively, intensity, saturation
and hue.

for artists and based on subjective human assessements rather tha on objective
perceptual measures (e.g. measurements of hue, saturation and brightness).
The Munsell color model uses a cylindrical coordinate scheme and is too cum-
bersome to be used in imaging application. Therefore, several approximations
of the Munsell color model have been developed. They separate luminance
from the other components, supporting in this way an intuitive notion of
color. Among these models, the most popular are HIS (hue, intensity and sat-
uration), HCV (hue, chroma and value), HSV (hue, saturation, value) and
HSB (hue, saturation, brightness). These models are closely related. Color
coordinates can be derived from RGB and XYZ models by means of generally
nonlinear equations. These models are very popular in image processing. For
the sake of space, we will only describe HIS , HSB , HSV .

The HIS model, where HIS stands for hue, intensity and saturation, can be
represented by means of a double cone (see Figure 3.5). gray is in the middle
of the axis whereas white and black are located, respectively, in the top and
in the bottom cone vertex. Hue and saturation are represented, respectively,
by the angle around the vertical axis and the distance from the central axis.
Most saturated colors are located close to the maximum circle. Primary and
secundary colors are located on the maximum circle equally spaced at 60
degrees: red, yellow, green, cyan, blue, magenta (listed counterclockwise).

The HSV model, where HSV stands for hue, saturation and value, is
strictly related to HCV, HLS and HSI and it can be represented by a cone
(see Figure 3.6). Similarly to the HIS model, the cone axis represents the line
of gray. HSV coordinates can be obtained from the RGB model using different
transformation. The simplest transformation is the following:

3.4 Color Representation 65

C R

YG

B M

S

H

Black

V

White

Fig. 3.6. HSV color space. C, G, Y , R, M ,B indicate respectively cyan, green yellow,
red, magenta and blue. Black and white have, respectively, V = 0 and V = 1.

V =
R + G + B

3

S = 1 − min(R,G,B)
V

(3.12)

H = tan
[

3(G − B)
(R − G) + (R − B)

]
. (3.13)

Note that H is undefined when S = 0.
The most popular HSV transformation is the following. Firstly, RGB val-

ues are normalized by defining:

r =
R

R + G + B
; g =

G

R + G + B
; b =

B

R + G + B
. (3.14)

Then H, S, V can be computed using:

V = max(r, g, b) (3.15)

S =
{

0 if V = 0
V − min(r,g,b)

V if V > 0.

}
(3.16)

H =

⎧⎪⎪⎨⎪⎪⎩
0 if S = 0
60∗(g−b)

S∗V if V = r
60 ∗ [2 + b−r

S∗V] if V = g
60 ∗ [4 + r−g

S∗V] if V = b

⎫⎪⎪⎬⎪⎪⎭ (3.17)

H = H + 360 if H < 0. (3.18)

The HSB model, where HSB stands for hue, saturation and brightness, is in-
spired by Hurvich and Jameson’s opponent colors theory [14] which is based
on the observation that opponent hues (yellow and blue, green and red) erase
each other when superimposed. Hurvich and Jameson computed the relative

66 3 Image and Video Acquisition, Representation and Storage

quantity (chromatic response functions) of each of four basic hues present in
each stimulus at a given wavelength. Besides, Hurvich and Jameson fixed the
relative quantity of each of the four basic hues in each stimulus at a given
wavelength which represents the perceived brightness of a visual stimulus at
a given spectral composition. Hue and saturation coefficients function were
derived by means of chromatic and achromatic response functions. Hue coef-
ficient functions represent hue by means of the ratio between each chromatic
response and the total of chromatic responses at each wavelength. Saturation
coefficient functions represent saturation by means of the ratio between the
total of chromatic responses and the achromatic response at each wavelength.
HSB is polar coordinate model and reproduces with some accuracy many psy-
chophysical phenomena. HSB coordinates rg, by and wb can be obtained from
RGB model by means of the following equations:

rg = R − G

by = 2B − R − G (3.19)
wb = R + G + B.

Finally, the intensity axis wb can be sampled more roughly than rg and by
without a human observer noticing any perceptible differences.

3.5 Image Formats

Storage and retrieval of images is performed by means of files. They are orga-
nized on the basis of particular standards called image file format standards.
Storing an image requires a lot of memory. For instance, a grayscale image of
1024times1024 requires 1024×1024 bytes i.e. 1 MByte. Therefore each image
is stored in compressed form. Image file formats can be divided into two fam-
ilies: nolossy image file formats and lossy image file formats. In the nolossy
image file formats the compression stage does not imply an information loss.
Hence after the decompression we obtain the original file before the com-
pression. Vice versa, in the lossy formats the compression stage implies an
information loss.

3.5.1 Image File Format Standards

In this subsection we will provide a concise description of the most popular
image file formats with the exception of JPEG. This standard will be presented
in Section 3.5.2.

3.5 Image Formats 67

Tagged Image File Format (TIFF)

This format, whose file extension is .tif or .tiff, can be used to efficiently
manage very different types of images such as, for instance, bitmaps and
compressed color images. TIFF is generally a nolossy compression format5.

Portable Network Graphics (PNG)

PNG, whose file extension is .png, is a format that provides lossless storage
of raster images. PNG offers the main TIFF functionalities.

Graphics Interchange Format (GIF)

GIF supports 8-bit color images and is generally used in application programs
(e.g. word processors) in the Windows environment.

Postscript

This format, developed in the UNIX environment, is used for printing. In this
format gray-level images are represented by decimal or hexadecimal numerals
written in the ASCII format.

Portable Image File Formats

Portable image file formats are very popular image file formats which include
portable bitmap, portable graymap, portable pixmap and portable network map,
whose file extensions are, respectively, .pbm, .pgm, .ppm and .pnm. Portable
image file formats are convienent methods for the storage and retrieval of
the images since they supports all kinds of images of increasing complexity,
ranging from bitmaps to color images.

PPM and PGM File Formats

A PPM file is organized into two different parts, a header and the image data.
The header contains a PPM identifier (P3 and P6, respectively, for ASCII and
binary formats), the width and the height of the image coded in ASCII and
the maximum value of the color components of the pixels. The PGM format
allows us to store only grayscale images. Its format is identical to PPM with
the unique difference in the identifier of the header (P2 and P5, respectively,
for ASCII and binary formats).

5 TIFF also provides lossy compression schemes, although they are less popular.

68 3 Image and Video Acquisition, Representation and Storage

PBM

PBM format allows us to store binary images as a series of ASCII 0 (white
pixel) or 1 (black pixel). The PBM header is identical to the one of PPM
format with the only difference of the header. The header contains a PBM
identifier (P1), the width and the height of the image coded in ASCII .

3.5.2 JPEG Standard

JPEG , whose file extension is .jpg, is the acronym of Joint Photographic Ex-
perts Group. JPEG is the first international image compression standard for
continous-tone still images (e.g. photos). This standard is the result of joint
efforts by the International Telecommunication Union (ITU), International
Organization for Standardization (ISO) and International Electrotechnical
Commission (IEC) and is referred as ISO/IEC IS 10918:1: Digital Compres-
sion and Coding of Continuous-tone Still Images. JPEG is very important
since the video standard MPEG is based on JPEG. For this reason, we pay
particular attention to this standard. JPEG generally performs a lossy com-
pression, i.e. the compression implies an information loss and the image after
the decompression stage is not identical to the original image. JPEG has
four modes (sequential lossless mode,6 sequential DCT-based mode, progres-
sive DCT-based mode, hierarchical mode) and several options. For the sake of
space, we will describe only the JPEG basic coding algorithm (baseline JPEG
algorithm) which is based on Huffman coding for entropy encoding .

Huffman Coding

Huffman coding [12] is a popular and effective method of nolossy data com-
pression. It is a form of entropy coding . In order to present Huffman coding,
we consider the following example [6]. We have a data file formed by 50,000
characters of only five types, for instance E, F , G, H, I. Besides, we suppose
that the frequence of the characters in the file is known (see Table 3.1). Our
goal is to represent each character with a binary code (or code). If we use a
fixed length code we need three bits for represent five characters, as shown
in Table 3.1. Hence the overall amount of bits required for coding the file is

Table 3.1. Frequency of each character in the file.

E F G H I

Frequency 40% 5% 25% 10% 20%
Fix Length Code 000 001 010 011 100
Huffman Code 0 1100 10 1101 111

6 In this mode, JPEG produces a nolossy compression.

3.5 Image Formats 69

HF

I

G

E

0 1

10 11

111110

11011100

Fig. 3.7. Huffman tree representation for the example of Table 3.1.

150,000 bits. Can a code be designed that requires less bits? The answer to
this question is provided by Huffman coding [12]. David Huffman proposed
his code, when he was a MIT graduate student, as a exam project for the
information theory course. Huffman’s basic idea was to represent each charac-
ter by means of a binary string of variable size (variable length code). In this
way a shorter bit code was associated with the character whose frequence was
higher. Huffman coding for the five characters, shown in Table 3.1, requires
an overall amount of bits BH equal to:

BH = 50, 000 ∗ (0.40 ∗ 1 + 0.05 ∗ 4 + 0.25 ∗ 2 + 0.10 ∗ 4 + 0.20 ∗ 3) = 105, 000.

Huffman coding, compared with fix length code, lets us save 45,000 bits,
i.e. 30% of the overall required storage space. It is possible to show [6] that
Huffman coding is optimal. The key to Huffman coding is Huffman’s algorithm
which makes an extended binary tree of minimum weighted path length from a
list of weights. We now describe the algorithm. Firstly, we assume that with
each symbol (or character) is associated a weight equal to the number of the
symbol occurrences in the file. For instance, in our example, with the symbols
E and I are associated, respectively, 40 and 20. Huffman’s algorithm uses a
bottom-up strategy and assumes that we are making a unique tree starting
from a group of trees (forest). In the first stage, each tree is composed of
a single node with the associated symbol and weight. Trees are gathered by
choosing two trees and creating a new tree from the fusion of the two original
trees. Hence the forest cardinality decreases by one unity at each algorithm
stage. When the forest is composed by a unique tree, Huffman’s algorithm
stops. Huffman’s algorithm is composed of the following steps:

1. Start with a forest of trees. Each tree is composed of a unique node, with
an associated character and weight. The weight is equal to the occurrences
of the character.

2. Pick two trees (T1 and T2) with the smallest weights of roots. Create a
new tree (Tn), whose left and right subtrees are respectively T1 and T2,

70 3 Image and Video Acquisition, Representation and Storage

which has a root whose weight w(Tn) is equal to:

w(Tn) = w(T1) + w(T2)

where w(T1) and w(T2) are, respectively, the weights of T1 and T2.
3. If the forest cardinality is more than one go to step 2; otherwise return

the single tree left.

It is possible to show that the single tree returned by Huffman’s algorithm is
an optimal encoding tree [6]. The labeling of the edges of the optimal encoding
tree is arbitrary. A popular strategy consists in assegning a value of 0 to an
edge of any left child and a value of 1 to an edge of any right child (or vice
versa). By concatenating the labels of the edges we obtain the Huffman coding.
The labeled optimal encoding tree, produced by Huffman’s algorithm, in the
example of five characters is shown in Figure 3.7. Finally, we conclude with
the remark that Huffman’s algorithm is an example of greedy algorithm [6].
It is greedy since the nodes with the smallest weights are picked at each step
and this local optimal decision results in a global optimal encoding tree.

Baseline JPEG Algorithm

After the description of Huffman’s coding we return to JPEG and describe its
baseline algorithm. The baseline JPEG algorithm is formed by the following
steps:

1. Color space transformation: Firstly, the image is converted from RGB
space into a Y Cb Cr space, similar to YIQ and YUV color spaces used in
NTSC and PAL systems. As we have seen previously, Y is the luminance
component whereas Cb and Cr components together represents the image
chrominance. A matrix for each single component is built. Each matrix is
formed by elements whose range is from 0 to 255.

2. Downsampling : The chrominance components are downsized. Each Cb and
Cr matrices are reduced by a factor of two in horizontal and vertical direc-
tions.7 This is performed by averaging on squares formed by four pixels.
For instance, if each matrix, before downsampling, had 640×480 pixels,
after downsampling Y matrix has 640×480 pixels, whereas Cb and Cr

matrices have 320×240 pixels. Downsampling is a lossy data compression
but it is not pratically noticed by the human eye since it is more sensible
to the luminance signal than the chrominance ones. The element values
are then centered around zero by substracting 128 from each one of them.
Finally each matrix is divided in blocks of 8×8 pixels.

3. Discrete cosine transform: The 8×8 blocks of each component (Y , Cb,
Cr) are converted to the frequency space using a two-dimensional discrete
cosine transform (DCT) (see the Appendix). DCT output is a 8×8 matrix

7 JPEG offers the possibility of reducing by a factor of 2 only in the horizontal
direction.

3.5 Image Formats 71

145 76 43 16 5 2 1 0

97 79 39 12 7 1 0 0

48 35 24 7 6 4 0 0

16 11 8 5 2 1 0 0

7 5 3 0 0 0 0 0

4 3 1 1 0 0 0 0

2 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 1 2 4 8 16 32 64

1 1 2 4 8 16 32 64

2 2 2 4 8 16 32 64

4 4 4 4 8 16 32 64

8 8 8 8 8 16 32 64

16 16 16 16 16 16 32 64

32 32 32 32 32 32 32 64

64 64 64 64 64 64 64 64

145 76 22 4 1 0 0 0

97 79 20 3 1 0 0 0

24 18 12 2 1 0 0 0

4 3 2 1 0 0 0 0

1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Fig. 3.8. Quantization process in JPEG. (a) DCT matrix before the quantization;
(b) quantization matrix; (c) DCT matrix after the quantization

of DCT coefficients. Theoretically, DCT is nolossy, but practically there
is a small information loss due the approximation errors.

4. Quantization: The human eye can detect a small difference in brightness,
but is not able to discriminate the exact magnitude of a high-frequency
brightness variation. This physiological fact is used in JPEG to reduce the
amount of information in the high frequencies. This is performed in the
Quantization step, where less important DCT coefficients, generally the
ones related to high frequencies, are deleted. This lossy transformation
is performed by dividing each DCT coefficient by a weight taken from
a table (quantization table). If all weights are 1, the transformation pro-
duces no effects, but if the weights increase quickly from the origin, the
coefficients related to high frequency are downsized notably. An example
of the quantization process is shown in Figure 3.8.

5. Average value reduction: In this step the value (0,0) (average value) of
each block, which is given by the value at the top left corner, is reduced,
by replacing it with the difference between actual average value and the
average value of the previous block. This difference is generally small since
the average values of the block does not differ each other notably. Hence
replacing each average value with its difference with the average value of
the previous block implies that most average values, after average value
reduction, are very small. During average value reduction, the other DCT
coefficients do not change.

6. Linearization: In this step the linearization of the block is performed . The
block is linearized using a particular zig-zag scheme, shown in Figure 3.9.
The zig-zag scheme produces a density of zero at the end of the block. In
Figure 3.9 the zig-zag scheme produces a final sequence of zeros which is
effectively coded using a unique value, i.e. the zero amount. At the end
of the linearization process, the image is represented by a unique list of
numbers.

7. Huffman coding : Finally, the list of number is coded by Huffman coding.

JPEG is very popular since its compression rate is generally not less than
20:1. The decoding of a JPEG image requires performing the above-described

72 3 Image and Video Acquisition, Representation and Storage

145 76 22 4 1 0 0 0

97 79 20 3 1 0 0 0

24 18 12 2 1 0 0 0

4 3 2 1 0 0 0 0

1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Fig. 3.9. Linearization of the block. The order is from left to right.

algorithm backwards. The encode and the decode of a JPEG image generally
require the same computational resources.

3.6 Video Principles

A property of the human eye is to hold for a few milliseconds the projected
image of any object before it dissolves. If a sequence of image is projected
at more than 25 images per second, human eyes cannot realize that they are
looking at a sequence of discrete images. Video and movies use this principle
to produce the sensation of moving images. To understand video, the best ap-
proach [26] is to consider the model of black-and-white television. To represent
the bidimensional image, the camera makes a scanning, by means of a beam
of electrons, fast from left to right and more slowly from up to down recording
the light intensity on the screen. When the scanning is complete (frame), the
electron beam restarts. The intensity, in function of time, is the transmitted
signal and receivers repeat the scanning to reproduce the image. Although
modern CCD videocameras make an integration instead of a scanning, some
videocameras and CRT8 monitors make a scanning. Hence, our description
has still a certain degree of validity. The parameters of the scanning depends
on the considered television standard. NTSC (National Television Standard
Committee), the television standard in USA, has 525 scanning lines, the ra-
tio between the horizontal and the vertical dimension is 4

3 and makes 30
frames per second, whereas, the European standards PAL (Phase Alternative
Line) and SECAM (SEquentiel Couleur Avec Memoire)9 have 625 scanning

8 CRT stands for cathode-ray tube.
9 Sequential Color with Memory.

3.7 MPEG Standard 73

lines, the same ratio of 4
3 between the horizontal and the vertical dimension

and make 25 frames per second. The color television uses the same scanning
model of the black-and-white television. In this case three synchronized elec-
tron beams are used, one beam for each of three primary colors (Red, Green
and Blue). Then, in the three television systems (i.e. NTSC, PAL and SE-
CAM) RGB signals are transformed into a luminance signal and into two
chrominance signals. Each system uses different transformations to obtain
chrominance signals. Since the human eye is more attuned to the luminance,
the luminance has to be transmitted more accurately than the chrominance
signals.

We have briefly described the analog television. We describe now digital
video. Digital video is a sequence of frames, each of them is a digital image,
whose basic element, as we have seen, is the pixel. In digital video color, each
primary color (i.e. red, green and blue) is represented by eight bits. Hence
more than sixteen millions of colors can be represented in the digital color
videos. As we have seen at the beginning of this chapter, human eyes can
distinguish only a smaller number of colors, i.e. ∼17,000 colors.

In order to produce a uniform movement, digital video has to display at
least 25 frames per second. In digital video, the rate between the horizontal
and the vertical dimension is 4

3 , whereas the digital screen usually has 640×480
(or 800×600) pixels.

High-definition television standards have different parameters, the digital
screen has 1280×720 pixels and the rate between the horizontal and the ver-
tical dimension is 16

9 . For sake of precision, we have to underline that the
European standard digital video broadcasting (DVB) also permit 16

9 as rate
between the horizontal and the vertical dimension.

In the next section we will describe the main standard for video compres-
sion, i.e. MPEG .

3.7 MPEG Standard

Video requires a huge quantity of memory for the storage. For instance, a TV
movie without compression, displayed on a screen of 640×480 pixels with a
length of two hours, requires about 200 GBytes. Hence, compression is a cru-
cial topic for digital video. In this section, we briefly describe the MPEG stan-
dard, paying particular attention to MPEG-2. The MPEG (Motion Picture
Experts Group) [19]. MPEG-1 (International Standard 11172) was designed
for a videorecorder at 1.2 Mbps. MPEG-2 (International Standard 13118)
was designed to compress video signals from 4 to 6 Mbps in order to be
used in NTSC and PAL television systems. Both MPEG-1 and MPEG-2 use
spatial and temporal redundances in the video. A spatial redundance can be
exploited coding separately each frame by means of JPEG. A further compres-
sion can be obtained observing that consecutive frames are often almost the
same (temporal redundance). The digital video system (DV), used in digital

74 3 Image and Video Acquisition, Representation and Storage

videocameras, codes each frame separately by means of JPEG. Since coding
has to be perfomed in real time, coding each frame separately is faster. In the
scenes where the videocamera and the landscape are fixed and only one or
two objects move slowly, almost all pixels will be the same in two consecutive
framess. Therefore, a good compression result can be obtained subtracting
each frame from the preceeding frame and performing JPEG compression on
the difference. This is the strategy adopted by MPEG. Nevertheless, when
the videocamera performs a zoom, this strategy fails. Therefore a method of
motion compensation is required. This is the strategy adopted by MPEG and
is the main difference between JPEG and MPEG. MPEG-2 produces three
different frame types, which have to be elaborated by the display program.
The frames are:

• I-frame (or intra-frame): still images coded by means of JPEG.
• P-frame (or predictive frame): the difference between the actual frame and

its predecessor.
• B-frame (or bidirectional frame): differences between the actual frame and

its predecessor and its successor.

I-frames are still images coded by means of JPEG. This implies that the
luminance is used at full resolution, whereas the chrominance components
are used at half resolution along both horizontal and vertical axes. I-frames
have to be produced periodically for some reasons. Firstly, MPEG can be
used for the television transmission which is characterized by the fact that
the customers connect themselves with the television transmission when they
want. If all the frames depend on the preceeding one, anyone who has missed
the first frame could never decode the succeeding frames. Besides, if a frame
was received wrongly, it could not decode the succeeding frames.

P-frames code the differences between two consecutive frames. They are
based on the idea of macroblocks, which cover 16×16 pixels in luminance and
8×8 pixels in the chrominance components. A macroblock is coded looking for
in the preceeding frame the same macroblock or a macroblock which differs
only a little from it. An example of P frame is shown in Figure 3.10. The
B-frames are similar to P-frames, with the difference that they code both the
differences of the actual frame with the preceeding and the succeding frame.
To code a B-frame, the decoder requires to mantain, at the same time, in the
memory three frames: the preceeding one, the actual one and the succeed-
ing one. In order to make simpler the coding, the frames are ordered in a
MPEG-flux on the basis of their dependence and not on the basis of the order
according to which they are displayed. In the next section we will describe
other MPEG standards.

3.7 MPEG Standard 75

(a) (b)

(c)

Fig. 3.10. MPEG-2 standard. (a) and (b) are two consecutive I frames; (c) is the
P-frame, which is obtained subtracting (b) from (a).

3.7.1 Further MPEG Standards

After the success of MPEG-2, further standards of the MPEG family have
been developed. We briefly summarize below MPEG-4, MPEG-7 and MPEG-
21.

MPEG-4 Standard

MPEG-4 supports the composition of audiovisual information and representa-
tion of media in multimedia environments. MPEG-4 provides a toolbox that
has tools and algorithms for content-based interactivity, compression and ac-
cess. In particular, the toolbox contains content-based multimedia data access
tools, content-based manipulation and bitstream editing, natural and synthetic
data coding, improved temporal random access, improved coding efficiency and
coding of multiple concurrent data streams, robustness to errors and content-
based scalability [17]. MPEG-4 describes audiovisual data in the form of ob-
jects. MPEG-4 objects are entities that combine a data structure (object state)
with a set of methods (object behavior). A method is a computable procedure
associated with an object that works on data structures. MPEG-4 provides
a number of predefined classes organized in a hierarchical way. Classes are
object templates (e.g. images, audio clips). The hierarchy identifies the rela-
tionships among classes, in particular the inheritance. For instance a part of
a image inherits the properties of the whole image (e.g. gray-scale). The set
of classes above described is called MPEG-4 standard class library.

The architecture of MPEG-4 uses a terminal model for transmitting au-
diovisual data. A MPEG-4 terminal assumes a twofold form, i.e. it can be

76 3 Image and Video Acquisition, Representation and Storage

either a standalone application or part of a multimedia terminal. The former
terminal (encoder) encodes and transmits audiovisual data through a com-
munication nerwork. The latter terminal (decoder) decodes and displays the
audiovisual data. In the encoder terminal, audiovisual data are compressed,
error protected and then transmitted under the form of binary streams. In
the decoder terminal, the binary streams are corrected, whenever it is neces-
sary, and decompressed. Then a compositor presents and renders the objects
on the screen. The objects of a scene are memorized with the related infor-
mation about their relationships. This information is used by the compositor
to display the complete scene. MPEG-4 offers two different terminal kinds:
nonflexible and flexible. Nonflexible terminals are based on a set of algorithms
and profiles which are combined to offer a set of predefined classes which
can be chosen by the user by means of switches. Flexible terminals permit
the transmission of new classes defining, in this way, new templates for the
transmitted audiovisual data.

Now we describe MPEG-4 representation. The video verification model
of MPEG-4 provides a set of classes for the representation of the structure
and content of an audiovisual sequence [8]. A video sequence is modelled in
terms of a set video sessions. A video session is a collection of one or more
video objects . Each video object has one or more video object layers. Video
objects form an audiovisual scene and have properties (e.g. shape and texture).
Each video object layer provides the temporal or spatial resolution of a video
object. The layer is formed by an ordered sequence of snapshots (video object
planes)(VOPs). Each video object plane is a video object at a given time. The
VOP bounding box is divided into a number of macroblocks of 16×16 pixels
and are coded by means of JPEG. Binary or gray-scale shape information
can be associated with video objects. Binary shape information identifies the
pixels which belong to the video object. Binary shape information is expressed
by a matrix which has the same size of the VOP bounding box. In a similar
way, gray-scale shape information is also expressed by means of a matrix and
represented, with a value from 0 to 255, the transparency degree of the pixels.
gray-scale shape information is encoded by JPEG.

Motion estimation and compensation is made by splitting each VOP into
macroblocks of 16×16 pixels and by matching motion estimation. Each VOP
can be coded in three different ways, that is I-VOP (or intra VOP), P-VOP
(or predicted VOP) and B-VOP (or bidirectional VOP). I-VOPs are encoded
in a complete independent way; P-VOPs are predicted from the preceeding
VOP. B-VOPs are interpolated from the preceeding and succeeding VOPs.
The syntax of a compressed bitstream of an audiovisual object fulfills the
MPEG-4 System and Description Language. MPEG-4 permits either the use of
machine-independent bytecode or the use of scripts. The bytecode approch can
be used when the assumptions, on the templates to be described, are limited.
Scripts are less flexible but are a concise approach to represent templates.

3.8 Conclusions 77

MPEG-7 Standard

MPEG-7 [25] has the aim of defining a standard set of descriptors of mul-
timedia information. In particular, MPEG-7 introduces the standardization
of structures (description scheme) for the descriptors and their relationships.
Descriptors and description schemes are associated with the multimedia con-
tent to permit effective searching. Description schemes can be hierarchical and
multidimensional and can include images, video, graphics, audio, speech and
textual annotations. MPEG-7 permits having different level of abstraction,
from the lowest to the highest. For instance, if data are visual (e.g. images,
videos), the lowest abstraction level can be a description of shape, texture,
color, motion. The highest level covers semantic information. The highest level
of description consists in the semantic information. Descriptions can vary on
the basis of the data types and of the application context. Finally, MPEG-7
can address applications which can be stored on-line or off-line or streamed
and can operate either in real-time or not critical time environments.

MPEG-21 Standard

In the MPEG family, MPEG-21 (also called MPEG-21 Multimedia Frame-
work) is the newest proposal and became a standard at the end of 2003. It
has the aim of enabling transparent and increased use of multimedia resources
across a wide range of networks and devices. MPEG defines a framework to
support transactions that are interoperable and highly automated, specifically
taking digital rights management (DRM) requirements and targeting multime-
dia access and delivery using heterogeneous network and terminals [4]. More
precisely, MPEG-21 aims to define a normative open framework for multi-
media delivery and consumption for use by all the actors (e.g. content cre-
ators, providers, users) in the delivery and consumption chain. For this reason,
MPEG-21 pays particular attention to intellectual property management and
protection (IPMP) topics.

3.8 Conclusions

This chapter has presented image and video acquisition, representation and
storage. Firstly, we have described human eye physiology paying attention to
human color perception. Then we have described the structure of digital image
acquisition devices. We have discussed the color representation in the digital
images presenting the main color models used in image processing. Regarding
storage, we have presented the main image formats describing JPEG in detail.
Finally, we have reviewed video principles and the MPEG standard.

We conclude the chapter providing some bibliographical remarks. A com-
prehensive survey of the color representation can be found in [30]. JPEG
standard is described in detail in [1]. The MPEG standards are fully discussed
in [17][19][25].

78 3 Image and Video Acquisition, Representation and Storage

Problems

3.1. Show that in the XYZ model the white is represented by the triple (1,1,1).

3.2. Consider the YIQ model. Show that in a grayscale image, where R=G=B,
the chrominance components I and Q are null.

3.3. Consider the HSV model. Show that in the simplest form of HSV trans-
formation, the hue (H) become undefined when the saturation S is null.

3.4. Compute in HSV model, the coordinates of cyan, magenta and yellow.

3.5. Repeat Problem 3.4 for the HSB model.

3.6. Take a videocassette registered under the NTSC system. How will it be
displayed by a PAL videocassette recorder (VCR)? Explain your answer.

3.7. Implement the Huffman coding algorithm. Test the software on the fol-
lowing example: consider a file formed by 10,000 A, 2,000 B, 25,000 C, 5,000
D, 40,000 E, 18,000 F . Compute how many bits are required to code the file.

3.8. Consider the file formed by 20,000 B, 2,500 C, 50,000 D, 4,000 E, 1,800
F . Compare, in terms of memory required, fix-length and Huffman coding.
Does there exist a case where fix-length and Huffman coding require the same
memory resources? Explain your answer.

3.9. How much memory is required to store the movie Casablanca in its un-
compressed version? Assume that the movie is black/white, has 25 frame/sec
(each frame is 640×480 pixels), its runtime is 102 minutes. For sake of sim-
plicity, do not consider the memory required to store the audio of the movie.

3.10. Repeat the Problem 3.9 for the movie Titanic. Titanic is a color movie,
has 30 frame/sec, and its runtime is 194 minutes.

References

1. T. Acharaya and A. K. Ray. Image Processing: Principles and Applications.
John Wiley and Sons, 2005.

2. D. Ballard and C Brown. Computer Vision. Academic Press, 1982.
3. B. E. Bayer. Color imaging array. US Patent 3,971,065. Technical report,

Eastman Kodak Company, 1976.
4. J. Bormans, J. Gelissen, and A. Perkis. MPEG-21: The 21st century multimedia

framework. IEEE Signal Processing Magazine, 2003.
5. G. Buchsbaum. An analytical derivation of visual nonlinearity. IEEE Transac-

tions on Biomedical Engineering, BME-27(5):237–242, 1980.
6. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.

MIT Press, 1990.
7. A. Del Bimbo, editor. Visual Information Retrieval. Morgan Kaufman Publish-

ers, 1999.
8. T. Ebrahimi. MPEG-4 video verification model: A video encoding/decoding

algorithm based on content representation. Image Communication Journal,
9(4):367–384, 1996.

9. K. S. Gibson and D. Nickerson. Analysis of the munsell colour system based on
maesurements made in 1919 and 1926. Journal of Optical Society of America,
3(12):591–608, 1940.

10. R. C. Gonzalez and R. E. Woods. Digital Image Processing. Addison Wesley,
1992.

11. G. Healey and Q. Luong. Color in computer vision: Recent progress. In Handbook
of Pattern Recognition and Computer Vision, pages 283–312. World Scientific
Publishing, 1998.

12. D. A. Huffman. A method for the construction of minimum-redundancy codes.
Proceedings of the IRE, 40(9):1098–1101, 1952.

13. L. M. Hurvich and D. Jameson. An opponent process theory of colour vision.
Psychological Review, 64(6):384–404, 1957.

14. L. M. Hurvich and D. Jameson. Some quantitative aspects of an opponent-colors
theory: Iv a psychological color specification system. Journal of the Optical
Society of America, 45(6):416–421, 1957.

15. A. K. Jain. Fundamentals of Digital Image Processing. Prentice-Hall, 1989.
16. D. B. Judd and G. Wyszecki. Color in Business, Science and Industry. John

Wiley and Sons, 1975.

80 References

17. R. Koenen, F. Pereira, and L. Chiariglione. MPEG-4: Context and objectives.
Image Communication Journal, 9(4):295–304, 1997.

18. E. H. Land. Color vision and the natural images. Proceedings of the National
Academy of Sciences, 45(1):116–129, 1959.

19. D. Le Gall. MPEG: a video compression standard for multimedia applications.
Communications of the ACM, 34(4):46–58, 1991.

20. G. W. Meyer. Tutorial on colour science. The Visual Computer, 2(5):278–290,
1986.

21. A. H. Munsell. An Atlas of the Munsell System. Wassworth-Howland, 1915.
22. C. L. Novak and S. A. Shafer. Color Vision. Encyclopedia of Artificial Intelli-

gence. John Wiley and Sons, 1992.
23. W. K. Pratt. Digital Image Processing. John Wiley and Sons, 1991.
24. T. Sakamoto, C. Nakanishi, and T. Hase. Software pixel interpolation for dig-

ital still cameras suitable for a 32-bit mcu. IEEE Transactions on Consumer
Electronics, 44(4):1342–1352, 1998.

25. P. Salembier and J. R. Smith. MPEG-7 multimedia description schemes. IEEE
Transactions on Circuits and Systems for Video Technology, 11(6):748–759,
2001.

26. A. S. Tanenbaum. Modern Operating Systems. Prentice-Hall, 2001.
27. E. Trucco and A. Verri. Introductory Techniques for 3-D Computer Vision.

Prentice-Hall, 1998.
28. P. Tsai, T. Acharaya, and A. K. Ray. Adaptive fuzzy color interpolation. Journal

of Electronic Imaging, 11(3):293–305, 2002.
29. B. A. Wandell. Foundations of Vision. Sinauer Associates, 1995.
30. G. Wyszecki and W. S. Stiles. Color Science. Mc Graw-Hill, 1982.

4

Machine Learning

What the reader should know after reading this chapter

• Supervised learning.
• Unsupervised learning.
• Reinforcement learning.

4.1 Introduction

The ability to learn is one of the distintive attributes of intelligent behav-
ior. Following a seminal work [5], we can say that “Learning process includes
the acquisition of new declarative knowledge, the development of motor and
cognitive skills through instruction or practice, the organization of new knowl-
edge into general, effective representations, and the discovery of new facts and
theories through observation and experimentation.”

The study and computer modeling of learning processes in their multiple
manifestations constitutes the topic of machine learning . Machine learning
has been developed around the following primary research lines:

• Task-oriented studies, i.e. the development of learning systems to improve
performance in a predetermined set of tasks.

• Cognitive simulation, namely, the investigation and computer simulation
of human learning processes.

• Theoretical analysis, i.e. the theoretical investigation of possible learning
methods and algorithms independently of applicative domain.

Machine learning methods, described in this book, are mainly the results of
the first and third research lines.

The aim of this section is to provide a taxonomy of machine learning
research, paying special attention to methods of learning by example.

The chapter is organized as follows: Section 4.2 provides a taxonomy of
machine learning; in Section 4.3 learning by examples is discussed; finally,
some conclusions are drawn in Section 4.4.

84 4 Machine Learning

4.2 Taxonomy of Machine Learning

This section presents a taxonomy of machine learning, presenting useful cri-
teria for classifying and comparing most machine learning investigations.
Although machine learning systems can be classified according to different
viewpoints [5], a common choice is to classify machine learning systems on
the basis of the underlying learning strategies used.

In machine learning two entities, the teacher and the learner , play a crucial
role. The teacher is the entity that has the required knowledge to perform a
given task. The learner is the entity that has to learn the knowledge to perform
the task.

We can distinguish learning strategies by the amount of inference the
learner performs on the information provided by the teacher. We consider the
two extreme cases, namely performing no inference and performing a remark-
able amount of inference. If a computer system (the learner) is programmed
directly, its knowledge increases but it performs no inference since all cognitive
efforts are developed by the programmer (the teacher). On the other hand,
if a system independently discovers new theories or invents new concepts, it
must perform a very substantial amount of inference; it is deriving organized
knowledge from experiments and observations. An intermediate case could be
a student determining how to solve a math problem by analogy to problem
solutions contained in a textbook. This process requires inference but much
less than discovering a new theorem in mathematics.

Increasing the amount of inference that the learner is capable of perform-
ing, the burden on the teacher decreases. The taxonomy of machine learning
below tries to capture the notion of trade-off in the amount of effort required of
the learner and of the teacher [5]. Hence we can identify four different learning
types: rote learning, learning from instruction, learning by analogy and learn-
ing from examples. The first three learning types are described below, while
the next section is devoted to the last type.

4.2.1 Rote Learning

Rote learning consists in the direct implanting of new knowledge in the learner.
No inference or other transformation of the knowledge is required on the part
of the learner. Variants of this method include:

• Learning by being programmed or modified by an external identity. It
requires no effort on the part of the learner. For instance, the usual style
of computer programming.

• Learning by memorization of given facts and data with no inferences drawn
from the incoming information. For instance, the primitive database sys-
tems.

4.3 Learning from Examples 85

4.2.2 Learning from Instruction

Learning from instruction (or learning by being told) consists in acquiring
knowledge from a teacher or other organized source, such as a textbook, re-
quiring that the learner transform the knowledge from the input language
to an internal representation. The new information is integrated with prior
knowledge for effective use. The learner is required to perform some inference,
but a large fraction of the cognitive burden remains with the teacher, who
must present and organize knowledge in a way that incrementally increases
the learner’s actual knowledge. Learning from instruction mimics education
methods. Therefore, the machine learning task is to build a system that can
accept instruction and can store and apply this learned knowledge effectively.
Systems that use learning from instructions are described in [6][11][12].

4.2.3 Learning by Analogy

Learning by analogy consists in acquiring new facts or skills by transforming
and increasing existing knowledge that bears strong similarity to the desired
new concept or skill into a form effectively useful in the new situation. A
learning-by-analogy system might be applied to convert an existing computer
program into one that performs a closely related function for which it was not
originally designed. Learning by analogy requires more inference on the part
of the learner that does rote learning or learning from instruction. A fact or
skill analogous in relevant parameters must be retrieved from memory; then
the retrieved knowledge must be transformed, applied to the new situation,
and stored for future use. Systems that use learning by analogy are described
in [1][4].

4.3 Learning from Examples

Given a set of examples of a concept, the learner induces a general concept
description that describe the examples. The amount of inference performed by
the learner is much greater than in learning from instruction and in learning by
analogy. Learning from examples has become so popular in the last years that
it is often called simply learning. In a similar way, the learner and examples
are respectively referred as learning machine and data. In the rest of the book
these conventions will be adopted.

The learning problem can be described as finding a general rule that ex-
plains data given only a sample of limited size. The difficulty of this task is
similar to the problem of children learning to speak from the sounds emitted
by the adults.

The learning problem can be stated as follows: given an example set of lim-
ited size, find a concise data description. Learning techniques can be grouped
in three big families: supervised learning , reinforcement learning and unsuper-
vised learning .

86 4 Machine Learning

4.3.1 Supervised Learning

In supervised learning (or learning with a teacher), the data is a sample of
input-output patterns. In this case, a concise description of the data is the
function that can yield the output, given the input. This problem is called
supervised learning because the objects under considerations are already asso-
ciated with target values, e.g. classes and real values. Examples of this learning
task are the recognition of handwritten letters and digits, the prediction of
stock market indexes. Supervised algorithms are discussed in Chapters 8, 9
and 10.

In the problem of supervised learning, given a sample of input-output pairs,
called the training sample (or training set), the task is to find a deterministic
function that maps any input to an output that can predict future input-
output observations, minimizing the errors as much as possible. Whenever
asked for the target value of an object present in the training sample, it can
return the value that appeared the highest number of times together with this
object in the training sample. According to the type of the outputs, supervised
learning can be distinguished in classification and regression learning.

Classification Learning

If the output space has no structure except whether two elements of the
output are equal or not, this is called the problem of classification learning
(or simply classification). Each element of the output space is called a class.
The learning algorithm that solves the classification problem is called the
classifier . In classification problems the task is to assign new inputs to one
of a number of discrete classes or categories. This problem characterizes most
pattern recognition tasks. A typical classification problem is to assign to a
character bitmap the correct letter of the alphabet.

Regression

If the output space is formed by the values of continuous variables, for instance
the stock exchange index at some future time, then the learning task is known
as the problem of regression or function learning [7]. Typical examples of
regression are to predict the value of shares in the stock exchange market and
to estimate the value of a physical measure (e.g. pression, temperature) in a
section of a thermoelectric plant.

4.3.2 Reinforcement Learning

Reinforcement learning has its roots in control theory. It considers the sce-
nario of a dynamic environment that results in state-action-reward triples
as the data. The difference between reinforcement and supervised learning is
that in reinforcement learning no optimal action exists in a given state, but

4.3 Learning from Examples 87

the learning algorithm must identify an action in order to maximize the ex-
pected reward over time. The concise description of data is the strategy that
maximizes the reward.

The problem of reinforcement learning is to learn what to do, i.e. how
to map situations to actions, in order to maximize a given reward. Unlike a
supervised learning task, the learning algorithm is not told which actions to
take in a given situation. Instead, the learner is assumed to gain information
about the actions taken by some reward not necessarily arriving immediately
after the action is taken. An example of such a problem is learning to play
chess. Each board configuration, namely the position of chess pieces on the
chess board, is a given state; the actions are the possible moves in a given con-
figuration. The reward for a given action (e.g. the move of a piece), is winning
the game. On the contrary, the punishment is losing the game. This reward, or
this punishment, is delayed, which is very typical for reinforcement learning.
Since a given state has no optimal action, one of the biggest challanges of
a reinforcement learning algorithm is to find a trade-off between exploration
and exploitation. In order to maximize reward (or minimize the punishment)
a learning algorithm must choose actions which have been tried out in the
past and found to be effective in producing reward, i.e. it must exploit its
current knowledge. On the other hand, to discover those actions the learning
algorithm has to choose actions not tried in the past and thus explore the
state space. There is no general solution to this dilemma, but that neither of
the two options can lead exclusively to an optimal strategy is clear.

A comprehensive survey on reinforcement learning can be found in [13].

4.3.3 Unsupervised Learning

If the data is only a sample of objects without associated target values, the
problem is known as unsupervised learning . In unsupervised learning there is
no teacher. Hence a concise description of the data can be a set of clusters or
a probability density stating how likely it is to observe a certain object in the
future. Typical examples of unsupervised learning tasks include the problem
of image and text segmentation and the task of novelty detection in process
control.

In unsupervised learning we are given a training sample of objects (e.g.
images) with the aim of extracting some structure from them. For instance,
identifying indoor or outdoor images or extracting face pixels in an image.
If some structure exists in training data, it can take advantage of the redun-
dancy and find a short description of data. A general way to represent data
is to specify a similarity between any pairs of objects. If two objects share
much structure, it should be possible to reproduce the data from the same
prototype. This idea underlies clustering algorithms that form a rich subclass
of unsupervised algorithms.

Clustering algorithms are based on the following idea. Given a fixed num-
ber of clusters, we aim to find a grouping of the objects such that similar

88 4 Machine Learning

objects belong to the same cluster. If it is possible to find a clustering such
that the similarities of the objects in one cluster are much greater than the
similarities among objects from different clusters, we have extracted structure
from the training sample so that the whole cluster can be represented by one
representative data point. Clustering algorithms are discussed in detail in the
Chapter 5.

In addition to clustering algorithms, in unsupervised learning techniques
there are algorithms whose aim is to represent high-dimensionality data in low-
dimension spaces, trying to preserve the original information of data. These
techniques, called dimensionality reduction methods (DRM) are particular
important for the following reasons. The use of more dimensions than strictly
necessary leads to several problems. The first one is the space needed to store
the data. As the amount of available information increases, the compression
for storage purposes becomes even more important. The speed of algorithms
using the data depends on the dimension of the vectors, so a reduction of the
dimension can result in reduced computation time. Then it can be hard to
make reliable classifiers when the dimensionality of input data is high (curse
of dimensionality [2]). Curse of dimensionality and dimensionality reduction
methods are described in Chapter 10.

4.4 Conclusions

In this chapter we have provided a taxonomy of machine learning research.
We have discussed in detail learning by examples, topic of this book, intro-
ducing supervised and unsupervised learning. Finally, we conclude the chapter
providing some bibliographical remarks, paying attention to the works who
discuss machine learning in general. Machine learning has been discussed in
detail for the first time in [8][9]. A modern approach to machine learning
is discussed in [10]. Recent books (e.g. [3]), including this one, are focused
essentially on learning by examples.

References

1. J.R. Anderson. Acquisition of proof skills in geometry. In Machine Learning,
pages 191–220. Tioga Publishing Company, 1983.

2. R. Bellman. Adaptive Control Processes: A Guided Tour. Princeton University
Press, 1961.

3. C.M. Bishop. Pattern Recognition and Machine Learning. Springer-Verlag, 2006.
4. J.G. Carbonell. Learning by analogy: Formulating and generalizing plans from

past experience. In Machine Learning, pages 137–162. Tioga Publishing Com-
pany, 1983.

5. J.G. Carbonell, R.S. Michalski, and T.M. Mitchell. An overview of machine
learning. In Machine Learning, pages 3–23. Tioga Publishing Company, 1983.

6. N. Haas and G.G. Hendrix. Learning by being told: Acquiring knowledge for in-
formation management. In Machine Learning, pages 405–428. Tioga Publishing
Company, 1983.

7. R. Herbrich. Learning Kernel Classifiers. MIT Press, 2003.
8. R.S. Michalski, J.G. Carbonell, and T.M. Mitchell. Machine Learning. Tioga

Publishing Company, 1983.
9. R.S. Michalski, J.G. Carbonell, and T.M. Mitchell. Machine Learning. Morgan

Kauffman Publishers, 1986.
10. T. Mitchell. Machine Learning. Mc Graw-Hill, 1997.
11. D.J. Mostow. Machine transformation of advice into a heuristic search proce-

dure. In Machine Learning, pages 367–404. Tioga Publishing Company, 1983.
12. M.D. Rychener. The instructible production system: A retrospective analysys.

In Machine Learning, pages 429–459. Tioga Publishing Company, 1983.
13. R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction. MIT

Press, 1998.

5

Bayesian Theory of Decision

What the reader should know to understand this chapter

• Basic notions of statistics and probability theory (see Appendix A).
• Calculus notions are an advantage.

What the reader should know after reading this chapter

• Basic notions of Bayesian theory (e.g., likelihood, priors, evidence).
• Fundamental concepts of the Bayesian theory of decision (e.g., loss func-

tion, Bayes decision rule).
• Discriminant functions.
• Normal distribution function.
• Whitening transformation.
• Receiver operating characteristic (ROC) curves.

5.1 Introduction

Bayesian theory of decision (BTD) is a fundamental tool of analysis in Ma-
chine Learning. Several machine learning algorithms have been derived using
BTD. The fundamental idea in BTD is that the decision problem can be
solved using probabilistic considerations. In order to introduce the theory we
consider the following example. We suppose to have a classroom in which
there are students of both genders. Moreover, there is an examiner, outside
the classroom, that has to call the students for the examination. He has a list
of the surnames of the students, but the surnames are not accompanied by the
first names. How can the examiner decide if to a given surname corresponds
a girl or a boy?

The aim of this chapter is to answer this question by introducing BTD.
We will show that BTD is a formalization of the common sense [7]. There are
many works on BTD [2][3][5][8][16][15], this chapter is inspired by the work

92 5 Bayesian Theory of Decision

of [7], that represents a milestone in the history of pattern recognition and
machine learning.

The chapter is organized as follows: Sections 5.2 and 5.3 present Bayes de-
cision rule and Function respectively. Section 5.4 introduces the loss function;
the special case of zero-one loss function is discussed in Section 5.5. Sec-
tion 5.6 reviews discriminant functions; Section 5.7 introduces normal density
and Whitening transform. In Section 5.8 we discuss the discriminant function
when the likelihood assumes a normal distribution. Section 5.9 introduces Re-
ceiver Operating Curves. In Section 5.10 some conclusions are drawn; finally
some problems are proposed at the end of the chapter.

5.2 Bayes Decision Rule

In this section we formalize what we have shown in the Introduction. We con-
sider again our classroom with boys and girls and the examiner that has only
a list with the surnames of the students. When the examiner calls a student
(e.g. Smith) and the student appears, in decision-theoretic terminology we say
that the student replies the nature in one of two possible states, i.e either the
student is a boy or the student is a girl. We identify the state of nature (or
class) with C. If the student is a girl C = C1, otherwise C = C2. Since the state
of nature is unknown a natural choice is to describe C in a probabilistic way.

We assume that there is prior probability p(C1) that the student called by
the examiner is a girl and p(C2) that is a boy. The sum of the prior probability
over all possible classes, i.e. C1 and C2 in our example, must be one. If our
examiner has to decide if the student Smith is a girl or a boy, in absence of
further information he is forced to base his decision on prior probabilities.
Hence he has to apply the following decision rule.

Definition 1 (Prior Probability Decision Rule) Decide C1 if p(C1) >
p(C2); decide C2 otherwise.

If the amount of boys and girls is roughly the same, the previous decision rule
will behave as the coin toss, i.e. it will be right only in half of the cases.

We suppose that the examiner for each student knows n numeric measure-
ments (or features) x = (x1, . . . , xn), where, for instance, x1 is the height, x2

is the weight and so on. For sake of simplicity we suppose that the features
are two and that are height and weight. For instance, if the height and the
weight of the student Smith are, respectively, 1.60m and 59Kg, Smith can
be represented by the feature vector (1.60, 59). Generalizing we say that each
student can be represented by a feature vector (or a pattern) x. Since differ-
ent features, as shown by the distribution of students’ height in Figure 5.1,
are associated to different students we can model the feature vector x as a
random variable whose distribution p(x|C) depends on the state of nature C.
The distribution p(x|C) is the class-conditional probability density function,
i.e. the probability density function for x when the state of the nature is C.

5.2 Bayes Decision Rule 93

1.40 1.50 1.60 1.70 1.80 1.90
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

height

pr
ob

ab
ili

ty

girls
boys

Fig. 5.1. Hypothetical distribution of students’ height in the classroom.

The set of pairs (X , C) = {(x1, C1), (x2, C2), ...(x�, C�)}, where the generic
(xi, Ci) means that Ci is the state of nature of xi, is called simply data (or
a data set). In the rest of the chapter we assume that data are i.i.d that
stands for independent and identically distribuited random variables. Saying
that data are i.i.d. means that they are drawn independently according to the
probability density p(x|C).

BTD assumes that all the relevant probability values are known, namely
we assume that the prior probabilities p(C1), p(C2) and the class-conditional
probability densities p(x|C1), p(x|C2) are known. The joint probability density
of finding a pattern x in the class p(Cj) is:

p(Cj ,x) = p(Cj |x)p(x). (5.1)

But the same joint probability can also be written:

p(Cj ,x) = p(x|Cj)p(Cj). (5.2)

Plugging Equation (5.2) in (5.1) we get:

p(Cj |x)p(x) = p(x|Cj)p(Cj). (5.3)

Dividing by p(x), we finally get:

p(Cj |x) =
p(x|Cj)p(Cj)

p(x)
. (5.4)

94 5 Bayesian Theory of Decision

We have proved the Bayes Theorem [1]. Equation (5.4) is called the Bayes
formula.

The terms p(Cj) and p(Cj |x) are called respectively prior probability and
a posteriori probability. The prior probability (or simply prior) expresses the
a priori knowledge that we have on the problem, for instance the overall
percentage of girls in the classroom. The a posteriori probability (or simply
posterior) expresses the probability that the state of nature is Cj when the
pattern x has been observed. The term p(x) is called evidence and in the case
of two classes is:

p(x) =
2∑

j=1

p(x|Cj)p(Cj). (5.5)

Evidence can be viewed as a normalization factor ensuring that the sum of the
probabilities is one. Therefore evidence can be neglected and we can conclude
that posterior probability is determined by the product p(x|Cj)p(Cj). When
p(x|Cj) is large it is likely that the sample x belongs to the class Cj . Therefore
the term p(x|Cj) is called the likelihood of Cj with respect to x.

We consider a pattern x for which p(C1|x) is larger than p(C2|x), it is
natural to decide that the pattern x belongs to the class C1; otherwise we
assign the pattern to the class C2. It is quite easy to show that our strategy is
theoretically correct. We observe that for a pattern x the probability of error
p(error|x) is p(C1|x) if we assign x to C2 (i.e. x ∈ C2), vice versa is p(C2|x)
if we assign the pattern to C1 (i.e. x ∈ C1). We can minimize p(error|x) by
deciding C1 if p(C1|x) > p(C2|x) and C2 vice versa. Now we can compute the
average probability of error p(error):

p(error) =
∫ ∞

−∞
p(error,x) =

∫ ∞

−∞
p(error|x)p(x)d(x). (5.6)

If we guarantee, deciding C1 if p(C1|x) > p(C2|x) and C2 otherwise, that
p(error|x) is as small as possible, then p(error) has to be as small as possible.
Hence the following Bayes decision rule

Decide C1 if p(C1|x) > p(C2|x); otherwise decide C2 (5.7)

is justified.
The probability error P (error|x) associated to Bayes decision rule is:

P (error|x) = min(p(C1|x), p(C2|x)). (5.8)

Plugging equation (5.4) in (5.7) we get

Decide C1 if
p(x|C1)p(C1)

p(x)
>

p(x|C2)p(C2)
p(x)

; otherwise decide C2.

Since the evidence p(x) is a normalization factor it can be neglected. Therefore
we obtain

Decide C1 if p(x|C1)p(C1) > p(x|C2)p(C2); otherwise decide C2. (5.9)

5.3 Bayes Classifier 95

5.3 Bayes Classifier�

In this subsection we show formally that the Bayes decision rule is optimal.
Following [6] we call an observation (or a feature vector or a pattern) a n-
dimensional vector x while its state of nature (or class) C, takes value in a
finite set [1, . . . , M]. This means that each pattern can have m different states
of nature. The aim of machine learning is to build a mapping (or a classifier)
α : Rn → [1,M] which represents the guess of C given x. The classifier makes
an error if α(x)
= C.

Let (X,Y) be a Rn × {1, . . . , M}-valued random pair. The distribution
of (X,Y) describes the frequency of encountering particular pairs. An error
occurs if α(X)
= Y and the probability of error for α is

L(α) = P (α(X)
= Y).

The best classifier α� is defined by

α� = arg min
α

P (α(X)
= Y) (5.10)

The mapping α� depends upon the distribution of (X,Y). Therefore, if the
distribution is known α� may be computed. The problem of finding α� is called
the Bayes problem. The classifier α� is called the Bayes classifier . The minimal
probability of error is called Bayes error and is denoted by L� = L(α�).

Now we pass to prove that Bayes classifier is optimal with respect to the
error minimization. For the sake of simplicity, we suppose that the Y assumes
value in {0, 1} that corresponds to say that there are only two classes, the
class ‘0’ (i.e. Y = 0) and the class ‘1’ (i.e. Y = 1). Given a n-dimensional
vector x, we define η(x) the conditional probability that Y is 1 given X = x
such as:

η(x) = P (Y = 1|X = x)

Any function α : Rn → {0, 1} defines a classifier (or a decision function).
Now, we define the Bayes classifier

α�(x) =
{

1 if η(x) > 1
2

0 otherwise.

}
.

The following theorem shows that the Bayes classifier is optimal.

Theorem 1 (Bayes Classifier Optimality) For any classifier α : Rn →
{0, 1} ,

P (α�(X)
= Y) ≤ P (α(X)
= Y).

that is, the Bayes classifier α� is the optimal classifier.

Proof
Let X = x, the conditional error probability P (α(X
= Y|X = x) of any α is
expressed by:

96 5 Bayesian Theory of Decision

= 1 − P (α(X = Y|X = x)
= 1 − P (Y = 1, α(X) = 1|X = x) − P (Y = 0, α(X) = 0|X = x)
= 1 − [Iα(x)=1P (Y = 1|X = x) + Iα(x)=0P (Y = 0|X = x)]
= 1 − [Iα(x)=1η(x) + Iα(x)=0(1 − η(x))]

(5.11)

where I1 is the indicator function.
Thus P (α(X)
= Y|X = x) − P (α�(X)
= Y|X = x) is given by:

= η(x)[Iα�(x)=1 − Iα(x)=1] + (1 − η(x))[Iα�(x)=0 − Iα(x)=0]
= η(x)[Iα�(x)=1 − Iα(x)=1] + (1 − η(x))[Iα(x)=1 − Iα�(x)=1]
= (2η(x) − 1)[Iα�(x)=1 − Iα(x)=1] (5.12)
≥ 0

If η(x) > 1
2 the first (by definition) and the second term2 of (5.12) are nonneg-

ative and their product is still nonnegative. On the other hand, if η(x) ≤ 1
2

the first and the second term3 are nonpositive and their product is again
nonnegative. Hence the theorem statement is proved.

5.4 Loss Function

In Section 5.2 we gave the expression of the probability error, in the case of
two classes, associated with the Bayes decision rule. Now we generalize the
approach considering more than two classes and defining the loss function.
Intuitively, we can view the loss function as a tool to measure the performance
of a decision algorithm (or classifier). This approach permits taking actions
that are different from the usual classification, for instance the rejection. In
some applications it is mandatory to minimize the error as much as possible.
For instance, the maximum error that is acceptable for a postal OCR, that
is, the device that reads automatically the address of a letter, cannot exceed
1.5%. Therefore, deciding the rejection (e.g. the classifier refuses to make a
decision) when the the probability error is not acceptable is a correct policy.

The loss function measures the cost of each classifier action and converts
an error probability error into a decision. This approach allows us to han-
dle situations in which particular classification mistakes has to be considered
differently from the others. For instance, classifying in a patient a malignant
tumour as benign is heavier than classifying a benign tumor as malignant,
since in the first case the patient is not to undergo therapy against the can-
cer.

1 Iα(x)=1 is 1 if α(x) = 1; 0 otherwise.
2 Since Iα�(x)=1 is 1, the term must be nonnegative
3 Since Iα�(x)=1 is 0, the term must be nonpositive

5.4 Loss Function 97

Besides, we can decide that the cost of a misclassification of a pattern can
depend by the a priori probability of the membership class. Namely the cost
of misclassifying a pattern that belongs to a class i can be considered heavier
if P (Ci) is high. In some modern languages a few characters are very unusual
(e.g. in Italian the q and in Greek the ξ) hence the cost of misclassification
of these character can be less heavy than the one associated to other charac-
ters, since the overall performance of an OCR is marginally affected by the
misclassification of these characters. Now we pass to the formal description of
the loss function.

Let (C1, . . . , CM) be the finite set of the possible classes the patterns belong
to and let B = (β1, . . . , βn) be the set of the possible action of the classifier.
The loss function π(βi|Cj) measures the penalty (or loss) that the classifier
receives when takes the action βi and the pattern x belongs to the Cj . Let
p(x|Cj) be the state-conditional probability density function for x given that
Cj is the class the pattern belongs to. Hence remembering Bayes formula the
posterior probability p(Cj |x) is given by:

p(Cj |x) =
p(x|Cj)p(Cj)

p(x)
(5.13)

where the evidence is:

p(x) =
M∑

j=1

p(x|Cj)p(Cj). (5.14)

Now we consider a particular sample x and we assume to take an action βi.
If the class the pattern belongs to is Cj , the loss associated with the action is
π(βi|Cj). Hence the expected loss R(βi|x) associated with the action βi is:

R(βi|x) =
M∑

j=1

π(βi|Cj)p(Cj |x). (5.15)

In machine learning an expected loss is called risk and the term R(βi|x) is
called conditional risk .

When we observe a pattern x we can minimize the risk by choosing the
action that minimizes the conditional risk. Hence the problem of choosing the
action can be viewed as to find a decision rule that minimizes the overall risk.
Formally a decision rule is a function β(x) whose output is the action to take
for every pattern x. For every x the output of β(x) is an element of the set B.

Given a decision rule β(x), the overall risk R is:

R =
∫

R(β(x)|x)p(x)dx. (5.16)

If we select β(x) so that the conditional risk is as small as possible for every x,
the overall risk is minimized. This justifies the following alternative definition
of the Bayes decision rule:

98 5 Bayesian Theory of Decision

Definition 2 (Bayes Decision Rule) To minimize the overall risk, com-
pute the conditional risk

R(βi|x) =
M∑

j=1

π(βi|Cj)p(Cj |x). (5.17)

for i=1,. . . ,n and then choose the action βi for which R(βi|x) is minimum.

The minimum R� resulting, with the application of Bayes decision rule, is
called Bayes risk .

5.4.1 Binary Classification

In this subsection we apply the previous considerations to the special case
of binary classification, e.g. a classification problem with only two classes. A
classifier that assigns a pattern to one of two classes is called a binary classifier
(or a dichotomizer). Whereas a classifier with more than two classes is called
a polychotomizer .

In the case of binary classification, action β1 stands for deciding that the
pattern x belongs to the class C1, whereas action β2 stands for deciding that
the pattern x belongs to the class C2. The conditional risk, given by (5.17), in
the binary classification is:

R(β1|x) = π(β1|C1)p(C1|x) + π(β1|C2)p(C2|x) (5.18)
R(β2|x) = π(β2|C1)p(C1|x) + π(β2|C2)p(C2|x). (5.19)

Hence Bayes decision rule in this case is

Definition 3 (Bayes Decision Rule; Binary Classification)
Decide C1 if R(β1|x) < R(β1|x); Decide C2 otherwise.

The same rule can be reformulated in terms of posterior probabilities

Definition 4 Decide C1 if

(π(β2|C1) − π(β1|C1)) p(C1|x) > (π(β1|C2) − π(β2|C2))p(C2|x); (5.20)

Decide C2 otherwise.

The factors (π(β2|C1)−π(β1|C1)) and (π(β1|C2)−π(β2|C2)) are positive since
the loss associated to an error is larger than the loss associated to a correct
classification. Therefore the decision of the classifier is determined by what
probability between p(C1|x) and p(C1|x) is larger.

If we apply the Bayes theorem at (5.20) we get

(π(β2|C1) − π(β1|C1)) p(x|C1)p(x) > (π(β1|C2)−π(β2|C2))p(x|C2)p(x). (5.21)

Assuming that (π(β2|C1) − π(β1|C1)) is positive, that is correct since the loss
associated to an error is larger the one associated to a correct classification,
we can rearraging the terms of (5.21) obtaining the following expression:

5.5 Zero-One Loss Function 99

p(x|C1)
p(x|C2)

>
(π(β1|C2) − π(β2|C2))
(π(β2|C1) − π(β1|C1))

p(C1)
p(C2)

. (5.22)

Hence an alternative expression of Bayes rule is:

Definition 5 Decide C1 if the inequality (5.22) holds; Decide C2 otherwise.

The term p(x|C1)
p(x|C2)

is called the likelihood ratio. Hence if the likelihood ratio
exceeds a threshold, that does not depend by the pattern, the decision is C1,
otherwise C2.

5.5 Zero-One Loss Function

In classification each pattern x is associated to a class, and the action βi of
the classifier generally consists in deciding that the pattern belongs to a class
Ci. If the action βi is taken and the pattern belongs, in nature, to the pattern
Cj ; the decision is correct if i = j, otherwise is an error. In order to find a
decision rule that minimizes the error rate, the first step consists in looking
for the loss function that is appropriate for the situation described above. The
loss function is the so-called symmetrical or zero-one loss function

π(βi|Cj) =
{

0 i = j
1 i
= j.

i, j = 1, . . . , M
}

.

This function assigns no penalty to a correct decision, vice versa any error
has penalty one. In this way, all errors are evaluated in the same manner.

If we apply the zero-one loss function to the conditional risk, that is given
by Equation (5.15), we get:

R(βi|x) =
M∑

j=1

π(βi|Cj)p(Cj |x)

=
M∑
j �=i

p(Cj |x)

= 1 − p(Ci|x) (5.23)

where 1− p(Ci|x) is the conditional probability that the action βi, namely to
assign the pattern x, is correct.

The Bayes decision rule consists in choosing the action that minimizes
the conditional risk. Since the conditional risk is given by Equation (5.23),
minimizing the conditional risk corresponds to maximizing the a posteriori
probability p(Ci|x). Hence the first formulation of Bayes decision rule, given
in (5.9), is justified.

100 5 Bayesian Theory of Decision

5.6 Discriminant Functions

The use of discriminant functions is a popular approach to make a classifier.

Definition 6 (Discriminant Functions) Given a pattern x ∈ Rn, and the
finite set of the possible classes C�=(C1, . . . , CM), we call G=(γ1(x), . . . , γM (x))
with γi : Rn → R, a set of discriminant functions. The single function γi

(i = 1, . . . , M) is called a discriminant function.

Using the set G we can get the following discriminant function rule

Definition 7 (Discriminant Function Rule) Assign the pattern x to the
class Ci if

γi(x) > γj(x) ∀j
= i. (5.24)

If we want to make classifier, it is adequate to make a machine (e.g. a computer
program or an hardware device) that computes the set of discriminant func-
tions G and chooses the class that corresponds to the function that assumes
the highest value for the pattern x.

Now we show that it is easy to represent a Bayes classifier in the framework
of the discriminant functions. If for each conditional risk R(βi|x) we define a
discriminant function γi(x) = −R(βi|x), choosing the maximum discriminant
function implies the minimization of the corresponding conditional risk. Hence
the discriminant function rule is an alternative way to the Bayes decision rule.

The set of discriminant functions is not uniquely determined. For instance,
if we add each function with the same real costant we get a new set of dis-
criminant functions which produces the same classifications produced by the
former set. The same effect we obtain if we multiply each discriminant func-
tion by a positive constant. If we replace each discriminant function γi with
a function φ(γi) where φ(·) is a continuous monotonic increasing function, we
obtain the same classifier.

Now we pass to compute the form of the set of discriminant functions when
we use the zero-one loss function. In this case each discriminant function is
given by:

γi(x) = −R(βi|x)
= p(Ci|x) − 1
= p(Ci|x). (5.25)

The last equality holds since we can ignore the substraction of real con-
stants. Applying the Bayes theorem (5.25) we get

γi(x) = p(Ci|x)

=
p(x|Ci)p(Ci)

p(x)
. (5.26)

If we take the logarithm in both sides of Equation (5.26) and we define
γ′

i(x) = ln γi(x), we get

5.7 Gaussian Density 101

γ′
i(x) = ln p(x|Ci) + ln p(Ci) − ln p(x) (5.27)

Since the evidence p(x) is a scalar, the term ln p(x) can be neglected. Hence
we obtain the final formula:

γ′
i(x) = ln p(x|Ci) + ln p(Ci). (5.28)

The use of a set of discriminant functions induces a partition of Rn, which is
divided into M decision regions, D1, . . . ,DM .

If γi(x) > γj(x) ∀j
= i then x ∈ Di. The decision regions are separated
by decision boundaries that are hypersurfaces in Rn.

5.6.1 Binary Classification Case

In this subsection we derive the set of discriminant function in the case of a
binary classification, namely when the classes are two. When the classes are
two we should use two discriminant functions γ1(x) and γ2(x) and assigning
the pattern x to C1 if γ1(x) > γ2(x). An alternative approach consists in
defining a unique discriminant function γ(x) that is the difference between
two discriminant functions, namely

γ(x) = γ1(x) − γ2(x). (5.29)

If we use γ(x) the decision rule becomes:

Decide C1 if γ(x) > 0; Decide C2 otherwise.

If we plug Equation (5.25) in (5.29) we get the following expression:

γ(x) = p(C1|x) − p(C2|x) (5.30)

It is possible to obtain an alternative expression for the discriminant function
if we apply (5.28) to (5.29):

γ(x) = ln p(x|C1) + ln p(C1) − ln p(x|C2) − ln p(C2) (5.31)

= ln
p(x|C1)
p(x|C2)

+ ln
p(C1)
p(C2)

. (5.32)

5.7 Gaussian Density

This section provides a brief description of the Gaussian probability density.
First of all, we recall a probability density function as a nonnegative func-

tion p : R → [0, 1] that fulfills the condition:∫ ∞

−∞
p(x)dx = 1. (5.33)

102 5 Bayesian Theory of Decision

Then we define the expected value of a scalar function f(x) for some probability
density function p(x):

E(f(x)) =
∫ ∞

−∞
f(x)p(x)dx. (5.34)

If x assumes values only on a discrete set S, the expected value is

E(f(x)) =
∑
x∈S

f(x)p(x). (5.35)

5.7.1 Univariate Gaussian Density

The continuous univariate Gaussian density (or univariate normal density)
p(x) is a probability density function defined by (see Figure 5.2):

p(x) =
1√
2π

exp

[
−1

2

(
(x − µ)

σ

)2
]

(5.36)

where µ is the expected value (or mean) of x defined by

µ = E(x) =
∫ ∞

−∞
xp(x)dx (5.37)

and where σ2 is the variable

σ2 = E(x − µ)2 =
∫ ∞

−∞
(x − µ)2p(x)dx. (5.38)

The Gaussian density is fully characterized by the mean µ and the variance
σ2, therefore the Gaussian is often indicated with N (µ, σ2).

The importance of the Gaussian density is underlined by the following fact.
The aggregate effect of the sum of a large number of independent random
variables, leads to a normal distribution. Since patterns can be considered
as ideal prototypes corrupted by a large number of random processes (e.g.
noise), the Gaussian is usually a very good model to represent the probability
distribution of the patterns.

5.7.2 Multivariate Gaussian Density

In this subsection the variable x is multivariate, namely x is a vector with n
components (x ∈ Rn). In this case the Gaussian density called multivariate
Gaussian density (or normal Gaussian density) p(x) is given by (see example
in Figure 5.3):

p(x) =
1

(2π)
n
2 |Σ| 12

exp
[
−1

2
(x − µ)T Σ−1(x − µ)

]
(5.39)

5.7 Gaussian Density 103

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
σ = 2.0
σ = 1.0
σ = 0.5

Fig. 5.2. Gaussian curve for different value of σ.

where x,µ ∈ Rn, Σ is a n×n covariance matrix . |Σ| and Σ−1 are, respectively,
the determinant of the covariance matrix and its inverse; (x−µ)T denote the
transpose of (x − µ).

The mean µ and the covariance matrix Σ are given by:

µ = E(x) =
∫

xp(x)dx (5.40)

Σ = E(x − µ)(x − µ)T =
∫

(x − µ)(x − µ)T p(x)dx. (5.41)

The covariance matrix Σ is always symmetric (i.e. Σij = Σji ∀i, j) and
positive semidefinite, that is all its eigenvalues λ1, . . . , λn are nonnegative
(λi ≥ 0 i = 1, . . . , n).

If xi is the i-th component of x, µi is i-th component of µ and Σij the
ij-th component of Σ, then

µi = E(xi) (5.42)
Σij = E((xi − µi)(xj − µj)). (5.43)

The diagonal elements of the covariance matrix Σii are the variances of xi,
i.e. Σii = E((xi − µi)(xi − µi)) . The other elements Σij (with i
= j) are
the covariances of xi and xj . If xi and xj are statistically independent , then
Σij = 0.

The quantity d2 = (x−µ)T Σ−1(x−µ) is called the squared Mahalanobis
distance between x and µ.

104 5 Bayesian Theory of Decision

-2

0

2

-2

0

2

0

0.05

0.1

0.15

-2

0

2

Fig. 5.3. Gaussian in two dimensions.

5.7.3 Whitening Transformation

In this subsection we introduce the whitening transformation, a very popular
technique to preprocess the data. For instance, the whitening transformation
is a basic tool in the independent component analysis [4][12] computation (see
Chapter 11). Now we pass to introduce the whitening transformation.

Let Ω = (x1, . . . ,x�) be a data set, formed by vectors xi ∈ Rn, which
has mean 〈x〉 and covariance matrix Σ. Then we introduce the eigenvalue
equation

ΣU = UΛ (5.44)

where U is a n × n matrix, consisting of N eigenvectors as U = [u1, . . . , un]
and Λ is a diagonal matrix of eigenvalues as:⎡⎢⎣λ1 0 · · ·

0
. . . 0

0 · · · λn

⎤⎥⎦ .

Then we can define a new transformation of data that maps the data matrix
X into a new matrix Y , whose covariance matrix is the identity matrix I

Y = Λ− 1
2 UT X = (UΛ− 1

2)T X. (5.45)

The transformation UΛ− 1
2 is called the whitening transformation or the

whitening process. The transformation U is the Principal Component Analysis

5.7 Gaussian Density 105

u

v

Fig. 5.4. Schematic illustration of the whitening transform in a bidimensional space.
After PCA the data are distribuited in an ellipse with semiaxes u and v, which are
the eigenvectors of the covariance matrix. After the whitening transform the data
are in a circle of unitary radius.

(PCA) [13], that projects the data along the directions of maximal variance i.e
the principal components (see Chapter 11). The aim of the whitening trans-
formation is to change the scales of the principal components in proportion
to 1√

λi
. The effect of the whitening transformation is shown in Figure 5.4.

The following theorem [10] underlines basic properties of the whitening
transformation:

Theorem 2 The whitening transformation
(i) is not orthonormal
(ii) does not preserve Euclidean distances

Proof
(i) The whitening transformation is not orthonormal since we have:

(UΛ− 1
2)T (UΛ− 1

2) = Λ− 1
2 UT UΛ− 1

2 = Λ−1
= I. (5.46)

(ii) Euclidean distances are not preserved, since we have:

‖Y ‖2 = Y T Y = (Λ− 1
2 UT X)T (Λ− 1

2 UT X) = XT UΛ−1UT X
= ‖X‖2. (5.47)

106 5 Bayesian Theory of Decision

5.8 Discriminant Functions for Gaussian Likelihood

In this section we investigate the discriminant functions in the special case
that the likelihood p(x|Ci) assumes a Gaussian distribution. In Section 5.6
we have seen that the discriminant functions γi(x) can be represented by the
following equation:

γi(x) = ln p(x|Ci) + ln p(Ci). (5.48)

If we suppose that the likelihood p(x|Ci) has a normal distribution, i.e.
p(x|Ci) ∼ N (µi,Σ) and we plug in (5.48), we get:

γi(x) = −n

2
ln 2π − 1

2
ln |Σ| − 1

2
(x − µi)T Σ−1(x − µi) + ln p(Ci). (5.49)

Now we discuss the form that (5.49) assumes in particular cases.

5.8.1 Features Are Statistically Independent

When the features are statistically independent, the non-diagonal elements of
the covariance matrix Σ are null. For sake of simplicity, we assume in addition
that each feature xi has the same variance σ2. This assumption corresponds
to the situation in which all patterns fall in hyperspherical clusters of equal
size. Under this further condition, the covariance matrix Σ is a multiple of the
covariance matrix that is Σ = σ2I. Therefore the inverse and the determinant
of the covariance matrix ⊀ are, respectively:

Σ−1 =
1
σ2

I (5.50)

|Σ| = σ2n. (5.51)

Substituting them in (5.49) we get:

γi(x) = −d

2
ln 2π − n ln σ − 1

2σ2
‖x − µ‖2 + ln p(Ci). (5.52)

Since the first two terms are additive constants, we can neglect them obtaining:

γi(x) = − 1
2σ2

‖x − µi‖2 + ln p(Ci). (5.53)

Prior Probabilities Are All Equal

If the prior probability Ci is the same for each class, it becomes an additive
constant that can be neglected and becomes:

γi(x) = − 1
2σ2

‖x − µi‖2. (5.54)

In this case the decision rule is the following

5.8 Discriminant Functions for Gaussian Likelihood 107

Definition 8 (Minimum-Distance Rule) To classify a pattern x compute
the Euclidean distance between x and each of the µi mean vectors and assign
the pattern to the class whose mean is the closest.

A classifier that implements such rule is called minimum-distance classifier .
The mean vector (or centroid) µi is also viewed as a prototype for a pattern
belonging to the class Ci.

Prior Probabilities Are Not All Equal

If the prior probabilities are not all the same, the decision is influenced in favor
of the class with the highest a priori probability. In particular, if a pattern x
has the same distance from two or more different mean vectors, the decision
rule chooses the class Ci that has the highest a priori probability.

Now we consider again the (5.52), it can be rewritten in the following way:

γi(x) = − 1
2σ2

[‖x‖2 − 2µi x + ‖µi‖2] + ln p(Ci). (5.55)

Since the term ‖x‖ is the same for all i, it can be considered an additive
constant. Therefore it can be neglected and we can obtain the following linear
expression:

γi(x) = aT
i x + bi (5.56)

where:

ai =
1
σ2

µi (5.57)

bi = − 1
2σ2

‖µi‖2 + ln p(Ci) (5.58)

bi is often called the threshold or bias for the ith class. The expression (5.56)
is called linear discriminant function. A classifier based on linear discriminant
function is called a linear classifier .

In addition, it is possible to show (See Problem 5.11) that the decision
surfaces for a linear classifier are hyperplanes. Given two adjacent decision
regions Di and Dj , the hyperplane separating two regions is orthogonal to the
line that joins the respective means µi and µj .

5.8.2 Covariance Matrix Is The Same for All Classes

In this subsection we discuss another particular case that occurs when the
covariance matrix is the same for all the classes. This corresponds to the
situation in which the patterns fall in hyperellipsoidal clusters of equal size.
We consider again the Equation (5.49):

γi(x) = −n

2
ln 2π − 1

2
ln |Σ| − 1

2
(x − µi)T Σ−1(x − µi) + ln p(Ci) (5.59)

108 5 Bayesian Theory of Decision

and we see that the first two terms are independent of i. Therefore they can be
considered additive constants and then neglected. Hence the previous equation
can be rewritten as :

γi(x) = −1
2
(x − µi)T Σ−1(x − µi) + ln p(Ci) (5.60)

Prior Probabilities Are All Equal

If the prior probability Ci is the same for each class, it becomes an additive
constant that can be neglected and becomes:

γi(x) = −1
2
(x − µi)T Σ−1(x − µi). (5.61)

This is quite similar at the expression that we get when the features are
independent. The unique difference is that the Euclidean distance is replaced
with Mahalanobis distance. In similar way we can formulate an analogous
decision rule

Definition 9 (Minimum Mahalonobis Distance Rule) To classify a
pattern x compute the Mahalanobis distance between x and each of the µi

mean vectors and assign the pattern to the class whose mean is the closest.

A classifier that implements such rule is called minimum Mahalanobis distance
classifier .

Prior Probabilities Are Not All Equal

If the prior probabilities are not all the same, the decision is influenced in favor
of the class with the highest a priori probability. In particular, if a pattern x
has the same distance from two or more different mean vectors, the decision
rule choose the class Ci that has the largest a priori probability.

Now we consider again (5.60) that can be rewritten in the following way:

γi(x) = −1
2
[xT Σ−1x − µT

i Σ−1x − xT Σ−1µi + µT
i Σ−1µi] + ln p(Ci) (5.62)

The term xT Σ−1x non depends by the index i and it can be considered an
additive constant that can be neglected. Hence the discriminant functions are:

γi(x) = aT
i x + bi (5.63)

where:

ai = Σ−1µ (5.64)

bi = −1
2
µT

i Σ−1µi + ln p(Ci). (5.65)

5.9 Receiver Operating Curves 109

Also in this case the discriminant function are linear. The resulting decision
surface between two adjacent decision region Di and Dj is is again an hy-
perplane, unlike the case of the features that are statistically independent,
are not generally orthogonal to the line that joins the means µi and µj (See
Problem 5.12).

5.8.3 Covariance Matrix Is Not the Same for All Classes

In this subsection we discuss the general case that is the covariance matrix is
not the same for all the classes. We consider again the Equation (5.49)

γi(x) = −n

2
ln 2π − 1

2
ln |Σ| − 1

2
(x − µi)T Σ−1(x − µi) + ln p(Ci).

We notice that the unique term that is an additive costant is −n
2 ln 2π. Drop-

ping it we obtain:
γi(x) = xT Six + aT

i x + b (5.66)

where

Si = −1
2
Σ−1

i (5.67)

ai = Σ−1
i µi (5.68)

b = −1
2
µT

i Σ−1
i µi − 1

2
ln |Σi| + ln p(Ci). (5.69)

The discriminant functions in this case are nonlinear. In particular, in the
binary classifiers the decision surfaces are hyperquadrics. The results obtained
for the binary classifiers can be extended to the case of more than two classes,
fixed that are two classes that share the decision surface.

5.9 Receiver Operating Curves

In this section we present a graphical method to represent the performances
of a classifier, the Receiver operating curves [7]. This representation has its
roots in the signal detection theory. We consider a device that has to detect
an atomic particle (e.g. an electron). The model of our device is simple: if the
particle is present the voltage v assumes a normal distribution N (v2, σ), other-
wise the voltage assumes the same normal distribution with the same variance
but with different mean that N (v1, σ). The device decides that the particle is
present when the voltage v exceeds a threshold value v�. Unfortunately the
users of the device do not know the value of the threshold value. Therefore
we need a measure, independent of the threshold value, that expresses the
effectiveness of the device to detect electrons. A measure that responds to
this criterion is the discriminability :

110 5 Bayesian Theory of Decision

δ =
‖v2 − v1‖

σ
. (5.70)

The larger is the discriminability the better is the device.
In general we do not know v1, v2, σ, but we know the decisions of the

device and we can establish their correctness, for instance using other meth-
ods to establish the presence of the particle. We consider the following four
probabilities:

• p(v > v�|v ∈ C2) a positive that is the probability that the voltage is higher
than v� when the particle is present

• p(v > v�|v ∈ C1) a false positive that is the probability that the voltage is
higher than v� when the particle is absent

• p(v < v�|v ∈ C2) a false negative that is the probability that the voltage
is smaller than v� when the particle is present

• p(v < v�|v ∈ C1) a negative that is the probability that the voltage is
smaller than v� when the particle is absent

If we repeat our experiments many times, we can estimate these prob-
abilities experimentally. We can represent our system with a couple of real
numbers, namely the positive and the false positive rates. Hence the system
can be represented by a point in a two-dimensional space where on x-axis and
y-axis are respectively the positive and the false positive rates. If we keep fixed
the model only changing the threshold v�, the positive and the false positive
rates change. In this way the system describes a curve. This curve is called
the receiver operating characteristic (or ROC) curve. The advantage of the
signal detection approach consists in distinguishing between discriminability
and decision bias. The discriminability is a specific property of the detection
device; the decision bias depends by the receiver.

Each ROC curve is unique, that is, there is one and only one ROC curve
that passes through a pair of positive and false positive rates. We can gener-
alize the previous discussion and apply it to two classes having any arbitrary
multidimensional distributions. Suppose we have two distributions p(x|C1)
and p(x|C2) partially overlapped, therefore the Bayes classification error is
not null. Any pattern whose state of nature is C2 could be correctly classi-
fied as C2 (a positive in the ROC terminology) or misclassified as C1 (a false
positive). However, in the multidimensional case we could have many decision
surfaces that correspond to different positive rates, each associated with a
corresponding false positive rate. In this case a measure of discriminability
cannot be determined without knowing the decision rule that yields positive
and false positive rates. In addition, we could imagine that the positive and
the false positive rates that we have measured are optimal, that is, the decision
rule, actually used, is the one that yiels the minimum false positive rate. If
we build a multidimensional classifier we can represent its performances using
a ROC approach. Neglecting the optimality problem, we can simply vary a
single parameter in the decision rule and plot the false and negative positive
rates. The curve is called the operating characteristic. We conclude with the

5.10 Conclusions 111

1

1

false positive

po
si

tiv
e

Fig. 5.5. An example of an ROC curve.

remark that the operating characteristic curves are particularly interesting in
the applications in which the loss function changes during the time. In this
case, if the operating characteristic curve is function of a control parameter,
though the loss function changes, it can easily find the value of the control
parameter that minimizes the expected risk.

5.10 Conclusions

This chapter is a concise description of the foundations of the Bayesian the-
ory of decision. Firstly we have recalled the Bayes theorem and have defined
fundamental concepts as likelihood, priors and posterior probability. Then we
have defined the Bayes decision rule and have shown its optimality. We have
introduced fundamental machine learning concepts such as the loss function
and discriminant functions. We have discussed the particular case of Gaussian
likelihood deriving the discriminant functions in special case. Finally, we have
introduced receiver operating curves.

We conclude the chapter providing some bibliographical remarks. A com-
prehensive survey of the theory can be found in [7] that covers topics of BDT
(e.g. error bounds and Bayesian belief nets) not described by the chapter. Dis-
criminant functions are analyzed in detail in [10]. receiver operating curves
are fully discussed in [11]. Finally, a probabilistic approach to the machine
learning and decision problem can be found in [6].

112 5 Bayesian Theory of Decision

Problems

5.1. Given a normal distribution N (σ, µ), show that the percentage of samples
that assume values in [−3σ, 3σ] exceeds 99%.

5.2. Consider the function f(x) = a
1+x2 where a ∈ R. Find the value a such

that f(x) is a probability density. Besides, compute the expected value of x.

5.3. Consider the Geometric distribution[14] defined by:

p(x) = θ(1 − θ)x (x = 0, 1, 2, . . . , 0 ≤ θ ≤ 1).

Prove that its mean is E [x] = 1−θ
θ .

5.4. Given a probability density f(x), the moment of fourth order [14] is
defined by

1
σ4

∫ ∞

−∞
f(x)(x − µ)4dx

where µ and σ2 are, respectively, the mean and the variance.
Prove that the moment of fourth-order of a normal distribution N (µ, σ)

is 3.

5.5. Let x = (x1, . . . , x�) and y = (y1, . . . , y�) be two variables. Prove that if
they are statistically independent their covariance is null.

5.6. Suppose we have two classes C1 and C2 with a priori probabilities p(C1) =
1
3 and p(C2) = 2

3 . Suppose that their likelihoods are p(x|C1) = N (1, 1) and
p(x|C2) = N (1, 0). Find numerically the value of x such that the posterior
probabilities p(C1|x), p(C2|x) are equal.

5.7. Suppose we have two classes C1 and C2 with a priori probabilities p(C1) =
2
5 and p(C2) = 3

5 . Suppose that their likelihoods are p(x|C1) = N (1, 0) and
p(x|C2) = N (1, 1). Compute the joint probability such that both points x1 =
−0.1, x2 = 0.2 belong to C1.

5.8. Suppose we have two classes C1 and C2 with a priori probabilities p(C1) =
1
4 and p(C2) = 3

4 . Suppose that their likelihoods are p(x|C1) = N (2, 0) and
p(x|C2) = N (0.5, 1). Compute the likelihood ratio and write the discriminant
function.

5.9. Suppose we have three classes C1, C2 and C3 with a priori probabilities
p(C1) = 1

6 , p(C2) = 1
3 and p(C2) = 1

2 . Suppose that their likelihoods are
respectively p(x|C1) = N (0.25, 0), p(x|C2) = a

1+x2 and p(x|C3) = 1
b+(x−1)2 .

Find the values a and b such that likelihoods are density functions and write
three discriminant functions.

5.10 Conclusions 113

5.10. Implement the whitening transform. Test your implementation trans-
forming Iris Data [9], which can be dowloaded by ftp.ics.uci.edu/pub/machine-
learning-databases/iris. Verify that the covariance matrix of the transformed
data is the identity matrix.

5.11. Suppose that the features are statistically independent and that they
have the same variance σ. In this case where the discriminant function is a
linear classifier. Given two adjacent decision regions D1 and D2, show that
their separating hyperplane is orthogonal to the line connecting the means µ1

and µ2.

5.12. Suppose that the covariance matrix is the same for all the classes. The
discriminant function is a linear classifier. Given two adjacent decision regions
D1 and D2 show that their separating hyperplane is not orthogonal to the line
connecting the means µ1 and µ2.

References

1. T. Bayes. An essay towards solving a problem in the doctrine of chances. Philo-
sophical Transactions of the Royal Society, 1763.

2. J. O. Berger. Statistical Decision Theory and Bayesian Analysis. Springer-
Verlag, 1985.

3. J. M. Bernardo and A. F. M. Smith. Bayesian Theory. John Wiley, 1986.
4. P. Comon. Independent component analysis: A new concept? Signal Processing,

36(1):287–314, 1994.
5. M. H. De Groot. Optimal Statistical Decisions. Mc Graw-Hill, 1970.
6. L. Devroye, L. Gyorfi, and G. Lugosi. A Probabilistic Theory of Pattern Recog-

nition. Springer-Verlag, 1996.
7. R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. John Wiley,

2001.
8. T. S. Ferguson. Mathematical Statistics: A Decision-Theoretic Approach. Aca-

demic Press, 1967.
9. R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals

of Eugenics, 7(2):179–188, 1936.
10. K. Fukunaga. Introduction to Statistical Pattern Recognition. Academic Press,

1990.
11. D. Green and J.A. Swets. Signal Detection Theory and Psychophysics. Wiley,

1974.
12. A. Hyvarinen. Survey on independent component analysis. Neural Computing

Surveys, 2(1):94–128, 1999.
13. I. T. Jolliffe. Principal Component Analysis. Springer-Verlag, 1986.
14. G. A. Korn and T. M. Korn. Mathematical Handbook for Scientists and Engi-

neers. Dover, 1961.
15. P. M. Lee. Bayesian Statistics: An Introduction. Edward Arnold, 1989.
16. D. V. Lindley. Making Decisions. John Wiley, 1991.

6

Clustering Methods

What the reader should know to understand this chapter

• Basic notions of calculus and linear algebra.
• Basic notions of machine learning.
• Programming skills to implement some computer projects proposed in the

Problems section.

What the reader should know after reading this chapter

• The principles of clustering.
• The most popular clustering algorithms.

6.1 Introduction

Given a set of examples of a concept, the learning problem can be described
as finding a general rule that explains examples given only a sample of lim-
ited size. Examples are generally referred as data. The difficulty of the learn-
ing problem is similar to the problem of children learning to speak from the
sounds emitted by the grown-up people. The learning problem can be stated
as follows: given an example sample of limited size, to find a concise data de-
scription. Learning methods can be grouped in three big families: supervised
learning , reinforcement learning and unsupervised learning .

In supervised learning (or learning with a teacher), the data is a sample
of input output patterns. In this case, a concise description of the data is the
function that can yield the output, given the input. This problem is called
supervised learning because the objects under considerations are already asso-
ciated with target values, e.g. classes and real values. Examples of this learning
task are the recognition of handwritten letters and digits, the prediction of
stock market indexes.

118 6 Clustering Methods

If the data is only a sample of objects without associated target values, the
problem is known as unsupervised learning. In unsupervised learning there is
no teacher. Hence a concise description of the data could be a set of clusters.
Typical examples of unsupervised learning tasks include the problem of image
and text segmentation. In unsupervised learning, given a training sample of
objects (e.g. images), the aim is to extract some structure from them. For
instance, identifying indoor or outdoor images or extracting face pixels in an
image. If some structure exists in training data, it can take advantage of the
redundancy and find a short description of data.

A general way to represent data is to specify a similarity between any
pairs of objects. If two objects share much structure, it should be possible
to reproduce the data from the same prototype. This idea underlies clustering
methods that form a rich subclass of unsupervised algorithms. It is not possible
to provide a formal definition of clustering, only an intuitive definition can
be given. Given a fixed number of clusters, we aim to find a grouping of
the objects (clustering) such that similar objects belong to the same group
(cluster). If it is possible to find a clustering such that the similarities of the
objects in one cluster are much greater than the similarities among objects
from different clusters, we have extracted structure from the training sample
so that the whole cluster can be represented by one representative data point.

Consider Figure 6.1, the goal of a clustering method, in this case, is to
identify the three subsets of black points closely grouped together. Each sub-
set of black points can be represented by one representative data (the grey
point). There are some practical reasons for which it is useful to consider
clustering methods. In some cases to associate to each sample of the data set
the appropriate class (or label), as requested by supervised methods, is a time
consuming activity. Data sets can contain hundreds of thousand of data, as in
the case of handwriting recognition, and some man-months can be required to
label the data. Moreover, clustering methods are very useful when the classes
are not apriori known. For instance, clustering methods can be used in the
customer databases of the companies (e.g. insurances, banks, electrical utili-
ties) to individuate groups of customers with the aim of addressing them some
marketing actions (e.g. discounts).

Following [18], clustering methods can be categorized into hierarchical
and partitioning clustering . Given a data set to be clustered X , hierarchi-
cal schemes sequentially build nested clusters with a graphical representation
known as dendrogram. Partitioning methods directly assign all the data points
according to some appropriate criteria, such as similarity and density, into dif-
ferent groups (clusters).

In this chapter we focus on the prototyped-based clustering (PBC) algo-
rithms, which is the most popular class of partitioning clustering methods.
PBC algorithms lead to the identification of a certain number of prototypes,
i.e. data points that are representative of a cluster, as the grey points in the
Figure 6.1. PBC algorithms are so popular that they are often referred simply
clustering algorithms.

6.2 Expectation and Maximization Algorithm 119

Fig. 6.1. Each cluster of black points can be represented by a representative data,
i.e., the gray point.

This chapter presents the most PBC algorithms, paying special atten-
tion to neural-based algorithms. The chapter is organized as follows: Section
6.2 reviews the EM algorithm, that is a basic tool of several PBC algo-
rithms; Section 6.3 presents the basic concepts and the common definitions
to all clustering algorithms; Section 6.4 describes the algorithm K-Means;
Sections 6.5 and 6.6 review some soft competitive learning algorithms, that
is, self-organizing maps, neural gas and topology representing networks; gen-
eral topographic mapping is discussed in Section 6.7. Section 6.8 presents
fuzzy clustering algorithms. Section 6.9 reports, for the sake of completeness,
a brief description of hierarchical clustering methods. Finally, in Section 6.10
some conclusions are drawn.

6.2 Expectation and Maximization Algorithm�

This section describes the expectation and maximization algorithm which is a
basic tool of several clustering methods.

Firstly, we recall the definition of the maximum-likelihood problem.

120 6 Clustering Methods

We have a density function p(x|Θ) that is governed by the set of parameters
Θ. We also have a data set X = (x1, . . . ,x�) and assume that the data vectors
of X are i.i.d.1 with distribution p(x). Therefore, the resulting density for the
samples is

L(Θ|X) =
�∏

i=1

p(xi|Θ). (6.1)

The function L(Θ|X) is called the likelihood of the parameters given the data,
or simply the likelihood function.

The likelihood is thought of as a function of the parameters Θ where the
data set X is fixed.

Now we can state the maximum likelihood problem.

Problem 1 To find the parameter Θ� that maximizes the likelihood L(Θ|X),
that is,

Θ� = arg max
Θ

L(Θ|X). (6.2)

Since the product of several thousands of probabilities is a number too small to
be processed with computers, the maximization of the likelihood is addressed
through the equivalent maximization of the loglikelihood :

Θ� = arg max
Θ

L(Θ|X) = arg max
Θ

�∑
i=1

log[p(xi|Θ)]. (6.3)

In principle Θ� can be found as the point where the derivative of the loglike-
lihood with respect to Θ is null, but this rarely leads to analitically tractable
equations. It is thus necessary to use other techniques for the maximum like-
lihood estimation of the parameters. The rest of this section introduces the
expectation-maximization method which is one of the main approaches used
to solve such problem.

6.2.1 Basic EM�

The expectation-maximization (EM) [3][8][37] algorithm is a general method
for finding the Maximum-Likelihood estimate of the parameters of an under-
lying probability data distribution from a given data set when the data is
incomplete or the data has missing values. We say that the data is incomplete
when not all the necessary information is available. A data set has missing
values when there are components of any sample xi whose values are unknown.

There are two main applications of the EM algorithm. The former occurs
when the data indeed has missing values, due to limitations of the observation
process. The latter occurs when optimizing the likelihood function is analyti-
cally intractable and the likelihood function can be simplified by assuming the

1 independent identically distributed.

6.2 Expectation and Maximization Algorithm 121

existence of additional missing (or hidden) parameters. The latter application
is commonly used in clustering.

We assume that the data set X is generated by some unknown probability
distribution p(x). We call X the incomplete data. We assume that a complete
data set Z = (X ,Y) exists and the joint probability density function is:

p(z|Θ) = p(x,y|Θ) = p(y|x, Θ)p(x|Θ).

With this new density function, we can define a new likelihood function:

L(Θ|Z) = L(Θ|X ,Y) = p(X ,Y|Θ) (6.4)

called the complete data likelihood .
The value of this function can be modeled as a random variable distributed

following a unknown density function hX ,Θ(Y) where X and Θ are constants,
Y is a random variable. The original likelihood function L(Θ|X) is called
incomplete data likelihood function.

The EM algorithm iteratively performs two steps called Expectation and
Maximization. At each iteration i, the result is an estimate Θ(i) of the parame-
ters. The first estimate Θ(0) is usually obtained through a random initializa-
tion. After each iteration, the likelihood L(i) = L(Θ(i)|X) can be estimated.
The two steps of the EM algorithm are repeated until the algorithm con-
verges, i.e. until the estimate Θ(i) does not change anymore. Each iteration
is guaranteed to increase the loglikelihood and the algorithm is guaranteed to
converge to a local maximum of the likelihood function.

E-step�

The name of this step is due to the fact that is aimed at the estimation of the
complete data log likelihood log p(X ,Y|Θ) with respect to the unknown data
Y given the observed data X and the current parameter estimates Θ(i−1).

We define

Q(Θ,Θ(i−1)) = E
[
log p(X ,Y|Θ)|X , Θ(i−1)

]
(6.5)

where Θ(i−1) are the current parameter estimates, E [·] is the expectation op-
erator and Θ are the new parameters that we set to maximize Q.

While X and Θ(i−1) are constants, Θ is the variable to be estimated and
Y is a random variable governed by the distribution f(y|X , Θ(i−1)).

The right side of (6.5) can be rewritten as:

E [log p(X ,Y|Θ)|X , Θ(i−1)] =
∫
y∈Υ

log p(X ,y|Θ)f(y|X , Θ(i−1))dy (6.6)

where Υ is the range of y.
The expression of f(·) depends on the problem. Where f(·) has an ana-

lytical expression, the problem is simplified.
The evaluation of the equation (6.6) is called the E-step of the algorithm.

122 6 Clustering Methods

M-step�

The second step (the M-step) of the EM algorithm is aimed at finding the
parameter set Θ(i) maximizing Q(Θ,Θ(i−1))(hence the name maximization):

Θ(i) = arg max
Θ

Q(Θ,Θ(i−1)). (6.7)

As anticipated, the steps of the EM algorithm are repeated until the algorithm
converges. Each iteration is guaranteed to increase the loglikelihood and the
algorithm is guaranteed to converge a local maximum of the likelihood func-
tion. Many papers (e.g. [8][33][37]) have been dedicated to the convergence
rate of EM algorithm, in practice the algorithm converges after few itera-
tions. This is the main reason of the popularity of the EM algorithm in the
machine learning community.

6.3 Basic Notions and Terminology

This section presents the main notions related to the clustering problem and
introduces definitions and terminology used in the rest of the chapter.

6.3.1 Codebooks and Codevectors

Let X = (x1, . . . ,x�) be a data set, where xi ∈ Rn. We call codebook the
set W = (w1, . . . ,wK) where each element (called codevector) wc ∈ Rn and
K � �.

The Voronoi region (Rc) of the codevector wc is the set of all vectors in
Rn for which wc is the nearest vector (winner)

Rc = {x ∈ Rn | c = arg min
j

‖x − wj‖}.

Each Voronoi region Ri is a convex polytope2 (in some cases unbounded),
where the convexity implies that

(∀x1,x2 ∈ Ri) ⇒ x1 + α(x2 − x1) ∈ Vi (0 ≤ α ≤ 1)

is fulfilled.
The Voronoi Set (Vc) of the codevector wc is the set of all vectors in X

for which wc is the nearest codevector

Vc = {x ∈ X | c = arg min
j

‖x − wj‖}.

In Figure 6.2, the Voronoi sets are indicated by the dotted polygons. Voronoi
regions and sets are strictly related: suppose that a new input x arrives and
falls in the Voronoi region of the codevector w, this implies that x will belong

6.3 Basic Notions and Terminology 123

Fig. 6.2. The clusters, formed by the black points, can be represented by their
codevectors (grey points). Dashed polygons identify the Voronoi sets associated with
each codevector.

Fig. 6.3. Codevectors (black points) induce a tessellation of the input space.

to the Voronoi set of the codevector w. The partition of Rn formed by all
Voronoi polygons is called Voronoi tessellation (or Dirichlet tessellation). An
example of Voronoi tessellation is shown in Figure 6.3. Efficient algorithms
to compute Voronoi Tessellation are only known for two-dimensional data
sets [30][32].

If one connects all pairs of codevectors for which the respective Voronoi
regions share an edge, i.e. an (n − 1)-dimensional hyperface for spaces of
dimension n, one gets the Delaunay Triangulation.

2 In mathematics, polytope is the generalization to any dimension of polygon in two
dimensions, polyhedron in three dimensions and polychoron in four dimensions.

124 6 Clustering Methods

6.3.2 Quantization Error Minimization

The codebooks are obtained by means of clustering methods. Codebooks are
expected to be representative of the data from which they are obtained. A
common strategy adopted by clustering methods to obtain a representative
codebook consists in the minimization of the expected quantization error (or
expected distortion error). In the case of a continuous input distribution p(x),
the Expected Quantization Error E(p(x)) is:

E(p(x)) =
K∑

c=1

∫
Rc

‖x − wc‖2p(x)dx (6.8)

where Rc is the Voronoi region of the codevector wc and K is the cardinality
of the codebook W .

In the real world we cope with finite data set X = (x1, . . . ,x�). There-
fore the minimization of the expected quantization error is replaced with the
minimization of the empirical quantization error E(X), that is:

E(X) =
1
2�

K∑
c=1

∑
x∈Vc

‖x − wc‖2 (6.9)

where Vc is the Voronoi set of the codevector wc.
When we pass from expected to empirical quantization error, the Voronoi

region has to be replaced with the Voronoi set of the codevector wc. A typi-
cal application of the empirical quantization error minimization is the vector
quantization [15][23] (see Section 8.8).

6.3.3 Entropy Maximization

An alternative strategy to the quantization error minimization is the entropy
maximization. The aim of the entropy maximization is to obtain that the
Voronoi set of each codevector roughly has the same number of data. If
P (s(x) = wc) is the probability of wc being the closest codevector for a
randomly chosen input x, then:

P (s(x) = wc) =
1
K

∀wc ∈ W (6.10)

where K is the cardinality of the codebook.
If we view the choice of an input x and the respective winner codevector

s(x) as a random experiment which assigns a value x ∈ X to the random
variable X, then (6.10) is equivalent to maximizing the entropy

H(X) = −
∑
x∈X

P (x) log(P (x)) = E
[
log
(

1
P (x)

)]
(6.11)

6.3 Basic Notions and Terminology 125

where E [·] is the expectation operator.
If the data can be modeled from a continuous probability distribution p(x),

then (6.10) is equivalent to∫
Rc

p(x)dx =
1
K

(∀wc ∈ W) (6.12)

where Rc is the Voronoi region of wc and K is the cardinality of W .
When the data set X is finite, the equation (6.10) corresponds to the

situation where each Voronoi set Vc contains the same number of data points:

|Vc|
|X | ≈

1
K

(∀wc ∈ W). (6.13)

An advantage of choosing codevectors to maximize entropy is the inherent
robustness of the resulting codebook. The removal of any codevectors affects
only a limited fraction of the data.

In general, entropy maximization and quantization error minimization are
antinomic, i.e. the maximization of the entropy does not lead to the minimiza-
tion of the quantization error and viceversa. For instance, consider a data set
where half of the samples lie in a very small region of the input space, whereas
the rest of data are uniformly distributed in the input space. By minimizing
the quantization error only one single codevector should be positioned in the
pointwise region while all others should be uniformly distributed in the input
space. By maximizing entropy half of the codevectors should be positioned in
each region.

6.3.4 Vector Quantization

An application of the minimization of the empirical quantization error is the
vector quantization (VQ), The goal of VQ is to replace the data set with the
codebook and it has been developed fifty years ago to optimize the trans-
mission over limited bandwidth communication. If the codebook is known by
both to sender and receiver, it is adequate to transmit codevector indexes
instead of vectors. Therefore, the receiver can use the transmitted index to
retrieve the corresponding codevector.

More formally, VQ is the mapping of continuous vectors x into a finite
set of symbols V = {v1, . . . , vK}. Extensive surveys on VQ can be found
in [15][26], this section will focus on the general aspects of the VQ problem.

In mathematical terms, a quantizer is composed of two elements. The first
is the encoder γ(x):

γ(x) : X → V (6.14)

which maps d-dimensional input vectors x ∈ X into channel symbols, i.e.
elements of the finite and discrete set V (see above). The goal of the encoder
is to represent the data with a set of symbols that require as less space as

126 6 Clustering Methods

possible for transmission and storage purposes. The second is the decoder β(v)
which maps channel symbols into elements of the reproduction alphabet W :

β(v) : V → W (6.15)

where W = (w1, . . . , wK) is a subset of the input space X , i.e. the codebook
previously introduced. The goal of the decoder is to reconstruct the original
data after they have been transmitted or stored as channel symbols. If V
contains K elements, then R = log2 K is called rate of the quantizer, and
r = R/d is called rate per symbol. R corresponds to the minimum number of
bits necessary to account for all channel symbols, and r normalizes such a
quantity with respect to the dimensionality of the input space X . In general,
the quantization is a lossy process, i.e. the result x̂ of the reconstruction
is different from the original input x. The cost associated to the difference
between x and x̂ is called distorsion (see below for more details).

In principle, the channel symbols set V could contain a single element v
and, as a result, K = 1 and R = 0, i.e. no space is needed for the data. On the
other hand, the reduction of R is constrained by the application needs and the
output of the decoder β(v) must satisfy both subjective and objective criteria
that account for the quantization quality. The value of R is then a trade-off
between two conflicting needs: the reduction of the number of bits necessary to
describe the symbols of V and the limitation of the distortion. Chapter 2 shows
that, in the case of audio quantization, the criteria are signal-to-noise ratio and
mean opinion score (MOS), two measures that are particularly suitable for the
audio case. In more general terms, the quantization quality can be assessed
through the distortion, i.e. a cost d(x, x̂) associated to the replacement of an
input vector x with the quantization result x̂ = γ(β(x)).

A quantizer can be considered good when the average distortion:

E[d(x, x̂)] = lim
�→∞

1
�

�∑
i=1

d(xi, x̂i) (6.16)

is low. Such an expression can be applied in practice only when the distribu-
tion of x is known. However, this is not often the case and the only possible
solution is to measure the empirical average distortion over a data set of size
� sufficiently large to be representative of all possible data:

Ê[d(x, x̂)] =
1
�

�∑
i=1

d(xi, x̂i). (6.17)

The most common expression of d(x, x̂) is the squared error:

d(x, x̂) = (x − x̂)2 (6.18)

but other measures can be used [15]. Note that the signal-to-noise ratio ex-
pression of Equation (2.30) can be written as follows:

6.4 K-Means 127

SNR = 10 log10

{
E[x2]

E[d(x, x̂)]

}
(6.19)

and it corresponds to the empirical average distortion normalized with respect
to the average energy. This enables one to account for the fact that higher
distortions can be tolerated at higher energies. On the other hand, the meaning
of x2 is not necessarily evident when passing from signals characterized by an
actual energy (like audio waves) to generic vectors.

A quantizer is said to be optimal when it minimizes the average distortion
and there are two properties that must be satisfied for a quantizer being
optimal [23].

Definition 10 Given a specific decoder β(v), the optimal encoder γ(x) selects
the channel symbol v∗ such that:

v∗ = arg min
v∈V

d(x, β(v)). (6.20)

Since v = γ(x), the above property means that, given the decoder β(v), the
optimal encoder γ∗(x) is the one performing a nearest neighbor mapping:

γ∗(x) = arg min
γ∈Γ

d(x, β(γ(x))), (6.21)

where Γ is the set of all possible encoders.

Definition 11 Given a specific encoder γ(x), the optimal decoder β∗(v) as-
signs each channel symbol v the centroid of all input vectors mapped into v by
γ:

β∗(v) =
1

N(v)

∑
xi:β(x)=v

xi (6.22)

where N(v) is the number of input vectors mapped into v.

The two properties enable one to obtain a pair (γ(x), β(v)) which mini-
mizes the empirical average distortion on a given training set. Note that the
clustering algorithms (see Chapter 6) can be interpreted as quantizers. In
fact, during the clustering each sample is attributed to a cluster v and this
can be thought of as an encoding operation. Vice versa, each sample can be
replaced with the representative of the cluster it belongs to and this can be
interpreted as a decoding operation. Moreover, the empirical quantization er-
ror introduced in Section 6.3 corresponds to the empirical average distorsion
described above.

6.4 K-Means

In this section we will describe the most popular clustering algorithm, K-
Means. K-Means has two different versions: batch and online. K-Means. The
term batch means at each step the algorithm takes into account the whole data
set to update the codebook. Vice versa the term online algorithm indicates
that the codebook update is performed after the presentation of each input.

128 6 Clustering Methods

6.4.1 Batch K-Means

Batch K-Means [12][24] is the simplest and the oldest clustering method. De-
spite its semplicity it has been shown to be effective in several applications.
Batch K-Means assumes in the literature other names, e.g. in speech recog-
nition is called Linde-Buzo-Gray (LBG) algorithm [23], in the old books of
pattern recognition is also called generalized Lloyd algorithm.

Given a finite data set X = (x1, . . . ,x�), Batch K-Means works by repeat-
edly moving all codevectors to the arithmetic mean of their Voronoi sets. The
theoretical foundation of this procedure is that a necessary condition for a
codebook W to minimize the empirical quantization error

E(X) =
1
2�

K∑
c=1

∑
x∈Vc

‖x − wc‖2

is that each codevector wc fulfills the centroid condition [16]. In the case of
finite data set X and the Euclidean distance, the centroid condition reduces
to:

wc =
1

|Vc|
∑
x∈Vc

x (6.23)

where Vc is the Voronoi set of the codevector wc.
The batch K-Means algorithm is formed by the following steps:

1. Initialize the codebook W = (w1, . . . ,wK) with vectors chosen randomly
from the training set X .

2. Compute for each codevector wi ∈ W its Voronoi Set Vi

3. Move each codevector wi to the mean of its Voronoi Set.

wi =
1
|Vi|
∑
x∈Vi

x (6.24)

4. Go to step 2 if any codevector, in the step 3, wi has been changed.
5. Return the codebook.

The second and third steps form a Lloyd iteration. It is guaranteed that
after a Lloyd iteration the empirical quantization error does not increase.
Besides, Batch K-Means can be viewed as an EM algorithm (see Section 2).
Second and third step are respectively the estimation and the maximization
stage. This is important since it means that K-Means is guaranteed to converge
after a certain number of iterations.

The main drawback of K-Means is its sensitivity with respect to outliers.
We recall that outliers are isolated data points whose position in the input
space is very far from the remaining data points of the data set. In equation
(6.24), we observe that outliers can affect the mean value in the codevector
computation. Hence outlier presence can influence significantly codevector
positions.

6.4 K-Means 129

6.4.2 Online K-Means

The batch version of the K-Means takes into account the whole data set X to
update the codebook. When the cardinality of the data set is huge (e.g. several
hundreds of thousand of samples), the batch methods are computationally
expensive. This can create problems for the storage in the memory or it can
take too much time. In this cases the online update becomes a necessity.

Online K-Means can be described as follows:

1. Initialize the codebook W = (w1, . . . ,wK) with vectors chosen randomly
from the training set X .

2. Choose randomly an input x according to the input probability function
p(x).

3. Fix the nearest codevector, i.e the winner ws = s(x)

s(x) = arg min
wc∈W

‖x − wc‖ (6.25)

4. Adapt the winner towards x:

∆ws = ε(x − ws) (6.26)

5. Go to step 2 until a predefined number of iterations is reached.

The fact that only the winner s(x) is modified for a given input x is called
hard competitive learning or winner-takes-all (WTA) learning .

Winner-Takes-All Learning

A general problem occurring with winner-takes-all learning is the possible
existence of dead codevectors , i.e. codevectors with an empty Voronoi set.
These are codevectors which are never winner for any input and their position
never changes. A common way to avoid dead codevectors is to initialize the
codevectors according to the sample distribution of the data set. However if
the codevectors are initialized randomly according to the input distribution
probability p(x), then their expected initial local density is proportional to
p(x). This may be unoptimal if the goal is the quantization error minimization
and p(x) is highly nonuniform. In this case it is better to undersample the
region with high probability density, i.e. to use less codevectors than suggested
by p(x), and to oversample the other regions.

Another drawback of winner-takes-all learning is that different random
initializations can yield very different results. For certain initializations, WTA
learning may not be able to get the system out of the poor local minimum
where it was fallen. One way to cope with this problem to modify the winner-
takes-all learning in a soft competitive learning. In this case not only the winner
but also some other codevectors are adapted.

130 6 Clustering Methods

Learning Rate

The online K-Means learning rule, espressed by Equation (6.26), can be justi-
fied in the following way. If we compute the derivative of the empirical quan-
tization error E(X) with respect to the codevector ws, we have:

∂E(X)
∂ws

= (x − ws). (6.27)

The above equation shows that online K-Means tries to minimize the empirical
quantization error using a steepest gradient descent algorithm [3]. The learning
rate ε, that usually assumes a value between 0 and 1, determines how much
the winner is adapted towards the input.

To study how the learning rate value affects the codebook, we observe
that at each iteration is modified only the winner codebook. Therefore, for
each codevector we consider only the iteration for which it is the winner. To
this purpose, we assign to each codevector a time t that is increased by one
only in the iteration, in which the codevector is the winner. Therefore t allows
to compute the number of inputs for which a given codevector wc has been
winner in the past. For instance, t = 5 means that there were five inputs for
which wc was the winner codevector. That being said, if the learning rate is
constant, i.e.

ε = ε0 (0 < ε0 ≤ 1)

then it can be shown that the value of the codevector, at the time t, wc(t) can
be expressed as an exponentially decaying average of those inputs for which
the codevector has been the winner, that is:

wc(t) = (1 − ε0)twc(0) + ε0

t∑
i=1

(1 − ε0)t−ix(c)
i (6.28)

where x(c)
i is the ith randomly extracted input vector such that s(x) = wc.

Equation (6.28) shows that the influence of past inputs decays exponentially
fast with the number of inputs for which the codevector wc is the winner.
The most recent input always determines a fraction ε of the current value of
wc. This has the consequence that the algorithm has no convergence. Even
after a large number of inputs, the winner codevector can still be remarkably
changed by the current input.

To cope with this problem, it has been proposed to have a learning rate
that decreases over the time. In particular it was suggested [25] a learning
rate which is inverse proportional to the time t, i.e.

ε(t) =
1
t
. (6.29)

Some authors when quote K-Means refers only to online K-Means with a
learning rate such as the one defined in (6.29). The reason is that each code-
vector is always the exact arithmetic mean of the inputs for which it has been
winner in the past. We have:

6.4 K-Means 131

wc(0) = xc
0

wc(1) = wc(0) + ε(1)(xc
1 − wc(0)) = xc

1

wc(2) = wc(1) + ε(2)(xc
2 − wc(1)) =

xc
1 + xc

2

2
. . .

wc(t) = wc(t − 1) + ε(t)(xc
t − wc(t − 1)) =

xc
1 + xc

2 + . . .xc
t

t
(6.30)

The set of inputs xc
1,x

c
2, . . . ,x

c
t for which a particular codevector wc has been

the winner may contain elements which lie outside the current Voronoi region
of Vc. Therefore, although wc(t) represents the arithmetic mean of the inputs
it has been winner for, at time t some of these inputs may well lie in Voronoi
regions of other units. Another important point about this algorithm that
there is no strict convergence, as is present in batch K-Means, since the sum
of the harmonic series has no convergence:

lim
n→∞

n∑
i=1

1
i

= ∞

Since the series is divergent, even after a large number of inputs and low
values of the learning rates ε(t) large modifications could happen in the winner
codevector. However such large modifications have very small probability and
many simulations show that the codebook rather quickly assume values that
are not changed notably in the further course of the simulation. It has been
shown that online K-Means with a learning rate such as the equation (6.29)
[25] converges asymptotically to a configuration where each codevector wc is
positioned so that it coincides with the expectation value

E(x|x ∈ Rc) =
∫

Rc

xp(x)dx (6.31)

of its Voronoi region Rc. Equation (6.31) is the generalization, in the contin-
uous case, of the centroid condition (6.23).

Finally another possibility for decaying adaptation rule [34] consists in an
exponential decay according to

ε(t) = εi

(
εf

εi

) t
tmax

(6.32)

where εi and εf are the initial and the final values of the learning rate and
tmax is the total number of iterations.

The most important drawback of online K-Means is its sensitivity with re-
spect to the input sequence ordering. Changing the order of the input vectors,
the algorithm performance can change notably.

132 6 Clustering Methods

w
1

w
2

w
3

Fig. 6.4. In the SOM model, the codevectors are nodes of a two-dimensional grid.
For sake of simplicity, only the first three nodes are indicated.

6.4.3 K-Means Software Packages

We warmly recommend the reader to implement K-Means as a useful exercise.
Nevertheless you can find K-Means software packages in the public-domain
SOM Toolbox for Matlab 5. The toolbox, developed by Neural Network
Research Centre of the University of Helsinki, can be downloaded from
http://www.cis.hut.fi/projects/somtoolbox.

6.5 Self-Organizing Maps

In this section we describe a clustering method, the self-organizing map [20][21],
which performs a soft competitive learning since other codevectors, in addi-
tion to the winner, can be modified. self-organizing map (SOM), also called
self-organizing feature map (SOFM) [20], is based on earlier works [35] on the
organization of human visual cortex. Although SOM is generally considered
a dimensionality reduction method (see Chapter 11), it has been widely used
as clustering method. For this reason SOM is included in this chapter. SOM
is called a topology-preseving map because there is a topological structure
imposed on the codevectors. A topological map is a mapping that preserves
neighborhood relations. In SOM model the topological map consists in a two-
dimensional grid aij in which each node is a codevector, as shown in Figure
6.4. The grid is inspired to the retinotopic map that connects the retina to
the visual cortex in higher vertebrates. For this reason, SOM has biological
plausibility unlike the other clustering algorithms. We assume, for sake of sim-
plicity, that the grid is rectangular, though other topologies are admitted (e.g.
hexagonal) in the model. The grid does not change during self-organization.

6.5 Self-Organizing Maps 133

j

i

s

m

k

r

Fig. 6.5. The distance between the units s and r is given by d1(r, s) = |i−k|+|j−m|.

The distance on the grid is used to determine how strongly a unit r = akm is
adapted when the unit s = aij is the winner.

As shown in Figure 6.5, the metric d1(·), on the grid, is the usual L1

distance (also called Manhattan distance):

d1(r, s) = |i − k| + |j − m| (6.33)

The complete SOM algorithm is the following:

1. Initialize the codebook W = (w1, . . . ,wK) with vectors chosen randomly
from the training set X . Each codevector is mapped onto a unit of the
grid. Initialize the parameter t:

t = 0

2. Choose randomly an input x from the training set X
3. Determine the winner s(x):

s(x) = arg min
wc∈W

‖x − wc‖ (6.34)

4. Adapt each codevector wr according to:

∆wr = ε(t) h(d1(r, s)) (x − wr) (6.35)

where:

h(d1(r, s)) = exp
(
−d1(r, s)2

2σ(t)2

)
(6.36)

ε(t) = εi

(
εf

εi

) t
tmax

(6.37)

σ(t) = σi

(
σf

σi

) t
tmax

(6.38)

134 6 Clustering Methods

and d1(r, s) is a function that depends on the Manhattan distance between
the units r and s that are the images of the codevectors wr and ws on
the grid.

5. Increase the time parameter t:

t = t + 1 (6.39)

6. if t < tmax go to step 2.

It is necessary to remark that the equation (6.36) can be replaced by any
decreasing function of the arguments σ(t) and d1(r, s).

6.5.1 SOM Software Packages

A public-domain software package, SOM-PAK has been developed by T. Ko-
honen et al. [22]. SOM-PAK, written in C language, can be downloaded
from http://www.cis.hut.fi/research/som-lvq-pak.shtml It is also available a
SOM Toolbox for Matlab 5. The toolbox, developed by Neural Network
Research Centre of the University of Helsinki, can be downloaded from
http://www.cis.hut.fi/projects/somtoolbox. In addition to SOM, SOM Tool-
box contains packages for K-Means, principal component analysis [19] and
curvilinear component analysis [7].

6.5.2 SOM Drawbacks

SOM shares with online K-Means the sensitivity to initialization, the order of
input vectors and outliers. Besides, further problems have been identified in
[4]:

• The SOM algorithm is not derived by the minimization of a cost function,
unlike K-Means that can be obtained by the minimization of the empirical
quantization error. Indeed, it has been proved [10] that such a cost function
cannot exist for the SOM algorithm.

• Neighborhood-preservation is not guaranteed by the SOM procedure.
• The convergence of SOM algorithm is not guaranteed.

6.6 Neural Gas and Topology Representing Network

In this section we describe the neural gas and the topology representing net-
works, which do not impose a topology of fixed dimensionality to codevectors.
In the case of neural gas there is no topology at all; in the case of topol-
ogy representing networks the topology of the network depends on the local
dimensionality of the data and can vary within the input space.

6.6 Neural Gas and Topology Representing Network 135

6.6.1 Neural Gas

The neural gas algorithm [27] sorts for each input x the codevectors according
to their distance to x. The n codevectors closest to x are updated. Hence,
neural gas performs a soft competitive learning since other codevectors, in
addition to the winner, can be modified. The Neural Gas algorithm is as
follows:

1. Initialize the codebook W = (w1, . . . ,wK) with vectors chosen randomly
from the training set X . Initialize the time parameter t:

t = 0.

2. Choose randomly an input x from the training set X
3. Order all elements of W according to their distance to x, i.e. to find

the sequence of indices (i0, i1, . . . , iN−1) such that wi0 is the nearest
codevector to x, wi1 is the second-closest to x and so on. Therefore wip−1

is the pth-closest to x. Following [28] we denote with ki(x,X) the rank
number associated with the codevector wi.

4. Adapt the codevectors according to:

∆wi = ε(t) hλ(t)(ki(x,X)) (x − wi) (6.40)

where:

λ(t) = λi

(
λf

λi

) t
tmax

(6.41)

ε(t) = εi

(
εf

εi

) t
tmax

(6.42)

hλ(t)(ki) = e−
ki

λ(t) . (6.43)

5. Increase the time parameter t:

t = t + 1 (6.44)

6. if t < tmax go to step 2.

6.6.2 Topology Representing Network

The main difference with respect to neural gas is that the topology representing
networks (TRN) [29] model at each adaptation step creates a connection
between the winner and the second-nearest codevector. Since the codevectors
are adapted according to the neural gas method a mechanism is needed to
remove connections which are not valid anymore. This is performed by a local
aging connection mechanism. The complete TRN algorithm is the following:

136 6 Clustering Methods

1. Initialize the codebook W = (w1, . . . ,wK) with vectors chosen randomly
from the training set X . Initialize the connection set C, C ⊆ X ×X , to the
empty set C = �. Initialize the time parameter t: t = 0.

2. Choose randomly an input x from the training set X .
3. Order all elements of W according to their distance to x, i.e. to find

the sequence of indices (i0, i1, . . . , iK−1) such that wi0 is the nearest
codevector to x, wi1 is the second-closest to x and so on. Hence wip−1 is
the pth-closest to x. We denote with ki(x,X) the rank number associated
with the codevector wi.

4. Adapt the codevectors according to:

∆wi = ε(t) hλ(t)(ki(x,X)) (x − wi) (6.45)

where:

λ(t) = λi

(
λf

λi

) t
tmax

(6.46)

ε(t) = εi

(
εf

εi

) t
tmax

(6.47)

hλ(t)(ki) = e−
ki

λ(t) . (6.48)

5. If it does not exist already, create a connection between i0 and i1:

C = C ∪ {i0, i1}. (6.49)

Set the age of the connection between i0 and i1 to zero, refresh the con-
nection:

age(i0,i1) = 0

6. Increment the age of all edges emanating from i0:

age(i0,i) = age(i0,i) + 1 (∀i ∈ Ni0) (6.50)

where Ni0 is the set of direct topological neighbors of the codevector wi0 .
7. Remove connections with an age larger than maximal age T (t)

T (t) = Ti

(
Tf

Ti

) t
tmax

. (6.51)

8. Increase the time parameter t:

t = t + 1. (6.52)

9. If t < tmax go to step 2.

6.7 General Topographic Mapping 137

For the time dependent parameters suitable initial values (λi, εi, Ti) and final
values (λf , εf , Tf) have to be chosen.

Finally we can underline that the cardinality of C can be used to estimate
the intrinsic dimensionality3 [5] of the data set X . See Chapter 11 for more
details.

6.6.3 Neural Gas and TRN Software Package

A public-domain software package, GNG, has been developed by the Institut
fur Neuroinformatik of Ruhr-Universitat of Bochum. GNG can be downloaded
from:
ftp://ftp.neuroinformatik.ruhr-uni-bochum.de/pub/software/NN/DemoGNG.

The program package, written in Java, contains implementations of Neural
Gas and TRN.

6.6.4 Neural Gas and TRN Drawbacks

Neural gas and TRN share with other online algorithms (e.g. online K-Means
and SOM) the sensitivity to initialization, order of input vectors and outliers.
Besides, the convergence of neural gas and TRN is not guaranteed.

6.7 General Topographic Mapping�

In this section we describe general topographic mapping (GTM) [4]. Although
GTM is generally considered a dimensionality reduction method, it is included
in this chapter for its strict connection with SOM. GTM uses an approach
different from the clustering methods that we have previously described. GTM
does not yield a codebook representative of the data set, but computes an
explicit probability density function p(x) in the data (or input) space. GTM
models the probability distribution p(x) in terms of a number of latent (or
hidden) variables.

6.7.1 Latent Variables�

The goal of a latent variable model is to find a representation for the distri-
bution p(x) of the data set in an N -dimensional space in terms of L latent
variables X = (X1, . . . , XL). This is achieved by first considering a nonlinear
function y(X;W), governed by a set of parameters W , which maps points
X in the latent space into corresponding points y(X;W) in the input space.
We are interested in the situation in which the dimensionality L of the la-
tent space is lower than the dimensionality N of the input space, since our
3 The intrinsic dimensionality of a data set is the minimum number of free variables

needed to represent the data without information loss.

138 6 Clustering Methods

premise is that the data itself has an intrinsic dimensionality (see footnote in
Section 6.2) which is lower than N . The transformation y(X,W) then maps
the latent space into an L-dimensional manifold4 embedded within the input
space. If we define a probability distribution p(X) on the latent space, this
will induce a corresponding distribution p(y|W) in the input space. We shall
refer to p(X) as the prior distribution of X. Since L < N , the data distribu-
tion in input space would be confined to a manifold of dimension L. Since in
reality the data will only approximately lie on a L-dimensional manifold, it is
appropriate to include a noise model for the x data vector. We therefore define
the distribution of x, for given X and W , to be a spherical Gaussian centred
on y(X,W) having variance σ2 so that p(x|X,W, σ2) ∼ N (x|y(X,W), σ2I),
where I is the identity matrix.

The distribution in input space, for a given value of W , is then obtained
by integration over the X-distribution

p(x|W,σ2) =
∫

N (x|y(X,W), σ2I)p(X)dX. (6.53)

For a given dataset X = (x1, . . . ,x�) we can determine the parameter matrix
W , and the variance σ2, using maximum likelihood principle [9], where the
log-likelihood function is given by

L(W,X , σ2) =
�∑

n=1

logN (xn|y(X,W), σ2I). (6.54)

In principle we can now seek the maximum likelihood solution for the weight
matrix, once we have specified the prior distribution p(X) and the functional
form of the mapping y(X;W), by maximizing L(W,X , σ2).

The latent variable model can be related to the SOM algorithm (see Section
6.5) by choosing p(X) to be a sum of delta functions centred on the nodes of
a regular grid in latent space

p(X) =
1
K

K∑
j=1

δ(X − Xj),

where δ(·) is the Kronecker delta function.5 This form of p(X) allows to com-
pute the integral in (6.53) analytically. Each point Xj is then mapped to a
corresponding point y(Xj ,W) in input space, which forms the centre of a
Gaussian density function.

Hence the distribution function in input space takes the form of a Gaussian
mixture model

4 We assume, for the sake of simplicity that the definition of a manifold coincides
with the one of subspace. The manifold is formally defined in Chapter 11.

5 The Kronecker delta function δ(x) is 1 when x = 0 and 0 otherwise.

6.7 General Topographic Mapping 139

p(x|W,σ2) =
1
K

K∑
j=1

N (x|y(Xj ,W), σ2I)

and the log likelihood function (6.54) becomes

L(W,X , σ2) =
�∑

n=1

log

⎡⎣ 1
K

K∑
j=1

N (xn|y(Xj ,W), σ2I)

⎤⎦ . (6.55)

This distribution is a constrained Gaussian mixture since the centers of the
Gaussians cannot move independently but are related through the function
y(X,W). Since the mapping function y(X,W) is smooth and continuous, the
projected points y(Xj ,W) will necessarily have a topographic ordering in the
sense that any two points x′ and x′′ are close in latent space will map to
points y(x1,W) y(x2,W), which are close in the data space.

6.7.2 Optimization by EM Algorithm�

GTM maximizes Equation (6.55) by means of an EM algorithm (see Section
6.2). By making a careful choice of the model y(X,W) we will see that the
M-step can be solved exactly. In particular we shall choose y(X,W) to be
given by a generalized linear network model of the form

y(X,W) = Wφ(X) (6.56)

where the elements of φ(X) = (φ1(x), . . . , φM (x)) are M fixed basis functions
φi(x) and W is a N × M matrix with elements wki.

By setting the derivatives of (6.55) with respect to wki to zero, we obtain

ΦT GΦWT = ΦT RT (6.57)

where Φ is a K ×M matrix with elements Φij = Φi(Xj), T is a �×N matrix
with elements xkn and R is a K × � matrix with elements Rjn given by:

Rjn(W,σ2) =
N (xn|y(Xj ,W), σ2I)

K∑
s=1

N (xn|y(Xs,W), σ2I)

(6.58)

which represent the posterior probability, or responsibility, of the mixture
component j for the data point n.

Finally, G is a K × K diagonal matrix , with elements Gjj

Gjj =
�∑

n=1

Rjn(W,σ2)

140 6 Clustering Methods

Equation (6.57) can be solved for W using standard matrix inversion tech-
niques. Similarly, optimizing with respect to σ2 we obtain

σ2 =
1

�N

K∑
j=1

�∑
n=1

Rjn(W,σ2)‖y(Xj ,W) − xn‖2. (6.59)

The equation (6.58) corresponds to the E-step, while the equations (6.57)
and (6.59) corresponds to the M-step. Hence GTM is convergent. An online
version of GTM has been obtained by using the Robbins-Monro procedure to
find a zero of the objective function gradient, or by using an online version of
the EM algorithm.

6.7.3 GTM versus SOM�

The list below describes some SOM drawbacks and how the GTM algorithm
addresses them.

• The SOM algorithm is not derived by optimizing a cost function, unlike
GTM.

• In GTM the neighborhood-preserving nature of the mapping is an auto-
matic consequence of the choice of a smooth, continuous function y(x,W).
Neighbourhood-preservation is not guaranteed by the SOM procedure.

• Convergence of SOM algorithm. Vice versa, convergence of the batch GTM
algorithm is guaranteed by the EM algorithm, and the Robbins-Monro
theorem provides a convergence proof for the online version.

• GTM defines an explicit probability density function in data space. In
contrast, SOM does not define a density model. The advantages of having
a density model include the ability to deal with missing data and the
straightforward possibility of using a mixture of such models, again trained
using EM.

• For SOM the choice of how the neighborhood function should shrink over
time during training is arbitrary and so this must be optimized empirically.
There is no neighborhood function to select for GTM.

• It is difficult to know by what criteria to compare different runs of the
SOM procedure. For GTM one simply compares the likelihood of the data
under the model, and standard statistical tests can be used for model
comparison.

Nevertheless there are very close similarities between SOM and GTM tech-
niques. At an early stage of the training the responsibility for representing
a particular data point is spread over a relatively large region of the map.
As the EM algorithm proceeds so this responsibility bubble shrinks automat-
ically. The responsabilities (computed in the E-step) govern the updating of
W and σ2 in the M-step and, together with the smoothing effect of the basis
functions φi(x), play an analogous role to the neighbourhood function in the

6.8 Fuzzy Clustering Algorithms 141

Fig. 6.6. The two clusters (black points and grey points) are partially overlapped.
The circle indicates a point that is assigned to both clusters.

SOM algorithm. While the SOM neighbourhood function is arbitrary, how-
ever, the shrinking responsibility bubble in GTM arises directly from the EM
algorithm.

6.7.4 GTM Software Package

A GTM Toolbox for Matlab, has been developed [4]. The toolbox can be
downloaded from http://www.ncrg.aston.ac.uk/GTM.

6.8 Fuzzy Clustering Algorithms

While in the algorithms described so far, each input x belongs to one and
only one cluster, in fuzzy clustering algorithms the data points are assigned
to several clusters with varying degrees of membership.

The idea is based on the observation that, in real data, data clusters usu-
ally overlap to some extent and it is difficult to trace clear borders among
them. Therefore, some data vectors cannot be certainly assigned to exactly
one cluster and it is more reasonable to assign partially to several clusters.
Consider the Figure 6.6 the two clusters, formed by the black and the grey
points, are partially overlapped. Hence it is reasonable to suppose that some
points (e.g. the circle) are assigned to both clusters. This section provides a
brief description of the most popular and widely applied fuzzy clustering al-
gorithm, the fuzzy C-Means algorithm (FCM) [2]. For comprehensive surveys
on fuzzy clustering algorithms, see [1][18].

142 6 Clustering Methods

6.8.1 FCM

Let X = (x1, . . . ,x�) be a data set, where xi ∈ Rn and W = (w1, . . . ,wC)
the codebook. As the K-Means algorithm, FCM assumes that the number of
clusters is a priori known. Unlike K-Means, the number of clusters is called
C. FCM minimizes the cost function:

JFCM =
C∑

i=1

�∑
j=1

uS
ij‖xj − wi‖2 (6.60)

subject to the m probabilistic constraints:

C∑
i=1

uij = 1 j = 1 . . . , �.

Here, uij is the membership values of input vector xj belonging to the cluster
i, S stands for the degree of fuzziness. Using Lagrangian multipliers method
the condition for local minima of JFCM is derived as

uij =

[
C∑

k=1

[‖xj − wi‖
‖xj − wk‖

] 2
S−1
]−1

∀i, j (6.61)

and

wi =

�∑
j=1

uS
ijxj

�∑
j=1

uS
ij

∀i. (6.62)

The final cluster centers can be obtained by the iterative optimization scheme,
called the alternative optimization (AO) [31] method. The online version for
the optimization of JFCM with stochastic gradient descent method is known
as fuzzy competitive learning [6].

6.9 Hierarchical Clustering

In this section we briefly discuss an alternative clustering approach to the PBC
methods previously described in the rest of the chapter, i.e. the hierarchical
clustering . PBC methods do not assume the existence of substructures in the
clusters. Nevertheless, it can happen that data are organized hierarchically,
i.e. clusters have subclusters and subclusters have subsubclusters and so on.
In this case PBC methods are not effective and have to be replaced with
alternative methods, i.e. hierarchical clustering methods. We pass to introduce
them. Given a data set X = {x1, . . . ,x�} ∈ Rn, we consider a sequence of

6.9 Hierarchical Clustering 143

x x x x x x x x x x1 2 3 4 5 6 7 8 9 10

l=2
l=3

l=4
l=5

l=6

l=7
l=8

l=9

l=10

l= 1

Fig. 6.7. A dendrogram.

partitions of its elements into K clusters, where K ∈ [1, �] is an integer not
fixed a priori. The first possible partition of X is the one into � clusters, where
each cluster has a single element. The second partition divides X into � − 1
clusters and so on until the �th partition in which all data samples are grouped
in a single cluster. The generic lth partition, that we simply call the partition
at lth level, has K clusters where K = � − l + 1. Given any two data samples
xA and xB , at some level they will belong to the same cluster. If the partition
sequence is such that whenever two data samples are elements of the same
cluster at level α remain elements of the same cluster at the levels higher than
α, the sequence is called hierarchical clustering . The hierarchical clustering is
generally represented by means of a tree, called dendrogram. A dendrogram
for a data set with ten samples is shown in Figure 6.7. At level l = 1 each
cluster has a single pattern. At level l = 2, x9 and x10 are gathered in a single
cluster. At last level, l = 10, all pattern belong to a single cluster.

Hierarchical clustering methods can be grouped in two different fami-
lies: agglomerative and divisive. Agglomerative methods use a bottom-up ap-
proach, i.e. they start with � clusters formed by a single pattern and build the
partition sequence merging them successively. Divisive methods are top-down
i.e. they start with a single cluster in which the patterns are gathered and at
the second level the cluster is splitted in two other clusters and so on. There-
fore the partition sequence is built splitting clusters successively. For sake of

144 6 Clustering Methods

semplicity, we only describe the agglomerative methods. The most popular
agglomerative method is the so-called agglomerative hierarchical clustering
(AHC). AHC is formed by the following steps:

1. Given a dataset X = {x1, . . . ,x�}, choose K and initialize K̂ = � and
Si = {xi} (i = 1, . . . , �).

2. K̂ = K̂ − 1
3. Find the two nearest clusters Si and Sj

4. Merge Si and Sj , i.e. Si = Si ∪ Sj and delete Sj .
5. If K̂
= K go to step 2
6. return K clusters Si

If in the AHC algorithm we choose K = 1 the algorithm produces a single
cluster and we obtain a dendrogram like the one described in figure 6.7. The
second step of AHC finds among clusters Si the two nearest ones. In order to
find the nearest clusters, we need to measure, for each couple of clusters SA

and SB their distance. Many definitions of distance between clusters [9] have
been proposed, the most popular are:

Dmin(SA,SB) = min
x∈SA;y∈SB

‖x − y‖ (6.63)

Dmax(SA,SB) = max
x∈SA;y∈SB

‖x − y‖ (6.64)

When Equation (6.63) is used to measure the distance between clusters, AHC
is referred as nearest-neighbor cluster algorithm or minimum algorithm. Vice
versa, when Equation (6.64) is used AHC is called farthest-neighbor cluster
algorithm or maximum algorithm.

Some variants of the AHC algorithms have been proposed, reader can find
further details in [9].

6.10 Conclusion

This chapter has presented the most popular and widely applied prototype-
based clustering algorithms, with a special attention to neural-based algo-
rithms. Firstly we have recalled the expectation and maximization algorithm,
that is the basic tool of several clustering algorithms. Then the chapter has
described both batch and online versions of the K-Means algorithm, some
competitive learning algorithms (SOM, neural gas and TRN) and the general
topographic mapping with a discussion about its connections with SOM. We
have described only algorithms whose codevector number has to be fixed a
priori. Clustering algorithms whose codevector number has not necessarily to
be fixed can be found in [13][14]. Clustering methods which produce nonlinear
separation surfaces among data, i.e. kernel and spectral clustering methods,
will be discussed in Chapter 9.

6.10 Conclusion 145

None of the algorithms described in the chapter is better than the others.
On the other hand, the evaluation of a clustering technique is a difficult prob-
lem. The clustering leading to the best results is assumed to perform better
than the others. The concept of the best clustering depends on the applica-
tion. The best clustering can be the one that minimizes the quantization error
but not necessarily. As an example, consider a clustering application which
performs a vector quantization to reduce the amount of data, to be transmit-
ted through a channel. In this case, the performance measure of the process
is the quality of the signal after the transmission. The use of different cluster-
ing methods techniques will result in a different quality of the output signal
that provides an indirect measure of the clustering effectiveness. However, the
literature offers some directions to assess the clustering algorithm robustness.

We call the assumed model of a clustering algorithm, the ensembles of the
assumptions (e.g. the model assumptions) on which the algorithm is based.
Examples of the assumptions are the absence of the outliers and data are
i.i.d. Following [17] a robust clustering algorithm should possess the following
properties:

1. it should have a reasonably good accuracy at the assumed model;
2. small deviations from the model assumption should affect only slightly

the performance;
3. larger deviations from the model assumption should not cause a catastro-

phe, i.e. the algorithm performances decrease dramatically.

The algorithms presented in this chapter satisfy in general the first condition,
but often lack in addressing the other issues.

Finally, we conclude the chapter providing some bibliographical remarks.
A good survey on clustering methods can be found in [18]. A comprehensive
survey of SOM model can be found in [21]. Neural gas and TRN are described
in [28][29]. GTM is fully discussed in [4]. Fuzzy clustering methods are widely
reviewed in [1]. Hierarchical clustering methods are described in detail in [9].

Problems

Problem 6.1. Implement batch K-Means and test it on Iris Data [11] that
can be dowloaded at ftp.ics.uci.edu/pub/machine-learning-databases/iris. Plot
the quantization error versus the number of iterations.

Problem 6.2. Can K-Means separate clusters nonlinearly separated using
only two codevectors? And neural gas and SOM? Explain your answers.

Problem 6.3. Study experimentally (e.g. on Iris Data) how the initialization
affects K-Means performances.

Problem 6.4. Suppose that the empirical quantization error E(X) of a data
set X = (x1, . . . ,x�) assumes the following form:

146 6 Clustering Methods

E(X) =
1
2�

K∑
c=1

∑
x∈Vc

(G(x,x) − 2G(x,wc) + G(wc,wc))

where the function G(·) is G(x, y) = exp
(
−‖x−y‖2

σ2

)
. Find the online K-Means

learning rule, in this case.

Problem 6.5. Suppose that the empirical quantization error E(X) of a data
set X assumes the form of Exercise 4. Find the neural gas learning rule.

Problem 6.6. Implement K-Means online and test it on Wisconsin Breast
Cancer Database [36] which can be dowloaded at ftp.ics.uci.edu/pub/machine-
learning-databases/breast-cancer-wisconsin. Compare its performances with
Batch K-Means’s ones. Use in both cases only two codevectors.

Problem 6.7. Use SOM-PAK on Wisconsin Breast Cancer Database. Divide
the data in three parts. Train SOM on the first part of data (training set)
changing number of codevectors and other neural network parameters (e.g.
learning rate). Select the neural network configuration (best SOM) that has
the best performance on the second part of data (validation set). Finally
measure the best SOM performances on the third part of data (test set).

Problem 6.8. Using the function sammon of SOM-PAK visualize the code-
book produced by best SOM (see Exercise 7).

Problem 6.9. Permute randomly Wisconsin Breast Cancer Database and re-
peat again the Exercise 7. Compare and discuss the results.

Problem 6.10. Implement neural gas and test it on Spam Data which can be
dowloaded at ftp.ics.uci.edu/pub/machine-learning-databases/spam. Use only
two codevectors.

References

1. A. Baraldi and P. Blonda. A survey of fuzzy clustering algorithms for pattern
recognition. IEEE Transactions on System, Man and Cybernetics-B, 29(6):778–
801, 1999.

2. J. C. Bedzek. Pattern Recognition with Fuzzy Objective Function Algorithms.
Plenum Press, 1981.

3. C. M. Bishop. Neural Networks for Pattern Recognition. Cambridge University
Press, 1995.

4. C. M. Bishop, M. Svensen, and C. K. I. Williams. GTM: the generative topo-
graphic mapping. Neural Compuation, 10(1):215–234, 1998.

5. F. Camastra. Data dimensionality estimation methods: A survey. Pattern Recog-
nition, 36(12):215–234, 2003.

6. F.L. Chung and T. Lee. Fuzzy competitive learning. Neural Networks, 7(3):539–
551, 1994.

7. P. Demartines and J. Herault. Curvilinear component analysis: A self-organizing
neural network for nonlinear mapping in cluster analysis. IEEE Transactions
on Neural Networks, 8(1):148–154, 1997.

8. A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from incom-
plete data via the em algorithm. Journal Royal Statistical Society, 39(1):1–38,
1977.

9. R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. John Wiley,
2001.

10. E. Erwin, K. Obermayer, and K. Schulten. Self-organizing maps:ordering, con-
vergence properties and energy functions. Biological Cybernetics, 67(1):47–55,
1992.

11. R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals
of Eugenics, 7(2):179–188, 1936.

12. E. Forgy. Cluster analysis of multivariate data; efficiency vs. interpretability of
classifications. Biometrics, 21(1):768, 1965.

13. B. Fritzke. Growing cell structures- a self organizing network for unsupervised
and supervised learning. Neural Networks, 7(9):1441–1460, 1994.

14. B. Fritzke. A growing neural gas learns topologies. In Advances in Neural
Information Processing Systems 7, pages 625–632. MIT Press, 1995.

15. R. Gray. Vector quantization. IEEE Transactions on Acoustics, Speech and
Signal Processing Magazine, 1(2):4–29, 1984.

148 References

16. R. M. Gray. Vector Quantization and Signal Compression. Kluwer, 1992.
17. P. J. Huber. Robust Statistics. John Wiley, 1981.
18. A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A review. ACM

Comput. Surveys, 31(3):264–323, 1999.
19. I. T. Jolliffe. Principal Component Analysis. Springer-Verlag, 1986.
20. T. Kohonen. Self-organized formation of topologically correct feature maps.

Biological Cybernetics, 43(1):59–69, 1982.
21. T. Kohonen. Self-Organizing Map. Springer-Verlag, 1997.
22. T. Kohonen, J. Hynninen, J. Kangas, and J. Laaksonen. Som-pak: The self-

organizing map program package. Technical report, Laboratory of Computer
and Information Science, Helsinki University of Technology, 1996.

23. Y. Linde, A. Buzo, and R. Gray. Least square quantization in pcm. IEEE
Transaction on Information Theory, 28(2):129–137, 1982.

24. S. P. Lloyd. An algorithm for vector quantizer design. IEEE Transaction on
Communications, 28(1):84–95, 1982.

25. J. Mac Queen. Some methods for classifications and analysis of multivariate
observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical
statistics and probability, pages 281–297. University of California Press, 1967.

26. J. Makhoul, S. Roucos, and H. Gish. Vector Quantization in speech coding.
Proceedings of IEEE, 73(11):1551–1588, 1985.

27. T. E. Martinetz and K. J. Schulten. A “neural gas” network learns topologies.
In Artificial Neural Networks, pages 397–402. North-Holland, 1991.

28. T. E. Martinetz and K. J. Schulten. Neural-gas network for vector quantiza-
tion and its application to time-series prediction. IEEE Transaction on Neural
Networks, 4(4):558–569, 1993.

29. T. E. Martinetz and K. J. Schulten. Topology representing networks. Neural
Networks, 7(3):507–522, 1994.

30. S. M. Omohundro. The delaunay triangulation and function learning. Technical
report, International Computer Science Institute, 1990.

31. N. R. Pal, K. Pal, and J. C. Bedzek. A mixed c-means clustering model. In
Proceedings of IEEE International Conference on Fuzzy Systems, pages 11–21.
IEEE Press, 1997.

32. F. P. Preparata and M. I. Shamos. Computational geometry. Springer-Verlag,
1990.

33. R. Redner and H. Walker. Mixture densities, maximum likelihood and the em
algorithm. SIAM Review, 26(2), 1984.

34. H. J. Ritter, T. M. Martinetz, and K. J. Schulten. Neuronale Netze. Addison-
Wesley, 1991.

35. D. J. Willshaw and C. von der Malsburg. How patterned neural connections
can be set up by self-organization. Proceedings of the Royal Society London,
B194(1117):431–445, 1976.

36. W. H. Wolberg and O. Mangasarian. Multisurface method of pattern separation
for medical diagnosis applied to breast cytology. Proceedings of the National
Academy of Sciences, U.S.A., 87(1):9193–9196, 1990.

37. C. F. J. Wu. On the convergence properties of the em algorithm. The Annals
of Statistics, 11(1):95–103, 1983.

7

Foundations of Statistical Learning
and Model Selection

What the reader should know to understand this chapter

• Basic notions of machine learning.
• Notions of calculus.
• Chapter 5.

What the reader should know after reading in this chapter

• Bias-variance dilemma.
• Model selection and assessment.
• Vapnik-Chervonenkis theory.
• Vapnik-Chervonenkis dimension.
• BIC, AIC.
• Minimum description length.
• Crossvalidation.

7.1 Introduction

This chapter has two main topics the the model selection and the learning
problem.

Supervised machine learning methods are characterized by the presence
of the parameters that have to be tuned to obtain the best performances.
The same learning algorithm can be trained using different configurations of
parameters generating a different learning machine. The problem of selecting
among different learning machines the best one is called model selection. We
will review the main model selection methods discussing their connections
with statistical learning theory.

The learning problem will be discussed under statistical point of view intro-
ducing the main issues of statistical learning theory (or Vapnik-Chervonenkis
theory).

150 7 Foundations of Statistical Learning and Model Selection

The chapter is organized as follows: Section 7.2 describes the bias and vari-
ance that is the simplest quantities to measure the performances of a learning
machine. The complexity of a learning machine is discussed in Section 7.3.
Section 7.4 introduces intuitively the Vapnik-Chervonenkis dimension (or VC
dimension). The main results of the Vapnik-Chervonenkis theory of learn-
ing and the formal definition of VC dimension are presented in Section 7.5.
Section 7.6 presents two criteria for model selection, i.e. Bayesian Informa-
tion Criterion (BIC) and Akaike Information Criterion (AIC). In Section
7.7 the minimum description length (MDL) approach to the model selection
is discussed showing that is equivalent to the BIC criterion; crossvalidation,
which is the one of most popular method for model selection is reviewed in
Section 7.8. Finally, in Section 7.9 some conclusions are drawn.

7.2 Bias-Variance Dilemma

In this section we will introduce two new quantities, the bias and the vari-
ance, which can be used to measure the performance of a supervised learning
machine. The bias measures the accuracy of the learning machine, i.e. how
much the output of the learning machine is close to its learning target. Large
bias indicates that the output of the machine is not close to its target, that
is the learning machine is a poor learner .

The variance measures the precision of the learning. Large variance indi-
cates that the output of the machine has a large interval of confidence, i.e. the
machine is not precise in learning. A learning machine which is not precise
in learning is called a weak learner . In the rest of the section we will show
that bias and variance are not independent. They generate the so-called phe-
nomenon of bias-variance dilemma. Firstly, we will discuss the bias and the
variance in the case of regression.

7.2.1 Bias-Variance Dilemma for Regression

Consider a function F : Rn → R. We try to estimate F (·) using samples of the
set D that has been generated by F (x). We indicate with f(x), the estimate of
F (x). The quality of the estimate can be measured by the mean square error.
If we indicate with E [(f(x,D) − F (x))2] the average error over all training
sets D of the same cardinality �, it is possible to show (see Problem 7.1) that
it is equal to:

E [(f(x,D)−F (x))2] = (E [f(x,D)−F (x)])2+E [(f(x,D)−E [f(x,D)])2]. (7.1)

The term E [f(x,D) − F (x)] is called the bias, that is the difference between
the expected value and the true value (often not known) of the function. The
term E [(f(x,D)−E [f(x,D)])2] is called the variance. A small bias means that
the estimate of F (·) has a large accuracy. A small variance indicates that the
estimate of F (·) varies a little changing the training set D.

7.2 Bias-Variance Dilemma 151

Summing up, the mean-square error can be decomposed as the sum of
the square of the bias and the variance. Such decomposition is called the
bias-variance dilemma or bias-variance trade-off [13].

If a learning algorithm, that we call simply a model, has many parameters
it will be characterized by a low bias, since it usually fits very well the data.
At the same time, the model will be characterized by a large variance since it
overfits the data.

On the other hand, if the model has a small number of parameters, it will
be characterized by a large bias, since it usually does not fit well the data.
At the same time, the model will be characterized by a small variance, since
the fit does not vary much changing the data set. Finally, we point out that
the best strategy consists in keeping low variance and bias at the same time.
This strategy can be generally implemented when we have information about
the function that has to be approximated.

7.2.2 Bias-Variance Decomposition for Classification�

In this section we discuss the bias-variance decomposition for classification.
For sake of simplicity, we only consider the case of binary classification. Let
γ : Rn → {0, 1} be the discriminant function. If we consider γ(·) under a
Bayesian viewpoint, we have:

γ(x) = P (y = 1|x) = 1 − P (y = 0|x). (7.2)

Now we study the binary classification problem using the same approach used
for regression. Let y(x) be a discriminant function (see Chapter 5), defined
by:

y(x) = γ(x) + φ (7.3)

where φ is a zero-mean random variable having a binomial distribution with
variance

σ2(φ|x) = γ(x)(1 − γ(x)).

The function, that has to be approximated, γ(·) can be represented in the
following way:

γ(x) = E(y|x). (7.4)

If we want to apply the same framework of the regression, we have to look for
an estimate f(x,D) that minimizes the usual mean square error, that is:

E [(f(x,D) − y)2]. (7.5)

In addition, we assume that the two classes C1, C2 have the same prior prob-
abilities, that is:

P (C1) = P (C2) =
1
2
.

Therefore the Bayes discriminant has threshold yb = 1
2 and yields a decision

boundary formed by patterns such that γ(x) = 1
2 .

152 7 Foundations of Statistical Learning and Model Selection

Given a training set D if the classification error is equal to the error of the
Bayes discriminant, it assumes the smallest error (Bayes discriminant error),
that is:

P (f(x,D) = y) = P (yb(x)
= y) = min[γ(x), 1 − γ(x)]. (7.6)

Converserly, if it does not coincide with Bayes discriminant error it assumes
the form (see Problem 7.2):

P (f(x,D)) = |2γ(x) − 1| + P (yb(x) = y). (7.7)

If we compute the mean over all data set of same cardinality �, we have:

P (f(x,D)
= y) = |2γ(x) − 1|P (f(x,D)
= yb) + P (yb
= y). (7.8)

We call the term P (f(x,D)
= y) boundary error , since it is the incorrect
estimation of the optimal boundary [9]. The boundary error depends on
P (f(x,D)), which is the probability of obtaining an estimate f(x) given a
data set D. If we assume that P (f(x,D)) is a Gaussian, it can be shown [9]
that the boundary error P (f(x,D)
= y) is given by:

P (f(x,D)
= y) = Ψ

[
sign

(
γ(x) − 1

2

)(
E(f(x,D) − 1

2

)
σ(f(x;D))−1

]
(7.9)

where sign is the signum function and Ψ(·) is given by:

Ψ(u) =
1
2

[
1 − erf(

u√
2
)
]

and erf(·) is the error function.1

In the Equation (7.9) we can identify two terms. The former, called bound-
ary bias term(Bb) [9], is represented by sign

(
γ(x) − 1

2

) (E(f(x,D) − 1
2

)
. The

latter, called variance term (Vt), is σ(f(x;D))−1.
Therefore more concisely the equation can be (7.9) rewritten as:

P (f(x,D)
= y) = Ψ [BbVb] . (7.10)

In analogy with bias-variance decomposition in regression, we have repre-
sented the boundary error in classification in terms of boundary bias and
variance. Whereas in regression the decomposition is simply additive, in the
classification the decomposition is more complicated. The decomposition is
nonlinear, due the presence of Ψ function, and multiplicative, since the argu-
ment of Ψ is given by the product of the boundary bias and the variance. Since
the bias is expressed in terms of a signum function, it affects the boundary er-
ror in a limited way. Therefore the boundary error depends essentially on the

1 erf(u) = 2√
π

∫ u

0
e−u2

du.

7.3 Model Complexity 153

variance. Conversely to the regression case, in classification it is fundamental
to keep the variance as small as possible. On the contrary, the magnitude of
boundary bias is not really important since only its signum is taken. This
situation is expressed concisely in the sentence that in the classification the
variance dominates the bias. In the next section we discuss another approach
to characterize a learning machine that consists in measuring its complexity.

7.3 Model Complexity

In this section we introduce the concept of complexity in a learning machine or
model complexity . In order to fix the ideas we consider a classification problem.
In this case the data set (or training set) is formed by samples input-output,
where to each input pattern is associated the desired output. A training set
D can be formalized as follows:

D = {(x1, y1), . . . , (x�, y�)}
where the vectors x1,x� ∈ X ⊂ Rn are called patterns and y1, . . . , y� take
values in Y . Y = {Y1, . . . , YM} is a discrete set, whose elements Yi are called
classes. The classification problem consists in finding a function f : X → Y .
We call this function classifier . The performance of the trained classifier is
assessed measuring its capability to predict correctly a set of unseen data,
called test set. Training and test sets are disjoint. The performances of the
classifier on the training set is measured by the training error (or empirical
risk) which is the average loss over the training set, that is:

Errtrain =
1
�

�∑
i=1

L(yi, f(xi)) (7.11)

where yi is the desired output (or target) for the pattern xi and f(xi) is
the value computed by the classifier. A typical loss function is the zero-one
loss (see Chapter 5). The loss is zero if the sample is classified correctly, one
otherwise. We restrict our attention to the binary classification in which y can
assume the conventional values {1,−1}. Hence the zero-one loss is:

L(yi, f(xi)) =
1
2
|yi − f(xi)|. (7.12)

and the training error becomes:

Errtrain =
1
�

�∑
i=1

1
2
|yi − f(xi)|. (7.13)

Given a test set the classifier performances are measured by the Test error
(or generalization error or expected risk), computed on test samples drawn on
the basis of the underlying probability distribution P (x, y), that is:

154 7 Foundations of Statistical Learning and Model Selection

Complexity

E
rr

or

Fig. 7.1. Qualitative behavior of Etrain (solid curve) and Eest (dashed curve) in
function of the complexity.

Etest = E [L(y, f(x)] (7.14)

where x is a generic element of the test set and y the respective target. If we
assume the zero-one loss function Equation (7.14) becomes:

Etest =
∫

1
2
|y − f(x)|dP (x, y) (7.15)

where we use the integral since the cardinality of test set can be infinite. In
addition to the training and test error there is another quantity that charac-
terizes the classifier, the so-called complexity .

Although the classifier complexity will be defined precisely in the next
section, we assume which roughly depends on the number of parameters of
the classifier. The higher is the number of the parameters the higher is its
complexity. Being said that, we return to the training and test error and we
observe that they are related by the following inequality:

Etest ≤ Etrain + Eest (7.16)

where Eest is called estimation error (or confidence term or capacity term).
Training and test error can differ significantly. Training error tends to decrease
when the complexity of the classifier increases. On the other hand, the estima-
tion error increases with the complexity increment, as shown in Figure 7.1. A
classifier with no training error is usually not useful. Since it overfits the data,

7.3 Model Complexity 155

Complexity

E
rr

or

test
train

Fig. 7.2. Qualitative behavior of the error on the training and test set in function
of the classifier complexity.

it often performs poorly on the test set. The qualitative behavior of the error
on the test set in function of the classifier complexity is shown in Figure 7.2.
The curve above described represents qualitatively the generalization error
in function of the complexity. In order to design accurate classifiers we need
methods for estimating the test error curve quantitatively.

This chapter presents some methods for estimating the test error in func-
tion of the model complexity. The model usually has a vector of parameters α
that has be set up in order to minimize the test error. We remark that we have
two different goals. The first goal is estimating the performance of different
models, i.e. with different values of α, with the aim of picking the best one.
This goal is called model selection. The second goal consists in estimating the
generalization error, after having selected the final model. This goal is called
model assessment [14].

If we have enough data, as it usually happens in handwriting recogni-
tion, a usual approach for model selection and assessment consists in dividing
randomly data in three subsets: a training set , a validation set and a test set .

The training set is used to train the different models, i.e. the models with
different values of α. The validation set is used to estimate the generalization
error for the models and to pick the best model. The test set is used to assess
the test error of the selected model. The test set has to be used only for
the model assessment. On the contrary, if we use the test set repeatedly, for
instance in the phase of model selection, the model overfits the test set. In

156 7 Foundations of Statistical Learning and Model Selection

this way, the test error of the selected model can underestimate notably the
real generalization error. It is not possible to provide a general rule to assess
the sizes of the training, validation and test set, since the size depends on
the signal-to-noise ratio and the size of the overall data set. For instance, if
the data set is very large a possible choice consists in dividing the data set in
three equal parts.

In the rest of the chapter we will discuss the situation when the data are
not enough to be divided in three sets. Even in this case there is no general
criterion which permits deciding when data are adequate to be splitted in
three sets. The adequate amount of data depends on the signal-to-noise ratio
of the function that we want to approximate and the model complexity that we
use for approximating the function. In this chapter we will describe methods
that allow to choose the best model, without using the validation step. These
models generally tries to estimate the optimal complexity. Finding the optimal
complexity for a model is an example of the heuristics called Occam’s razor ,2

proposed by the philosopher of the Middle Ages, William of Occam. According
to the Occam’s razor we should give the preference to simpler models instead
of more complex ones. Therefore a model selection method should implement
a trade-off strategy between the preference towards the simpler models and
how much, expressed by the training error, we fit the data of the training
set. This strategy is implemented by the model selection methods with the
exception of crossvalidation, that we will describe in the chapter.

7.4 VC Dimension and Structural Risk Minimization

Statistical Learning Theory [3][22][23][24] provides a measure of the complex-
ity of the classifier, the so-called VC dimension (or Vapnik-Chervonenkis di-
mension by the theory authors). In this section, following the approach of
[14], we provide an intuitive definition of VC dimension, whereas a formal
definition of VC dimension will be provided in the next section.

Consider a class of indicator functions C = {i(x,α)} where i(·) can assume
only two values {1,−1} and α is a parameter vector. The VC dimension
provides a method of measuring the complexity of the class of the function
above defined. Before the definition of the VC dimension we introduce the
following definitions.

Definition 12 A function separates perfectly a set of points if any point is
classified correctly.

Definition 13 A set of points is shattered by a class of functions C, inde-
pendently how the points are labeled, if an element of the class can perfectly
separate them.

Now we define the VC dimension.
2 Numquam ponenda sine necessitate (W. Occam).

7.4 VC Dimension and Structural Risk Minimization 157

Definition 14 (VC dimension) The VC dimension of the class of func-
tions C is defined as the largest number of points that can be shattered by
elements of C.

The VC dimension is generally indicated by h and cannot exceed the number
of samples of the training set �. Figure 7.3 shows that the VC dimension of
the class of the linear function in R2 is three. This result is generalized by the
following theorem:

Theorem 3 (Hyperplane VC Dimension) An hyperplane in n dimen-
sion has VC dimension equals to n + 1.

We observe that for the hyperplane, its VC dimension coincides with the
number of its free parameters. We remark that this does not generally happen
for the other classes of functions. Now, we wonder if it exists a class of functions
which has infinite VC dimension. The answer is provided by the following
result [24]:

Theorem 4 The class of the functions sin(αx) has infinite VC dimension.

The figure 7.4 shows an example in which a set of points can be shattered by
the class of the function sin(αx) by choosing an appropriate value for α. It is
possible to prove that any set point can be shattered by the sin(αx) selecting
a suitable α.

After having defined the VC dimension, we quote the following result [22],
for the binary classification, that put in connection the estimation error

Theorem 5 With probability 1 − η (with η > 0), the generalization error
Etest is given by:

Etest = Etrain + Eest (7.17)

where Etrain is the error on the training set and Eest is given by:

Eest =

√
1
�

(
h

(
ln

2�

h
+ 1
)

+ ln
4
η

)
(7.18)

An analogous result, for the regression, is reported in [5].

Theorem 6 With probability 1 − η (with η > 0), the generalization error
Etest in the regression is given by3:

Etest =
Etrain

(1 − c
√

ε)+
(7.19)

where Etrain is the error on the training set and ε is given by:

η = a1

h(log(a2
�
h) + 1) − log(η

4)
�

(7.20)

with a1, a2, c ∈ R.
3 f(·)+ stands for the positive part of f(·)

158 7 Foundations of Statistical Learning and Model Selection

(a) A line can shatter three points.

(b) Four points cannot be shattered by a line.

Fig. 7.3. Three points can be shattered by the class of the lines in the plane, whereas
four points cannot be shattered.

7.5 Statistical Learning Theory 159

(a)

(b)

Fig. 7.4. (a) The set of points cannot be separated by sin(αx) using α = 6; (b) the
same data set can be separated using choosing α = 11.

Cherkassky and Mulier [5] suggest as typical values a1 = a2 = c = 1.
Now, we show how the VC dimension can be used for the model selec-

tion. The structural risk minimization (SRM), proposed by Vapnik [26][24],
is a model selection criterion based on the VC dimension. Structural Risk
Minimization consists in training a sequence of models of increasing VC di-
mensions h1 < h2 < · · · < hp−1 < hp < Then the model with smallest
generalization error (provided by the Theorem 5) is picked. Unfortunately the
bound on the generalization error provided by the theorem is very often too
loose. In addition, it is not always possible to compute the VC dimension of a
class of function. On the contrary, it can only compute an upper bound (often
loose) for the VC-dimension. Therefore structural risk minimization generally
results in a too imprecise criterion to be used as a model selection criterion.

7.5 Statistical Learning Theory�

In this section we review some fundamental issues of Statistical Learning the-
ory , also called Vapnik-Chervonenkis theory by the names of main contribu-
tors. The reading of this section can be omitted by readers not interested in
the theoretical issues of learning.

Statistical Learning theory provides a mathematical framework for the
learning problem. We assume that we have a data set

160 7 Foundations of Statistical Learning and Model Selection

D = {(x1, y1), . . . , (x�, y�)} ∈ X × Y (7.21)

whose samples are drawn according to an unknown underlying distribution
function P (x, y). The learning problem can be formalized in the following way.

Definition 15 (Learning Problem) Learning consists in minimizing the
expected loss, given by:

R[f] =
∫

X×Y

L(y, f(x))dP (x, y) (7.22)

where L(·) is a loss-function (see Chapter 5). In the case of classification
problem, a usual choice is to assume the zero-one loss as loss function.

The learning problem cannot be solved in a straight way. Since the prob-
ability density function is unknown, the integral in Equation (7.22) cannot
be computed. Therefore it is necessary an alternative strategy to solve the
learning problem. The strategy consists in replacing the expected risk with
the empirical risk , computed on D. Therefore we can define the following
principle:

Definition 16 Empirical Risk Minimization Principle (ERM) consists
in choosing the function f(·) that minimizes the empirical risk, given by:

Remp[f] =
1
�

�∑
i=1

L(yi, f(xi)). (7.23)

The ERM principle is theoretically sound, that is, consistent . The consistency
of ERM principle means that Remp[f] → R[f] as the cardinality of the data
set approaches the infinity, that is � → ∞.

Now, we introduce a classical statistical inequality, the Chernoff’s bound
[6][8] that connects the empirical mean to the expected value of a variable.

Theorem 7 Let ξ1, . . . , ξ� be samples of a random variable ξ. For any ε > 0,
the following inequality, called Chernoff’s bound, holds:

P

(∣∣∣∣∣1�
�∑

i=1

ξi − E [ξ]

∣∣∣∣∣ ≥ ε

)
≤ 2 exp(−2�ε2). (7.24)

Using Chernoff’s bound [17], it can prove that the convergence of the empirical
risk to the expected risk is exponential, that is the following result holds (see
Problem 7.4):

Theorem 8 For any ε > 0,

P (|Remp[f] −R[f]| ≥ ε) ≤ exp(−2�ε2). (7.25)

7.5 Statistical Learning Theory 161

7.5.1 Vapnik-Chervonenkis Theory

Now we summarize the main issues of the Vapnik-Chervonekis theory. We
restrict our attention to the binary classification problem.

Let D = {(x1, y1), . . . , (x�, y�)} be a data set. Let F be the class of the
indicator functions, that is functions taking values in {−1, 1}, on D. We denote
with N(F ,D) the cardinality of F restricted to x1, . . . ,x�, namely the number
of different separations of the data x1, . . . ,x� by means of functions of the set
F . Besides, we denote with N(F , �) the maximal number of separations can be
produced in this way. The function N(F , �) is called the shattering coefficient .
Whenever the shattering coefficient is equal to 2�, all possible separations can
be performed by F . In this case we say that F shatters � patterns. It is
important to remark that � patterns means that it exists a set of � patterns
that can be separated. It does not imply that each sets of � patterns can be
separated.

Now we introduce three measures of capacity for the class F , i.e. the VC
entropy, the annealed entropy and the growth function. The entropy (or VC
entropy) is defined as follows:

Definition 17 The VC entropy of the class function F is defined by:

HF (�) = E [lnN(F ,D)] (7.26)

where the expectation E [·] is taken over D.

The following result [24] connects the entropy to the consistency of the ERM
principle:

Theorem 9 A sufficient condition for consistency of ERM principle is pro-
vided by

lim
�→∞

HF (�)
�

= 0. (7.27)

The above result represents the first milestone of VC theory [24]. Any machine
learning algorithm should satisfy (7.27).

The second measure of capacity is the annealed entropy .

Definition 18 The annealed entropy of the class function F is defined by:

Hann
F (�) = ln E [N(F ,D)]. (7.28)

where the expectation E [·] is taken over D.

The annealed entropy is an upper bound on the VC entropy [17] (see Problem
7.5). The following result (the former part is due to [24], the latter part is
due to [4]) connects the annealed entropy to the rate of convergence of the
empirical risk to the expected risk.

162 7 Foundations of Statistical Learning and Model Selection

Theorem 10 If the annealed entropy [24] satisfies

lim
�→∞

HFann(�)
�

= 0 (7.29)

then for any ε > 0 the following equation holds:

P

(
sup
f∈F

|R[f] − Remp[f]| > ε

)
≤ 4 exp

(
Hann

F (2�)
�

− ε2
)

�. (7.30)

Converserly [4], if condition (7.30) holds, then Equation (7.29) is fulfilled.

Equation (7.29) represents the second milestone of VC theory [24] which guar-
antees a fast rate of convergence.

Now we can obtain an upper bound of the annealed entropy if we replace
the expectation with the supremum over all possible samples. The new func-
tion is called growth function, that represents the third measure of capacity.

Definition 19 The growth function of the class function F is defined by:

GF (�) = ln sup
D

N(F ,D). (7.31)

We remark that the Vapnik-Chervonenkis’ approach results in an upper bound
on a set of classifiers and not a single classifier. Moreover, Vapnik and Chervo-
nenkis use a worst case approach, due to the presence of supremum in (7.31).
The following result [24] connects the growth function to the consistency of
the ERM principle.

Theorem 11 A necessary and a sufficient condition for consistency of ERM
principle is provided by

lim
�→∞

GF (�)
�

= 0. (7.32)

Besides, if the condition (7.32) holds, then the rate of convergence is given
by (7.30).

Equation (7.32) represents the third milestone of VC theory [24]. This mile-
stone provides the necessary and sufficient condition that a learning algorithm
implementing the ERM principle must fulfill in order to guarantee a fast rate
of convergence independent of the problem that must be solved.

The following result [25] allows to define formally the VC dimension, that
has been introduced informally in the previous section.

Theorem 12 (VC Dimension’s Theorem) The growth function GF (�)
either satisfies the equality

GF (�) = � ln 2 (7.33)

or is given by:

GF (�)
{

= � ln 2 if � ≤ h
≤ h(1 + l

h) if � > h

}
(7.34)

7.6 AIC and BIC Criteria 163

where h, called Vapnik-Chervonenkis dimension (VC dimension), is
the largest integer for which

GF (�) = h ln 2 (7.35)

If h does not exist, that is GF (�) = � ln 2, VC dimension is said to be infinite.

7.6 AIC and BIC Criteria

In this section we describe two crieria for model selection, i.e. Akaike infor-
mation criterion (AIC) [2] and Bayesian information criterion (BIC) [18].
These criteria are widely used when the number of the samples in the data
set is small, typically less than 1000, as it often happens, for instance, in
applications of time signal prediction or bioinformatics.

7.6.1 Akaike Information Criterion

The Akaike information criterion [2] can be used when the loss function of the
model is a log-likelihood function, as happens in the models whose training
is based on the maximum likelihood principle [9]. AIC consists of defining an
index, called AIC , and in picking the model with smallest AIC. Let {mα(x)}
be a class of models, where α and x are, respectively, the parameter vector
that has to be tuned and x is the input vector. If we denote with Etrain(α)
and d(α), respectively, the error on the training set and the number of free
parameters for each model, the AIC index, which is function of α, is defined
as follows:

AIC(α) = Etrain(α) + 2
d(α)

�
σ̂2 (7.36)

where � and σ̂2 are, respectively, the number of samples of the training set
and an estimate of the variance of the noise in the data.

A reasonable choice, provided by [10], for σ̂2 is:

σ̂2 =
Etrain(α)
� − d(α)

. (7.37)

Plugging (7.37) in (7.36) we obtain the following expression, easy to compute,
for AIC:

AIC(α) = Etrain(α) + 2
d(α)Etrain(α)

�(� − d(α))
. (7.38)

The AIC index provides an estimate of the generalization error and we can
use it for model selection. For this purpose, it is adequate to pick the model
with the smallest AIC index.

Finally, we quote that a special case of the Akaike information criterion is
the Cp statistics. More details can be found in [10][14].

164 7 Foundations of Statistical Learning and Model Selection

7.6.2 Bayesian Information Criterion

Bayesian Information Criterion (BIC), also called Schwartz criterion is sim-
ilar to AIC. It can be used when the loss function of the model is a log-
likelihood function. Likewise AIC, BIC defines an index, called BIC and picks
the model with smallest BIC. If we use the same formalism defined in the sec-
tion 7.6.1, the BIC index is defined as follows:

BIC(α) = Etrain(α) + (ln �)
d(α)

�
σ̂2 (7.39)

If we use for σ̂2 the estimate given by (7.37), we obtain:

BIC(α) = Etrain(α) + (ln �)
d(α)Etrain(α)

�(� − d(α))
. (7.40)

It is immediate to see that BIC is proportional to AIC. It is adequate to
replace ln � with 2 in (7.39) to get AIC. Since e2 is ∼ 7.4, we have that it is
reasonable that it is always ln � > 2. This implies that BIC penalizes complex
models more strongly than AIC. BIC chooses less complex models.

We conclude remarking that BIC can be motivated by a Bayesian ap-
proach to the problem of model selection. If we have a set of models S =
{M1, . . . , Mm} and the respective model parameters {α1, . . . ,αm}. Our aim
is to select the best model from S. If we assume that we have a prior probabil-
ity P (αi|Mi) for the parameters of each model Mi, the posterior probability
P (Mi|D), by the Bayes Theorem, is:

P (Mi|D) ∝ P (Mi)P (D|Mi) (7.41)

where D = {(x1, y1), . . . , (x�, y�) is the training set.
It can be shown [14] that selecting the model with the smallest BIC index

is equivalent to selecting the model with the largest posterior probability
P (Mi|D).

Besides, if we compute the BIC index for each model Mi and we denote
with βi the BIC index of the model Mi, it is possible to show that the posterior
probability P (Mi|D) is given by:

P (Mi|D) =
exp
(

βi

2

)
m∑

j=1

exp
(

βj

2

) . (7.42)

Now, we compare BIC against AIC. Although it is not possible to assess in
general which criterion is the best for the model selection, some considerations
can be drawn. BIC is a consistent model selection criterion. This means that
the probability that BIC picks the correct model tends to 1 as � → ∞. On the
contrary, AIC is not consistent since it selects models with too high complexity
as � → ∞. Finally, we remark that when the training set is finite BIC is often
too parsimonious selecting model with too small complexity, due its large
penalty term.

7.7 Minimum Description Length Approach 165

7.7 Minimum Description Length Approach

The minimum description length (MDL) [16] provides a model selection cri-
terion based on the theory of coding.

From the viewpoint of the theory of coding, we can regard each pattern x
of data set as a message that we want to encode and to transmit to a receiver.
We can view our model as a way of encoding the pattern. Therefore we will
select the model that produces the shortest code.

Let x1,x2, . . . ,x� be the messages we want to send. The code uses a finite
alphabet of length Λ. For instance, we can use a binary code. We can decide
to encode our messages with a coding of variable length. In this case, if we
use the strategy of Huffman coding (see Chapter 3) we will encode the most
frequent messages with the shortest codes. Using Huffman coding the average
message length is shorter.

In general it holds the following Shannon’s theorem:

Theorem 13 If the messages x1,x2, . . . ,x� are transmitted respectively with
probabilities P (x1), P (x2), . . . , P (x�), the shortest coding uses code lengths
λi = − log2 P (xi) and the average message E(λ) fulfills the following inequal-
ity:

E(λ) ≥ H. (7.43)

Where H, called entropy of the distribution P (xi), is given by:

H = −
�∑

i=1

P (xi) log2(P (xi)). (7.44)

Besides, the equation (7.43) becomes an equality when the probabilities P (xi)
are:

P (xi) = Λλi

where Λ is the length of the alphabet.

We remark that when the set is infinite, the equation (7.44) has to be replaced
with

H = −
∫

P (x) log2(P (x))dx. (7.45)

Therefore we can deduce the following corollary:

Corollary 1 In order to send a random variable x, with probability density
function P (x), − log2 P (x) bits of information are required.

Finally, we can replace log2(P (x)) with ln(P (x)). This implies the introduc-
tion of the multiplicative factor log2 e that we can omit without mining the
correctness of our arguments.

That being said, we can return to the model selection. Given a model M
having a parameter vector α, we denote with D = {(x1, y1), . . . , (x�, y�)} the
training set. Let the conditional probability of the output be p(y|α,M,x).

166 7 Foundations of Statistical Learning and Model Selection

Besides, we assume that all inputs are known by the receiver. The message
length λ required to send the outputs to the receiver is:

λ = − ln p(y|α,M,x) − ln p(α|M). (7.46)

The first term of (7.46) represents the average code length for sending the
difference between the model and the target values, whereas the second term
represents the average code length for sending the model parameter vector α.

The MDL principle implies that the model that has to be selected is the
one that minimizes (7.46). Equation (7.46) is the log-posterior distribution.
Therefore, minimizing description length implies maximizing posterior proba-
bility. Since the BIC criterion is derived by the maximization of log-posterior
probability, it is equivalent to MDL approach. BIC criterion can be considered
as a tool for model selection based on MDL approach.

7.8 Crossvalidation

Crossvalidation [12][15][20] is one of the most popular model selection meth-
ods. The basic idea of crossvalidation, also called more properly K-fold cross-
validation, consists in using part of the training set to train the model and
the remaining part of the training set to test the trained model. We pass to
describe K-fold crossvalidation in detail. Let � be the number of samples of the
training set. We divide the training set into K subsets with the same number
of samples. Therefore each subset has approximately �

K samples. Then we
train the model using data from K − 1 subsets and test its performance on
the remaining subsets. We repeat the process for each of K possible choices of
the subset which is not used in the training. Then we compute the test error
averaging over all K error.

If we denote with Errori(f(x,α)) the error on ith subset of the model
f(x,α), the test error CV (α) is given by:

CV (α) =
1
K

K∑
i=1

Errori(f(x,α)). (7.47)

The crossvalidation picks the model with the parameter α which minimizes
CV (α). Finally, the selected model is trained again on the whole data set.
Typical values for K is 5 or 10 [14]. The case K = � is called leave-one-out
crossvalidation [21]. In this case the model is trained using all patterns with
the exception of one pattern.

7.8.1 Generalized Crossvalidation

For linear models that use the minimum square error as a loss function, leave-
one-out crossvalidation can be approximed by Generalized crossvalidation (or

7.8 Crossvalidation 167

(a)

(b)

(c)

(d)

(e)

Fig. 7.5. Schematic representation of 5-fold crossvalidation. The data are divided
into five segments. The model is trained five times, each time using a data set in
which one of the subset (shown in black) is left out.

GCV) [7]. Let D = {(x1, y1), . . . , (x�, y�)} be a dataset, where x ∈ Rn and the
generic element yi is the target value for xi. Let Y = (y1, . . . , y�) be the vector
whose components are the target values yi. Besides, we indicate with f(xi)
the output of a linear model M having as input the pattern xi and with
F = (f(xi), . . . , f(x�)). If M is linear, it is possible to write the following
equation:

Y = SF (7.48)

168 7 Foundations of Statistical Learning and Model Selection

where S is an �× � matrix which depends on the input pattern xi but not on
the targets yi.

The GCV index is defined as follows:

GCV =
1
�

�∑
j=1

[
yi − f(xi)

1 − trace(S)
�

]2
(7.49)

where trace(S) (with trace(S) < �) is the sum of the diagonal elements of S
and is called the effective number of parameters.

GCV can be preferred to leave-one-out crossvalidation when the trace(S)
can be computed easily. Finally, we conclude pointing out that other model
selection methods are based on effective number of parameters [24]. Among
them, we quote finite prediction error [1] and Shibata’s model selector [19].

7.9 Conclusion

In this chapter we have provided an overview of the main issues of statis-
tical learning and model selection theories. We have discussed the problem
of how to select the best one among a set of learning machines. Firstly, we
have discussed the bias-variance showing how it can describe the behavior of
a learning machine on the basis of simple statistical considerations. Then we
have introduced the concept of the complexity of a learning machine present-
ing both intuitively and formally the most popular measure of complexity of
a classifier that is the VC dimension. We have introduced the ERM principle
and reviewed the main results of the Vapnik-Chervonenkis theory of learn-
ing, underlining the conditions that a learning machine has to fulfill in order
to guarantee the consistency and the fast convergence of the ERM principle.
The rest of the chapter has been devoted to review the most popular model
selection methods that is BIC, AIC and crossvalidation. We have also briefly
reviewed the minimal description length approach to the model selectio un-
derlining its equivalence to the BIC criterion.

We conclude the chapter providing some bibliographical remarks. Bias-
variance decomposition is fully discussed in [9]. A comprehensive survey of the
Vapnik-Chervonenkis theory can be found in [17][22][23][24]. Model Selection
methods are described in detail in [14].

Problems

7.1. Prove that the average error, in the case of regression, E [(f(x,D) −
F (x))2] can be decomposed in the following way:

E [(f(x,D) − F (x))2] = (E [f(x,D) − F (x)])2 + E [(f(x,D) − E [f(x,D)])2]

7.9 Conclusion 169

7.2. Consider the bias-variance decomposition for classification. Show that if
the classification error P (f(x,D = y) does not coincide with Bayes discrimi-
nant error, it is given by:

P (f(x,D = y) = |2γ(x) − 1| + P (yb(x) = y).

7.3. Prove that the class of functions sin(αx) (α ∈ R) has infinite VC di-
mension (Theorem 4). You can compare your proof with the one reported
in [24].

7.4. For any ε > 0, prove that

P (|Remp[f] −R[f]| ≥ ε) ≤ exp(−2�ε2) (7.50)

7.5. Prove that the annealed entropy is an upper bound of VC Entropy. Hint :
use Jensen’s inequality [24] which states that for a concave function ψ the
inequality ∫

ψ(Φ(x))dF (x) ≤ ψ

(∫
Φ(x)dF (x)

)
holds.

7.6. Prove that if a class of function F can shatter any data set of � samples
the third milestione of VC theory is not fulfilled, that is the condition (7.32)
does not hold.

7.7. Implement the AIC criterion. Consider spam data that can be dowloaded
by ftp.ics.uci.edu/pub/machine-learning-databases/spam. Divide randomly
spam data in two subsets with the same number of samples. Take the for-
mer and the latter sets respectively as the training and the test set. Select
a learning algorithm for classification (e.g. K-Means or MLP) and train the
algorithm with several parameter values. Use the AIC criterion for model
selection. Compare their performances by means of the model assessment.

7.8. Implement the BIC criterion. Repeat Problem 7.7 and use the crossvali-
dation for model selection. Compare its performance with AIC.

7.9. Implement the crossvalidation criterion. Repeat Problem 7.7 and use 5-
fold crossvalidation for model selection. Compare its performance with AIC
and BIC.

7.10. Implement the leave-one-out method and test it on Iris Data [11] which
can be dowloaded by ftp.ics.uci.edu/pub/machine-learning-databases/iris.

References

1. H. Akaike. Statistical predictor identification. Annals of the Institute of Statis-
tical Mathematics, 21:202–217, 1970.

2. H. Akaike. Information theory and an extension of the maximum likelihood
principle. In 2nd International Symposium on Information Theory, pages 267–
281, 1973.

3. M. Anthony. Neural Network Learning: Theoretical Foundations. Cambridge
University Press, 1999.

4. S. Boucheron, G. Lugosi, and S. Massart. A sharp concentration inequality with
applications. Random Structures and Algorithms, 16(3):277–292, 2000.

5. V. Cherkassky and F. Mulier. Learning from Data. John Wiley, 1998.
6. H. Chernoff. A measure of asymptotic efficiency of tests of a hypothesis based

on the sum of observations. Annals of Mathematical Sciences, 23:493–507, 1952.
7. P. Craven and G. Wahba. Smoothing noisy data with spline functions: estimat-

ing the correct degree of smoothing by the method of generalized crossvalidation.
Numerische Mathematik, 31(4):377–403, 1978.

8. L. Devroye, L. Gyorfi, and G. Lugosi. A Probabilistic Theory of Pattern Recog-
nition. Springer-Verlag, 1996.

9. R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. John Wiley,
2001.

10. B. Efron and R.J. Tibshirani. An Introduction to the Bootstrap. Chapman &
Hall, 1993.

11. R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals
of Eugenics, 7(2):179–188, 1936.

12. K. Fukunaga. Introduction to Statistical Pattern Recognition. Academic Press,
1990.

13. S. Geman, E. Bienenstock, and R. Doursat. Neural networks and the bias-
variance dilemma. Neural Networks, 4(1):1–58, 1992.

14. T. Hastie, R.J. Tibshirani, and J. Friedman. The Elements of Statistical Learn-
ing. Springer-Verlag, 2001.

15. F. Mosteller and J.W. Tukey. Data analysis, including statistics. In Handbook
of Social Psychology, pages 80–203. Addison-Wesley, 1968.

16. J. Rissanen. A universal prior for integers and estimation by minimum descrip-
tion length. Annals of Statistics, 11(2):416–431, 1983.

17. B. Schölkopf and A.J. Smola. Learning with Kernels. MIT Press, 2002.

172 References

18. G. Schwartz. Estimating the dimension of a model. Annals of Statistics,
6(2):461–464, 1978.

19. R. Shibata. An optimal selection of regression variables. Biometrika, 68(1):45–
54, 1981.

20. M. Stone. Cross-validatory choice and assessment of statistical predictions.
Journal of the Royal Statistical Society, B36:111–147, 1974.

21. M. Stone. An asymptotic equivalence of choice of model by crossvalidation and
akaike’s criterion. Journal of the Royal Statistical Society, B39:44–47, 1977.

22. V.N. Vapnik. Estimation of Dependences based on Empirical Data. Springer-
Verlag, 1982.

23. V.N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, 1995.
24. V.N. Vapnik. Statistical Learning Theory. John Wiley, 1998.
25. V.N. Vapnik and A. Ya. Chervonenkis. On the uniform convergence of rela-

tive frequencies of events to their probabilities. Theory of Probability and its
Applications, 16(2):264–280, 1971.

26. V.N. Vapnik and A. Ya. Chervonenkis. Theory of Pattern Recognition. Nauka,
1974.

8

Supervised Neural Networks
and Ensemble Methods

What the reader should know to understand this chapter

• Fundamentals of machine learning (Chapter 4).
• Statistics (Appendix A).

What the reader should know after reading in this chapter

• Multilayer neural networks.
• Learning vector quantization.
• Classification and regression methods.
• Ensemble methods.

8.1 Introduction

In supervised learning, the data is a set D whose elements are input-output
patterns, i.e.

D = {(x1, y1), . . . , (x�, y�)} ∈ Rd × Y (8.1)

and the learning problem can be thought as finding a function f : Rd → Y
that maps the vectors x into the elements of Y. If the set Y is discrete, i.e.
Y = {C1, . . . , CK} the learning problem is called classification. An example of
this learning task is the recognition of handwritten digits or a speaker. Such
a task is performed with algorithms called classifiers (see Chapter 5).

If the set Y is continuous, i.e. Y ⊆ RK , the problem is called regression.
Example of this learning task is the prediction of stock indexes. Such a task
is performed with algorithms called regressors.

This chapter presents some learning algorithms that have the peculiarity
of being supervised (see Chapter 5), i.e. of being capable to learn from a
set of input-output examples D called training set. In particular, this chapter
focuses on three kinds of algorithms: artificial neural networks, learning vector
quantization, and the ensemble methods.

174 8 Supervised Neural Networks and Ensemble Methods

The artificial neural networks implement a computational paradigm in-
spired by the anatomy of the brain. The corresponding algorithms simulate
simple processing units (the so-called neurons) linked through a complex web
of connections. This enables the networks to process separately different pieces
of information while keeping into account their mutual constraints and rela-
tionships. The learning vector quantization is a supervised prototype-based
classifier . Several clustering methods presented in Chapter 6, e.g. K-Means
and SOM, can be viewed as prototype-based classifiers, when they are used in
the classification task. However thanks to the information of the membership
(or non-membership) of a pattern to a given class, LVQ outperforms unsuper-
vised prototype-based classifiers. The ensemble methods are techniques that
combine the output of a set of individually trained learning algorithms fi(x)
in order to obtain a performance higher that the performance of any single
fi(x).

The rest of this chapter is organized as follows: Section 8.2 presents the
general aspects of artificial neural networks, Sections 8.3 and 8.4 present ar-
tificial neurons and connections respectively, Section 8.5 shows single layer
neural networks, while Sections 8.6 and 8.7 present multiple layer networks
and their training algorithms respectively. In the last part of the chapter, Sec-
tion 8.8 describes the learning vector quantization and Section 8.9 presents
the Ensemble methods; finally some bibliographical remarks are provided in
Section 8.10.

8.2 Artificial Neural Networks and Neural Computation

Consider an everyday action as simple as grabbing an object on a desk. Its
execution involves the simultaneous processing of many pieces of information:
the position of the object on the desk, the presence of obstacles, the identi-
fication of the object in the visual field, an approximate prediction of object
weight and distance, etc. Each information piece can be partial or ambiguous,
but still it can have a non negligible impact on the outcome of the overall
process. Moreover, the single pieces of information cannot be processed sepa-
rately, but must be considered as elements of a complex web of relationships.
This means that the meaning and the role of the same information piece can
change significantly depending on the connections with other information at
hand [28]. The solution adopted by the nature for such a problem can be
observed in the structure of the brain. In very simple terms (for a more rigor-
ous description see [34]), the brain is composed of a large number of neurons,
∼ 1011 in the case of humans, connected with each other through an even
larger number of synapses, which is ∼ 1014 in the case of humans. These
carry signals, mainly in the form of electric or chemical stimulations, that
are distributed to different neurons and separately elaborated by each one of
them. The result of such a process is a collective behavior pattern enabling

8.3 Artificial Neurons 175

the brain to perform all kinds of complex tasks, including the reading of this
text.

The above description is the basis of a paradigm referred to as neural
computation [18][20], Parallel Distributed Processing [42], neurocomputing [19]
or connectionism [31] which aims at carrying out computational tasks by using
a large number of simple interconnected processing units called neurons or
nodes. These can be implemented through software simulations or hardware
circuits and perform relatively simple calculations. The resulting machines are
called artificial neural networks (ANN) and have an important characteristic:
the connections between neurons are associated with parameters called weights
that can be modified, through a training process, in order to associate a desired
output to a given input. In other words, the ANNs can learn from input-output
examples how to associate the correct output to previously unseen input data,
and this is useful in the context of classification and regression problems.

The neural networks have some important advantages with respect to other
approaches [18][27][28]:

• Nonlinearity. When the neurons process the data with nonlinear functions,
the networks as a whole are nonlinear. This is especially suitable when the
mechanisms generating the data are inherently nonlinear.

• Input output mapping. The networks learn by adapting their parameters
in order to map labeled input vectors xi to desired outputs ti, which are
often called targets. This means that no assumption is made about the
distribution of the data and the networks can perform non-parametric
statistical inference.

• Adaptivity. The training process does not depend on the data. The learning
properties are inherent to the networks and the same network can be
trained to perform different tasks by simply using different data in the
training. Nothing must be changed in the network to do so.

• Contextual information. Each neuron is affected by any other neuron, then
contextual information is naturally used in the computation.

The next sections show in more detail the elements outlined above. In partic-
ular, after a description of neurons and connections, the chapter shows that
the linear discriminant functions (see Chapter 5) can be thought of as neural
networks and presents the most important example of ANN, i.e. the multilayer
perceptron.

8.3 Artificial Neurons

The most general form of artificial neuron is depicted in Figure 8.1. Each
neuron i in a network receives several inputs passing through connections
characterized by weights wik (represented as circles in the figure). Each input
value is multiplied by the weight of the connection it passes through and it

176 8 Supervised Neural Networks and Ensemble Methods

wi1

wi2x2

1x

Σ

wiNxN

bi

g(ui) yi
iu

summing
junction

activation
function

.....

weightsinputs

bias

output

Fig. 8.1. Artificial neurons. This figure shows the most general form of artificial
neurons. The inputs, multiplied by the connection weights, pass through a summin
junction and the result is given as input to an activation function that gives the
neuron output.

is conveyed to a junction (denoted with Σ in the figure) where all inputs are
summed. A further term, called bias is added to the sum and the result is:

ui =
N∑

k=1

wikxi + bi = wi · x + bi (8.2)

where wi is the vector having as components the weights of the connections
ending in neuron i and x is the vector of the inputs of the same neuron. Note
that the input is higher than zero when wx > −bi and this explains the role
of the bias. In fact, the functions which determine the output of the neurons
(see below) mimic a more or less abrupt transition from quiet to activity in
correspondence of ui = 0. The opposite of the bias can then be thought of as
a threshold to be reached for activation.

The value ui is given as input to an activation function g(ui) which pro-
vides the output yi of the neuron. The name activation function comes from
an analogy with real neurons. In the brain, neurons behave roughly as electric
condensers: they accumulate potential by receiving electric charges from their
synapses and then discharge when the potential exceeds a threshold. The ac-
tivation functions (see below for more details) mimic such a behaviour using
both linear and nonlinear and nonlinear functions that are zero or close to
zero up to a certain ui value (conventionally fixed at ui = 0) and then grow
more or less quickly to 1. If all activation functions in a neural network are
linear, the network as a whole is a linear function. On the other hand, even
if only part of the network neurons have a nonlinear activation function, the
network as a whole is nonlinear.

8.3 Artificial Neurons 177

−1.5 −1 −0.5 0 0.5 1 1.5

0

0.5

1

u

g(
u)

Threshold Function

−1.5 −1 −0.5 0 0.5 1 1.5

0

0.5

1

u

g(
u)

Piecewise Linear

−1.5 −1 −0.5 0 0.5 1 1.5

0

0.5

1
λ

1
λ

2

λ
1
>λ

2

u

g(
u)

Sigmoid Function

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

u

g(
u)

Hyperbolic Tangent Function

Fig. 8.2. Activation functions. The plots show different activation functions com-
monly applied in neural networks. From top to bottom the functions are step, piece-
wise linear, sigmoid, and hyperbolic tangent.

The most common activation functions are the step function (or Heaviside
function or threshold function), the piecewise linear function, the logistic sig-
moid and the hyperbolic tangent (see Figure 8.2). All functions have the same
basic behavior, but they have different properties that have an impact not only
on the final results, but also on the training algorithms (see Section 8.7.3).
The single functions are described more in detail in the following.

The step function I(u) is defined as follows:

I(u) =
{

0 for u < 0
1 for u ≥ 0 (8.3)

178 8 Supervised Neural Networks and Ensemble Methods

and it is shown in the upper plot of Figure 8.2. Such an activation function
was proposed in the earliest works on neuron models [29] and processing nodes
such that g(u) = I(u) are sometimes referred to as McCulloch-Pitts neurons
from the name of the model proposers.

A smoother version of the step function is the piecewise linear function
defined as follows:

L(u) =

⎧⎨⎩
0 for u < 1

2
u + 1

2 for 1
2 ≤ u ≤ 1

2
1 for u > 1

2 .
(8.4)

(see second plot from above in Figure 8.2). In this case, the transition is less
abrubpt and enables a gradual transition towards the activation.

The first two functions are simple, but are not continuous and this creates
some problems for the training algorithms, then other functions have been
proposed that have a similar shape, but are continuous. The first one is the
logistic sigmoid :

σ(u) =
1

1 + e−λu
(8.5)

where λ is called slope parameter. The higher λ, the steeper the transition
from zero to one (see third plot from above in Figure 8.2). One of the main
advantages of the sigmoid function is that it can be interpreted as a probability
and this is often helpful in interpreting the output of a neural network (see
Section 8.5.2).

The last function presented here is the hyperbolic tangent :

Σ(u) = tanh(u) =
eλu − e−λu

eλu + e−λu
(8.6)

which is shown in the lowest plot of Figure 8.2. An important difference with
respect to the other functions is that the hyperbolic tangent takes values in
the interval [−1, 1] rather than in the interval [0, 1]. The functions σ(u) and
Σ(u) are related through a linear transform:

Σ(ũ) = 2σ(u) − 1 (8.7)

where ũ = u/2. A neural networks having logistic sigmoids as activation
functions is equivalent to a neural network having hyperbolic tangents as
activation functions, but different values for weights and biases. The networks
using the hyperbolic tangent are empirically found to converge faster than
those using the logistic sigmoid [1].

The neurons are the first important element of a network, but they are
not effective if they are not connected with each other. The connections play
not only the role of channels through which the information flows, but they
define also the architecture of the network. The next section shows in more
detail how this happens.

8.4 Connections and Network Architectures 179

8.4 Connections and Network Architectures

Section 8.2 shows that the neural computation paradigm addresses the prob-
lem of processing a large amount of information pieces related to each other
through contextual constraints. The neurons are the solution proposed for the
first part of the problem, i.e. the handling of multiple and localized informa-
tion elements. In fact, it is possible to feed each neuron with a single piece of
information and to have a number sufficiently large of neurons to process the
whole information at hand. On the other hand, since neurons focus on single
and localized pieces of information, they cannot account for the relationships
with the other information pieces and such a problem is rather addressed by
the other important element of the neural networks, i.e. the connections.

The connections include two main aspects: the first is the architecture
of the network, i.e. the fact that by connecting certain neurons rather than
others the networks assume different structures. The second is the value of
the weights associated to each connection. In principle, each neuron can be
connected to any other neuron, but this book will focus on the so-called
feed-forward networks, i.e. to networks where there are no feed-back loops.
This means that the neurons can be grouped into disjoint sets Si, where
i ∈ (1, . . . , S), such that all neurons belonging to set Si receive inputs only
from the neurons of set Si−1 and send their output only to the neurons of set
Si+1.

Figure 8.3 shows the multilayer perceptron, probably the most important
example of feed-forward neural network. The figure clearly shows that there
are three sets of neurons with the above outlined property. The neurons of
the first set are called input nodes and, in general, they do not perform any
kind of processing, i.e. their outputs simply correspond to a component of the
input vector x = (x1, . . . , x�) ∈ Rd. On the contrary, the neurons of the other
two sets, called hidden and output nodes, process their input as described in
Section 8.3. The sets of neurons identified following the above approach are
often called layers. The name hidden denotes the layers which are neither input
nor output. A network can have more than one hidden layers. The network
of the figure has three layers since it has only one hidden layer. However,
other naming conventions propose to consider the connections rather than
the neurons as elements of the layers, then the network of the figure would
have only two layers. The reason behind such a choice is that what actually
characterizes the network are the connections and not the nodes (see below for
more details) and this book will adopt for this reason the second convention.
When all neurons of set Si are connected to all neurons of set Si+1, the network
is said fully connected.

The second important aspect of the connections is the value of the weights
associated to them. The connection between neurons i and k is typically de-
noted with wki, meaning that the connection carries the output of neuron
i into neuron k and the whole set of weights and biases (see Section 8.3)
is typically denoted with w and called parameters set. The value of weights

180 8 Supervised Neural Networks and Ensemble Methods

x1

x2

x3

2y

1y

input
nodes

hidden
nodes

output
nodes

Fig. 8.3. Multilayer perceptron. The picture shows a fully connected multilayer
perceptron.

and biases is determined through a supervised learning process aimed at find-
ing the parameters set w̃ satisfying some predefined criterion. The value of
weights and biases can then be thought of as the form under which is stored
the knowledge acquired during the training [18][40].

Such an aspect is particularly important because a network with given ar-
chitecture and activation functions can be trained to perform different tasks.
In fact, it is sufficient to train the network with different data and the weights
will assume the values that better correspond to each task. The connec-
tions determine the relationships between the different pieces of information
processed by single neurons. Negative weights determine inhibitory effects of
one piece of information onto another one, while positive weights correspond
to excitatory effects.

So far, we have described the neural networks in intuitive terms using
the similarity with the brain and giving a high level sketch of the way they
work. The next sections show how the intuitive concepts outlined so far are
translated into mathematical terms and how neural networks can be used to
take decisions about the data and solve supervised problems.

8.5 Single-Layer Networks

This section shows how linear discriminant functions (LDF) [33] (see Chapter
5), a simple approach for the classification problem, can be interpreted as

8.5 Single-Layer Networks 181

single layer networks, i.e. neural networks with a single layer of connections
(see Section 8.4 for the naming convention). Attention will be mainly paid to
the way networks can perform classification tasks, for a rigorous and complete
description of LDFs the reader can refer to most of the machine learning books
(see e.g. [33]).

The rest of this section shows in particular that the neuron model pre-
sented above corresponds to a binary LDF (Section 8.5.1), that the logistic
sigmoid function estimates a-posteriori class probabilities (Section 8.5.2), and
that single layer networks can account only for linear separation surfaces be-
tween classes (Section 8.5.3).

8.5.1 Linear Discriminant Functions and Single-Layer Networks

Consider the problem of the binary classification, i.e. of the assignment of
an input vector x to one of two predefined classes C1 and C2. Among other
techniques (see Chapter 5 for Bayesian approaches), it is possible to use a
discriminant function y(x) with the following property:

y(x) > 0 if x ∈ C1

y(x) < 0 if x ∈ C2.
(8.8)

The LDF if the simplest function of such kind and, in its most general form,
is written as follows:

y(x) = g(w · x + w0), (8.9)

where w is a parameters vector of the same dimension d as x, w0 is a parameter
called bias or threshold, and g(.), in the most simple case, is the identity
function:

y(x) = w · x + w0. (8.10)

The set of the points where y(x) = 0 is called separation surface because it
separates the regions corresponding to the two classes. If two points x1 and
x2 belong to the separation surface, then w · x1 + w0 = w · x2 + w0 and:

w(x1 − x2) = 0, (8.11)

i.e. the parameters vector w is orthogonal to the separation surface. Since
w is constant, the separation surface must be a hyperplane, hence the name
Linear Discriminant Function. Equation (8.10) corresponds to the network in
Figure 8.4 (a) when g(.) is the identity, in fact it can be rewritten as:

y(x) =
d∑

i=1

wixi + w0, (8.12)

i.e. the input of a neuron as proposed in Equation (8.2) if we interpret w0 as
the bias.

182 8 Supervised Neural Networks and Ensemble Methods

x0 =1

x1

x2

x3

x4

y1

y2

y3

w10

w11

w12

w14

w13

x0 =1

x1

x2

x3

x4

y1

(b)(a)

Fig. 8.4. Linear discriminant functions. The left network corrisponds to a binary
classifier of the kind described in Equation 8.9. The dark neuron corresponds to an
extra input (x0 = 1) which enables one to account for the threshold w10. The right
network corresponds to the multiclass case.

Consider now the case where the number of classes is K. The problem
can be addressed by using K binary classifiers yi(x) capable of discriminating
between vectors belonging to Ci and vectors not belonging to Ci:

yi(x) > 0 if x ∈ Ci

yi(x) < 0 if x /∈ Ci.
(8.13)

The class of an input vector x can then be identified as follows:

k = arg max
i

yi(x) = arg max
i

d∑
l=1

wilxl + wi0. (8.14)

This corresponds to the network depicted in Figure 8.4 (b) when the weights
wl0, l ∈ (1, . . . , K), are set to one. The single layer networks are then capable
of performing classification tasks, although they are affected by the same lim-
itations as the LDFs, i.e. they can account only for linear separation surfaces.
The problem of training such a network is addressed in Section 8.7. Note that
this technique does not make any assumption about the distribution of the
data, then it belongs to the family of non-parametric methods.

8.5.2 Linear Discriminants and the Logistic Sigmoid

This section considers the case where the probabilities p(x|Ck) are Gaussians:

p(x|Ck) =
1

(2π)
d
2 |Σ| 12 exp

[
−1

2
(x − µk)T Σ−1(x − µk)

]
(8.15)

8.5 Single-Layer Networks 183

and the covariance matrices of different classes are equal. In the case of the
binary classification, by the Bayes theorem:

p(C1|x) =
p(x|C1)p(C1)

p(x|C1)p(C1) + p(x|C2)p(C2)
=

1
1 + exp(−u)

= g(u) (8.16)

where

u = ln
[
p(x|C1)p(C1)
p(x|C2)p(C2)

]
(8.17)

and g(u) is nothing else than the logistic sigmoid introduced in Section 8.3.
If we pose u = wx + w0, then g(u) corresponds to Equation (8.9) and:

w = Σ−1(µ1 − µ2) (8.18)

w0 = −1
2
µT

1 Σ−1µ1 +
1
2
µT

2 Σ−1µ2 + ln
p(C1)
p(C2)

. (8.19)

This corresponds to a network like the one depicted in Figure 8.4 (a) where the
activation function is a logistic sigmoid. The multiclass case can be obtained
by simply considering, like in the previous section, several binary classifiers.

The above has two main consequences: the first is that the parameters w
and w0 can be estimated with averages and covariances of the training data,
then we have a technique to train a linear discriminant classifier and the cor-
responding neural network. The second is that the output of the nodes where
the activation function is a logistic sigmoid can be thought of as a-posteriori
probabilities of different classes. This is important because it enables one to
interpret the networks output and to include it in probabilistic frameworks.

8.5.3 Generalized Linear Discriminants and the Perceptron

The main limit of the linear discriminant functions of Equation (8.9), and of
the corresponding networks, is that they account for a narrow class of possible
discriminant functions which, in many cases, are not the optimal choice. In
fact, Section 8.5.1 shows that the separation surfaces implicitly identified by
single layer networks are hyperplanes, then the LDFs are effective only in
problems where different classes can be actually separated by linear surfaces.
An example often presented in the literature [32] where single layer networks
fail in separating two classes is the so-called XOR problem shown in Figure 8.5
(a). In this case, no linear surface can separate the samples belonging to the
two classes. On the other hand, the linear separation surface is optimal (in the
sense of the error rate minimization) in the case of two partially overlapping
classes following Gaussian distributions as shown in Figure 8.5 (b). Since they
are simple and quick to train, the single layer networks can then represent a
good baseline and a benchmark for comparison with more complex algorithms.

The spectrum of possible decision boundaries of linear networks can be
made wider by using the generalized linear discriminants:

184 8 Supervised Neural Networks and Ensemble Methods

x

y

(1,1)

(1,0)(0,0)

(0,1)

(a)

N(z,µ1,Σ)

N(z,µ2,Σ)

x

y

(b)

Fig. 8.5. Effectiveness of linear separation surfaces. The left picture shows the
XOR problem. No linear decision boundary surface is capable of separating the two
classes. On the other hand, a linear surface separating two Gaussian distributions
minimizes the error rate in attributing each test sample to the correct distribution.

yk(x) =
d∑

l=1

wklφl(x) + wk0 (8.20)

where the φj(x) are called basis functions and must be chosen appropriately
for the problem at hand. As an example, consider the case where d = 1 and
the data are then real numbers:

yk(x) = wk1φ1(x) + wk0, (8.21)

and pose φ1(x) = a′ + bx + cx2. The equation yk(x) > 0 corresponds then to
the following expression:

a + bx + cx2 > 0 (8.22)

where a = a′ + wk0/wk1. Consider the case where ∆ = b2 − 4ac > 0 then the
above equation has two distinct real solutions x1 and x2, where x1 < x2, and
it can be rewritten as follows:

(x − x1)(x − x2) > 0 (8.23)

which is satisfied in the intervals x < x1 and x > x2. Such a separation surface
could not be obtained with simple linear discriminant functions because these
can lead only to regions of the form x < x0, then can only split the real axis
in two parts rather than in three like the generalized function of Equation
(8.21). The geometric interpretation of this problem is shown in Figure 8.6:
the function φ1(x) maps the points of the real axis onto a parabola in the
space (x, φ1(x)) and, in such a space, a linear separation surface splits the

8.5 Single-Layer Networks 185

x1 x2

Separation surface in (x,φ(x)) space

R
1

R
1

R
2

x

φ 1(x
)

Generalized discriminant functions

Fig. 8.6. Generalized linear functions. The picture shows how the function φ(x)
maps the data points into a parabola in the space (x, φ(x)). A linear separation
surface in such a space induces a non linear separation surface capable of identifying
regions R1 and R2 in the original data space x.

data into three intervals corresponding to x < x1, x1 ≤ x ≤ x2 and x > x2. In
more general terms, the basis functions represent the data in a space where a
linear surface separation corresponds to a more complex surface in the original
data space.

One of the earliest examples of single layer networks (if not the earliest one)
was based on the generalized discriminat functions approach. The network
was called perceptron [39] and it was composed of a single processing unit
with step activation function (see Section 8.2). At the same time, similar
networks called Adalines (standing for ADAptive LINear Element) [47] were
independently investigated. The perceptron was applied to the problem of
recognizing characters and the input data were random pixels extracted from
the character images. Since the performance of a single processing unit was
too low, the input data were passed through processing elements φj weighted
with adaptable coefficients. The result was the following function:

y = g

(
M∑
i=1

wiφi(x) + w0

)
(8.24)

which actually corresponds to a generalized discriminant function given as
input to a step function. The limits of the perceptron in addressing problems
where linear decision boundaries are not effective stopped the interest in neural
networks for around two decades (roughly from the mid sixties to the mid
eighties). The availability of computers capable of dealing with more complex
network architectures finally made it possible to overcome the perceptron
limits by using multilayer neural networks.

186 8 Supervised Neural Networks and Ensemble Methods

8.6 Multilayer Networks

This section presents neural networks with more than one layer of connections
and, more in particular, the so-called Multilayer Perceptron (MLP), a neural
network that will be shown to have important properties. Although MLP can
have an arbitrary number of hidden layers it has been proven1, independently
by [9] and [21], that it is adequate one hidden layer for guaranteeing that MLP
has universal approximation property (or best approximation property), i.e. it
can approximate arbitrarily well any functional continuous mapping between
spaces of finite dimension, provided that the number of hidden neurons (see
Figure 8.3) is sufficiently large. In the context of the classification problem,
this means that, implicitly, the MLPs can approximate arbitrarily well any
decision boundary. This overcomes the main limit of single layer networks that
can lead only to linear separation surfaces2 and explains why in classification
and regression tasks no major attention is paid to MLP with more than one
hidden layer. This is true only for these tasks but not in general. If we use
MLP for feature extraction, e.g. for extracting nonlinear components, three
hidden layers are required (see Chapter 11). In the rest of this section we
assume that MLP has one hidden layer, i.e. two weights layers and we will
show how to train an MLP, i.e. how to find the weights satisfying a predefined
criterion over a training set of labeled examples. Section 8.7.4 describes a
package enabling one to easily implement, train and test Multilayer networks.

8.6.1 The Multilayer Perceptron

The MLP is a feed-forward fully connected network and the corresponding
function can be found by simply following the flow of information along the
different layers. If the input vectors x are d-dimensional, then the network
must have d+1 input neurons. The input of the extra neuron is always 1 and
the weights connecting the extra neuron to the hidden nodes are the biases of
these last. The input of the generic node j in the hidden layer is then:

aj =
d∑

l=1

wjlxl + wj0x0 =
d∑

l=0

wjlxl (8.25)

where x = (x1, . . . , xd) is the input vector, x0 is the input of the extra neuron
and it is set to 1, wj0 is the bias of hidden node j, and wjl (l = 1, . . . , d)
are the weights of the connections between the input nodes and the hidden
node j.

1 The result can be obtained using the Stone-Weierstrass theorem [21] or the Hahn-
Banach theorem [9].

2 The generalized linear discriminant functions can actually lead to nonlinear sur-
faces, but still they cannot approximate any possible decision boundary. See Sec-
tion 8.5 for more details.

8.6 Multilayer Networks 187

The output zj of the jth hidden node can be obtained by simply applying
the activation function g̃(.) of the hidden nodes:

zj = g̃

(
d∑

l=0

wjlxl

)
, (8.26)

where j = d + 2, . . . , d + 1 + H (H is the number of hidden nodes), and zd+1

is set to 1 because neuron d+1 is used to account for the output layer biases.
In the same way it is possible to show that the output yk of output node k is:

yk = g

(
d+1+H∑
l=d+1

wklzl

)
= g

⎡⎣d+1+H∑
j=d+1

wkj g̃

(
d∑

l=0

wjlxl

)⎤⎦ (8.27)

where k = d + H + 1, . . . , d + H + O (O is the number of output nodes). Note
that when g(.) is the identity function, the last equation corresponds to the
expression of the generalized linear discriminant functions (see Section 8.9).

In general, the activation function of the hidden nodes is nonlinear. The
reason is that networks where the hidden nodes have linear activation function
are equivalent to networks without hidden nodes [1]. In other words, multilayer
networks where the hidden nodes have linear activation function have the same
limits as single layer networks (see Section 8.5) and do not have the important
properties (see below) of multilayer networks. Linear activation functions in
the hidden nodes lead to interesting results only for auto-associative networks,
i.e. networks where the target is the input and the number of the hidden neu-
rons is lower than the input dimensionality (H < d). In this case, the output
of the hidden layer corresponds to a transform of the hidden data known
as principal component analysis (PCA) which reduces the dimensionality of
the data while preserving most of the information they contain (see [2] and
Chapter 11 for more details).

When the activation functions are sigmoidal (i.e. logistic sigmoid or hyper-
bolic tangent) for both hidden and output nodes, then the resulting networks
can approximate arbitrarly well any functional continuous mapping from one
finite-dimensional space to another if the number of hidden neurons H is
sufficiently large [9]. This results has the important consequence that, in a
classification context, any decision boundary surface can be arbitarily well
approximated with an MLP. In other words, while single layer networks lead
to a limited range of separation surfaces, multilayer networks can lead to any
separation surface. Another important consequence is that when the activa-
tion function neurons is a logistic sigmoid, then the MLP can approximate
arbitrarily well the a-posteriori probability p(C|x) of a class C (see Section 8.5.2
for more details).

In order for an MLP to approximate a specific mapping, it is necessary to
find the parameter set (i.e. the values of weights and biases) that correspond
to such a mapping. This can be done through a training procedure where the

188 8 Supervised Neural Networks and Ensemble Methods

network adapts the parameters based on a set of labeled examples, i.e. pairs
(xk, yk) including an input vector xk and the desired output (the so-called
target) yk. The training algorithm for the MLP’s is called back-propagation
and it is the subject of the next section.

8.7 Multilayer Networks Training

As in the cases presented so far in previous chapters, the training procedure is
based on the minimization of an error function, or empirical risk (see Chapter
5), with respect to the parameter set of the algorithm under examination.
In the case of MLPs, the parameter set w contains connection weights and
neuron biases. The error function is a differentiable function of the network
outputs yk and these are a function of the network parameters as shown in
Equation (8.28), then the error function can be derived with respect to any
single parameter in w. This enables to minimize the error function by applying
different optimization algorithms such as gradient descent. The name error
back-propagation comes from the fact that the derivation propagates the error
from the output nodes to the input nodes [40] (see below for more details).

In general the training algorithms are iterative and each iteration involves
two steps that can be considered separately:

• Evaluation of error function derivatives. The expression error back-
propagation actually refers to this step, although it is used sometimes
to define the whole training process. This stage depends on the particular
network under examination because the functional expression correspond-
ing to the network, Equation (8.28) in the case of MLP, changes for each
architecture.

• Parameters update. This stage modifies the network parameters with the
goal of minimizing the error function. This stage is independent of the
particular network used. In fact, once the derivatives are at disposition,
the minimization techniques do not depend any more on the particular
network or architecture used.

In the following the two steps are described in more detail.

8.7.1 Error Back-Propagation for Feed-Forwards Networks*

Since the training is supervised, we have a training set which is a collection
of input-output patterns, i.e. D = {(x1, t1), . . . ,x�, t�) ∈ Rd × Y. In the re-
gression problem Y is continuous i.e. Y ⊆ RO. In the classification problem Y
is discrete, i.e. Y = (C1, . . . , CO). This representation of the output Y is not
suitable to be used in a MLP. A more appropriate approach consists in repre-
senting Y as a discrete subset of RO, i.e. Y = {+1,−1}O, where the discrete
values +1 and −1 corresponds to the membership and the non-membership

8.7 Multilayer Networks Training 189

to a given class, respectively. Therefore if the m-th component of the target
ŷ is +1 then the respective pattern ŷ belongs to the class Cm.

Being said that, the functional form corresponding to a feed-forward net-
work network is:

yk = g

⎡⎣d+1+H∑
j=d+1

wkj g̃

(
d∑

l=0

wjlxl

)⎤⎦ , (8.28)

see Equation (8.28), where the biases are included in the summations through
extra nodes with input fixed to 1 and do not need to be distinguished from
connection weights. The error function has typically the following form:

E =
�∑

n=1

εn (8.29)

where εn is the error, i.e. the loss function (see Chapter 5), of the network
over the nth sample of the training set D. The derivative of E with respect to
any parameter wij can then be expressed as:

∂E

∂wij
=

�∑
n=1

∂εn

∂wij
(8.30)

and in the following we can focus on a single ∂ε/∂wij (the index n is omitted
whenever possible).

The derivative of ε with respect to a weight of the first layer can be
obtained as follows:

∂ε

∂wij
=

∂ε

∂ai

∂ai

∂wij
(8.31)

where aj is the input of node i in the hidden layer, i = d + 1, . . . , d + 1 + H
and j = 0, . . . , d. The first term of the above product is called error and it is
denoted with δi:

δi =
∂ε

∂ai
. (8.32)

Since ai =
∑d

l=0 wilxl, the second term of the same product is simply xj . As
a result, the derivative of ε with respect to a weight in the first layer can be
written as follows:

∂ε

∂wij
= δixj . (8.33)

Using the same approach, the derivative of ε with respect to a weight wkl in
the second layer, i.e. k = d+H +1, . . . , d+H +O and l = d+1, . . . , d+1+H,
can be written as:

∂ε

∂wkl
= δkzl. (8.34)

where

190 8 Supervised Neural Networks and Ensemble Methods

δk =
∂ε

∂zk
(8.35)

The expression of the errors δj is different for hidden and output nodes.
The input nodes are not considered because their activation function is the
identity. For the output nodes the error δj is:

δi =
∂ε

∂zi
=

∂ε

∂yi

∂yi

∂zi
= g′(zi)

∂ε

∂yi
. (8.36)

where g′(z) is simply the first derivative of the activation function of the
output nodes g(z).

For the hidden nodes we have to take into account the fact that they are
connected to all of the output nodes, then it is necessary to sum over all of
these:

δk =
∂ε

∂ak
=

O∑
l=1

∂ε

∂zl

∂zl

∂ak
=
∑

l

δl
∂zl

∂ak
(8.37)

where the expression δl corresponds to Equation (8.36) because the sum is
made over the output neurons. The last missing element is then ∂zl/∂ak

which corresponds to the following expression:

∂zl

∂ak
=

∂

∂ak

H∑
i=1

g̃(ai)wli = g̃′(ak)wlk. (8.38)

By plugging the last expression into Equation (8.37), the result for the hidden
nodes errors is:

δk = g̃′(ak)
O∑

l=1

wlkg′(zl)
∂ε

∂yl
. (8.39)

The above results enable one to write the derivative of εn with respect to
any network parameter by simply plugging the expression of the activation
functions g(z) and g̃(a) as well as of the loss εn. The derivative of E can then
be obtained by simply summing over the errors of all the training set samples.

8.7.2 Parameter Update: The Error Surface

The problem of updating the parameters can be thought as the problem of
minimizing an error function E(w), where w is the vector containing all net-
work parameters. The minimization of continuous and differentiable functions
of many parameters has been widely studied in the literature and most of the
results of such a domain can be applied to the training of neural networks.
This section focuses on one of the simplest, but still effective techniques, i.e.
gradient descent. The reader interested in other methods can find extensive
surveys in [1] and, at a tutorial level, in [22].

The error function E(w) defines a surface, error surface, in the parameters
space and the goal of the training is to find a point where ∇E = 0 (see

8.7 Multilayer Networks Training 191

local
minima

global
minimum

global
maximum

local
maxima

local
maximum

E(w)

w

Fig. 8.7. Error surface. The error function defines an error surface in the space of
the parameters. The goal of the training is to find a minimum of the error surface.
Although there is no guarantee that the training leads to the global minimum, the
performance in correspondence of local minima is, most of the times, satisfactory.

Figure 8.7). There are several points for which such a property holds. One of
them, the so-called global minimum, is the point where the error function takes
the smallest value. Others are points, called local minima, where E is lower
than in the surrounding region but higher than in other regions. Finally, some
points where ∇E = 0 are maxima (local or global) and must be avoided during
the training. Due to the high number of parameters, the error surface cannot
be explored exhaustively. In general, the training algorithms initialize the
parameters with random values w(0) and then update them through iterative
procedures. At each iteration, the weights are updated as follows:

w(i+1) = w(i) + ∆w(i), (8.40)

and different training algorithms correspond to different choices for the update
term ∆w(i) (the subscript i stands for the iteration index). Some algorithms
guarantee that E(w(i+1)) ≤ E(w(i)), but this still does not guarantee that
the error decreases at each iteration. In fact, if the error function falls into a
local minimum, there is no way to leave it for a lower local minimum and the
algorithm get stuck. Moreover, if w(i) corresponds to a relatively flat region of
the error surface, the algorithm can evolve very slowly and the training time
can become too long.

192 8 Supervised Neural Networks and Ensemble Methods

8.7.3 Parameters Update: The Gradient Descent*

The training is performed using a training set D = {(x1, t1), . . . ,x�, t�) ⊆
Rd × Y, where Y ⊆ RO (see Section 8.7.1).

There are two possible ways of performing the gradient descent algorithm:

• On-line learning : the parameters are updated after each sample of the
training set:

∆w(i) = −η∇εn|w(i) , (8.41)

where εn denotes the network loss when the input is xn.
• Off-line learning (or Batch learning): the parameters are updated after

that the whole training set has been input to the network:

∆w(i) = −η∇E|w(i) , (8.42)

where E =
∑

n εn.

The parameter η is called learning rate and it is one of the main problems of
the gradient descent. In fact, if η is too large, the parametrs change too much
from one iteration to the other and local minima can be missed because the
change of position on the error surface is too big. On the other hand, if η is too
small, the parameters do not change enough from one iteration to the other,
then the network moves too slowly on the error surface and the training time
becomes unusefully long. Moreover, the optimal η value is not constant along
the training and it should be changed at each iteration.

Equations (8.41) and (8.42) refer to the whole parameter set, but the corre-
sponding expressions can be used for a single parameter by using the results of
Section 8.7.1 which shows how to calculate the error function derivatives with
respect to any weight or bias. In the on-line version of the gradient descent,
the single weights are updated as follows (see Section 8.7.1 for the meaning
of symbols):

w
(i+1)
ij = w

(i)
ij − η

∂εn

∂wij
= w

(i)
ij − ηδizj , (8.43)

while in the batch learning, the above expression becomes:

w
(i+1)
ij = w

(i)
ij − η

�∑
n=1

∂εn

∂wij
= w

(i)
ij − η

�∑
n=1

δ
(n)
i zj , (8.44)

where δ
(n)
i is the value of δi for the nth pattern in the training set.

An important example from the application point of view, is the MLP
where hidden nodes have the logistic sigmoid as activation function, output
nodes have linear activation function and the loss function is the quadratic
loss (see Chapter 5), i.e.

E =
�∑

i=1

‖yi − ti‖2. (8.45)

8.7 Multilayer Networks Training 193

The derivation of the corresponding update rules are left for exercise (see
Problem 8.2). The minimization of the error function can be interpreted under
the maximum likelihood principle (see Chapter 5). In fact, the equation (8.45)
can be rewritten as:

E = − ln exp(
�∑

i=1

‖yi − ti‖2) = − lnL(y, t). (8.46)

Since L(y, t) is the likelihood of the normal joint distribution (y, t), mini-
mizing the error function E corresponds to assume that the joint distribution
(y, t) is normal and, at the same time, to maximize its likelihood L(y, t).

The Softmax Function

If we assume that the joint distribution (y, t) is not normal, the choice of
the quadratic loss as loss function is not appropriate. For instance, if we
assume that the joint distribution is multinomial, the loss function, using the
maximum likelihood principle, is the so-called cross-entropy [1], i.e.:

ε(y, t) = −
O∑

i=1

ti log yi. (8.47)

Using the cross-entropy as loss function, the error function is:

E = −
�∑

i=1

O∑
l=1

til log yil, (8.48)

where til and yil indicate the l-th component of ti and yi, respectively.
If we use this error function to train MLP, it is possible to show [1] that the

identity activation function on the output nodes, i.e. g(zi) = zi (i = 1, . . . , O),
has to be replaced with the softmax function:

g(zi) =
exp(zi)

O∑
p=1

exp(zp)

(i = 1, . . . , O). (8.49)

Since g(zi) are always positive and their sum is 1, they can be viewed as
probabilities. Therefore a MLP having output nodes with the softmax as ac-
tivation function can be used for probability estimation. The derivation of the
corresponding learning rules for a MLP having output nodes with the softmax
as activation function is left for exercise.

194 8 Supervised Neural Networks and Ensemble Methods

8.7.4 The Torch Package

The Torch package3 is a collection of libraries aimed at the development of
several machine learning algorithms [7]. The package enables one to quickly
develop, train and test the main kinds of neural networks, including the MLPs
described in the previous sections. The library is written in C++, but even a
superficial knowledge of such a language is sufficient to use Torch. A tutorial
distributed with the code enables one to easily write the programs simulating
ANNs.

8.8 Learning Vector Quantization

This section will focus on learning vector quantization [25] (LVQ), which is
a supervised learning algorithm for classification. LVQ is a prototype-based
classifier that performs a nearest prototype classification. Consider a training
set D = {(x1, yi), . . . , (x�, y�)} ⊆ Rd×C, where yi is a class label that assumes
values in C = {C1, . . . , Cp}. Prototype-based classifiers represent the training
set by a set of data points M = (m1, . . . , mK) ⊆ Rd in the input space,
where K � �. The prototypes mi are not elements of the training set D, but
are yielded by the classifier during its phase of learning. A class vi ∈ C is
associated to each prototype mi and the classification of a new data point
x̂ is performed assigning the class of the closest prototype. This strategy is
called nearest prototype classification. Examples of (unsupervised) prototype-
based classifiers are the prototype-based clustering methods, e.g. K-Means and
SOM (see Chapter 6), when they are used for classification tasks. LVQ is a
supervised prototype method widely used in real time applications like speech
[30] and handwriting recognition [5]. We pass to describe the algorithm.

Consider a data set D = {(x1, yi), . . . , (x�, y�)} ⊆ Rd × C.
Using the same terminology introduced in Chapter 6, we call codebook the

set of data points M = {(m1, v1) . . . , (mK , vK))} ⊆ Rd×C, where K � �. The
generic element (mi, vi) ∈ M is called codevector. There are three versions of
the LVQ, called LVQ1, LVQ2.1 and LVQ3 respectively. The last two can be
considered as successive refinements of the first one. The following shows the
three algorithms in detail. The first step of the LVQ1 training is the initial-
ization of the codebook. In general, such a task is performed by randomly
selecting K training samples with the only constraint of having at least one
codevector per class. The random selection should be performed by following
the a-priori distribution of the labeled examples. In this way, the fraction of
codevectors with a certain class Cj should roughly correspond to the fraction
of training samples with the same class. LVQ1 has the following steps:

3 At the moment of writing this book, software and documentation can be down-
loaded at the following URL: www.torch.ch.

8.8 Learning Vector Quantization 195

1. Initialize the codebook M . Fix the number of iterations T . Set t = 1.
2. Choose a data point (x̂, v̂) randomly (with replacement) from the training

set D.
3. Find the codevector mc such that:

mc = arg min
i=1,...,K

‖x̂ − mi‖, (8.50)

i.e. the nearest neighbor of x̂ among the codevectors of M .
4. Modify the codevector mc into m′

c as follows:

m′
c =
{

mc + α(t)[x̂ − mc] if v̂ = vc

mc − α(t)[x̂ − mc] if v̂
= vc.

}
. (8.51)

In other words, the codevector mc is moved closer to x̂ if the two vectors
have the same class label and the contrary otherwise. The value of α(t)
must be set empirically (values smaller than 0.1 are advised in [25]) and
it decreases linearly with t.

5. Leave unchanged all codevectors different from mc:

m′
i = mi if i
= c. (8.52)

Therefore, the only codevector modified is the nearest neighbor of x̂, all
other codevectors are left unchanged.

6. If t < T increase t by one and go to step 2.
7. Return the codebook.

We remark that the updating rule , when the labels of the winning codevector
and the input vector are the same, coincides with the learning rule of on-
line K-Means. Finally, the termination criterion of LVQ1 can be modified
replacing the number of iterations with the achievement of a value of error,
a-priori fixed.

LVQ2.1 is a refinement of LVQ1 and is generally carried out after LVQ1.
LVQ2.1 has the following steps:

1. Initialize the codebook M by means of LVQ1. Fix the number of iterations
T . Set t = 1.

2. Choose a data point (x̂, v̂) randomly (with replacement) from the training
set D.

3. Find the codevector (mi, vi) and (mj , vj) such that

mi = arg min
k:vk=v̂

‖x̂ − mk‖
mj = arg min

k:vk �=v̂
‖x̂ − mk‖ (8.53)

4. Verify if x̂ falls in the window defined by mi and mj , i.e. if:

1
s
≤ ‖x̂ − mi‖

‖x̂ − mj‖ ≤ s (8.54)

where s = 1+w
1−w and w is a constant to be set empirically (values between

0.2 and 0.3 seem to perform well [25]).

196 8 Supervised Neural Networks and Ensemble Methods

5. If x̂ falls in the window, then the two codevectors are updated as follows:

m′
i = mi + α(t)[x̂ − mi]

m′
j = mj − α(t)[x̂ − mj]

(8.55)

see above for α(t).
6. If t < T increase t by one and go to step 2.
7. Return the codebook.

The goal of LVQ2.1 is to push decision boundaries towards the surface decision
yielded by Bayes’ rule (see Chapter 5), but no attention is paid to the fact
that, the codevectors do not converge to a stable position as t increases. To
prevent this behavior as far as possible, the window w within the adaptation
rule takes place must be chosen carefully. Moreover, the related term

τ =
∣∣∣∣ |‖x̂ − mj‖ − ‖x̂ − mi‖

2

∣∣∣∣ ,
where mi and mj are defined as in (8.53), yields the hypothesis margin of the
classifier [8]. Hence LVQ2.1 can be seen as a classifier which aims at structural
risk minimization (see Chapter 7) during training, comparable to support
vector machines (see Chapter 9).

To overcome the LVQ2.1 stability problems, it was necessary to introduce
a further correction that tries to deal with this problem. The result is the
LVQ3 algorithm which is similar to LVQ2.1. LVQ3 chooses a pattern x̂ and
picks the two closest codevectors mi and mj . If they are in the window and
one belongs to the same class of x̂ and the other not, the LVQ2.1 learning
rule is applied. If they are in the window and both codevectors have the same
class of x̂ the following rule is applied:

m′
i = mi + εα(t)[x̂ − mi]

m′
j = mj + εα(t)[x̂ − mj].

(8.56)

LVQ3 ensures higher stability for the codevectors position as the number
of iterations t increases. The value of ε must be set empirically and values
between 0.1 and 0.5 seem to produce good results [25]. Finally, variants of the
LVQ algorithm have been proposed in [17][43].

8.8.1 The LVQ PAK Software Package

The LVQ algorithm described in the previous section is implemented in a
package that can be downloaded from the web.4 This section proposes a quick
tutorial (detailed instructions are available in [25]) on the main functions
available in the package. The following shows the steps necessary to build a
quantizer using a labeled data set and the LVQ1 algorithm:
4 At the time this book is being written the package is available at the following

URL: http://www.cis.hut.fi/research/som-research/nnrc-programs.shtml.

8.9 Ensemble Methods 197

1. Initialization. The first step is the initialization of the codebook which is
performed with the following command:

eveninit -noc 200 -din train.dat -cout cbook1.dat -knn 3

where noc stands for the number of codevectors, din corresponds to the
name of the file containing the training data, cout provides the name of
the output codebook file and knn verifies that the three nearest neighobors
of each initialized codevector have the same label.

2. LVQ1 training. The training is performed by the following command:

lvq1 -din train.dat -cin cbook1.dat -cout cbook2.dat -rlen
10000 -alpha 0.05

where cin stands for the initial codebook (the output of the first step),
rlen gives the number of training steps (if there are less training samples
than training steps, then the same samples are used several times) and
alpha is the α(t) parameter.

3. Test. The effectiveness of the codebook can be measured with the following
command:

accuracy -din test.dat -cin cbook2.dat

where test.dat is a file containing labeled test data (different from the
data in training.dat). The accuracy is measured in terms of recognition
rate, i.e. number of input vectors mapped into the correct label.

The LVQ PAK offers several more functions and options which enable one
to obtain quantizers corresponding to the algorithms shown in the previous
section.

8.9 Ensemble Methods

This section presents the ensemble methods, i.e. the techniques aimed at com-
bining the predictions of a set of single learners, e.g. a set of classifiers or a set
of regressors, fi(x), trained individually, in order to obtain an overall learner
FΣ(x) which performs better than any single fi(x) (see Figure 8.8). In this
section we will focus on ensemble methods for classification.

The combination of the single output can be performed in different ways
(see [23] for a survey), but commonly it consists of a majority vote (i.e. the
output of FΣ is the most frequent output among the values of the fi(x)),
or of the average of the f(x) output values. The set F = {f1(x), . . . , fN (x)}
is called classifier ensemble and it can be obtained with different techniques
(see below). This subject is explored in detail in both monographies [26] and
tutorials [10][11][36]. The rest of this part will show some possible reasons of
the ensemble improvements over single classifiers (Section 8.9.1) and the main
techniques for creating ensembles (Section 8.9.2).

198 8 Supervised Neural Networks and Ensemble Methods

f1 (x) 2 (x)f fN(x)fN−1(x)

FΣ(x)

y

...

x

Fig. 8.8. Classifiers ensemble. The same input is presented to different classifiers
and their output is combined resulting into a classifier FΣ(x).

8.9.1 Classifier Diversity and Ensemble Performance*

Classifier combination is an operation that makes sense only if the classifiers
are diverse, i.e. if they make different errors on the same data [38] or, in more
rigorous terms, are statistically independent. In fact, given an ensemble of
N classifiers, it is reasonable to expect that those who misclassify a given
input x distribute their output more or less uniformly over the wrong labels,
while those who classify correctly the same x provide the same output, i.e.
the correct class. In this way, a simple majority vote can lead FΣ to assign
the correct label to x.

As an example, consider an ensemble of N classifiers with recognition rate
p, where the recognition rate is the percentage of correctly classified samples. If
the outputs of the classifiers are statistically independent, then the probability
of n classifiers giving the right answer is:

p(n) = pn(1 − p)N−n

(
N

n

)
= pN−n(1 − p)n N !

n!(N − n)!
(8.57)

and it is plotted as a function of n in Figure 8.9 for N = 20 and p ∈
{0.25, 0.50, 0.75}. The plot shows that the most probable number of classifiers
giving the right answer is 5, 10 and 15 for the three values of p respectively.
Although shown for a specific case, this corresponds to a general result: when
the recognition rate is higher than 0.5, the most probable n is always higher
than N/2. It is even more important to note that the probability of n being
higher than N/2 is 0.004, 0.41 and 0.98 for p = 0.25, p = 0.5 and p = 0.75

8.9 Ensemble Methods 199

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

n

p(
n)

p=0.25

p=0.50

p=0.75

Ensemble Performance

Fig. 8.9. Number of correct classifiers. The plots show the probability of n classifiers
providing the correct answer for p = 0.25, 0.5 and 0.75 respectively.

respectively (in the case of the above example). In other words, the applica-
tion of a simple majority vote5 leads to the correct result in a percentage of
cases higher than the recognition rate of the single classifiers. It is worth to
remember that such a result applies only when the output of the classifiers is
statistically independent.

The same phenomenon can be seen under a different perspective [38]. A
classifier fi(x) can be seen as an approximation of a true (and unknown)
function f(x). In general, each classifier is trained to minimize the empirical
risk :

MSE[fi] =
1
�

�∑
j=1

(yj − fi(xj))2 (8.58)

where � is the number of training samples and the quadratic loss (see Chapter
5) is chosen as loss function.

The above expression can be thought of as the average squared value of
mi(x) = yl − fi(xl):

MSE[fi] = E [m2
i (x)]. (8.59)

5 The expression majority vote means that the output of FΣ(x) is the most frequent
output of the single ensemble classifiers fi(x).

200 8 Supervised Neural Networks and Ensemble Methods

Consider now the ensemble obtained by simply averaging over the output of
the single classifiers:

FΣ(x) =
1
N

N∑
i=1

fi(x), (8.60)

by plugging Equation 8.58 into the last expression we have:

FΣ(x) = f(x) − 1
N

N∑
i=1

mi(x). (8.61)

If the mi(x) are mutually independent with zero mean, then the MSE of the
ensemble is as follows:

MSE[FΣ(x)] = E [(
1
N

N∑
i=1

mi(x))2] =
1

N2
E [

N∑
i=1

m2
i (x)] (8.62)

(the demonstration is the subject of Problem 8.6), and it corresponds to:

MSE[FΣ(x)] =
1
N

N∑
i=1

MSE[fi(x)], (8.63)

i.e. the average of the empirical mean squared errors of the different classi-
fiers fi(x). Such a result shows that, in principle, the MSE can be arbitrarily
decreased by simply increasing N . On the other hand, in practice the inde-
pendence assumptions made to obtain the above equation are less and less
verified when the number of classifier increases [38]. In fact, both empirical
and theoretical investigations show that performance of an ensemble improves
up to 20-25 classifiers [36] and then it saturates.

This section has shown that the diversity is a key factor for the classi-
fier ensembles. The next section shows what are the main methods to create
ensembles of classifiers as diverse as possible.

8.9.2 Creating Ensemble of Diverse Classifiers

This section proposes a quick survey of the most common methods used to
build ensembles of classifiers as diverse as possible.

Bayesian Voting

Consider a training set X and a classifier f(x) which can be trained. The
result of the training is a hypothesis h(x), i.e. a particular instance of the
classifier determined by a specific parameter set. As an example, consider the
neural networks introduced at the beginning of this chapter, a network with
a given architecture (number of nodes and structure of the connections) and

8.9 Ensemble Methods 201

a given set of weights W corresponds to a hypothesis h(x). The set of all
possible networks with the same architecture, but different parameters sets is
called Hypothesis Space H. Each neural network is an element of H and each
element of H is a neural network with a given architecture.

Consider the conditional probability distribution p(f(x) = y|h,x), i.e. the
probability of observing the output y given the hypothesis h and the input x.
The problem of predicting the value of f(x) can be thought of as the problem
of estimating p(f(x) = y|X ,x). Such a probability can be rewritten as a
weighted sum:

p(f(x) = y|X ,x) =
∑
h∈H

h(x)p(h|X), (8.64)

i.e. as an ensemble where each classifier is weighted following its posteri-
ori probability p(h|X). The posterior can be estimated with the product
p(X|h)p(h) (keeping into account that p(X) is a constant).

Such an approach has two main problems. The first is that p(h) is not
often known and it is typically selected based on computational convenience
rather than on an actual knowledge of the hypothesis distribution. Moreover,
while for some classifiers the hypothesis space can be enumerated, for others
(e.g. neural networks or support vector machines) it can only be sampled.

Bagging

One of the most straightforward ways to obtain diversity is to train the same
classifier over different training samples. Such an approach is especially suit-
able for algorithms that are heavily affected by changes even small in the
training set [10].

The simplest method in this family of approaches is the Bootstrap Aggre-
gation [3], often called Bagging. Bagging is derived by a statistical method
called bootstrap [14].

Given a training set D = {(x1,y1), . . . , (x�,y�)}, the bootstrap method
consists in creating independently M new data sets D1, . . . ,DM . Each data set
Di is generated by randoming picking � data points from Di, with replacement.
Therefore some duplicated data points can exist in Di.

Being said that, in bagging the same learning algorithm is presented to M
different training sets obtained by randomly drawing n < � data points from
the original training set D, with replacement. A common choice consists in
choosing the cardinality n of each data subset (the bootstrap aggregate) equal
to ∼ 2�

3 . Each bootstrap aggregate is used to train a classifier, by means of
the same learning algorithm. Finally, the classification is produced by means
of a majority vote on the M classifiers. The properties of bagging have been
widely explored. In particular bagging seems to have stability properties. A
learning algorithm is called unstable6 if small changes in the training data pro-
duces different classifiers and very large changes in their performances (e.g.
6 Examples of unstable classifiers are the decision trees classifiers, which are not

discussed in the book.

202 8 Supervised Neural Networks and Ensemble Methods

recognition rate). Bagging averages over the eventual discontinuities that can
occurr in a classifier, generated by the presence or the absence of a given pat-
tern, making the classfier more stable. Finally, we remark that bagging is an
example of a statistical method called arcing , acronym of adaptive reiweight-
ing and combining [4]. Arcing indicates the reusing data in order to improve
classification.

Another method based on the majority voting consists in obtaining M
classifiers by alternatively dropping out of the training set M randomly ex-
tracted disjoint subsets. Such a method is similar to an M -fold crossvalidation
and the ensembles obtained in this way are often called crossvalidated com-
mittees [37].

Boosting

The last ensemble method based on training resampling is the so-called boost-
ing [44]. We describe the boosting method considering a binary classification
problem, i.e. each data point can only classified in two different ways, C1 and
C2. Given a training set D = {(x1, y1), . . . , (x�, y�)} ∈ Rd × {C1, C2}, we con-
sider three different classifiers F1, F2 and F3. First we create a data set D1

randomly picking n < � data points from the training set D without replace-
ment. Then we train the first classifier F1 with D1. The classifier F1 is a weak
lerner, namely its performances are slightly better than the coin toss. The
next step of the boosting consists in creating a new data set D2 generated as
follows. We make a coin toss. If the result is heads we present, one by one, the
data points of D which does not belong to D1 until the classifier F1 misclassi-
fies a data sample. We add this pattern to D2. We repeat the coin toss. If the
result is heads we look again for another missclassified pattern by F1 and we
add it to D2. If the result is tails we look for a data point that F1 classifies
correctly and we add this pattern to D2. We repeat the procedure until no
pattern can be added to D2. In this way, the data set D2 contains half of the
pattern correctly classified whereas the other half is formed by pattern miss-
classified by the classifier F1. We train the second classifier F2 on D2. Then
we look for a third data set D3 generated as follows. We present the remaining
data points of D, i.e. the patterns of D that are neither elements of D1 nor
elements of D2, to the classifiers F1 and F2. If the classifiers do not agree we
add the data point to D3, otherwise the pattern is discarded. We repeat the
procedure until it is not possible to add pattern to D3. Then we train the
last classifier F3 on D3. Finally, a new test pattern x̂, that does not belong
to D, is classified on the basis of the responses of the three classifiers. If the
classifiers F1 and F2 agree about the class to assign to x̂, the class is assigned
to x̂. Otherwise, we assign to x̂, the class assigned by F3. We conclude this
description of boosting remarking that the cardinality of the first data set is
usually chosen equal to n = �

3 .

8.9 Ensemble Methods 203

AdaBoost

Among the variants of boosting, the most popular is AdaBoost [15]. Ad-
aBoost, acronym of adaptive boosting , allows to add weak learner until a
training error, apriori fixed, is achieved. In AdaBoost algorithm a weight W
is associated to each pattern of the training set. W represents the pattern
probability to be chosen by a component classifier of the ensemble. If the
pattern is correctly classified W is decreased, otherwise it is increased. There-
fore this algorithm pays particular attention to the pattern difficult to be
classified. Let D = {(x1, y1), . . . , (x�, y�)} ∈ Rd × {C1, C2} be a training set
and W = {W (1), . . . ,W (�)} where Wi is the weight associated to the generic
pattern (xi, yi). AdaBoost algorithm has the following steps:

1. Initialize k = 0, KM , W1(i) = 1
� (i = 1, . . . , �)

2. k = k + 1
3. Train classifier Fk on D using W1(i)
4. Compute the loss function Lk of Fk

5. Compute

αk =
1
2

ln
1 − Fk

Fk
.

6. Compute

Wk+1(i) =
{

AkWk(i) exp(−αk) if hk(xi) = yi

AkWk(i) exp(αk) if hk(xi)
= yi

}

where Ak is such that
�∑

i=1

Wk(i) = 1 and hk(xi) represents the class

associated to xi by the classifier Fk.
7. if k < KM go to step 2
8. return Ek and αk (k = 1, . . . , KM)

To classify a new test point x̂, AdaBoost computes a weighted sums of the
outputs (or hypotheses) hk(x̂) by the classifier Fk:

F(x̂) =
KM∑
k=1

αkhk(x̂). (8.65)

In the case of binary classification, the decision rule is given by sgn(F(x̂),
where sgn(·) is the signum function.

Finally, we remark that Adaboost algorithm with some ad hoc modifica-
tions can be applied to regression problems [16].

Feature-Based Methods

When the input vectors x contain a high number of redundant features, the
diversity can be obtained by using different feature subsets to train the ensem-
ble classifiers. The literature reports few examples of such a technique [6][45]

204 8 Supervised Neural Networks and Ensemble Methods

and the results seem to suggest that cannot be applied for small feature sets.
In fact, in such a case the removal of certain features can lead to classifiers
with a recognition rate below 50% (see Section 8.9.1 for the consequences).

Target-Based Methods

The labels of the training samples are a further source of diversity. A method
called error-correcting output code [12] splits the data classes into two groups
Al and Bl and builds a binary classifier hl(x) capable of assigning an input
vector to one of the two class groups. The process is repeated L times resulting
into an ensemble of classifiers. Each time a classifier hl(x) assigns an input
vector to a class group, then all the classes into such group receive one vote.
Once the output of all hl(x) classifiers is available, the class that has received
the highest number of votes is taken as output of the ensemble.

8.10 Conclusions

In this chapter we have described the most popular supervised neural network,
the Multilayer Perceptron. We have presented a Learning Vector Quantiza-
tion, which is a prototype-based classifier method quite effective in real time
applications. We also review ensemble methods focusing on the ones for the
classification task. Finally, we provide some bibliographical remarks. A fun-
damental work, for its historical value, on neural networks is [42]. Multilayer
Perceptron is discussed in detail in [13][18][20][33]. A milestone in the lit-
erature on MLP is [1]. Backpropagation was historically introduced in [46]
but it was fully discussed in [41]. Learning vector quantization is discussed
in [24]. A bibliography on learning vector quantization can be found in [35].
Finally, a comprehensive survey of the ensemble methods is [26], where an
entire monography is devoted to the topic.

Problems

8.1. Show that for the LDF corresponding to Equation (8.10), the distance of
a point with respect to the surface y(x) = 0 is y(x)/||w||.
8.2. Find the on-line gradient descent update rules for an MLP where hidden
nodes have the logistic sigmoid as activation function, the output nodes have
a linear activation function and the loss function is the quadratic loss (see [1]
for the solution).

8.3. Find the on-line gradient descent update rules for an MLP when the loss
function is the cross-entropy.

8.10 Conclusions 205

8.4. Using the maximum likelihood principle, prove that if the joint distribu-
tion (y, t) is multinomial then the loss function is the cross-entropy.

8.5. Use the Torch package (www.torch.ch) to implement, train and test a
multilayer perceptron. If you have no data at disposition, you can find several
interesting benchmarks at the following URL:

http://www.ics.uci.edu/∼mlearn/MLRepository.html
8.6. Demonstrate that, if the mi(x) are statistically independent, then:

E [(
1
N

N∑
i=1

mi(x))2] =
1

N2
E [

N∑
i=1

m2
i (x)] (8.66)

(see Appendix A for help).

8.7. Use the LVQ PAK package to classify the same data used in Problem 8.5.
Compare the results obtained by the two classifiers. Do the classifiers perform
different errors? What is the percentage of cases where both classifiers are
correct? And what the percentage of cases where only one of the two classifiers
is wrong?

8.8. Train an MLP using different initializations for the weights. Use the re-
sulting networks to build an ensemble and measure the improvement with
respect to the best and the worse single MLP (for the data see Problem 8.5).

8.9. Consider the Iris Plant data set that can be found in the repository
introduced in problem 8.5. The data set contains 150 four dimensional samples
belonging to three different classes. Implement and train an autoassociative
MLP (i.e. an MLP that has the same vector as input and output) with two
hidden nodes and, after the training, plot the output of the hidden nodes in a
two dimensional scatter-plot. Can you still observe the clusters corresponding
to the three classes? If you use the output of the hidden nodes as input to a
classifier, do you obtain the same classification performance as when you use
the original four dimensional vectors?

8.10. Create an ensemble of neural networks using the Error-correcting output
code approach (see Section 8.9.2).

References

1. C. Bishop. Neural Networks for Pattern Recognition. Oxford University Press,
1996.

2. H. Bourlard and Y. Kamp. Auto-association by Multi-Layer Perceptron and
Singular Value Decomposition. Biological Cybernetics, 59:291–294, 1988.

3. L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.
4. L. Breiman. Arcing classifiers. The Annals of Statistics, 26(3):801–824, 1998.
5. F. Camastra and A. Vinciarelli. Cursive character recognition by learning vector

quantization. Pattern Recognition Letters, 22(6-7):625–629, 2001.
6. K.J. Cherkauer. Human expert-level performance on a scientific image analysis

task by a system using combined Artificial Neural Networks. In Working Notes
of the AAAI Workshop on Integrating Multiple Learned Models, pages 15–21,
1996.

7. R. Collobert, S. Bengio, and J. Mariethoz. Torch: a modular machine learning
software library. Technical Report IDIAP-RR-02-46, IDIAP Research Institute,
2002.

8. K. Crammer, R. Gilad-Bachrach, A. Navot, and N. Tishby. Margin analysis
of the LVQ algorithm. In Advances in Neural Information Processing Systems,
volume 14, pages 109–114, 2002.

9. G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathe-
matics of Control, Signals and Systems, 2:303–314, 1989.

10. T. Dietterich. Ensemble methods in machine learning. In Proceedings of 1st

International Workshop on Multiple Classfier Systems, pages 1–15, 2000.
11. T.G. Dietterich. Ensemble learning. In M. Arbib, editor, The handbook of brain

theory and neural networks. MIT Press, 2002.
12. T.G. Dietterich and G. Bakiri. Solving multiclass learning problems via error-

correcting output codes. Journal of Artificial Intelligence Research, 2:263–286,
1995.

13. R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. John Wiley,
2001.

14. B. Efron and R. J. Tibshirani. An Introduction to the Bootstrap. Chapman and
Hall, 1993.

15. Y. Freund and R.E. Schapire. Experiments with a new boosting algorithm. In
International Conference in Machine Learning, pages 138–146, 1996.

208 References

16. Y. Freund and R.E. Schapire. A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of Computer and System Sci-
ences, 55(1):119–139, 1997.

17. B. Hammer and T. Villmann. Generalized relevance learning vector quantiza-
tion. Neural Networks, 15(8-9):1059–1068, 2002.

18. S. Haykin. Neural Networks: a comprehensive foundation. Prentice-Hall, 1998.
19. R. Hecht-Nielsen, editor. Neurocomputing. Addison-Wesley, 1990.
20. J. Hertz, A. Krogh, and R.G. Palmer, editors. Introduction to the Theory of

Neural Computation. Addison-Wesley, 1991.
21. K. Hornik, M. Stinchcombe, and H. White. Multi-Layer feedforward networks

are universal approximators. Neural Networks, 2(5):359–366, 1989.
22. A.K. Jain, J. Mao, and K.M. Mohiuddin. Artificial neural networks: a tutorial.

IEEE Computer, pages 31–44, 1996.
23. J. Kittler, M. Hatef, R.P.W. Duin, and J. Matas. On combining classifiers.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(3):226–
239, 1998.

24. T. Kohonen. Self-Organizing Maps. Springer-Verlag, 1997.
25. T. Kohonen, J. Hynninen, J. Kangas, J. Laaksonen, and K. Torkkola. Lvq pak:

the Learning Vector Quantization program package. Technical Report A30,
Helsinki University of Technology - Laboratory of Computer and Information
Science, 1996.

26. L. Kuncheva. Combining Pattern Classifiers. Wiley-Interscience, 2004.
27. J.L. McClelland, G.E. Hinton, and D.E. Rumelhart. A general framework for

parallel distributed processing. In J.L. McClelland and Rumelhart, editors,
Parallel Distributed Processing, volume Vol. 1: Foundations, pages 45–76. MIT
Press, 1986.

28. J.L. McClelland, D.E. Rumelhart, and G.E. Hinton. The appeal of a parallel
distributed processing. In J.L. McClelland and Rumelhart, editors, Parallel
Distributed Processing, volume Vol. 1: Foundations, pages 3–44. MIT Press,
1986.

29. W.S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in
nervous activity. Bulletin of Mathematical Biophysics, 9:127–147, 1943.

30. E. McDermott and S. Katagiri. Prototype-based minimum classification er-
ror/generalized probabilistic descent training for various speech units. Computer
Speech and Languages, 8(4):351–368, 1994.

31. D.A. Medler. A brief hostory of connectionism. Neural Computing Surveys,
1:61–101, 1998.

32. M.L. Minsky and S.A. Papert. Perceptrons. MIT Press, 1969.
33. T. Mitchell. Machine Learning. Mc Graw-Hill, 1997.
34. J. Nolte. The human brain: an introduction to its functional anatomy. Mosby,

2002.
35. M. Oja, S. Karski, and T. Kohonen. Bibliography of self-organizing map papers:

1998-2001 addendum. Neural Computing Surveys, 3:1–156, 2002.
36. D. Opitz and R. Maclin. Popular ensemble methods: an empirical study. Journal

of Artificial Intelligence Research, 11:169–198, 1999.
37. B. Parmanto, P.W. Munro, and H.R. Doyle. Improving committee diagnosis

with resampling techniques. In Advances in Neural Information Processing Sys-
tems, volume 8, pages 882–888, 1996.

References 209

38. M.P. Perrone and L.N. Cooper. When networks disagree: ensemble methods for
hybrid neural networks. In R.J. Mammone, editor, Artificial Neural Networks
for speech and vision, pages 126–142. Chapman & Hall, 1993.

39. F. Rosenblatt. Principles of neurodynamics: perceptrons and the theory of vrain
mechanisms. Spartan, 1961.

40. D.E. Rumelhart, G.E. Hinton, and R.J. Williams. Learning internal representa-
tions by error propagation. In J.L. McClelland and Rumelhart, editors, Parallel
Distributed Processing, volume Vol. 1: Foundations, pages 318–362. MIT Press,
1986.

41. D.E. Rumelhart, G.E. Hinton, and R.J. Williams. A decision-theoretic general-
ization of on-line learning and an application to boosting. Journal of Computer
and System Sciences, 55(1):119–139, 1997.

42. D.E. Rumelhart and J.L. McClelland, editors. Parallel Distributed Processing.
MIT Press, 1986.

43. A. S. Sato and K. Yamada. Generalized learning vector quantization. In Ad-
vances in Neural Information Processing Systems, volume 7, pages 423–429,
1995.

44. R. E. Schapire. The strength of weak learnability. Machine Learning, 5(2):197–
227, 1990.

45. K. Tumer and J. Ghosh. Error correlation and error reduction in ensemble
classifiers. Connection Science, 8(3-4):385–404, 1996.

46. P. J. Werbos. Beyond regression: New tools for prediction and analysis in the
behavioral sciences. Technical report, Harvard University, Ph. D. Dissertation,
1974.

47. B. Widrow and M.E. Hoff. Adaptive switching circuits. In Convention Record
of the Institute of Radio Engineers, Western Electronic Show and Convention,
pages 96–104. Institute for Radio Engineers, 1960.

9

Kernel Methods

What the reader should know to understand this chapter

• Notions of calculus.
• Chapters 5, 6, and 7.
• Although the reading of Appendix D is not mandatory, it represents an

advantage for the chapter understanding.

What the reader should know after reading this chapter

• Support vector machines for classification and regression.
• Gaussian Processes.
• Kernel PCA.
• Kernel fisher discriminant.
• One class SVM.
• Kernel and spectral methods for clustering.

9.1 Introduction

Kernel methods are algorithms which allow to project implicitly the data in
a high-dimensional space. The use of kernel functions to make computations
was introduced by [1] in 1964. Two decades later several authors [60][68][70]
proposed a neural network, radial basis function (RBF), based on the kernel
functions which was widely used in many applicative fields. Since 1995 kernel
methods have conquered a fundamental place in machine learning when sup-
port vector machines (SVM s) were proposed. In several applications, SVMs
have showed better performances in comparison with other machine learning
algorithms. SVM strategy can be summarized in two steps. In the first step the
data are projected implicitly onto a high-dimensional space by means of the
kernel trick [74] which consists of replacing the inner product between data
vectors with a kernel function. The second step consists of applying a linear

212 9 Kernel Methods

Fig. 9.1. Data in the input space (at left of the arrow) and their projections in a
new space (at right of the arrow).

classifier to the projected data. Since a linear classifier can solve a very lim-
ited class of problems, the kernel trick is used to enpower the linear classifier,
making SVM capable of solving a larger class of problems.

The enormous success of SVMs has induced the researchers to extend the
SVM strategy to other existing algorithms, i.e. using the kernel trick to en-
power learning algorithms, already present in the literature, improving their
performances. Therefore with the term kernel methods we generally indicate
algorithms that use the kernel trick. The basic idea of kernel methods consists
in looking for an appropriate mapping of data such that it is easier to process
the projected data. To illustrate this concept, we consider Figure 9.1. The
data in the input space are not linearly separable (see Chapter 7), i.e. there
does not exist a line1 that separates black disks from white circles. However,
if we choose an appropriate mapping then the data projections are linearly
separable and can be processed by a linear classifier (e.g. a linear discrimi-
nant).

The aim of this chapter is to propose an overview of the main kernel
methods, neglecting, for sake of space, those algorithms, like the radial basis
function, which are not popular in machine learning community anymore. The
chapter is organized as follows: Section 9.2 describes the basic tools of the op-
timization theory used in the kernel methods. Sections 9.3 and 9.4 are devoted
to support vector machines for classification. Section 9.5 introduces Support
Vector Machines for Regression. Section 9.6 describes Gaussian processes ex-
ploring their connections with support vector machines. Sections 9.7 and 9.8
present respectively the kernel Fisher discriminant and the kernel PCA. Sec-
tion 9.9 discusses the support vector machine, the so-called one-class SVM,
when the data are only formed by positive examples. Section 9.10 is devoted
to kernel and the spectral method for clustering. Section 9.11 reviews the main
public domain software packages that implement kernel methods. Finally, in
Section 9.12 some conclusions are drawn.

1 If the input dimensionality is higher than 2, the line has to be replaced with a
plane or a hyperplane.

9.2 Lagrange Method and Kuhn Tucker Theorem 213

9.2 Lagrange Method and Kuhn Tucker Theorem

In this section we describe the basic tools of the optimization theory used in
the costruction of the kernel methods. The first method for solving optimiza-
tion problems, the Fermat optimization theorem, was discovered in 1629 and
published 50 years later [26]. The Fermat optimization theorem provides a
method for finding the minimum or the maximum of functions defined in the
entire space, without constraints. We only state the theorem, omitting the
proof for the sake of brevity.

Theorem 14 (Fermat) Let f be a function of n variables differentiable at
the point x�. If x� is a point of local extremum of the function f(x), then the
differential of the function in the point in the point x� Df(x�) is

Df(x�) = 0, (9.1)

which implies
∂f(x�)

∂x1
=

∂f(x�)
∂x2

= · · · =
∂f(x�)
∂xn

= 0. (9.2)

A point for which Equation (9.1) holds is called a stationary point . Fermat
optimization theorem provides a method for finding the stationary points of
functions. The method consists in solving the system (9.2) of n equations with
n unknown values x� = (x�

1, x
�
2, . . . , x

�
n).

9.2.1 Lagrange Multipliers Method

The next step in the optimization theory was done by [49] in 1788 who provides
a method for solving the optimization problem with constraints (conditional
optimization problem). The conditional optimization problem consists in min-
imizing (or maximizing) the function f , f : Rn → R under m constraints

g1(x) = g2(x) = · · · = gm(x) = 0. (9.3)

We consider only functions gr, r = 1, . . . , m that possess some differentiability
properties. We assume that in the subset X of the space Rn all functions gr

and their partial derivatives are continous. We have the following definition:

Definition 20 Let X ⊆ Rn be and f : Rn → R. We say that x� ∈ X is
a point of local minimum in the problem of minimizing f under constraints
(9.3) if there exists ε > 0 such that ∀x that satisfy (9.3) and

‖x − x�‖ < ε (9.4)

the inequality
f(x) ≥ f(x�) (9.5)

holds.

214 9 Kernel Methods

The definition of maximum is analogous.
Now we pass to define the function L (Lagrangian), as follows:

L(x, λ, λ0) = λ0f(x) +
m∑

k=1

λkgk(x), (9.6)

where the real values λ0, λ1, . . . , λm are called Lagrange multipliers. The fol-
lowing theorem was proven by [49], whose proof is omitted for the sake of the
brevity.

Theorem 15 (Lagrange) Let the functions gk(x), k = 0, 1, . . . , m be con-
tinuous and differentiable in a vicinity of x�. If x� is the point of a local
extremum, then one can find Lagrange multipliers λ� = (λ�

1, λ
�
2, . . . , λ

�
m) and

λ�
0 which are not equal to zero simultaneously such that the differential of the

Lagrangian DL(x�, λ�, λ�
0) is null (stationary condition), i.e.

DL(x�, λ�, λ�
0) = 0. (9.7)

That implies

∂L(x�, λ�, λ�
0)

∂xi
= 0 i = 1, 2, . . . , n. (9.8)

To guarantee thatλ0
= 0 it is sufficient that them vectors Dg1(x�), Dg2(x�), . . . ,
Dgm(x�) are linearly independent. Where Dgi(x�) stands, respectively, for the
differential of gi(x�) (i=1, . . . , m).

Therefore to find the stationary point x� the system formed by the following
n + m equations

∂

∂xi

(
λ0f(x) +

m∑
k=1

λkgk(x)

)
= 0 (i = 1, . . . , n) (9.9)

g1(x) = g2(x) = · · · = gm(x) = 0 (9.10)

must be solved.
The system has n+m equations with n+m+1 unknown values. Therefore

the system is indeterminate, i.e has infinite solutions.2 However Lagrange
multipliers are defined with accuracy up to a common multiplier.

If λ0
= 0 then one can multiply all Lagrange multipliers by a constant to
obtain λ0 = 1. Hence the number of equations becomes equal to the number
of unknowns. The system assumes the final form:

∂

∂xi

(
f(x) +

m∑
k=1

λkgk(x)

)
= 0. (9.11)

g1(x) = g2(x) = · · · = gm(x) = 0. (9.12)
2 The number of solutions is (at least) ∞1.

9.2 Lagrange Method and Kuhn Tucker Theorem 215

9.2.2 Kuhn Tucker Theorem

In 1951 an extension of the Lagrange method to cope with constraints of
inequality type was suggested by [48]. A solution, the Kuhn Tucker theorem, to
the convex optimization problem, i.e. to minimize a convex objective function
under certain convex constraints of inequality type, was proposed.

We recall the concept of convexness.

Definition 21 The set A is called convex if ∀x, y it contains the interval

[x, y] = {z : z = αx + (1 − α)y, 0 ≤ α ≤ 1} (9.13)

that connects these points.

Definition 22 The function f is called convex if ∀x, y the inequality (Jensen
inequality)

f(αx + (1 − α)y) ≤ αf(x) + (1 − α)f(y), 0 ≤ α ≤ 1 (9.14)

holds true.

We consider the following convex optimization problem:

Problem 2 Let X be a linear space, let A be a convex subset of this space,
and let f(x) and gk(x), k = 1, . . . , m be convex functions.

Minimize the function f(x) subject to the constraints

x ∈ A (9.15)
gk(x) ≤ 0 k = 1, . . . , m. (9.16)

To solve this problem we consider the Lagrangian function

L(x, λ, λ0) = λ0f(x) +
m∑

k=1

λkgk(x) (9.17)

where λ = (λ1, . . . , λn).
We have the following theorem.

Theorem 16 (Kuhn Tucker) If x� minimizes the function f(x) under con-
straints (9.15) and (9.16), then exist Lagrange multipliers λ�

0 and λ� =
(λ�

1, . . . , λ
�
m) that are simultaneously not equal to zero and such that the fol-

lowing three conditions hold true:

1. The minimum principle

min
x∈A

L(x, λ�
0, λ

�). (9.18)

2. The non-negativeness conditions

λ�
k ≥ 0 k = 0, 1, . . . , m. (9.19)

216 9 Kernel Methods

3. The Kuhn Tucker conditions (or Karush-Kuhn Tucker conditions)

λ�
k gk(x�) = 0, k = 1, . . . , m. (9.20)

If λ0
= 0 then conditions (1), (2) and (3) are sufficient conditions for x� to
be the solution of the optimization problem.

To get λ0
= 0, it is sufficient that exists x̂ such that the following conditions
(Slater conditions)

gi(x̂) < 0, i = 1, . . . , m (9.21)

holds.

This corollary follows from the Kuhn Tucker theorem.

Corollary 2 If the Slater conditions are satisfied, then one can choose λ0 = 1
and rewrite the Lagrangian in the form

L(x, 1, λ) = f(x) +
m∑

k=1

λkgk(x). (9.22)

Now the Lagrangian is defined as a function of n+m variables and conditions
of the Kuhn Tucker theorem are equivalent to the existence of a saddle point
(x�, λ�) of the Lagrangian, i.e.

min
x∈A

L(x, 1, λ�) = L(x, 1, λ�) = max
λ>0

L(x, 1, λ�). (9.23)

Proof. The left equality of (9.23) follows from conditions (1) of the Kuhn
Tucker Theorem and the right equality follows from conditions (3) and (2) of
the same theorem.

Lagrange Methods and Kuhn Tucker are the basic optimization tools of the
kernel methods further described in the book.

9.3 Support Vector Machines for Classification

In this section we describe the most popular kernel method, the support vector
machines (SVM) for classification. For the sake of the simplicity, we consider
a problem of the binary classification, that is the training set has only two
classes.

Let D be a training set formed by � patterns pi. Each pattern pi is a
couple of values (xi, yi) where the first term xi (xi ∈ Rn) is called input and
the second term (output) yi can assume only two possible discrete values,
that we fix conventionally at +1 and −1. The patterns with output +1 are
called positive patterns, while the others are called negative patterns. Finally,

9.3 Support Vector Machines for Classification 217

Fig. 9.2. A binary classification problem: to separate circles from disks. The optimal
hyperplane is orthogonal to the shortest line connecting the convex hulls of the two
classes and intersects it halfway between the two classes.

we assume that each pattern pi has been generated according to a unknown
probability distribution P (x, y).

The problem of learning how to classify the patterns correctly consists in
estimating a function f : Rn → ±1 using training set patterns

(x1, y1), . . . , (x�, y�) ∈ Rn ×±1 (9.24)

such that f will correctly classify unseen examples (x, y), i.e. f(x) = y for
examples (x, y) generated from the same probability distribution P (x, y) of
the training set. The patterns (xi, yi) are usually assumed to be i.i.d i.e.
identically independent distributed.

The underlying idea of SVM is the optimal hyperplane algorithm.

9.3.1 Optimal Hyperplane Algorithm

The class of hyperplanes

w · x + b = 0 w,x ∈ Rn, b ∈ R (9.25)

218 9 Kernel Methods

corresponding to decision functions3

f(x) = sgn(w · x + b) (9.26)

was widely discussed by [88][87]. They proposed a learning algorithm, the
generalized portrait for linearly separable problems, that computed f from
empirical data.

Besides, they observed that among all hyperplanes separating the data,
there exists a unique one, the optimal hyperplane, yielding the maximum mar-
gin of separation between the classes

max
w,b

min(‖x − xi‖ : x ∈ Rn, w · x + b = 0, i = 1, . . . , �). (9.27)

To compute the Optimal Hyperplane the following optimization problem has
to be solved:

min
w

1
2
‖w‖2 (9.28)

subject to yi((w · xi) + b) ≥ 1 i = 1, . . . , �. (9.29)

This conditional optimization problem can be solved by introducing Lagrange
multipliers αi ≥ 0 and a Lagrangian function (see Section 9.2) L

L(w, b,α) =
1
2
‖w‖2 −

�∑
i=1

αi((xi · w) + b) − 1 (9.30)

where4 α = (α1, . . . , α�).
The Lagrangian L has to be minimized with respect to the primal variables

w and b and maximized with respect to the dual variables αi, i.e. a saddle
point has to be found. The optimization problem can be solved by means of
the Kuhn Tucker theorem (see Section 9.2). The Kuhn Tucker theorem implies
that the condition at the saddle point, the derivatives of L with respect to the
primal variables must vanish,

∂L(w, b,α)
∂b

= 0,
∂L(w, b,α)

∂w
= 0 (9.31)

which leads to
�∑

i=1

αiyi = 0 (9.32)

and

w =
�∑

i=1

αiyixi. (9.33)

3 The function signum sgn(u) is defined as follows: sgn(u) = 1 if u > 0; sgn(u) =
−1 if u < 0; sgn(u) = 0 if u = 0.

4 This convention is adopted in the rest of the chapter.

9.3 Support Vector Machines for Classification 219

Hence the solution vector w is an expansion in terms of a subset of the training
set patterns, namely those patterns whose αi are
= 0. These patterns are
called support vectors (SV).

The Kuhn Tucker theorem implies that αi must satisfy the Karush-Kuhn
Tucker (KKT) conditions

αi · [yi(xi · wi) + b) − 1] = 0 i = 1, . . . , �. (9.34)

These conditions imply that the support vectors lie on the margin. All re-
maining samples of the training set are irrelevant for the optimization since
their αi is null. This implies that the hyperplane is completely determined by
the patterns closest to it, the solution should not depend on other patterns of
the training set. Therefore (9.33) can be written as

w =
�∑

αi∈SV

αiyixi. (9.35)

Plugging (9.32) and (9.33) into L, one eliminates the primal variables and the
optimization problem becomes:

max
α

�∑
i=1

αi − 1
2

�∑
i,j=1

αiαjyiyj(xi · xj) (9.36)

subject to αi ≥ 0 i = 1, . . . , � (9.37)
�∑

i=1

αiyi = 0. (9.38)

Therefore the hyperplane decision function can be written as

f(x) = sgn

(
�∑

i=1

αiyi(xi · xj) + b

)
. (9.39)

The optimal hyperplane algorithm can just solve linear problems. It cannot
solve simple nonlinear problems as XOR, how underlined by [59]. In order to
build a classifier that can solve nonlinear problems one has to find a method
to perform the optimal hyperplane algorithm in a feature space nonlinearly
related to the input space [1]. To this purpose, we recall the definition of
Mercer kernel [5] (see Appendix D).

Definition 23 Let X be a nonempty set. A function G : X×X → R is called
a Mercer kernel (or positive definite kernel) if and only if is symmetric (i.e

G(x, y) = G(y, x) ∀x, y ∈ X) and
n∑

j=1

n∑
k=1

cjckG(xj , xk) ≥ 0 for all n ≥ 2,

x1, . . . , xn ⊆ X and c1, . . ., cn ⊆ R.

220 9 Kernel Methods

An example of the the Mercer kernel is the Gaussian G(x,y) = exp(−‖x−y‖2

σ2)
where σ ∈ R, x,y ∈ Rn.

The Mercer theorem (see Appendix D) states that Mercer kernels permit
performing scalar products in feature spaces that are nonlinearly related to
the input space. In particular, each Mercer kernel K(x, y), K : X × X → R

can be written as
K(x, y) = (Φ(x) · Φ(y)) (9.40)

where Φ : X → F , F is called the feature space.
Hence it is adequate to substitute in the formula (9.39) the inner prod-

uct (xi · xj) with the Kernel K(xi,xj) to perform the optimal hyperplane
algorithm in the feature space F . This method is called the kernel trick [77].

9.3.2 Support Vector Machine Construction

To construct a SVM, an optimal hyperplane in some feature space has to be
computed. Hence it is sufficient to substitute each training example xi with
its corresponding image in the feature space Φ(xi). The weight vector (9.33)
becomes an expansion of vectors in the seature space

w =
�∑

i=1

αiyiΦ(xi). (9.41)

Hence the weight vector is not directly computable when the mapping Φ is
unknown. Since Φ(xi) occur only in scalar products, scalar products can be
substituted by an appropriate Mercer kernel K, leading to a generalization of
the decision function (9.39)

f(x) = sgn

(
�∑

i=1

αiyi(Φ(xi) · Φ(xj)) + b

)

= sgn

(
�∑

i=1

αiyiK(xi,xj) + b

)
(9.42)

and the following quadratic problem to optimize:

max
α

�∑
i=1

αi − 1
2

�∑
i,j=1

αiαjyiyj K(xi,xj) (9.43)

subject to αi ≥ 0 i = 1, . . . , � (9.44)
�∑

i=1

αiyi = 0. (9.45)

In real-world problems due to the presence of noise, some mislabelled samples
may exist and classes may be partially overlapped. Therefore it is necessary

9.3 Support Vector Machines for Classification 221

to allow the possibility that some examples can violate (9.29). In order to get
that, we introduce slack variables [17][85]

ξi ≥ 0 i = 1, . . . , �. (9.46)

The slack variable ξi is strictly positive when the respective sample xi violates
Equation (9.29); otherwise it is null. Using slack variables we can relax the
constraints in the following way:

yi · ((w · xi) + b) ≥ 1 − ξi i = 1, . . . , �. (9.47)

Therefore the constructed classifier, support vector machine, allows us to con-
trol at the same time the margin (‖w‖) and the number of training errors,
given by the number of ξi
= 0, by means of the minimization of the objective
function:

τ(w, ξ) =
1
2
‖w‖2 + C

�∑
i=1

ξi (9.48)

subject to the constraints of (9.46) and (9.47). In Equation (9.48) ξ stands for
ξ = (ξ1, . . . , ξ�). The parameter C ≥ 0, called regularization constant ,5 allows
us to manage the trade-off between the number of the errors and the margin
of hyperplane.

Plugging the constraints in (9.48) and rewriting in terms of Lagrange mul-
tipliers, we obtain the following problem to maximize

max
α

=
�∑

i=1

αi − 1
2

�∑
i,j=1

αiαjyiyjK(xi,xj) (9.49)

subject to 0 ≤ αi ≤ C i = 1, . . . , � (9.50)
�∑

i=1

αiyi = 0. (9.51)

The only difference from the separable case is the upper bound C on the
Lagrange multipliers αi. As in the separable case, the decision assumes the
form (9.42) The threshold b can be computed by exploiting the fact that for
all SVs xi with αi < C, the slack variable ξi is zero, therefore

�∑
i=1

yjαj K(xi,xj) + b = yi. (9.52)

The solution of the system formed by Equations (9.49), (9.50), and (9.51)
requires quadratic programming (QP) techniques, which are not always effi-
cient. However, it is possible to use in SVMs different approaches that do not
require QP techniques.
5 The term regularization constant is motivated in Section 9.3.6.

222 9 Kernel Methods

A Linear Programming Approach to Classification

Instead of using quadratic programming it is also possible to derive a kernel
classifier in which the learning task involves linear programming (LP) instead.
Whereas in the quadratic programming approach we look for the hyperplane
that maximizes the margin (the optimal hyperplane), in this approach we
look for the sparsest separating hyperplane [19] without considering the mar-
gin. An approximate solution [19] to this problem can be obtained replacing

in the equation (9.48), the term 1
2‖w‖2 with

�∑
i=1

αi. If we repeat the same

computational strategy that we have adopted in the case of the Optimal Sep-
arating Hyperplane, after having introduced the slack variables and the kernel
trick, we obtain the following linear optmization problem:

min
α,ξ

[
�∑

i=1

αi + C

�∑
i=1

ξi

]
(9.53)

yi

⎡⎣ �∑
j=1

αiK(xi,xj) + b

⎤⎦ ≥ 1 − ξi (9.54)

where αi ≥ 0 and ξi ≥ 0 for i = (1, . . . , �).
Since an efficient technique, the simplex method [47], is available for solv-

ing linear programming problems this approach is a practical alternative to
conventional SVMs based on QP approaches. This linear programming ap-
proach [54] evolved independently of the QP approach to SVMs. It is also
possible to handle multiclass problems using linear programming techniques
[94].

9.3.3 Algorithmic Approaches to Solve Quadratic Programming

The methods we have considerated have involved linear or quadratic program-
ming. Linear programming can be implemented using the simplex method. LP
packages are included in the most popular mathematical software packages.

For quadratic programming there are also many appliable techniques in-
cluding conjugate gradient and primal-dual interior point methods [52]. Cer-
tain QP packages are readily appliable such as MINOS and LOQO. These
methods can be used to train an SVM rapidly but they have the disadvantage
that the � × � matrix K(xi,xj) (Gram matrix) is stored in the memory. For
small datasets this is possible, but for large datasets alternatives techniques
have to be used. These techniques can be grouped into three categories: tech-
niques in which kernel components are evaluated and discarded during learn-
ing, working set methods in which an evolving subset of data is used, and new
algorithms that explicitly exploit the structure of the problem.

9.3 Support Vector Machines for Classification 223

For the first category the most obvious approach is to sequentially update
the αi and this is the approach used by the kernel adatron algorithm (KA)
[33].

For binary classification, with no soft margin or bias, this is a simple
gradient ascent procedure on (9.49) in which αi ≥ 0 initially and the αi are
subsequently sequentially updated using

αi ← βiθ(βi) (9.55)

where

βi = αi + η

⎡⎣1 − yi

�∑
j=1

αjK(xi,xj)

⎤⎦ (9.56)

and θ(β) is the Heaviside step function.6

The optimal learning rate η is

1
K(xi,xi)

. (9.57)

A sufficient condition for the convergence is 0 < ηK(xi,xi) < 2.
Although KA is not fast as most QP routines, it is very easy to implement

and it is quite useful for teaching purposes.

Chunking and Decomposition

Rather than sequentially updating the αi the alternative is to update the αi

in parallel but using only a subset or chunk of data at each stage. Thus a
QP routine is used to optimize the Lagrangian on an initial arbitrary subset
of data. The support vectors found are retained and all other datapoints
(with αi = 0) discarded. A new working set of data is then derived from these
support vectors and additional datapoints which maximally violate the storage
constraints. This chunking [63] process is then iterated until the margin is
maximized. This procedure may still fail because the dataset is too large
or the hypothesis modelling the data is not sparse, i.e. most αi are non-
null. In this case decomposition [64] methods provide a better approach: these
algorithms only use a fixed size subset of data with the αi for the remainder
kept fixed. It is worth mentioning that SVM packages such as SVMTorch [15]
and SVMLight [41] use working set methods.

9.3.4 Sequential Minimal Optimization

The most popular decomposition method is the sequential minimal optimiza-
tion (SMO) algorithm [66]. Several SVM packages are based on SMO or on
its variants. In SMO only two αi are optimized at each iteration. If only two
6 θ(β) is 1 if β > 0, 0 otherwise.

224 9 Kernel Methods

parameters are optimized and the rest kept fixed then it is possible to derive
an analytical solution which can be executed using few numerical operations.
SMO is closely related to a group of optimization algorithms known as the
Bregman methods [8] and the row-action methods [12][13]. We pass to describe
the SMO algorithm and we fix the notation. All quantities related to the first
multiplier have the subscript 1, whereas the quantities related to the second
multiplier have the subscript 2. Since the multipliers are two, the multiplier
constraints can be easily represented in a graphical way. The constraint implies
that Lagrangian multipliers are included in a box, whereas the linear equality
constraint force that Lagrange multipliers lie on a diagonal line. Hence the
constrained maximum of the cost function must lie on the diagonal line. We
first compute the second multiplier α2 and we express the diagonal line ends
in terms of α2. If y1 and y2 are not equal the constrained maximum lies on
the line α1 − α2 = Λ hence α2 must satisfy the following inequalities:

M = max(0, α2 − α1); N = min(C,C + α2 − α1). (9.58)

On the other hand, if y1 and y2 are equal, the maximum lies on the line
α1 + α2 = Λ hence α2 must satisfy the following inequalities:

M = max(0, α2 + α1 − C); N = min(C,α2 + α1). (9.59)

Now we pass to compute the constrained maximum of the cost function. If
we derive the cost function (see Exercise 5) we obtain the following updating
rule for the second multiplier.

α2(t + 1) = α2(t) − y2(E1 − E2)
2K(x1,x2) − K(x1,x1) − K(x2,x2)

(9.60)

where Ei = f(xi − yi) and α2(t), α(t) indicates the preceeding (old) and the
updated value (new) value of the multiplier. This rule is also called uncon-
strained maximum updating rule. The constrained maximum can be found by
limitating the unconstrained maximum to the segment ends. Thus we obtain:

α′
2(t + 1) =

⎧⎨⎩
N if α2(t + 1) ≥ N
α2(t + 1) if M < α2(t + 1) < N
M if α2(t + 1) ≤ M.

⎫⎬⎭ (9.61)

The updated value α′
1(t + 1) of the other multiplier can be easily obtaining

remembering that the following relation, where s = y1y2, has to be fulfill:

α′
1(t + 1) + sα′

2(t + 1) = α1(t) + sα2(t + 1) (9.62)

Therefore we obtain:

α′
1(t + 1) = α1(t) + s(α2(t) − α′

2(t + 1)) (9.63)

9.3 Support Vector Machines for Classification 225

Strategies for Choosing Multipliers to Optimize

SMO uses heuristic strategies to pick the multipliers to optimize. SMO im-
plement two different strategies to choose the first and the second multiplier.
The choice of the first multiplier (first choice multiplier) represents the outer
loop of the algorithm and makes the scanning of the whole training set look-
ing for the examples which do not fulfills the KKT conditions. When such an
example is found it is adopted as a candidate for optimization and it starts
the search for the second multiplier. The choice of the second multiplier (sec-
ond choice multiplier) is performed in order to maximize the step during joint
optimization. In particular, SMO computes the quantity |E1 − E2|. If E1 is
positive the example with minimum value E2 is selected. On the other hand,
if E1 is negative the example with maximum value E2 is picked.

In order to make the SMO algorithm faster, the KKT conditions are re-
laxed. KKT conditions are fulfilled with an accuracy of ε which generally
assumes values such as 10−2 or 10−3. Besides, further refinements of the SMO
algorithm have been refined with the aim of improving its speed [45]. Fi-
nally, we conclude this section showing how the threshold b of the SVM can
be computed using SMO. After each optimization step, the threshold has to
be computed since the KKT conditions must be satisfied by the optimized
samples. With some algebra it can obtain the following expression for the
threshold b1(t + 1)

b1(t + 1) = E1 + y1(α1(t + 1) − α1(t))K(x1,x1)
+y2(α′

2(t + 1) − α2(t))K(x1,x2) + b(t) (9.64)

which is valid when the multiplier α1 is not at the bound.
Whereas the multiplier α2 is not at the bound, the following expression

holds:

b2(t + 1) = E2 + y1(α1(t + 1) − α1(t))K(x1,x2)
+y2(α′

2(t + 1) − α2(t))K(x2,x2) + b(t) (9.65)

The thresholds b1(t + 1) and b2(t + 1) are equal when they are valid. Finally,
when both multipliers are at bound and if M and N are not equal, SMO select
as new threshold the mean between b1(t + 1) and b2(t + 1).

9.3.5 Other Optimization Algorithms

Alternative optimization approaches have been developed. Keerthi et al. [46]
have proposed a very effective binary classification algorithm based on the
dual geometry of finding the two closest points in the convex hulls. These
approaches have been particularly effective for linear SVM problems.

The Lagrangian SVM (LSVM) method of Mangasarian and Musicant [55]
reformulates the classification problem as an unconstrained optimization task
and then solves the problem using an algorithm which only requires the solu-
tion of systems of linear equalities. LSVM uses a method based on the Sherman

226 9 Kernel Methods

Morrison Woodbury formula which only requires solution of systems of linear
equalities.

Finally it is worth mentioning the interior-point [27] and semi-smooth
support vector [28] methods of Ferris and Munson that seem quite effective in
solving linear classification problems with huge training sets.

9.3.6 SVM and Regularization Methods�

In this section, which is addressed to an experienced reader, we discuss SVM
in the framework of the theory of regularization [81][82]. The theory of reg-
ularization provides an effective method, the regularization method, to solve
the so-called ill-posed problems. A well-posed problem in the Hadamard sense
[38] is a problem whose solution exists, is unique and continous7. If a problem
is not well-posed, it is ill-posed in the Hadamard sense. In the rest of the book
we adopt the convention of calling ill-posed problems in the Hadamard sense
simply ill-posed problems. The problem of classification is an example of ill-
posed problem. SVM for classification can be considered as a special case of
regularization method. As we have seen at the beginning of this section, the
problem of classification consists in estimating a function f : Rn → ±1 using
training set patterns

(x1, y1), . . . , (x�, y�) ∈ Rn ×±1 (9.66)

In the framework of the theory of the regularization, the problem of the clas-
sification can be represented in terms of the following minimization problem:

min
f∈H

[
�∑

i=1

L(yi, f(xi)) + CJ(f)

]
(9.67)

where L(yi, f(xi)) and J(f) are respectively a loss function (e.g. zero-one
loss function) (see Chapter 5) and a penalty functional. H is the space of
functions where the penalty functional is defined. C ≥ 0 is called, in the
theory of regularization, regularization costant and determines the trade-off
between the loss function and the penalty term. Now, we assume that the
penalty functional assumes the form

J(f) =
∫

Rn

|F (s)|2
G(s)

ds, (9.68)

where F is the Fourier transform of f and G is a positive function that G(s) →
0 as ‖s‖ → ∞.

It is possible to show [37] that, using a few additional hypotheses, the
solution (9.67) is

7 In [86] the continuity requirement is replaced with the stability.

9.3 Support Vector Machines for Classification 227

f(x) =
K∑

j=1

βjψj(x) +
�∑

i=1

θiĜ(x − xi), (9.69)

where ψj span the null space of the functional J and Ĝ is the inverse Fourier
transform of G. In this framework powerful statistical approximation methods
such as smoothing splines and thin-plate splines [39] can be included. Another
subfamily of regularization methods can be obtained by means of a Mercer
kernel K(x,y) and the associated space of function HK which is a reproducing
kernel Hilbert space (RKHS) (see Appendix D). In this case we can express the
penalty functional J of Equation (9.67). We provide a simplified description
of this family of methods. The reader who is interested to this topic can refer
to [24] [37] [92].

Assume that the kernel K(·) can be expressed in terms of its eigenfunctions
ψi, that is

K(x,y) =
∞∑

j=1

γjψj(x)ψj(y) (9.70)

with γj ≥ 0 and
∞∑

j=1

γ2
i < ∞.

In similar way, the elements of RKHS HK can be expressed in terms of
the eigenfunctions ψj(·), that is:

f(x) =
∞∑

j=1

cjψj(x) (9.71)

with the constraint (by definition) that

‖f‖2
HK

=
∞∑

j=1

c2
j

γj
< ∞ (9.72)

where ‖f‖HK
is defined as the norm induced by the kernel K.

In this framework the penalty functional J(f) (9.67) is assumed to be:

J(f) = ‖f‖2
HK

. (9.73)

Substituting (9.73) in (9.67) we get:

min
f∈HK

[
�∑

i=1

L(yi, f(xi)) + C‖f‖2
HK

]
. (9.74)

Plugging (9.72) in (9.74) we obtain:

min
{cj}∞

1

⎡⎣ �∑
i=1

L(yi,
∞∑

j=1

cjψj(xi)) + C
∞∑

j=1

c2
j

γj

⎤⎦ . (9.75)

228 9 Kernel Methods

It can be proven [92] that the solution of (9.74) is finite-dimensional, that is:

f(x) =
N∑

j=1

αjK(x,xj). (9.76)

The function gi(x) = K(x,xi), viewed as function of a unique argument x, is
called the representer of evaluation at xi in HK , since for each f ∈ HK we
have (see Appendix D):

〈K(·,xi), f〉HK
= f(xi). (9.77)

In analogous way, using the reproducing property of HK , the penalty func-
tional J(f) becomes:

J(f) =
N∑

i=1

N∑
j=1

K(xi,xj)αiαj . (9.78)

Therefore the infinite-dimensional problem (9.74) can be transformed, using
a vector notation, in the easier finite-dimensional problem:

min
α

L(y, Kα) + CαT Kα (9.79)

where y = (y1, . . . , yN), α = (α1, . . . , αN) and the K is the Gram matrix
whose ij element is given by K(xi, xj).

Support vector machines falls in the framework above described. Finally,
we remark that the capacity of transforming the infinite-dimensional problem
in a finite-dimensional problem is often called, in the kernel methods literature,
the kernel property .

9.4 Multiclass Support Vector Machines

Support vector machines are binary classifiers. To use SVM when the number
of classes K is larger than 2, some methods have been proposed [40].

9.4.1 One-versus-Rest Method

The first method is the one-versus-rest (o-v-r) method [74] uses a winner
takes all strategy . A classifier is trained for each of the K classes against all
the other classes. More formally, the o-v-r method consists of training K SVM
classifiers fj by labeling all training points having yi = j with +1 and yi
= j
with −1 during the training of the jth classifier. In the test stage, the final
decision function F (·) is given by

F (x) = arg max
j

fj(x). (9.80)

The computational complexity of the o-v-r method is given by O(K�2) where
� is the cardinality of the training set.

9.5 Support Vector Machines for Regression 229

9.4.2 One-versus-One Method

The second method for constructing a multiclass support vector machines is
the one-versus-one (o-v-o) method and uses a voting strategy . The method
consists in learning K(K−1)

2) classifiers. We call fij (with 1 ≤ i < j ≤ K) the
classifier trained ony by the training samples which belong to the classes i
and j, labeled respectively with +1 and −1. In the learning phase all fij are
trained. In test phase, for each sample x the win frequence wi for the class i
is computed by testing fij on the sample x for all j. In this way, we obtain a
vector w = (w1, . . . , wi, . . . , wK) which expresses the win frequences of each
class. Finally, the most frequent class is chosen, that is

F (x) = arg max
j

wj(x). (9.81)

9.4.3 Other Methods

In addition to the o-v-o and o-v-r methods, several strategies for combining the
binary SVM classifiers have been proposed. Among them we quote DAGSVM
and the tennis tournament method . DAGSVM [67] consists of making a di-
rected acyclic graph (DAG) of consecutive binary classifications. In this way a
class hierarchy can be built. The final decisions are stored in the graph leaves
that are obtained by exclusion. The tennis tournament method [69] produces
a binary decision tree where each node is a SVM binary classifier. The deci-
sion is fixed on the basis of the rules of a tennis tournament. Therefore each
class is considered a player and the winner of the match, decided on the basis
of the collection of SVM pairwise classifiers trained previously, is propagated
to the upper level of the tree where he will play the next match. The algo-
rithm terminates when the root of the decision tree is reached, assigning to
the unknown pattern the class which has won the last match.

9.5 Support Vector Machines for Regression

In this section, we extend the approach used in support vector machine for
classification to the case of the regression. Whereas in the classification the
output y assumes only two values (y ∈ {±1}), in the regression task the
output is a real, i.e. y ∈ R. In the regression task the underlying idea is to
define a loss function that ignored errors that were within a certain distance
of the true value. This type of function is referred to as an ε-insensitive loss
function.

Definition 24 Given a data set D = {(xi, yi), . . . , (x�, y�)} ∈ Rn × R and a
function f : X ⊆ Rn → R, the linear ε-insensitive loss function Lε(x, y, f)
is defined by

230 9 Kernel Methods

ε−ε

Fig. 9.3. The plot of the linear ε-insensitive loss function

Lε(x, y, f) = |y − f(x)|ε =
{ |y − f(x)| if |y − f(x)| > ε

0 otherwise.

}
(9.82)

where x ∈ X and y ∈ R. In an analogous way, the quadratic ε-insensitive
loss function is defined by

Lε(x, y, f) = |y − f(x)|2ε =
{ |y − f(x)|2 if |y − f(x)|2 > ε

0 otherwise.

}
(9.83)

Figure 9.3 shows the plot of the linear ε-insensitive loss function. The idea
behind the ε-insensitive loss function is shown in the Figure 9.4. The dotted
curves delimitate a a tube of size 2ε around the function f(x) and any data
point outside this tube, the white circles, has a loss function not null and can
be viewed as a training error. Vice versa, for the data points in the band, the
black circles, the loss function is null. The above-mentioned approach is called
the ε-SV regression [85] and is the most common approach to SV regression,
though not the only one [86].

9.5.1 Regression with Quadratic ε-Insensitive Loss

We discuss support vector machines for regression in the case of quadratic
ε-insensitive loss. Given a data set D = {(xi, yi), . . . , (x�, y�)}, we want to
estimate a function f : Rn → R. If we assume that f(·) is linear, i.e. is an
hyperplane than it can be described by:

f(x) = (w · x) + b. (9.84)

9.5 Support Vector Machines for Regression 231

Fig. 9.4. The dotted curves delimitate a tube of size 2ε around the function f(x).
For the data points outside the tube the loss function is not null.

To solve this problem, we use the same approach of the optimal hyperplane
algorithm. Therefore we minimize the following functional:

τ(w) =
1
2
‖w‖2 + C

�∑
i=1

|yi, f(xi)|2ε (9.85)

where w and C have the same meaning of the case of the classification task.
Comparing Equation (9.85) with (9.48) we note that we have replaced

the term that expresses the number of errors in the classification with the
quadratic ε-insensitive loss. The regularization constant C manages the trade-
off between the loss function and the the margin of the hyperplane. As in the
case of the classification task, it is possible to write a constrained optimization
problem defined as follows:

min
w,ξ,ξ̂

[
‖w‖2 + C

�∑
i=1

(ξ2
i + ξ̂2

i)

]
(9.86)

232 9 Kernel Methods

subject to yi − ((w · xi) + b) ≤ ε + ξi i = 1, . . . , �

((w · xi) + b) − yi ≤ ε + ξ̂i i = 1, . . . , �
ξi ≥ 0 i = 1, . . . , �
ξ̂i ≥ 0 i = 1, . . . , �

ξiξ̂i = 0 i = 1, . . . , �, (9.87)

where we have introduced, unlike the classification task, two slack variables
ξi and ξ̂i. The first variable ξi is strictly positive when the respective pattern
(xi, yi) is such that f(xi) − yi > ε. The second variable ξ̂i is strictly positive
when the respective pattern (xi, yi) is such that yi − f(xi) − yi > ε.

The conditional optimization problem can be solved by the usual tech-
niques, i.e. the Lagrange Multipliers and the Kuhn Tucker Theorem, taking
into account that (9.87) induces, for the corresponding Lagrange multipliers
αi and α̂i the relation

αiα̂i = 0 i = 1, . . . , �. (9.88)

Hence we get the following objective function to maximize

W (α, α̂) =
�∑

i=1

yi(αi − α̂i) − ε

�∑
i=1

(αi + α̂i)

−1
2

�∑
i,j=1

(
(αi − α̂i)(αj − α̂j)((xi · xj) +

1
C

δij)
)

(9.89)

subject to
�∑

i=1

α̂i =
�∑

i=1

αi

αi ≥ 0 i = 1, . . . , �
α̂i ≥ 0 i = 1, . . . , �, (9.90)

where α = (α1, . . . , α�), α̂ = (α̂1, . . . , α̂�) and δij is the Kronecker symbol.8

The corresponding KKT conditions are

α̂i(((w · xi) + b) − yi − ε − ξ̂i) = 0 i = 1, . . . , �
αi(yi − ((w · xi) + b) − ε − ξi) = 0 i = 1, . . . , �

ξiξ̂i = 0 i = 1, . . . , �
αiα̂i = 0 i = 1, . . . , �. (9.91)

If we define β = α− α̂, Equation (9.89) assumes a form similar to the classi-
fication case

max
β

�∑
i=1

yiβi − ε
�∑

i=1

|βi| − 1
2

�∑
i=1

�∑
j=1

βiβj((xi · xj) +
1
C

δij) (9.92)

8 δij is 1 if i = j, 0 otherwise.

9.5 Support Vector Machines for Regression 233

subject to
�∑

i=1

βi = 0 i = 1, . . . , �. (9.93)

Like in the case of the classification, we can empowering the algorithm, using
the kernel trick, i.e substituting in (9.92) the dot products (xi · xj) with
K(xi,xj) where K(·) is an appropriate Mercer kernel, we get

max
β

�∑
i=1

yiβi − ε

�∑
i=1

|βi| − 1
2

�∑
i=1

�∑
j=1

βiβj (K(xi,xj) +
1
C

δij) (9.94)

subject to

�∑
i=1

βi = 0 i = 1, . . . , �. (9.95)

Then the regression estimate, i.e. the function f(·) modelling the data, as-
sumes the form:

f(x) =
�∑

i=1

βiK(xi,x) + b (9.96)

where b can be chosen so that

f(xi) − yi = −ε − βi

C
(9.97)

for any support vector xi.

9.5.2 Kernel Ridge Regression

We consider again the final formulation of the regression with quadratic ε-
insensitive loss, i.e.

max
β

⎛⎝ �∑
i=1

yiβi − ε

�∑
i=1

|βi| − 1
2

�∑
i=1

�∑
j=1

βiβj(K(xi,xj) +
1
C

δij

⎞⎠ (9.98)

subject to

�∑
i=1

βi = 0 i = 1, . . . , �. (9.99)

It is necessary to make some remarks. When ε
= 0, we introduce an extra
weight factor involving the dual parameters. On the other hand, when ε is
null the problem corresponds to considering standard least squares linear re-
gression with a weight decay factor controlled by the regularization constant
C. This approach to regression is also known as ridge regression, and it is
equivalent to techniques derived from Gaussian processes, that we will ex-
amine in Section 9.6. First of all, we ignore the bias term b, since Gaussian
processes do not consider the bias term. Therefore we consider the problem
that can be stated as follows:

234 9 Kernel Methods

min
w

λ‖w‖2 +
�∑

i=1

ξ2
i

subject to yi − (w · xi) = ξi i = 1, . . . , �. (9.100)

Hence we derive the Lagrangian:

L(w, ξ,α) = λ‖w‖2 +
�∑

i=1

ξ2
i +

�∑
i=1

αi(yi − (w · xi) − ξi). (9.101)

According to the optimality conditions

∂L

∂w
= 0,

∂L

∂ξi
= 0, (9.102)

we get

w =
1
2λ

�∑
i=1

αixi (9.103)

ξi =
αi

2
. (9.104)

Plugging in (9.101) we have:

max
α

W (α) = max
α

�∑
i=1

yiαi − 1
4λ

�∑
i=1

�∑
j=1

αiαj(xi · xj) − 1
4
‖α‖2 (9.105)

and using the kernel trick, i.e. substituting (xi,xj) with the kernel K(xi,xj)
where K(·) is an appropriate Mercer kernel, we get the final form:

max
α

W (α) = max
α

�∑
i=1

yiαi − 1
4λ

�∑
i=1

�∑
j=1

αiαjK(xi,xj) − 1
4
‖α‖2. (9.106)

Equation (9.106) can be rewritten in matricial form

W (α) = yT α − 1
4λ

αT Kα − 1
4
αT α (9.107)

where y and x are the vectors formed, respectively, by yi and xi and K is the
Gram matrix whose generic element Kij = K(xi,xj).

If we impose
∂W

∂α
= 0, (9.108)

we get

− 1
2λ

Kα − 1
2
α + y = 0. (9.109)

9.5 Support Vector Machines for Regression 235

Hence
α = 2λ(K + λI)−1y (9.110)

where I is the identity matrix.
The corresponding regression function is:

f(x) = yT (K + λI)−1K̂ (9.111)

where K̂ is the vector whose generic element is Ki = K(xi,x).

9.5.3 Regression with Linear ε-Insensitive Loss

We discuss SVMs for regression in the case of linear ε-insensitive loss. Given a
data set D = {(xi, yi), . . . , (x�, y�)}, we want to estimate a function f : Rn →
R. If we use the linear ε-insensitive loss, we have to replace in the equation
(9.85) the quadratic loss with the linear one. Therefore we have to minimize
the following functional:

τ(w) =
1
2
‖w‖2 + C

�∑
i=1

|yi, f(xi)|ε (9.112)

where w and C have the same meaning of the case of the quadratic loss. As in
the case of the quadratic loss, it is possible to write a constrained optimization
problem defined as follows:

min

[
1
2
‖w‖2 + C

�∑
i=1

(ξi + ξ̂i)

]
(9.113)

subject to yi − ((w · xi) + b) ≤ ε + ξi i = 1, . . . , �

((w · xi) + b) − yi ≤ ε + ξ̂i i = 1, . . . , �
ξi ≥ 0 i = 1, . . . , �
ξ̂i ≥ 0 i = 1, . . . , � (9.114)

Plugging the conditions in the equation (9.113) we get the following objective
function to maximize

W (α, α̂) =
�∑

i=1

yi(αi − α̂i)− ε

�∑
i=1

(αi + α̂i)− 1
2

�∑
i,j=1

(αi − α̂i)(αj − α̂j)(xi ·xj)

(9.115)

subject to

�∑
i=1

α̂i =
�∑

i=1

αi

0 ≤ αi ≤ C i = 1, . . . , �
0 ≤ α̂i ≤ C i = 1, . . . , �.

236 9 Kernel Methods

Using the kernel trick we get finally:

W (α, α̂) =
�∑

i=1

yi(αi− α̂i)−ε
�∑

i=1

(αi + α̂i)− 1
2

�∑
i,j=1

(αi− α̂i)(αj − α̂j)K(xi,xj)

(9.116)

subject to

�∑
i=1

α̂i =
�∑

i=1

αi

0 ≤ αi ≤ C i = 1, . . . , �
0 ≤ α̂i ≤ C i = 1, . . . , �

where K(·) is an appropriate Mercer kernel.
Finally, we have to compute the bias b. In order to do that, we consider

KKT conditions for regression. Before using the kernel trick, KKT conditions
are

αi(ε + ξi − yi + (w · xi) + b) = 0 (9.117)

α̂i(ε + ξ̂i + yi − (w · xi) − b) = 0 (9.118)

where
�∑

j=1

yj(αj − α̂j)xj = w (9.119)

(C − αi)ξi = 0 (9.120)

(C − α̂i)ξ̂i = 0. (9.121)

From the latter conditions we see that only when αi = C or α̂i = C the slack
variables are non-null. These samples of the training set correspond to points
outside the ε-insensitive tube. Hence from the equation (9.119) we can find the
bias from a non-bound example with 0 < αi < C using b = yi − (w · xi) − ε
and similarly for 0 < α̂i < C we can obtain it from b = yi − (w · xi) + ε.
Though the bias b can be obtained using only one sample of the training set,
it is better estimating the bias using an average over all points on the margin.

9.5.4 Other Approaches to Support Vector Regression

Apart from the formulations given here it is possible to define other loss
functions giving rise to different dual objective functions. In addition, rather
than specifying ε a priori it is possible to specify an upper bound ν (0 ≤ ν ≤
1) on the fraction of the points lying outside the band and then find ε by
optimizing over the primal objective function

1
2
‖w‖2 + C

(
νlε +

�∑
i=1

|yi − f(xi)|
)

(9.122)

9.6 Gaussian Processes 237

with ε acting as an additional parameter to minimize over [75].
As for classification it is possible to formulate a linear programming ap-

proach to regression with [93]

min
α,α̂,ξ,ξ̂

[
�∑

i=1

αi +
�∑

i=1

α̂i +
�∑

i=1

ξi +
�∑

i=1

ξ̂i

]
(9.123)

subject to

yi − ε − ξi ≤
⎡⎣ �∑

j=1

(αj − α̂j)K(xi,xj)

⎤⎦+ b ≤ yi + ε + ξ̂i. (9.124)

Minimizing the sum of the αi approximatively minimizes the number of sup-
port vectors which favours sparse hypotheses with smooth functional approx-
imations of the data. This approach does not require that K(·) is a Mercer
kernel [93].

9.6 Gaussian Processes

Gaussian processes [71] are an emerging branch of kernel methods. Unlike
SVMs, that are designed to solve mainly classification problems, Gaussian
processes are designed to solve essentially regression problems. Although there
are some attempts [95] of using Gaussian processes for classification, the
problem of solving a classification task with Gaussian processes, remains still
opened.

Gaussian processes are not a novelty. In [56] a framework for regression
using optimal linear estimators, within the geostatistics field, was proposed.
The framework, called kriging in honour of a South African mining engi-
neer, is identical to Gaussian processes, currently used in machine learning.
Kriging [18] has been developed considerably in the last thirty years in geo-
statistics, even the been model has been developed mainly on the solution of
low-dimensional problems, at most problems in R3.

Machine learning community ignored completely Gaussian processes until
found them out again. it was argued , that is no reason to believe that, for
real problems, neural networks should be limited to nets containing only a
small number of hidden nodes. A neural network model with a huge number
of nodes, cannot be trained with a backpropagation algorithm, based on max-
imum likelihood algorithm [23][34] (see Chapter 5), since the trained neural
net overfits the data.

In [61] the net behavior when the number of hidden nodes goes to infinity
was investigated, and was showed that it can get good performances using the
Bayesian learning [53], instead of maximum likelihood strategy.

In the Bayesian approach to neural networks a prior distribution over the
weights induces a prior distribution over functions. This prior is combined

238 9 Kernel Methods

with a noise model, which specifies the probability of observing the targets ti
given function values yi, to yield a posterior over functions which can then be
used for predictions.

In [61] it was proven that the multilayer perceptron [6] (see Chapter 8), will
converge to a Gaussian process prior when its number of hidden nodes goes
to the infinity. Although infinite networks are a method of creating Gaussian
process, it is also possible to specify them directly using parametric forms for
the mean and covariance functions. The advantage of the Gaussian process
formulation, in comparison with infinite networks, is that the integrations,
which have to be approximated for neural nets, can be carried out exactly,
using matrix computations. In the following section it is described how can
make regression by means of Gaussian processes.

9.6.1 Regression with Gaussian Processes

A stochastic process is a collection of random variables {Y (x)|x ∈ X} in-
dexed by a set X ⊂ Rn. The stochastic process is specified by giving the
probability distribution for every finite subsets of variables Y (x1), . . . , Y (xk)
in a consistent manner.

A Gaussian process is a stochastic process which can be fully specified
by its mean function µ(x) = E [Y (x)] and its covariance function C(x,x′) =
E [(Y (x) − µ(x))(Y (x′) − µ(x′))]; it will have a joint multivariate gaussian
distribution.

In this section we consider Gaussian processes which have µ(x) ≡ 0. This
is the case for many neural networks priors [61]. Otherwise it assumes that
any known offset has been removed.

Given a prior covariance function CP (x,x′), which can be defined by any
Mercer Kernel [74], a noise process CN (x,x′) (with CN (x,x′) = 0 for x
= x′)
and a data set D = ((x1, y1), . . . , (x�, y�)), if x /∈ D is a test point then the
respective distribution Y (x) has mean Ŷ (x) and variance σ2

Y (x) given by:

Ŷ (x) = yT (KP + KN)−1kP (x) (9.125)
σ2

Y (x) = CP (x,x′) + CN (x,x′) − kT
P (x)(KP + KN)−1kP (x) (9.126)

where :
[KP]ij = CP (x,x′); [KN]ij = CN (x,x′);
kP (x) = (CP (x,x1), . . . , CP (x,x�))T ; y = (y1, . . . , yn).
The variance σ2

Y (x) provides a measure of the error that the prediction
yields. If we assume that the variance of the noise process σ2 does not depend
by the sample x, we have KN = σ2I. Substituting in the previous equations
we have:

Ŷ (x) = y(KP + σ2I)−1kP (x) (9.127)
σ2

Y (x) = CP (x,x′) + CN (x,x′) − kT
P (x)(KP + σ2I)−1kP (x). (9.128)

9.7 Kernel Fisher Discriminant 239

The prediction value in (9.127) is the same that it is possible to obtain
with a Kernel Ridge Regression, see equation (9.111), using the quadratic ε-
insensitive loss function. The big difference between Gaussian Processes (GP)
and SVM for Regression is that GP permit computing, unlike SVM, the vari-
ance of the prediction value σ2

Y (x) providing an estimate on the prediction
reliability. This peculiarity makes GP very appealing for applications that
require that a measure of reliability of the prediction values. Examples of
these applications can be found in finance (e.g. portfolio management) and
geostatistics.

9.7 Kernel Fisher Discriminant

In this section we describe kernel Fisher discriminant , namely the generaliza-
tion, in the feature space, of the Fisher discriminant [31].

The Fisher discriminant, also called linear discriminant analysis (LDA),
is a classical feature extraction method (see Chapter 11) and aims to achieve
an optimal linear dimensionality reduction. LDA is widely used in face recog-
nition (see Chapter 13). We pass to describe the algorithm.

9.7.1 Fisher’s Linear Discriminant

Let X1 = (x1
1, . . . ,x

1
�1

) and X2 = (x2
1, . . . ,x

2
�2

) be samples from two different
classes and X = X1 ∪ X2 = (x1, . . . ,x�) their union. We define the mean of
the two classes m1 and m2:

m1 =
1
�1

�1∑
j=1

x1
j , m2 =

1
�2

�2∑
j=1

x2
j . (9.129)

Fisher’s linear discriminant is given by the vector w which maximizes

J(w) =
wT SBw
wT SW w

(9.130)

where

SB = (m1 − m2)(m1 − m2)T (9.131)

SW =
∑

x∈X1

(x − m1)(x − m1)T +
∑

x∈X2

(x − m2)(x − m2)T (9.132)

SB and SW are called the between and within class scatter matrices, respec-
tively.

The intuition behind maximizing J(w) is to find a direction that maxi-
mizes the projected class means (the numerator) while minimizing the class
variance in this direction (the denominator).

240 9 Kernel Methods

If we set
∂J

∂w
= 0 (9.133)

we have:
(wT SBw)Sww = (wT SW w)SBw (9.134)

From (9.131) we see that Sbw is always in the direction of (m2 −m1). We do
not care about the magnitude of w, only its direction. Thus we can drop any
scalar factors in (9.134), we have:

Sww ∝ (m2 − m1). (9.135)

Multiplying both sides of (9.135) by S−1
w we then obtain

w ∝ S−1
w (m2 − m1). (9.136)

This is known as Fisher’s linear discriminant or linear discriminant analysis
(LDA). Despite its name, LDA is not a discriminant but provides a direction
for projection of the data onto one dimension. For this reason LDA is used as
a feature extraction method, and generally represents an alternative method
to the PCA (see Section 11). Nevertheless, LDA can be used to implement a
linear discriminant. Indeed, the projected data y(x) = w ·x can subsequently
used to construct a discriminant, by choosing a threshold τ so that we classify
a new point as belonging to X1 if y(x) ≥ τ and classify it as belonging to X2

otherwise. It can prove that the vector w maximizing (9.130) has the same
direction as the discriminant in the corresponding Bayes optimal classifier (see
Chapter 5). Finally, for the sake of completeness, we underline that LDA can
be extended to the where there are more than two classes. In this case, the
algorithm is called multiclass LDA [23].

9.7.2 Fisher Discriminant in Feature Space

Fisher discriminant is a linear algorithm. Therefore it is not effective when the
data distribution is not linear. Fisher discriminant can be enpowered using the
same approach used for the optimal hyperplane algorithm in SVM. First we
map the data nonlinearly into some Feature space F , by means of an appro-
priate Mercer kernel, and then we compute a Fisher’s linear discriminant in
the feature space. In this way, we implicitly perform a nonlinear discriminant
in input space.

Let Φ be a nonlinear mapping from the input space to some feature space
F . To find the linear discriminant in F we need to maximize

J(w) =
wT SΦ

Bw
wT SΦ

W w
(9.137)

where w ∈ F , SΦ
B and SΦ

W are the corresponding matrices in F :

9.7 Kernel Fisher Discriminant 241

SΦ
B = (mΦ

1 − mΦ
2) · (mΦ

1 − mΦ
2)T (9.138)

SΦ
W =

∑
x∈X1

(Φ(x) − mΦ
1) · (Φ(x) − mΦ

1)T +
∑

x∈X2

(Φ(x) − mΦ
2) · (Φ(x) − mΦ

2)T

with

mΦ
1 =

1
�1

�1∑
j=1

Φ(x1
j), mΦ

2 =
1
�2

�2∑
j=1

Φ(x2
j). (9.139)

Since the mapping Φ can be unknown, it is impossible to solve directly the
problem. In order to overcome this difficulty we use the kernel trick, which has
been successfully used in the SVMs. Instead of mapping the data explicitly
we seek a formulation of the algorithm which uses only scalar products (Φ(x) ·
Φ(y)) of the training patterns which we then replace by an appropriate Mercer
kernel K(x,y).

The theory of RKHS (see Appendix D) states that any solution w ∈ F
must lie in the span of all training samples in F . Therefore we can find an
expansion for w of the form

w =
�∑

i=1

αiΦ(xi). (9.140)

Using the expansion (9.140) and the definition of mΦ
1 and mΦ

2 we write

wT mΦ
i =

1
�i

�∑
j=1

�i∑
k=1

αjK(xj ,xi
k) i = 1, 2

= αT Mi i = 1, 2 (9.141)

where we have defined

(Mi)j =
1
�i

�i∑
k=1

K(xj ,xi
k) i = 1, 2 (9.142)

and replaced the scalar product by means of the Mercer kernel K(·).
Now we consider the numerator of (9.137). Using (9.138) and (9.141) the

numerator can be rewritten as

wT SΦ
Bw = αT Mα (9.143)

where
M = (M1 − M2)(M1 − M2)T (9.144)

We pass to consider the denominator. Using (9.140), the definition of mΦ
i and

a similar transformation as in (9.143), we find:

wT SΦ
W w = αT Nα (9.145)

242 9 Kernel Methods

where we set

N =
2∑

j=1

Pj(I − 1�j
)PT

j (9.146)

Pj is a � × �j matrix with (Pj)nm = K(xn,xj
m), I is the identity matrix and

1�j
is a matrix with all elements 1

�j
.

Finally combining (9.143) and (9.145), we can find Fisher’s linear discrim-
inant in the feature space F by maximizing

J(α) =
αT Mα

αT Nα
(9.147)

This problem can be solved by finding the leading eigenvector of N−1M . This
approach is called kernel Fisher discriminant (KFD) [58].

The projection of a new pattern x onto w is given by

(w · Φ(x)) =
�∑

i=1

αiK(xi,x). (9.148)

Obviously, the proposed setting is ill-posed (see Section 9.3.6). We are esti-
mating � dimensional covariance structures from � samples. Besides, numerical
problems which cause the matrix N not to be positive, we need a way of ca-
pacity control in F . In order to get that, we simply add a multiple of the
identity matrix to N , i.e. replace N by Nµ where

Nµ = N + µI (9.149)

therefore the problem becomes to find the leading eigenvalue of (Nµ)−1M .
The use of Nµ brings some advantages: the problem becomes numerically

more stable, since for µ large enough Nµ become positive definite; Nµ it can
be seen in analogy to [32], decreasing the bias in sample based estimation of
eigenvalues; a regularization on ‖α‖2 is imposed, favoring solutions with small
expansion coefficients.

9.8 Kernel PCA

In this section we describe kernel principal component analysis (KPCA),
namely the generalization, in the feature space, of the principal component
analysis (PCA). PCA, discussed in detail in Chapter 11.4, is a data dimen-
sionality reduction algorithm that projects the data along the directions of
maximal variance. Kernel PCA uses the same approach of SVM and kernel
Fisher discriminant. First it projects data in a feature space, by means an
appropriate Mercer kernel. Then it performs in the feature space the PCA
algorithm. We pass to describe kernel PCA in detail.

Let X = (x1, . . . ,x�) be a data set of points in Rn, KPCA algorithm
consists of the following steps:

9.8 Kernel PCA 243

1. The Gram matrix G is created. G is a square matrix of rank �, whose
generic element is Gij = K(xi,xj) where xi,xj ∈ X and K is an appro-
priate Mercer kernel.

2. The matrix Ĝ = (I − 1�)G(I − 1�) is computed. Where I is the identity
matrix of rank � and 1� is a square matrix of rank � whose elements are
equal to 1

� .
3. Eigenvalues and eigenvectors of matrix Ĝ are computed.

The meaning of each step of KPCA is the following.
The first step of KPCA maps implicitly the data into a feature space F by

means of a nonlinear mapping Φ; second step is performed in order to assure
that the data projections have zero mean; last step projects the data along
the directions of maximal variance in the feature space F .

9.8.1 Centering in Feature Space

In this subsection we show that the computation of Ĝ assures that the data
projections in feature space have zero mean, i.e.

�∑
i=1

Φ(xi) = 0 (9.150)

In order to show that, we note that for any mapping Φ and for any data set
X = (x1, . . . ,x�, the points

Φ̂(xi) = Φ(xi) − 1
�

�∑
i=1

Φ(xi) (9.151)

will have zero mean in the feature space.
Hence we go on defining covariance matrix and dot product matrix K̂ =

Φ̂(xi)T Φ̂(xj) in the feature space F .
We arrive at the eigenvalue problem

λ̂α̂ = K̂α̂ (9.152)

with α̂ that is the expansion coefficients of an eigenvector in the feature space
F , in terms of the points Φ̂(xi), i.e.

V̂ =
�∑

i=1

α̂iΦ̂(xi). (9.153)

Since Φ̂ can be unknown, we cannot compute K̂ directly; however, we can
express it in terms of its noncentered counterpart K.

We consider Gij = K(xi,xj) = Φ(xi)T Φ(xj) and we make use of the
notation 1ij = 1 for all i, j. We have:

244 9 Kernel Methods

K̂ij = Φ̂(xi)
T Φ̂(xj)

= (Φ(xi) − 1

�

�∑
m=1

Φ(xm))T (Φ(xi) − 1

�

�∑
m=1

Φ(xm))

= Φ(xi)
T Φ(xj)−1

�

�∑
m=1

Φ(xm)T Φ(xj)−1

�

�∑
n=1

Φ(xi)
T Φ(xn)+

1

�2

�∑
m,n=1

Φ(xm)T Φ(xn)

= Gij − 1

�

�∑
n=1

1imGmj − 1

�

�∑
n=1

1njGmj +
1

�2

�∑
n,m=1

1imGmn1nj (9.154)

If we define the matrix (1�)ij = 1
� and I the Identity matrix, we have:

K̂ij = G − 1�G − G1� + 1�G1�

= IG − 1�G + (1�G − G)1�

= (I − 1�)G + (1�G − IG)1�

= (I − 1�)GI − (I − 1�)G1�

= (I − 1�)G(I − 1�)
= Ĝ (9.155)

An immediate result, since the projections of data are zero mean, is the fol-
lowing:

Remark 1 The matrix Ĝ is singular.

Proof. The elements of the matrix C = I−1� are equal to 1− 1
� if they are on

the diagonal, Otherwise they are equal to − 1
� . If we sum the rows of C we get

the null row. Therefore the determinant of C is null since its rows are linearly
dependent. The determinant of Ĝ is also null, for Binet [47] theorem. Hence
Ĝ is singular and has at least one null eigenvalue.

The remark implies that at least the last eigenvector, i.e the eigenvector as-
sociated to the smallest eigenvalue, must be discarded. Besides, the remark
provides a requirement, that is the smallest eigenvalue of Ĝ is null, that the
eigenvalue spectrum should satisfy. The computation of eigenvalues and eigen-
vector of Ĝ requires the matrix diagonalization, that can be computationally
cumbersome when the rank of Ĝ is high.

In [73] a computationally efficient method, based on the EM algorithm
[20], has been proposed for extract eigenvalues and eigenvectors. The algo-
rithm seems to overcome the above mentioned bottleneck. Finally, if KPCA
is performed with the Gaussian kernel (GKPCA), a theoretical result has been
established. In [84] It has been proven that GKPCA, in the case of an infinite
number of data points, approaches to PCA, for large values of the variance σ.
Finally, we conclude the section remarkin that kernel PCA is widely used, as
feature extraction method, in face recognition (see Chapter 13).

9.9 One-Class SVM 245

Fig. 9.5. The dotted circle encloses almost data points of the figure, i.e. all the data
with the exception of the two outliers.

9.9 One-Class SVM

One-class SVM [77] [80] is a unsupervised kernel method based on support
vector description of a data set. In One-class SVM there are no negative
examples; therefore all data are considered positive examples. One-class SVM
has been initially proposed to estimate the support distribution function of a
data set, i.e. a function that takes positive value +1 in the region that contains
most data and -1 otherwise. For this reason, One Class SVM is generally
applied to solve novelty detection problems [3] and to detect outliers. The
aim of One-class SVM is to look for the smallest sphere enclosing almost all
images, in the feature space, of data points, i.e all images without the outliers
(see figure 9.5). Let X = (x1, . . . ,x�)) ⊆ Rn be a data set. Using a nonlinear
transformation Φ from the input space to some high-dimensional feature space
F , it looks for the smallest enclosing sphere of radius R. This is described by
the constraints:

‖Φ(xj) − a‖2 ≤ R2 ∀j (9.156)

where ‖ · ‖ is the Euclidean norm and a is the center of the sphere.
The constraints can be relaxed using slack variables ξj :

‖Φ(xj) − a‖2 ≤ R2 + ξj (9.157)

with ξj ≥ 0.
In order to solve the problem the Lagrangian is introduced:

L = R2 −
�∑

j=1

(R2 + ξj − ‖Φ(xj) − a‖2)βj −
�∑

j=1

ξjµj + C

�∑
j=1

ξj (9.158)

where βj ≥ 0 and µj ≥ 0 are Lagrange multipliers, C is a constant and

C
�∑

j=1

ξj is a penalty term.

246 9 Kernel Methods

If we put
∂L

∂R
= 0;

∂L

∂a
= 0;

∂L

∂ξj
= 0 (9.159)

we get
�∑

j=1

βj = 1 (9.160)

a =
�∑

j=1

βjΦ(xj) (9.161)

βj = C − µj . (9.162)

The Karush-Kuhn Tucker conditions yield

ξjµj = 0 (9.163)

(R2 + ξj − ‖Φ(xj) − a‖2)βj = 0. (9.164)

It follows from (9.164) that the image of a point xj with ξj > 0 and βj > 0 lies
outside the feature space sphere. Equation (9.163) states that such a point has
µj = 0, hence we conclude from Equation (9.162) that βj = C. This will be
called a bounded support vector (BSV). A point xj with ξj = 0 is mapped to
the inside or to the surface of the feature space sphere. If its 0 < βj < C then
(9.164) implies that its image Φ(xj) lies on the surface of the feature space
sphere. Such a point will be referred to as a support vector (SV). support
vectors lie on cluster boundaries, BSVs lie outside the boundaries and all
other points lie inside them. The constraint (9.160) implies when C ≥ 1 no
BSVs exist. Using these relations we may eliminate the variables R, a and
µj , turning the Lagrangian into the Wolfe dual form that is a function of the
variables βj :

W =
�∑

j=1

Φ(xj)2βj −
�∑

i=1

�∑
j=1

βiβjΦ(xi) · Φ(xj). (9.165)

Since the variables µj do not appear in the Lagrangian they may be replaced
with the constraints:

0 ≤ βj ≤ C j = 1, . . . , �. (9.166)

We compute the dot products Φ(xi) · Φ(xj) by an appropriate Mercer kernel
G(xi,xj). Therefore the Lagrangian W becomes

W =
�∑

j=1

G(xj ,xj)βj −
�∑

i=1

�∑
j=1

βiβjG(xi,xj). (9.167)

9.9 One-Class SVM 247

At each point x the distance D of its image in the feature space from the
center of the sphere is given by :

D2(x) = ‖Φ(x) − a‖2. (9.168)

Using (9.161) we have:

D2(x) = G(x,x) − 2
�∑

j=1

βjG(xj ,x) +
�∑

i=1

�∑
j=1

βiβjG(xi,xj). (9.169)

The radius of the sphere R is just the distance between a support vector and
the center a.

9.9.1 One-Class SVM Optimization

In the previous section we have just formulated the support vector machines
using a problem of quadratic programming. The problem can be solved using
QP packages when the dimension of the training set is quite limited. In other
cases, the best solution is to use a modified version of SMO (see Section
9.3.4) [77].

The strategy of SMO is to break up the constrained minimization of (9.167)
into the smallest optimization step possible. Due to the constraint on the sum
of the dual variables, it is impossible to modify individual variables separately
without possibly violating the constraint. Therefore the optimization has to be
performed over pairs of multipliers. The algorithm is based on an elementary
optimization step.

Elementary Optimization Step

For instance, consider optimizing over α1 and α2 with all other variables fixed.
If we define Gij = G(xi,xj), Equation (9.167) becomes:

min
α1,α2

1
2

2∑
i=1

2∑
j=1

αiαjGij +
2∑

i=1

αiCi + C, (9.170)

where

Ci =
�∑

j=3

αjGij , C =
�∑

i=3

�∑
j=3

αiαjGij (9.171)

subject to

0 ≤ α1 ≤ 1
ν�

(9.172)

0 ≤ α2 ≤ 1
ν�

(9.173)

2∑
i=1

αi = ∆ = 1 −
3∑

i=1

αi. (9.174)

248 9 Kernel Methods

We discard C, which is independent of α1 and α2, and eliminate α1 to obtain

min
α2

W (α2)=
1
2

(∆−α2)
2
G11 +(∆−α2) α2G12 +

1
2
α2

2G22 +(∆−α2) C1 +α2C2.

(9.175)
Computing the derivative of W and setting it to zero, we have:

−(∆ − α2)G11 + (∆ − 2α2) G12 + α2G22 − C1 + C2 = 0. (9.176)

Solving the equation for α2, we get:

α2 =
∆(G11 − G12) + C1 − C2

G11 + G22 − 2G12
. (9.177)

Once α2 is found, α1 can be recovered from α1 = ∆ − α2. If the new point

(α1, α2) is outside of
[
0,

1
ν�

]
, the constrained optimum is found by projecting

α2 from (9.177) into the region allowed by the constraints and recomputing
α1. The offset is recomputed after every such step. Additional insight can be
obtained by rewriting the last equation in terms of the outputs of the kernel
expansion on the examples x1 and x2 before the optimization step.

Let α�
1, α�

2 denote the values of their Lagrange parameters before the step.
Then the corresponding outputs

Oi = G1iα
�
1 + G2iα

�
2 + Ci. (9.178)

Using the latter to eliminate the Ci, we end up with an update equation for
α2 which does not explicitly depend on α�

1,

α2 = α�
2 +

O1 − O2

G11 + G22 − 2G12
, (9.179)

which shows that the update is essentially the fraction of first and second
derivative of the objective function along the direction of the constraint satis-
faction. Clearly, the same elementary optimization step can be applied to any
pair of two variables, not just α1 and α2. We next briefly describe how to do
the overall optimization.

SMO Optimization Algorithm

The inizialization of the algorithm is the following. We start by setting a

random fraction ν of all αi to
1
ν�

. If ν� is not an integer, then one of the

examples is set to a value in
(

0,
1
ν�

)
to ensure that

�∑
i=1

αi = 1. Besides, we

set the initial ρ to
ρ = max

i∈[�],αi>0
Oi. (9.180)

9.10 Kernel Clustering Methods 249

Then we select a first variable for the elementary optimization step in one of
the two following ways. Here, we use the shorthand SVnb for the indices of
variables which are not at bound, i.e.

SVnb =
{

i : i ∈ [�], 0 < αi <
1
ν�

}
. (9.181)

These correspond to points that will sit exactly on the hyperplane, that will
therefore have a strong influence on its precise position. The couple of the pa-
rameters on which applying the elementary optimization algorithm is selected
by using the following heuristics:

1. We scan over the entire dataset until we find a variable violating a KKT
condition, i.e. a point such that

(Oi − ρ)αi > 0, (9.182)

or

(ρ − Oi)
(

1
νl

− αi

)
> 0. (9.183)

Once we have found one, say αi, we pick αj according to:

j = arg max
n∈SVnb

|Oi − On|. (9.184)

2. The same as the above item, but the scan is only performed over SVnb.

One scan of the first type is followed by multiple scans of the second type.
If the first type scan finds no KKT violations, the optimization terminates.
In unusual circumstances, the choice heuristic cannot make positive progress.
Therefore, a hierarchy of other choice heuristics is applied to ensure positive
progress. These other heuristics are the same as in the case of classification.
SMO usually converges in most cases. However to ensure convergence, even
in rare pathological conditions, the algorithm can be modified slightly [45].

9.10 Kernel Clustering Methods

In this section we present some clustering methods based on kernels. We
describe the kernel extension of K-Means, the so-called kernel K-Means, some
extensions of one-class SVM and spectral clustering methods.

9.10.1 Kernel K-Means

In this section we describe how the classical algorithm K-Means (see Chap-
ter 6) can be reformulated in the feature space. In this section we use the
formalism proposed by [9]. Given a data set X = (x1, . . . ,x�) ⊆ Rn, we map

250 9 Kernel Methods

our data in some Feature Space F , by means a nonlinear map Φ. We call the
set A = (a1, . . . ,aK) feature space codebook since in our representation the
centers in the feature space play the same role of the codebook (see Chapter
6) in the input space. In analogy with the codevectors in the input space, we
define for each center ac its Voronoi region and Voronoi set in feature space.
The Voronoi region in feature space (FRc) of the center ac is the set of all
vectors in F for which ac is the closest vector

FRc = {ξ ∈ F | c = arg min
j

‖ξ − aj‖}. (9.185)

The Voronoi Set in feature space (FVc) of the center ac is the set of all vectors
xi in X such that ac is the closest vector for their images Φ(xi) in the feature
space

FVc = {xi ∈ X | c = arg min
j

‖Φ(xi) − aj‖} (9.186)

These definitions induce a Voronoi tessellation of the feature space. It is also
possible to define the empirical quantization error in feature space defined by:

J(A, X) =
K∑

i=1

∑
x∈FVi

‖Φ(x) − ai‖2 (9.187)

We pass to describe Kernel K-Means which has the following steps:

1. Project the data set X into a feature space F by means a mapping Φ.
Initialize the feature space Codebook A.

2. Compute for each center ai its feature Voronoi set FVi.
3. Update each center with the mean of its feature Voronoi set, that is

ai =
1

|FVi|
∑

x∈FVi

Φ(x) (9.188)

4. Go to step 2 if any ai changes otherwise return the feature space codebook.

Kernel K-Means minimizes the empirical quantization error in feature space.
It is necessary to remark that even we do not know the Φ we are always able
to compute the Voronoi set in the feature space. In fact the distance between
any center and any sample x, using the kernel trick is given by:

‖Φ(x) − ai‖2 = K(x,x) − 2
K∑

r=1

G(x,xr) −
K∑

r=1

K∑
s=1

G(xs,xr) (9.189)

where G(·) is an appropriate Mercer kernel.
The term kernel K-Means has been used in several contexts. In [76] this

term was used, for the first time, for an algorithm which we will discuss in
Section 9.10.3. In [36] a different formulation for kernel K-Means has been
proposed. A typical formalism of fuzzy clustering algorithms (See Section 6.8)

9.10 Kernel Clustering Methods 251

has been used, i.e. c denotes the number of the codevectors and a membership
matrix U has been introduced. Each element uik denotes the membership of
the sample xi to the feature Voronoi set FVi. The algorithm tries to minimizes
the empirical quantization error in feature space which rewritten as :

J(A, X, U) =
c∑

i=1

�∑
j=1

uij‖Φ(xj) − ai‖2 (9.190)

The minimization technique used by [36] is deterministic annealing [72] which
is a stochastic method for optimization. The minimization algorithm provides
the following membership matrix:

uij =
exp(−β‖xi − aj‖2)∑c

j=1 exp(−β‖xi − aj‖2)
. (9.191)

The parameter β ∈ R controls the softness of the membership during the opti-
mization and can be thought proportional to the inverse of the temperature of
a physical system. This parameter is gradually increased during the annealing
and at the end of the procedure the memberships have become crisp (see Sec-
tion 6.8) and therefore a tesselation in feature space is produced. This linear
partitioning in F , back to the input space, forms a nonlinear partitioning of
the input space.

9.10.2 One-Class SVM Extensions

In this section we present two extensions of one-class SVM which have been
proposed for clustering.

Support Vector Clustering

Support vector clustering (SVC) [4] is an extension of one-class SVM. SVC is
composed of two steps. The first step of SVC consists in performing One Class
SVM. The second step of SVC is a cluster assignment procedure, based on a
geometric idea. Any path connecting a pair of points belonging to different
clusters must exit from the sphere in the feature space. These paths have a
segment of points s such that R(s) > R. Let Y be the path connecting two
points in the feature space, the following adjacency relation can be defined:

Y =
{

1 if R(s) < R
0 otherwise.

}
(9.192)

Clusters are provided by the connected components of the graph whose ad-
jacency matrix is defined by (9.192). Recently, some modifications [96][50] of
the labelling procedure, which seems to improve the performances, have been
proposed. Finally, an improved version of the SVC algorithm applied to the
handwritten recognition has been proposed in [14].

252 9 Kernel Methods

Camastra Verri Algorithm

Another technique that combines one-class SVM and K-Means has been pro-
posed in [9]. This method, called for the sake of simplicity the Camastra
Verri algorithm, considers a codebook in feature space and uses a K-Means-
like strategy, that is moves the centers ai of the codebook in the feature space
computing one-class SVM on their Voronoi sets FVi until no center changes
anymore.

To make robust the algorithm with respect to the outliers one-class SVM,
which we call for simplicity 1-SVM, is computed on FVc(ρ) of each center ac.
FVc(ρ) is defined as

FVc(ρ) = {xi ∈ FVc and ‖Φ(xi) − ac‖ < ρ} (9.193)

FVc(ρ) is the Voronoi set in the feature space of the center ac without outliers,
that is the images of data points whose distance from the center is larger
than ρ. The parameter ρ can be set up using model selection techniques [6].

Camastra Verri algorithm has the following steps:

1. Project the data set X into a feature space F , by means a nonlinear
mapping Φ. Initialize the centers ac c = 1, . . . , K ac ∈ F

2. Compute for each center ac FVc(ρ)
3. Apply one-class SVM to each FVc(ρ) and assign to ac the center yielded,

i.e. ac = 1SV M(FVc(ρ))
4. Go to step 2 until any ac changes
5. Return the feature space codebook.

The second step is the expectation stage of an EM algorithm. With regard
to the third step, when the constant C is taken not lower than 1, one-class
SVM computes the smallest ball that encloses all data. Intuitively under this
condition the third step is the maximization stage of an EM algorithm and the
algorithm convergence is guaranteed, since each EM algorithm is convergent.
Besides, the authors claims that the algorithm, with C ≥ 1 and a ρ fixed
during the different iterations, has always converged in all experiments.

9.10.3 Spectral Clustering

Finally, we conclude the section on kernel methods describing briefly spectral
clustering methods. Although these have not been developed in the framework
of the kernel methods, they have strong connections with them. It has been
shown [22][21] that spectral clustering, under given conditions, is perfectly
equivalent to kernel K-Means. For this reason, it is convenient that spectral
clustering methods are included in the family of kernel methods for clustering.

Spectral clustering methods [2][7][19][30][43][57][62] [79] have a strong
connections with the graph theory. Spectral clustering methods have widely
applied into several applicative domains (e.g. image segmentation [79] and

9.10 Kernel Clustering Methods 253

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

Fig. 9.6. Camastra and Verri algorithm applied to a nonlinear separable data set.
The black and the grey curves delimitate the two feature Voronoi sets produced by
the algorithm. The data set cannot be separable, using two codevectors, by means
of classical clustering algorithms such as K-Means, SOM, neural gas.

bioinformatics [65]). Besides, the consistency of spectral clustering has been
recently proven [90, 91] showing in this way that spectral clustering is theoreti-
cally well-grounded. Now, we pass to introduce spectral clustering algorithms
describing in detail the most popular clustering algorithm, namely the Ng-
Jordan algorithm [62].

Let X = (x1, . . . ,x�) ⊆ Rn be the data, we can build a weighted undirected
graph G starting from X where each sample is represented by means of a node.
The distance (or adjacency) aij between two nodes xi and xj is defined by:

Wij =
{

h(xi,xj) if i
= j
0 otherwise.

}
. (9.194)

The function h(·) measures the dissimilarity between data. In this framework
clustering can be viewed as a graph cut problem and the spectral theory permit
relaxing the complexity of the problem.

254 9 Kernel Methods

For the weighted graph G we call the weight matrix W , whose elements
are provided by (9.194), the adjacency matrix (or affinity matrix) of G. Then
we define the diagonal matrix D whose generic element Dii is the sum of the
i-th row of the matrix A. Being said that, Ng-Jordan algorithm is formed by
the following steps:

1. Choose as dissimilarity function the gaussian kernel, namely h(xi,xj) =
exp(−‖xi−xj‖2)

σ2 (σ ∈ R) and build the affinity matrix A.
2. Compute the D matrix and construct the matrix L = D− 1

2 AD− 1
2 .

3. Compute the k largest eigenvectors of L e1, . . . , ek and build the matrix
E = [e1, . . . , ek].

4. Compute the matrix Y from E normalizing each of rows of E in order to
have unit length, i.e the element ij of the matrix Y is given by:

Yij =
Eij

k∑
j=1

E2
ij

(9.195)

5. Defining a new data set P = {p1, . . . ,p�}, belonging to Rk, which are
provided by the Y rows, namely the i-point pi is given by the the i-th row
of Y . Cluster P into k clusters using a clustering algorithm (e.g. K-Means).

6. Assign the original point xi to the cluster j iff the point pi was assigned
to the cluster j.

The Ng-Jordan algorithm has a strong analogy to the idea proposed, but not
fully investigated, by [76] in their early technical report about the Kernel
PCA. They have proposed an algorithm (kernel K-Means) which consists in
applying the kernel PCA on the data and then clustering the projected data
along the largest kernel eigenvectors by means of K-Means.

Finally, we recall that other spectral clustering approaches have been pro-
posed (see [29] for a review). In particular, we quote the Meila and Shi al-
gorithm based on the framework of Markov random walks [57] and the Shi
and Malik algorithm [79], based on the optimal partitioning of the graph by
means of the minimization of the graph cut.

9.11 Software Packages

We conclude the chapter providing a brief survey of the public domain software
packages which implement kernel methods. The most popular packages are
SVMLight, SVMTorch and LIBSVM.

SVMLight [41] can be downloaded from svmlight.joachims.org. It im-
plements support vector for classification and for regression. It is also available
a SVM version (SVMstruct)[83] for multivariate and structured outputs like
trees and sequences.

9.12 Conclusion 255

SVMTorch was developed by [15]. At present, it is integrated in the ma-
chine learning library Torch [16], which can be downloaded at www.torch.ch.
SVMTorch, written in C++, implements support vector for classification and
for regression.

LIBSVM [25], written in C++, is a public domain library for support vec-
tor machines and is downlable from www.csie.ntu.edu.tw/∼cjlin/libsvm.
The library provides software for support vector machines for classification
and regression and for one-class SVM. Besides, there are available interfaces
to LIBSVM for several languages and toolboxes (e.g. R, Python and Perl).

Moreover, software packages based on mathematical toolboxes have been
developed. Kernlab [44], based on the R toolbox, and can be downloaded from
cran.r-project.org/src/contrib/Descriptions/kernlab.html.

Kernlab provides implementations of support vector machines for classi-
fication and regression, gaussian processes, Kernel PCA and spectral clus-
tering algorithms. Finally, SVM-KMToolbox [11] is a toolbox, written in
MATLAB c©.9 It can be downloaded from
asi.insa-rouen.fr/∼arakotom/toolbox/index.html
and contains implementations of SVM for classification and regression, mul-
ticlass SVM, one-class SVM, kernel PCA and kernel discriminant analysis.

9.12 Conclusion

In this chapter we have provided an overview of kernel methods. First of
all, we have recalled the basic tools of the optimization theory, the Lagrange
multipliers and the Kuhn Tucker theorem, used in the kernel methods. Then
support vector machines for classification and regression have been presented.
Gaussian processes have been described, underlining their connection with
kernel ridge regression. The Fisher kernel discriminant has also been reviewed.
Then we have described unsupervised kernel methods, namely kernel PCA and
one-class SVM and we have concluded our survey with sketches about kernel
and spectral methods for clustering.

Kernel methods are very powerful machine learning algorithms. Neverthe-
less, their performance is strongly affected by the choice of the appropriate
kernel. The choice of the kernel is so important that it has been developed
a particular branch of the kernel method theory, called kernel engineering ,
devoted to how to design appropriate kernel for a given task. In the last
years, have been designed kernel for image classification [3], for handling word
sequences [10], for string and tree matching [35][51][89], for hypertext classifi-
cation [42]. A detailed discussion on this topic is out of this topic of the book,
therefore we advise the reader interested in kernel engineering to refer specific
works on kernels such as [78].

Finally, we conclude the chapter providing some bibliographical remarks.
SVMs for classification and regression are discussed in detail in [19][74][78][86].
9 MATLAB c© is a registered trademark of The Mathworks, Inc.

256 9 Kernel Methods

A comprehensive survey of the Gaussian processes is provided by [71]. kernel
Fisher discriminant and kernel PCA are described in [75] and [58], respectively.
Spectral and kernel methods for clustering are reviewed, underlining their
connections, in [29].

Problems

9.1. Consider the function K : X × X → R, where X ⊆ Rn. Prove that if
K(x,y) = Φ(x) · Φ(y) then K(·) is a Mercer kernel.

9.2. Prove that the Cauchy kernel C(x,y) = α(1 + ‖x − y‖2) is positive
definite for α > 0. (Hint : Read Appendix D).

9.3. Prove that the Epanechnikov kernel , defined by

E(x, y) = 0.75(1 − ‖x − y‖2)I(‖x − y‖ ≤ 1) (9.196)

is conditionally positive definite. (Hint : Read Appendix D).

9.4. Prove that the optimal hyperplane is unique.

9.5. Consider the SMO algorithm for classification. What is the minimum
number of Lagrange multipliers which can be optimized in an iteration? Ex-
plain your answer.

9.6. Consider the SMO algorithm for classification. Show that in the case of
unconstrained maximum we obtain the following updating rule

α2(t + 1) = α2(t) − y2(E1 − E2)
2K(x1,x2) − K(x1,x1) − K(x2,x2)

(9.197)

where Ei = f(xi − yi).

9.7. Consider the data Set A of the SantaFe time series competition. Using a
public domain SVM regression package and the four preceeding values of the
time series as input, predict the actual value of the time series. The data set
A can be downloaded from http://www-psych.stanford.edu/ andreas/Time-
Series/SantaFe.html. Implement a Gaussian process for regression and repeat
the exercise replacing SVM with the Gaussian process. Discuss the results.

9.8. Using the o-v-r method and a public domain SVM binary classifier (e.g.
SVMLight or SVMTorch), test a multiclass SVM on Iris Data [31] that can
be dowloaded by ftp.ics.uci.edu/pub/machine-learning-databases/iris. Repeat
the same experiment replacing the o-v-r method with the o-v-o strategy. Dis-
cuss the results.

9.12 Conclusion 257

9.9. Implement kernel PCA and test it on a dataset (e.g. Iris Data). Use as
Mercer kernel the Gaussian and verify the Twining and Taylor’s result [84],
that is, that for large values of the variance the kernel PCA eigenspectrum
tends to PCA eigenspectrum.

9.10. Consider one-class SVM. Prove there are no bounded support vector
when the regularization constant C is equal to 1.

9.11. Implement kernel K-Means and test your implementation on a dataset
(e.g. Iris Data). Verify that when you choose as Mercer kernel the inner prod-
uct you obtain the same results of batch K-Means.

9.12.
Implement the Ng-Jordan algorithm using a mathematical toolbox. Test your
implementation on Iris data. Compare your results with the ones reported
in [9].

References

1. M. Aizerman, E. Braverman, and L. Rozonoer. Theoretical foundations of the
potential function method in pattern recognition learning. Automation and
Remote Control, 25, 1964.

2. F. R. Bach and M. I. Jordan. Learning spectral clustering. Technical report,
EECS Department, University of California, 2003.

3. A. Barla, E. Franceschi, F. Odone, and F. Verri. Image kernels. In Proceedings
of SVM2002, pages 83–96, 2002.

4. A. Ben-Hur, D. Horn, H.T. Siegelmann, and V. Vapnik. Support vector clus-
tering. Journal of Machine Learning Research, 2(2):125–137, 2001.

5. C. Berg, J.P.R. Christensen, and P. Ressel. Harmonic analysis on semigroups.
Springer-Verlag, 1984.

6. C.M. Bishop. Neural Networks for Pattern Recognition. Cambridge University
Press, 1995.

7. M. Brand and K. Huang. A unifying theorem for spectral embedding and clus-
tering. In Proceedings of the Ninth International Workshop on Artificial Intel-
ligence and Statistics, 2003.

8. L. M. Bregman. The relaxation method of finding the common point of convex
sets and its application to the solution of problems in convex programming.
USSR Computational Mathematics and Mathematical Physics, 7:200–217, 1967.

9. F. Camastra and A. Verri. A novel kernel method for clustering. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 27(5):801–805, 2005.

10. N. Cancedda, E. Gaussier, C. Goutte, and J.-M. Renders. Word-sequence ker-
nels. Journal of Machine Learning Research, 3(1):1059–1082, 2003.

11. S. Canu, Y. Grandvalet, V. Guigue, and A. Rakotomamonjy. SVM and kernel
methods matlba toolbox. Technical report, Perception Systemes et Information,
INSA de Rouen, 2005.

12. Y. Censor. Row-action methods for huge and sparse systems and their applica-
tions. SIAM Reviews, 23(4):444–467, 1981.

13. Y. Censor and A. Lent. An iterative row-action method for interval convex
programming. Journal of Optimization Theory and Application, 34(3):321–353,
1981.

14. J.H. Chiang. A new kernel-based fuzzy clustering approach: support vector
clustering with cell growing. IEEE Transactions on Fuzzy Systems, 11(4):518–
527, 2003.

260 References

15. R. Collobert and S. Bengio. SVMTorch: Support vector machines for large-scale
regression problems. Journal of Machine Learning Research, 1(2):143–160, 2001.

16. R. Collobert, S. Bengio, and J. Mariethoz. Torch: a modular machine learning
software library. Technical report, IDIAP, 2002.

17. C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20(3):1–
25, 1995.

18. N. Cressie. Statistics for Spatial Data. John Wiley, 1993.
19. N. Cristianini, J.S. Taylor, and J. S. Kandola. Spectral kernel methods for

clustering. In Advances in Neural Information Processing Systems 14, pages
649–655. MIT Press, 2001.

20. A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from incom-
plete data via the em algorithm. Journal Royal Statistical Society, 39(1):1–38,
1977.

21. I.S. Dhillon, Y. Guan, and B. Kullis. Kernel k-means: spectral clustering and
normalized cuts. In Proceedings of the 10th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pages 551–556. ACM Press,
2004.

22. I.S. Dhillon, Y. Guan, and B. Kullis. Weighted graph cuts without eigenvectors:
A multilevel approach. IEEE Transactions on Pattern Analysis and Machine
Intelligence, (to appear), 2007.

23. R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. John Wiley,
2001.

24. T. Evgeniou, M. Pontil, and T. Poggio. Regularization networks and support
vector machines. Advances in Computational Mathematics, 13(1):1–50, 2001.

25. P.-H. Fan, R.-E. andChen and C.-J. Lin. Working set selection using the second
order information for training SVM. Journal of Machine Learning Research,
6:1889–1918, 2005.

26. P. Fermat. Methodus ad disquirendam maximam et minimam. In Oeuvres de
Fermat. MIT Press, 1891 (First Edition 1679).

27. M. Ferris and T. Munson. Interior point method for massive support vector
machines. Technical report, Computer Sciences Department, University of Wis-
consin, Madison, Wisconsin, 2000.

28. M. Ferris and T. Munson. Semi-smooth support vector machines. Techni-
cal report, Computer Sciences Department, University of Wisconsin, Madison,
Wisconsin, 2000.

29. M. Filippone, F. Camastra, F. Masulli, and S. Rovetta. A survey of spectral
and kernel methods for clustering. Pattern Recognition, to appear.

30. I. Fischer and I. Poland. New methods for spectral clustering. Technical report,
IDSIA, 2004.

31. R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals
of Eugenics, 7(2):179–188, 1936.

32. J. Friedman. Regularized discriminant analysis. Journal of the American Sta-
tistical Association, 84(405):165–175, 1989.

33. T.T. Friess, N. Cristianini, and C. Campbell. The kernel adatron algorithm: a
fast and simple learning procedure for support vector machines. In Proceedings
of 15th International Conference on Machine Learning, pages 188–196. Morgan
Kaufman Publishers, 1998.

34. K. Fukunaga. An Introduction to Statistical Pattern Recognition. Academic
Press, 1990.

References 261

35. T. Gärtner, J.W. Lloyd, and P.A. Flach. Kernels and distances for structured
data. Machine Learning, 57(3):205–232, 2004.

36. M. Girolami. Mercer kernel based clustering in feature space. IEEE Transactions
on Neural Networks, 13(3):780–784, 2002.

37. F. Girosi, M. Jones, and T. Poggio. Regularization theory and neural network
architectures. Neural Computation, 7(2):219–269, 1995.

38. J. Hadamard. Sur les problemes aux derivees partielles et leur signification
physique. Bull. Univ. Princeton, 13:49–52, 1902.

39. T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning.
Springer-Verlag, 2001.

40. R. Herbrich. Learning Kernel Classifiers: Theory and Algorithms. MIT Press,
2004.

41. T. Joachims. Making large-scale SVM learning practical. In Advances in Kernel
Methods, pages 169–184. MIT Press, 1999.

42. T. Joachims, N. Cristianini, and J. Shawe-Taylor. Composite kernels for hy-
pertext classification. In Proceedings of the 18th International Conference on
Machine Learning, pages 250–257. IEEE Press, 2001.

43. R. Kannan, S. Vempala, and A. Vetta. On clusterings: Good, bad and spectral.
In Proceedings of the 41st Annual Symposium on the Foundation of Computer
Science, pages 367–380. IEEE Press, 2000.

44. A. Karatzoglou, A. Smola, K. Hornik, and A. Zeleis. kernlab- an s4 package for
kernel methods in r. Journal of Statistical Software, 11(9):1–20, 2004.

45. S. Keerthi, S. Shevde, C. Bhattacharyya, and K. Murthy. Improvements to
platt’s smo algorithm for SVM classifier design. Technical report, Department
of CSA, Bangalore, India,, 1999.

46. S. Keerthi, S. Shevde, C. Bhattacharyya, and K. Murthy. A fast iterative nearest
point algorithm for support vector machine design. IEEE Transaction on Neural
Networks, 11(1):124–136, 2000.

47. G.A. Korn and T.M. Korn. Mathematical Handbook for Scientists and Engi-
neers. Mc Graw-Hill, 1968.

48. H.W. Kuhn and A.W. Tucker. Nonlinear programming. In Proceedings of 2nd

Berkeley Symposium on Mathematical Statistics and Probabilistics, pages 367–
380. University of California Press, 1951.

49. J.-L. Lagrange. Mecanique analytique. Chez La Veuve Desaint Libraire, 1788.
50. D. Lee. An improved cluster labeling method for support vector clustering.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(3):461–
464, 2005.

51. C. Leslie, E. Eskin, A. Cohen, J. Weston, and A. Noble. Mismatch string kernels
for discriminative protein classification. Bioinformatics, 20(4):467–476, 2004.

52. D. Lueberger. Linear and Nonlinear Programming. Addison-Wesley, 1984.
53. D.J.C. MacKay. A practical bayesian framework for backpropagation networks.

Neural Computation, 4(3):448–472, 1992.
54. O.L. Mangasarian. Linear and non-linear separation of patterns by linear pro-

gramming. Operations Research, 13(3):444–452, 1965.
55. O.L. Mangasarian and D. Musicant. Lagrangian support vector regression. Tech-

nical report, Computer Sciences Department, University of Wisconsin, Madison,
Wisconsin, June 2000.

56. G. Matheron. Principles of geostatistics. Economic Geology, 58:1246–1266, 1963.
57. M. Meila and J. Shi. Spectral methods for clustering. In Advances in Neural

Information Processing Systems 12, pages 873–879. MIT Press, 2000.

262 References

58. S. Mika, G. Rätsch, J. Weston, B. Schölkopf, and K.R. Müller. Fisher discrimi-
nant analysis with kernels. In Proceedings of IEEE Neural Networks for Signal
Processing Workshop, pages 41–48. IEEE Press, 2001.

59. M.L. Minsky and S.A. Papert. Perceptrons. MIT Press, 1969.
60. J. Moody and C. Darken. Fast learning in networks of locally-tuned processing

units. Neural Computation, 1(2):281–294, 1989.
61. R. Neal. Bayesian Learning in Neural Networks. Springer-Verlag, 1996.
62. A.Y. Ng, M.I. Jordan, and Y. Weiss. On spectral clustering: Analysis and an

algorithm. In Advances in Neural Information Processing Systems 14, pages
849–856. MIT Press, 2002.

63. E. Osuna, R. Freund, and F. Girosi. An improved training algorithm for support
vector machines. In Neural Networks for Signal Processing VII, Proceedings of
the 1997 IEEE Workshop, pages 276–285. IEEE Press, 1997.

64. E. Osuna and F. Girosi. Reducing the run-time complexity in support vector
machines. In Advances in Kernel Methods, pages 271–284. MIT Press, 1999.

65. A. Paccanaro, C. Chennubhotla, J.A. Casbon, and M.A.S. Saqi. Spectral clus-
tering of protein sequences. In Proceedings of International Joint Conference on
Neural Networks, pages 3083–3088. IEEE Press, 2003.

66. J.C. Platt. Fast training of support vector machines using sequential minimal
optimization. In Advances in Kernel Methods, pages 185–208. MIT Press, 1999.

67. J.C. Platt, N. Cristianini, and J. Shawe-Taylor. Large margin dags for multiclass
classification. In Advances in Neural Information Processing Systems 12, pages
547–553. MIT Press, 2000.

68. T. Poggio and F. Girosi. Networks for approximation and learning. Proceedings
of the IEEE, 78(9):1481–1497, 1990.

69. M. Pontil and A. Verri. Support vector machines for 3-d object recognition.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(6):637–
646, 1998.

70. M.J.D. Powell. Radial basis functions for multivariable interpolation: A review.
In Algorithms for Approximation, pages 143–167. Clarendon Press, 1987.

71. C.E. Rasmussen and C. Willims. Gaussian Processes for Machine Learning.
MIT Press, 2006.

72. K. Rose. Deterministic annealing for clustering, compression, classification,
regression, and related optimization problem. Proceedings of the IEEE,
86(11):2210–2239, 1998.

73. R. Rosipal and M. Girolami. An expectation maximization approach to nonlin-
ear component analysis. Neural Computation, 13(3):505–510, 2001.

74. B. Schölkopf and A.J. Smola. Learning with Kernels. MIT Press, 2002.
75. B. Schölkopf, A.J. Smola, and K.R. Muller. Nonlinear component analysis as a

kernel eigenvalue problem. Neural Computation, 10(5):1299–1319, 1998.
76. B. Schölkopf, A.J. Smola, and K.R. Muller. Nonlinear component analysis as a

kernel eigenvalue problem. Technical report, Max Planck Institut für Biologische
Kybernetik, 1998.

77. B. Schölkopf, R.C. Williamson, A.J. Smola, J. Shawe-Taylor, and J. Platt. Sup-
port vector method for novelty detection. In Advances in Neural Information
Processing Systems 12, pages 526–532. MIT Press, 2000.

78. J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cam-
bridge University Press, 2004.

79. J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 22(8):888–905, 2000.

References 263

80. D.M.J. Tax and R.P.W. Duin. Support vector domain description. Pattern
Recognition Letters, 20(11-13):1191–1199, 1999.

81. A.N. Tikhonov. On solving ill-posed problem and method of regularization.
Dokl. Acad. Nauk USSR, 153:501–504, 1963.

82. A.N. Tikhonov and V.Y. Arsenin. Solution of ill-posed problems. W.H. Winston,
2002.

83. I. Tsochantaridis, T. Hoffman, T. Joachims, and Y. Altun. Support vector
learning for interdependent and structured output spaces. In Proceedings of
ICML04. IEEE Press, 2004.

84. C.J. Twining and C.J. Taylor. The use of kernel principal component analysis
to model data distributions. Pattern Recognition, 36(1):217–227, 2003.

85. V.N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, 1995.
86. V.N. Vapnik. Statistical Learning Theory. John Wiley, 1998.
87. V.N. Vapnik and A.Ya. Chervonenkis. A note on one class of perceptron. Au-

tomation and Remote Control, 25:103–109, 1964.
88. V.N. Vapnik and A. Lerner. Pattern recognition using generalized portrait

method. Automation and Remote Control, 24:774–780, 1963.
89. S. Vishwanathan and A.J. Smola. Fast kernels for string and tree matching.

In Advances in Neural Information Processing Systems 15, pages 569–576. MIT
Press, 2003.

90. U. von Luxburg, M. Belkin, and O. Bosquet. Consistency of spectral clustering.
Technical report, Max Planck Institut für Biologische Kybernetik, 2004.

91. U. von Luxburg, M. Belkin, and O. Bosquet. Limits of spectral clustering. In
Advances in Neural Information Processing Systems 17. MIT Press, 2005.

92. G. Wahba. Spline Models for Observational Data. SIAM, 1990.
93. J. Weston, A. Gammerman, M. Stitson, V. Vapnik, V. Vovk, and C. Watkins.

Support vector density estimation. In Advances in Kernel Methods, pages 293–
306. MIT Press, 1999.

94. J. Weston and C. Watkins. Multi-class support vector machines. In Proceedings
of ESANN99, pages 219–224. D. Facto Press, 1999.

95. C.K.I. Williams and D. Barber. Bayesian classification with Gaussian processes.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(12):1342–
1351, 1998.

96. J. Yang, V. Estvill-Castro, and S.K. Chalup. Support vector clustering through
proximity graph modelling. In Neural Information Processing 2002, ICONIP’02,
pages 898–903, 2002.

10

Markovian Models for Sequential Data

What the reader should know to understand this chapter

• Bayes decision theory (Chapter 5).
• Lagrange multipliers and conditional optimization problems (Chapter 9).
• Probability and statistics (Appendix A).

What the reader should know after reading this chapter

• The three problems of hidden Markov models.
• The Baum-Welch algorithm.
• The Viterbi algorithm.
• N -gram language modeling.

10.1 Introduction

Most of the techniques presented in this book are aimed at making decisions
about data. By data it is meant, in general, vectors representing, in some
sense, real-world objects that cannot be handled directly by computers. The
components of the vectors, the so-called features, are supposed to contain
enough information to allow a correct decision and to distinguish between
different objects (see Chapter 5). The algorithms are typically capable, after a
training procedure, of associating input vectors with output decisions. On the
other hand, in some cases real-world objects of interest cannot be represented
with a single vector because they are sequential in nature. This is the case of
speech and handwriting, which can be thought of as sequences of phonemes
(see Chapter 2) and letters, respectively, temporal series, biological sequences
(e.g. chains of proteins in DNA), natural language sentences, music, etc. The
goal of this chapter is to show how some of the techniques presented so far
for single vectors can be extended to sequential data.

266 10 Markovian Models for Sequential Data

Given an observation sequence S = xT
1 = {x1, . . . ,xT }, where xi ∈ Rn

can be continuous or discrete, the problem is to provide a probability den-
sity function p(S) over the space S of the sequences. If necessary, the density
function must be of the form p(S|Θ), where Θ is a parameter set that can be
learnt from a training set containing a sufficient number of labeled sequences.
This problem has been successfully addressed in the last 20 years using the
so-called probabilistic finite state machines (PFSM) [37][38], a family of mod-
els including probabilistic finite state automata [11], Markov chains [24][29],
probabilistic suffix trees [34][33], and other models (see [23] for an extensive
survey). This chapter focuses on two particular models of the family, i.e. N -
grams [31] and hidden Markov models (HMMs) [32].

The N -grams are simple models giving the probabilities of sequences
of elements belonging to a finite alphabet. In particular, the N -grams out-
perform linguistics based approaches in modeling natural sentences [35]. The
HMMs are one of the most commonly applied PSFM and have the particu-
larity of modeling sequences of states that cannot be observed directly, but
only through sequences of statistically related observations (see the rest of
this chapter for more details). This makes the HMMs more flexible than other
models and suitable for problems that cannot be addressed with other kinds
of PFSM [7].

The rest of this chapter is organized as follows: Section 10.2 provides the
main elements and definitions about HMMs and it explains the reason of the
introduction of the nonobservable states, Section 10.3 introduces the three
problems characterzing the use of HMMs, i.e. likelihood, decoding and learn-
ing, Sections 10.4, 10.5 and 10.6 describe the way such problems are addressed,
Section 10.7 presents different variants of the HMMs, Section 10.8 describes
the N -grams and the data sparseness problem, Section 10.9 introduces dis-
counting and smoothing techniques and Section 10.10 provides a quick tutorial
to a free package enabling one to build N -gram models.

10.2 Hidden Markov Models

In very simple terms, the music can be thought of as a sequence of notes
S = sT

1 = {s1, . . . , sT } with different durations. The single elements st can
be modeled as random variables, called state variables, which take values in a
finite set V = {v1, . . . , vN}1, i.e. st = vi ∀t ∈ {1, . . . , T}, where i ∈ {1, . . . , N}.
Consider the case where the music score is at disposition and the sequence S
can then be accessed directly, the probability p(S) of the sequence S being
observed can be estimated with a Markov model (MM) of order k, i.e. a
probability distribution defined over sequences and based on the following
conditional independence assumption:
1 The case where V is a continuous range concerns the so-called state space models

and it is out of the scope of this book. The interested reader can refer to [7] for
more details.

10.2 Hidden Markov Models 267

p(st|st−1
1) = p(st|st−1

t−k), (10.1)

i.e. the state variable st depends only on the state variables st′ with t− t′ > k.
In other words, the state variable st depends only on the k previous state
variables in S. As a consequence, by Equation (10.1) the distribution p(S)
can be decomposed as follows:

p(S) = p(sk
1)

T∏
t=k+1

p(st|st−1
t−k). (10.2)

The correct expression for the fact that st = vk is the state variable at
step t takes the value vk. However it is more common to say, although not
correct, that the state at step t is vk, and the same convention will be applied
throughout this book.

In most cases k = 1 and the above distribution becomes:

p(S) = p(s1)
T∏

t=2

p(st|st−1), (10.3)

completely specified by the initial state probabilities p(s1) and by the transi-
tion probabilities p(st|st−1). This is the most common case and the assumption
that k = 1 is not a restriction because any kth order MM can be represented
with a first-order model by simply increasing the number of state variables. In
fact, if we consider the Nk sequences st+k−1

t , Equation (10.3) can be rewritten
as:

p(S) = p(sk
1 , sk+1

2 , . . . , sT
T−k+1) = p(sk

1)
T−k+1∏

t=2

p(st+k
t |st+k−2

t−1), (10.4)

and a kth order MM is equivalent to a first-order one.
In principle, the transition probabilities p(st|st−1) depend on t; however,

this chapter focuses on cases where they are homogeneous, i.e. they do not
depend on t. This reduces significantly the number of parameters and enables
one to collect all p(st|st−1) into a matrix A, called a transition matrix, such
that:

aij = p(st = vj |st−1 = vi), (10.5)

where aij is the element ij of A. The transition matrix determines the topology
of the MM, i.e. the structure of the graph that can be used to represent an
MM (see Figure 10.1). When aij = 0, transitions between states vi and vj

are not allowed and no connection is established between their corresponding
nodes. When aii > 0, the state vi can be repeated in following steps along the
sequence and the corresponding transition is called self-transition.

When aij > 0 only for j = i or j = i + 1, the model is called Bakis (see
upper picture in Figure 10.1), when aij > 0 for j ≥ i, the model topology
is called left-right. This structure is particularly suitable for data like speech

268 10 Markovian Models for Sequential Data

v1 v2 v3 v4 v5 v6

v1 v2

v3v6

v4v5

Fig. 10.1. Model topology. In the left-right topology (upper figure) only self-
transitions and transitions to the next state in a predefined sequence are allowed.
In the fully connected model (lower figure) all states can be reached from any other
state.

or handwriting where the sequence of states corresponds to a sequence of
letters and phonemes, respectively (see Chapters 2 and 12). When aij > 0,
∀i, j ∈ (1, 2, . . . , N), the MM is said to be fully connected, and each state can
be followed by any other state. A model is said ergodic when any state can
be reached by any other state in a finite number of steps.

Consider now the case where the music score is not available and the only
information at disposition about the music is a recording, i.e. the sequence S
cannot be accessed directly and it is hidden. The only possibility of modeling
p(S) is to extract from the sound a vector of measures xt at each time step
t (e.g. the Fourier coefficients described in Appendix B). Since measurement
devices are not perfect and the players introduce variations even when they
play the same note, the observations x corresponding to a specific state vi

are not constant, but rather follow a distribution p(x|vi) (see Figure 10.2).
As a consequence, the sequence O = xT

1 = {x1, . . . ,xT } hardly respects the
Markov assumption of Equation (10.1), at least for small k values. However,
the observation sequence xT

1 is the effect of the underlying state sequence
sT
1 which respects the Markov assumption, then it is possible to make the

following simplifying assumptions:

p(xt|sT
1 ,xt−1

1) = p(xt|st) (10.6)

10.2 Hidden Markov Models 269

Fig. 10.2. Hidden Markov models. The figure shows how a sequence of states and
observations is generated. The transition between the states is modeled by the tran-
sition probabilities p(st+1|st), while the observations are generated following the
emission probabilities p(xt|st).

p(st|st−1
1 ,xt−1

1) = p(st|st−1), (10.7)

i.e. the probability of the observation xt depends only on state st and this
last depends only on state st−1. The introduction of the hidden state sequence
enables one to model sequences of observations that do not respect directly
the Markov assumption, but are generated by piecewise stationary processes.
In the music example each note lasts for a time interval before the following
note is played. During such an interval the sound properties can be assumed
to be stationary, i.e. they do not change as much as when passing from one
note to the following one, and any form of analysis and measurement produces
observations that follow the same distribution.

Based on the independence assumptions of Equations (10.6) and (10.7),
the joint distribution of observation and state sequences can be written as
follows:

p(xT
1 , sT

1) = p(s1)
T∏

t=2

p(st|st−1)
T∏

t=1

p(xt|st), (10.8)

completely specified by:

• a set π = {π1 = p(s1 = v1), . . . , πN = p(s1 = vN)} of initial state proba-
bilities.

• a transition matrix A such that aij = p(st = vj |st−1 = vi).
• a set B = {b1(x) = p(x|v1), . . . , bN (x)p(x|vN)} of emission probability

functions.

The set λ = {π, A,B} is called hidden Markov model because the states are
not accessible directly, but only through the observations.

10.2.1 Emission Probability Functions

The choice of the emission probability function is important because it enables
one to distinguish between discrete HMMs and continuous density (or simply

270 10 Markovian Models for Sequential Data

continuous) HMMs. In the first case, the observations belong to a finite set of
symbols C = {c1, c2, . . . , cK} and the emission probabilities can be represented
with a matrix B such that:

bij = p(xt = cj |st = vi), (10.9)

where 1 ≤ i ≤ N and 1 ≤ j ≤ K. Such an approach is especially suitable
when the observations are discrete by nature, but it can be used also when
the observations are continuous. In fact, it is possible to perform a vector
quantization (see Chapter 8) and to replace the observations with their closest
codevector. In this way, continuous observations are converted into discrete
symbols.

In the case of continuous HMMs, the most common emission probability
function is the Gaussian mixture (GM) [9][40]:

p(xt|st = vi) =
G∑

j=1

wij
1√

2πd|Σij |
e−

1
2 (x−µij)

T Σ−1
ij

(x−µij) (10.10)

where wij is a weight, d is the dimension of the observation vectors, G is the
number of Gaussians in the mixture, Σij is the covariance matrix of the jth

Gaussian of the mixture corresponding to state vi and µij is the mean for the
same Gaussian (see Section 5.7.2 for more details). The mixture coefficients
wij must respect two conditions: the first is that wij > 0 ∀j ∈ {1, . . . , G} and
the second is that

∑G
j=1 wij = 1. When G = 1, the mixture corresponds to a

single Gaussian.
Any other continuous distribution can be used, but the GM is the most

commonly applied because it has universal approximation properties, i.e. the
GM can approximate any other distribution with an error as small as necessary
if enough Gaussians are used [30]. On the other hand, the number of Gaussians
that can be used is limited by the amount of training material available. In
fact, each Gaussian requires d2/2 + 3d/2 + 1 parameters and the amount of
material necessary to train effectively the models grows with the number of
parameters.

10.3 The Three Problems

The independence assumptions made in Section 10.2 are a key point in the
definition of the hidden Markov models. In fact, they enable one to express
probability distributions over sequences in terms of a few elements (see Sec-
tion 10.2): initial state probabilities, transition probabilities and emission
probability functions. Such assumptions do not necessarily capture the real
relationships between the data under examination (e.g. the music notes in
a song), but empirical experience shows that good results are achieved in
applications applying the decision theory framework presented in Chapter 5.

10.4 The Likelihood Problem and the Trellis 271

In this perspective, there are three problems that must be addressed to
use effectively an HMM λ = {π, A,B}:
The likelihood problem. Given an observation sequence O = xT

1 and an
HMM λ = {π, A,B}, how do we estimate the likelihood of O given λ?
The study of this problem leads to the introduction of a trellis allowing
one to compute efficiently the quantities necessary to deal not only with
the estimation of the likelihood, but also with the other two problems.

The decoding problem. Given an observation sequence O = xT
1 and an

HMM λ = {π, A,B}, how do we find the sequence S = sT
1 that generates

O with the highest probability?
The examination of this problem leads to the Viterbi algorithm (VA), one
of the most widely applied decoding approaches.

The learning problem. Given an observation sequence O, how do we find
the model λ∗ = arg maxλ p(O|λ) that maximizes the likelihood p(O|λ)?
The investigation of this problem leads to a particular form of the EM
technique (see Chapter 6) known as Baum Welch algorithm and is suitable
only for the HMMs.

The three problems can be addressed separately and the next subsections
describe them in detail.

10.4 The Likelihood Problem and the Trellis**

Consider a sequence of observations O = xT
1 and a sequence of states S = sT

1

governed by an HMM λ. The probability of observing the sequence O when
the sequence of states is S can be written as follows:

p(O,S|λ) = p(O|S, λ)p(S|λ). (10.11)

The first term of the product can be expressed as:

p(O|S, λ) =
T∏

t=1

bst
(xt), (10.12)

and requires only the emission probability functions in B.
The second term of the product in Equation (10.11) can be estimated using

initial state and transition probabilities:

p(S|λ) = πs1

T∏
t=2

ast−1st
(10.13)

and it requires only the transition probabilities in A.
The likelihood p(O|λ) corresponds to the probability of Equation (10.11)

summed over all possible sequences:

272 10 Markovian Models for Sequential Data

p(O|λ) =
∑
S∈S

p(O|S, λ)p(S|λ), (10.14)

where S is the set of all T long sequences such that st ∈ V , ∀t ∈ {1, . . . , t}. The
number of sequences in S is NT and, even for moderate values of N and T ,
it is too high to make the explicit computation of p(O|λ) tractable. However,
the likelihood can be obtained at a reasonable computational cost by applying
a recursive technique based on the trellis of Figure 10.3, where each column
corresponds to a time step and each node to a state. The links correspond
to transitions leading from state st to state st+1 and to the emission of the
observation xt+1. No links are allowed between the nodes of the same column
because the only allowed transitions are those leading to the next state and
observation. A path through the trellis corresponds to a path through the
states of an HMM, i.e. to a sequence S ∈ S.

The key element of the technique is the forward variable αt(i) = p(xt
1, st =

vi|λ), i.e. the probability of observing the partial sequence xt
1 (where t ≤ T)

having vi as state st. The forward variable is defined by induction:

Initialization. When t = 1, the forward variable is:

α1(i) = πibi(x1), (10.15)

where i = 1, . . . , N , and it corresponds to the probability of starting the
sequence with the state vi and the observation x1.

Induction. While the forward variable α1(i) is associated to the single node
i in the first column, the forward variable α2(i) must take into account
all trellis paths starting from the first column and ending at the ith node
of the second column:

α2(i) =

[
N∑

k=1

α1(k)aki

]
bi(x2) (10.16)

where i = 1, . . . , N . This corresponds to summing over all links connecting
the nodes of the first columns to node i in the second column. The same
consideration made for α2(i) applies to the forward variable at any point
t + 1 of the sequence:

αt+1(i) =

[
N∑

k=1

αt(k)aki

]
bi(xt+1), (10.17)

as shown in Figure 10.4 (left plot) where the sum in Equation (10.17) is
shown to include all paths leading to state vi at step t+1 in the sequence.

Termination. At the last point T , Equation (10.17) becomes:

αT (i) =

[
N∑

k=1

αT−1(k)aki

]
bi(xT), (10.18)

10.4 The Likelihood Problem and the Trellis 273

1 2 T−1 T
1

st
at

e

3 4 5

.........

.........

.........

observation

N

N−1

N−2

Fig. 10.3. Trellis. In this lattice, each column corresponds to an observation and
each row corresponds to a state. A path through the trellis corresponds to a path
through the states of the HMM. The links are associated with the transitions and
no links among the elements of the same column are allowed. In fact, each transition
must lead to the next state and observation, then to the following column.

...

1ia

2ia

a

2

...

1

t t+1 t t+1

i i

st
at

e state

1

2

N−2

N−1

N N

N−1

N−2

a Ni

a N−1i

a N−2i

a

a

i2a

i1a

iN

iN−1

iN−2

Fig. 10.4. Forward and backward variables. The left figure shows how the forward
variable at point t+1 of the sequence is obtained by summing over all paths leading
from st to st+1 = vi. The right figure shows how the backward variable is obtained
by summing over all paths starting from state st = vi and leading to any other state
st+1

and this enables us to write p(O|λ) as follows:

p(O|λ) =
N∑

i=1

αT (i), (10.19)

274 10 Markovian Models for Sequential Data

in fact, this corresponds to the sum over all paths leading to all states at
the final sequence point T .

By applying the above recursive procedure, the number of additions and
multiplications is reduced from 2TNT (the case of the explicit calculation)
to TN2. In an average handwriting recognition problem (see Chapter 12), N
and T are around 50 and 100 and the number of operations using the forward
variable is around 100 orders of magnitude smaller than the one required by
the explicit computation.

10.5 The Decoding Problem**

The goal of the decoding is to find the sequence of states Ŝ which has the
highest probability given an observation sequence O and an HMM λ:

Ŝ = arg max
S

p(S|O, λ). (10.20)

The problem is addressed by applying the Viterbi algorithm (VA) [32][39],
a dynamic programming (DP) [5] based technique using the trellis described
above. The main assuption of DP, the so-called optimality principle, states
that if the pathfrom node A to node C, optimal with respect to a given
criterion, passes through B, then also the path from B to C is optimal with
respect to the same criterion. The VA involves two main operations:

1. To find the estimate of p(Ŝ|O, λ), i.e. of the highest probability along a
single T -long path through the states of the HMM.

2. To find the single states ŝ1, ŝ2, . . . , ŝT of Ŝ.

The first operation relies on the following variable δt(i):

δt(i) = max
st−1
1

, p(st−1
1 , st = vi,xt

1|λ), (10.21)

i.e. on the highest joint conditional probability along a single trellis path for
a sequence of t states terminating with vi. The variable δt(i) is defined by
induction.

Initialization. When t = 1, the δ variable is:

δ1(i) = πibi(x1) (10.22)

where 1 ≤ i ≤ N . In other words, δ1(i) corresponds to the probability of
starting the state sequence Ŝ with vi and the value of δ1(i) is associated
to the nodes of the first column in Figure 10.5.

Recursion. When passing from step t to step t + 1, the δ variable becomes:

δt+1(i) =
[

max
k∈(1,...,N)

δt(k)aki

]
bi(xt+1) (10.23)

10.5 The Decoding Problem 275

1 2 T−1 T
1

st
at

e

3 4

observation

.........

.........

.........

N−1

N

N−2

Fig. 10.5. Viterbi decoding. The dashed paths identified by the δt(i) variable the
connection are associated with the links which lead to a state from the previous time
step with the highest probability. The sequence Ŝ can be backtracked from the last
step (t = T) by following the dashed links identified by the ψt(i) variable.

where 1 ≤ i ≤ N and 2 ≤ t ≤ T . The rationale behind such a choice can be
observed in Figure 10.5. Consider all the paths leading to a specific state
i of the second column, the dashed one maximizes δ2(i), i.e. it maximizes
the following probability:

p(s2
1,x

2
1|λ) = πs1bs1(x1)as1ibi(x2) (10.24)

which is exactly the highest probability for a single path leading to state vi

at time t = 2. This is similar to the estimation of the likelihood described
in the previous section with the difference that the sum is replaced with a
maximization. The same procedure is applied for t = 3, 4, . . . , T and the
result is always the same, i.e. the estimation of the highest probability for
a path leading to a certain state at a certain time step.

Termination. As a consequence of the recursion procedure, the value of δT (i)
is the highest probability for a trellis path terminating in sT = vi:

p(Ŝ, O|λ) = arg max
k

δT (k), (10.25)

and it corresponds to the goal of the first abovementioned operation.

Even if p(Ŝ, O|λ) is known, the single states ŝ1, . . . , ŝT are still unknown and it
is necessary to apply a backtracking procedure in order to identify them. The
backtracking consists in keeping memory of the states which correspond tio

276 10 Markovian Models for Sequential Data

the highest probability at each step of the decoding [16]. This is the goal of the
second operation mentioned at the beginning of this section. The backtracking
can be performed only after the first operation has been completed and it relies
on a variable ψt(i) defined by induction.

Initialization. For t = 1, the ψ variable is:

ψ1(i) = 0, (10.26)

where 1 ≤ i ≤ N .
Recursion. The relationship between ψt(i) and ψt−1(k) (where k = 1, . . . , N)

is:
ψt(i) = arg max

k∈{1,...,N}
δt−1(k)aki (10.27)

where 1 ≤ i ≤ N and 2 ≤ t ≤ T . The rationale behind such a choice can
observed in the trellis of Figure 10.5. In the second column, the expression
δ1(k)aki is associated to the edge connecting the node corresponding to
state vk in the first column to the node corresponding to state vi at t = 2.
The link corresponding to the maximum value of such an expression comes
from the predecessor at time t = 1 which leads to vi at time t = 2 with
the highest probability.

Termination. The same applies to t = 3, 4, . . . , T and, at the last column,
it is possible to identify the last state of Ŝ as follows:

ŝT = arg max
i∈{1,...,N}

δT (i). (10.28)

When the last state of Ŝ is known, it is easy to find the other states of the
sequence by observing that:

ŝt = ψt+1(ŝt+1). (10.29)

The last expression enables one to backtrack the states of Ŝ from ŝT to ŝ1

and this is the goal of the second operation as well as of the VA.
The sequence Ŝ identified with the VA is optimal in the sense of the highest

probability criterion (see Equation (10.20)). However, other criteria can lead
to other sequences that are optimal under different respects. Although the
maximization of p(S|O, λ) is the most commonly applied criterion, it is worth
to consider another definition of the optimal sequence, i.e. the sequence Ŝ of
the states individually most likely:

ŝt = arg max
i=1,...,N

p(st = vi|O, λ). (10.30)

The solution of such a problem requires the definition of a backward variable
βt(i) = p(xT

t+1|st = vi, λ) defined by induction.

Initialization. When t = T the backward variable is as follows:

βT (i) = 1 (10.31)

where i = 1, . . . , N

10.5 The Decoding Problem 277

Recursion. If t = T − 1, then:

βT−1(i) = p(xT |sT−1 = vi, λ) =
N∑

k=1

aikbk(xT)βT (k) (10.32)

where the factor βT (k) can be used because it is 1 and it does not modify
the result of the sum. When t = T − 2, the last equation becomes:

βT−2(i) = p(xT
T−1|sT−2 = vi, λ) = (10.33)

=
N∑

k=1

aikbk(xT−1)
N∑

l=1

aklbl(xT) = (10.34)

=
N∑

k=1

aikbk(xT−1)βT−1(k). (10.35)

For a generic sequence point t the backward variable is:

βt(i) =
N∑

k=1

aikbk(xt+1)βt+1(k) (10.36)

which corresponds to the right plot in Figure 10.4.
Termination. When t = 1, the backward variable is:

β1(i) =
N∑

k=1

aikbk(x2)β2(k) (10.37)

where i = 1, . . . , N .

The product αt(i)βt(i) can be transformed into a probability (the demon-
stration is left for exercise in Problem 10.2):

γt(i) =
αt(i)βt(i)
p(O|λ)

=
αt(i)βt(i)∑N

j=1 αt(j)βt(j)
(10.38)

and the the sequence Ŝ can be found as follows:

ŝt = arg max
1≤i≤N

γt(i). (10.39)

The limit of this approach with respect to the VA is evident: since the states at
different time steps are considered separately, nothing prevents from finding
two states vi and vj following each other even if aij = 0. In other words, since
each decision is made at the single state level, global constraints (typically
carrying contextual information) are not taken into account with a significant
loss of effectiveness.

278 10 Markovian Models for Sequential Data

The solution of the decoding problem leads to a segmentation of the obser-
vation sequence where each segment corresponds to a state in the model. As
an example consider a handwritten word (see Chapter 12), where the obser-
vations are vectors extracted from the word image and the states are letters.
When the models work correctly, the decoding splits the vector sequence into
segments corresponding to the letters actually composing the handwritten
word.

10.6 The Learning Problem**

In the previous problems, the parameters of the HMM, i.e. the elements of the
set λ = {π, A,B}, have been considered as given. The subject of the learning
problem is how to find such elements and, more in particular, how to estimate
them according to state and observation sequences provided for training. No
analytical solution is known for this problem and the common approach is to
choose λ∗ such that:

λ∗ = arg max
λ

p(O|λ), (10.40)

i.e. such that the likelihood p(O|λ) is maximized for the training sequences.
This is done through an iterative procedure known as Baum Welch [2][3][4]
algorithm which is a version of the expectation-maximization technique (see
Chapter 6) specific for the HMMs and leads to models maximizing the likeli-
hood over the training data.

In the following λ(i) = {π(i), A(i), B(i)} defines the parameters as esti-
mated at the ith iteration. The parameter values at i = 0 are obtained through
an initialization procedure (see Section 10.6.1 for different initialization tech-
niques). Given a training observation sequence O = xT

1 and the corresponding
state sequence S = sT

1 , the complete data likelihood is p(O,S|λ). The expected
value Q(λ(i), λ(i−1)) of the complete-data log-likelihood is then:

Q(λ(i), λ(i−1)) =
∑
S∈S

log p(O,S|λ(i))p(O,S|λ(i−1)), (10.41)

where S is the set of all possible T -long state sequences and p(O,S|λ(i)) is:

p(O,S|λ(i)) = π(i)
s1

bs1(x1)
T∏

t=2

a(i)
st−1st

b(i)
st

(xt). (10.42)

By plugging Equation (10.42) into Equation (10.41), the expression of
Q(λ(i), λ(i−1)) becomes:

Q(λ(i), λ(i−1)) =
∑

S∈S log π
(i)
s1 p(O,S|λ(i−1))

+
∑

S∈S
(∑T

t=2 log a
(i)
st−1st

)
p(O,S|λ(i−1))

+
∑

S∈S
(∑T

t=1 log b
(i)
st (xt)

)
p(O,S|λ(i−1))

(10.43)

10.6 The Learning Problem 279

v1 v2 v3 v4 v5 v6

x x x x x x x x x x x x x x x x x x x x1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Fig. 10.6. Parameter initialization. The emission probablity functions are initial-
ized by attributing to each state the observations of an interval. The intervals by
partitioning O into N intervals as uniform as possible.

where the three parameters (π, A and B) are split into the three terms of
the sum that can be analyzed separately. The EM algorithm can be applied
separately to each term leading to the estimation of the parameters the term
contains. In the following, Section 10.6.1 shows some initialization techniques,
while Section 10.6.2, 10.6.3 and 10.6.4 describe in detail how the three kinds
of parameters are estimated.

10.6.1 Parameter Initialization

There is no general solution or approach for the initialization problem. The
initialization depends on the specific task at hand and on the available a-priori
knowledge about the data. There are however two important cases related to
the topologies described in Figure 10.1. In the left-right case, the state se-
quence is typically given a priori, but the number of states is lower than the
number of observations, then the decoding aims at attributing a certain num-
ber of observations to each state of the sequence (this case will be described
better in Chapter 12). The transition probabilities are typically initialized as
follows:

aij =
{

0.5 j ∈ (i, i + 1)
0.0 j /∈ (i, i + 1) (10.44)

The emission probabilities are initialized by assigning the same number of
observations to each state (the observation sequence is split into N intervals
as uniform as possible) and by estimating means, variances or bij values using
the observations attributed to each state (see Figure 10.6).

The same approach is applied for the ergodic HMMs with the only differ-
ence that the initialization of the transition probabilities is:

aij = 1
N ∀i, j ∈ (1, . . . , N), (10.45)

i.e. a uniform distribution.

280 10 Markovian Models for Sequential Data

10.6.2 Estimation of the Initial State Probabilities

The first term of the sum in Equation (10.43) involves the initial state proba-
bilities πi = p(s1 = vi|λ). The sum over all sequences S ∈ S can be split into
N sums each involving only the sequences starting with a specific state vj :

∑
S∈S

log π(i)
s1

p(O,S|λ(i−1)) =
N∑

k=1

log π
(i)
k p(O, s1 = vk|λ(i−1)). (10.46)

The estimation can be addressed as a conditional optimization problem
(see Section 9.2.1). Adding the Lagrange multiplier γ, using the constraint∑N

l=1 π
(i)
l = 1 and setting the derivative equal to zero, the result is:

∂

∂π
(i)
k

[
N∑

l=1

log π
(i)
l p(O, s1 = vl|λ(i−1)) − γ

(
N∑

l=1

π
(i)
l − 1

)]
= 0 (10.47)

which leads to:

γ =
N∑

k=1

p(O, s1 = vk|λ(i−1)) = p(O|λ(i−1)) (10.48)

π
(i)
k =

p(O, s1 = vk|λ(i−1))
p(O|λ(i−1))

. (10.49)

The above expression shows that the π
(i)
k estimate is nothing else than the

fraction between the likelihood of O when the state sequences start with vk

and the likelihood of O without any constraint. This is reasonable because
such a quantity corresponds to the expected fraction of times vk is the initial
state of a sequence for the observation sequence O.

The π
(i)
k values can be computed efficiently using the γt(k) variables in-

troduced in the previous part of this chapter (see Equation (10.38)), in fact:

π
(i)
k = γ1(k) (10.50)

(the demonstration is the subject of Problem 10.4).

10.6.3 Estimation of the Transition Probabilities

The transition probabilities appear in the second term of Equation (10.43).
Using the same approach as in Section 10.6.2, the estimates of a

(k)
mn can be

obtained as the solutions of the following equations:

∂

∂a
(k)
mn

⎡⎣∑
S∈S

(
T∑

t=2

log a(k)
st−1st

)
p(O,S|λ(k−1)) − γ

⎛⎝ N∑
j=1

a
(k)
ij − 1

⎞⎠⎤⎦ = 0,

(10.51)

10.6 The Learning Problem 281

where m,n = 1, . . . , N , which can be rewritten as:

∂

∂a
(k)
mn

[∑N
i=1

∑N
j=1

∑T
t=2 log a

(k)
ij p(O, st−1 = vi, st = vj |λ(k−1))−

−γ(
∑N

j=1 a
(k)
ij − 1)

]
= 0.

(10.52)

The result of the above equation is:

γ =
T∑

t=2

N∑
n=1

p(O, st−1 = vm, st = vn|λ(k−1)) =
T∑

t=2

p(O, st−1 = vm|λ(k−1))

(10.53)
and:

a(k)
mn =

∑T
t=2 p(O, st−1 = vm, st = vn|λ(k−1))∑T

t=2 p(O, st−1 = vm|λ(k−1))
. (10.54)

Like in the case of the initial state probabilities, it is possible to obtain a
(k)
mn

efficiently by using the variables defined in the previous sections:

a(k)
mn =

∑T−1
t=2 ξt(m,n)∑T−1

t=2 γt(m)
. (10.55)

where γt(m) has been defined in Section 10.6.2 and the new variable ξt(i, j)
is:

ξt(m,n) =
∑T

t=2 p(O, st−1 = vm, st = vn|λ(k−1))
p(O|λ(k−1))

, (10.56)

and can be obtained using αt(i) and βt(i):

ξt(m,n) =
αt(m)amnbn(xt+1)βt+1(n)

p(O|λ)
. (10.57)

(the demonstration is the goal of Problem 10.5). The variable ξt(i, j) is the
probability of a transition between states i and j at step t and it is illustrated
in Figure 10.7. In fact, the plot shows that the αt(i) variable provides the
probability of a path passing through state vi at time t, the product aijbj(xt)
is the probability of moving from vi to vj and that βt(j) gives the probability
of the rest of state and observation sequences. The product of the three above
probabilities is then the probability of having a transition between vi and vj

at point t in the sequence.

10.6.4 Emission Probability Function Parameters Estimation

The emission probability functions are included in the third, and last, term
of Equation (10.43). The term can be written as follows:∑

S∈S

T∑
t=1

log b(i)
st

(xt)p(O,S|λ(i−1)) =
N∑

j=1

T∑
t=1

log b
(i)
j (xt)p(O, st = vj |λ(i−1))

(10.58)
and it is necessary to consider separately two cases:

282 10 Markovian Models for Sequential Data

(x t+1)a ij bj

α t(j) β t+1(i)

...st
at

e state...

s t+1= vj

t t+1

s t = vi

Fig. 10.7. ξ variable. The picture shows how the ξt(i, j) variable accounts for the
for the transition from state vi to state vj at time t.

• The HMM is discrete, then xt ∈ C = {c1, . . . , cK} and the emission prob-
abilities are arranged in a matrix B such that bij = bi(cj).

• The HMM is continuous density and the expression of bi(x) depends on
the specific probability density function selected. Since it is the most
common case, this section considers the Gaussian mixture (GM), i.e.
bi(x) =

∑
k wikN (x,µik, Σik).

In the first case, the values of bij maximizing the likelihood can be found by
solving the following equation:

∂

∂b
(i)
kl

⎡⎣ N∑
j=1

T∑
t=1

log b
(i)
jxt

p(O, st = vj |λ(i−1)) − γ

(
K∑

n=1

b
(i)
kn − 1

)⎤⎦ (10.59)

where γ is the Lagrange multiplier and the constraint that
∑K

n=1 bkn = 1 is
used. The solution of this equation is:

b
(i)
ij =
∑T

t=1 p(O, st = vi|λ(i))δxtcj∑T
t=1 p(O, st = vi|λ(i))

=
∑T

t=1 γt(i)δxtcj∑T
t=1 γt(i)

(10.60)

where δxtcj
is the Kronecher delta (δkl = 1 if k = l and 0 otherwise), in fact

only the observations equal to cj contribute to the numerator sum. The use
of γt(i) enables to compute the estimates b

(i)
ij efficiently and shows that they

are obtained as the fraction between the number of times observation cj is
emitted when the state is vi, and the number of times the state sequences
pass through state vi.

The second case requires a change in the expression of the complete
data likelihood that results in a different function Q(λ(i), λ(i−1)). In fact, the
complete-data involves not only the sequence of states underlying the sequence
of observations, but also a sequence M = {ms1,1, . . . , msT ,T } that contains,
at each step t, the Gaussian mst,t in the mixture corresponding to state st

responsible for the emission of xt. The consequence is that Q(λ(i), λ(i−1))
modifies as follows:

10.6 The Learning Problem 283

Q(λ(i), λ(i−1)) =
∑
S∈S

∑
M∈M

log p(O,S,M |λ(i))p(O,S,M |λ(i−1)). (10.61)

Fortunately, this affects only the third term of Equation (10.43), thus nothing
changes for what concerns initial state and transition probabilities and the
results of Section 10.6.2 and Section 10.6.3 apply also in this case.

The third term of Equation (10.43) becomes:∑
S∈S
(∑T

t=1 log b
(i)
st (xt)

)
p(O,S|λ(i−1)) =

=
∑N

i=1

∑G
l=1

∑T
t=1 log(w(i)

il N (xt,µ
(i)
il , Σ

(i)
il))p(O, st = vi,mst,t = l|λ(i−1))

(10.62)
Following the same approach used to estimate the other parameters (deriva-
tion with respect to w

(i)
kn and use of the Lagrange multiplier with the constraint∑G

l=1 w
(i)
kl = 1) the above equation leads to the following expression for the

w
(i)
kn coefficients:

w
(i)
kn =

∑
t p(O, st = vk,mst,t = n|λ(i−1))∑G

l=1

∑T
t=1 p(O, st = vk,mst,t = l|λ(i−1))

. (10.63)

Also in this case it is possible to use the γt(i) variables introduced in the pre-
vious part of the chapter to perform an efficient computation of the parameter
estimates. The mixture coefficients can be written as follows:

w
(i)
kn =
∑T

t=1 γtl(i)∑T
t=1 γt(i)

(10.64)

where

γtl(i) = γt(i)
w

(i)
il N (xt,µ

(i)
il , Σ

(i)
il)∑G

l=1 w
(i)
il N (xt,µ

(i)
il , Σ

(i)
il)

. (10.65)

The demonstration of Equation (10.64) is the subject of Problem 10.3.
Equation (10.62) can now be derived with respect to µkn and posed equal

to zero in order to estimate the means of the Gaussians. The resulting equation
is:

T∑
t=1

Σ
(i)
kn(xt − µ

(i)
kn)p(O, st = vk,mst,t = n|λ(i−1)) = 0 (10.66)

(The demonstration is the goal of Problem 10.6) and its solution is:

µ
(i)
kn =
∑T

t=1 xtp(O, st = vk,mst,t = n|λ(i−1))∑T
t=1 p(O, st = vk,mst,t = n|λ(i−1))

, (10.67)

in terms of the γtn(k) variables, the above corresponds to:

µ
(i)
kn =
∑T

t=1 xtγtn(k)∑T
t=1 γtn(k)

, (10.68)

284 10 Markovian Models for Sequential Data

i.e. the average observation vector when the state is k and the observation is
emitted by the nth Gaussian of the corresponding mixture.

The last parameters to estimate are the covariance matrices Σ
(i)
ij which

can be obtained, as usual, by finding the Σ
(i)
kn values such that the derivative

of the complete-data likelihood in Equation (10.62) is zero:∑T
t=1 log(|Σ(i)

kn|)p(O, st = vk,mst,t = n|λ(i−1))+
+
∑T

t=1(xt − µ
(i)
kn)T (Σ(i)

kn)−1(xt − µ
(i)
kn)p(O, st = vk,mst,t = n|λ(i−1)) = 0,

(10.69)
the above expression is obtained by taking into account that, if A is a matrix,
d log(|A|)/dA = 2A−1 − diag(A−1) and d(xT Ax)/dA = (A + AT)x. The
solution of the above equation is as follows:

Σ
(i)
kn =
∑T

t=1(xt − µ
(i)
kn)T (xt − µ

(i)
kn)p(O, st = vk,mst,t = n|λ(i−1))∑T

t=1 p(O, st = vk,mst,t = n|λ(i−1))
, (10.70)

and it can be computed efficiently in the following way:

Σ
(i)
kn =
∑T

t=1(xt − µ
(i)
kn)T (xt − µ

(i)
kn)γtn(k)∑T

t=1 γtn(k)
, (10.71)

i.e. by finding the covariances of the observation components when the state
is vk and the observations are emitted by the nth Gaussian of the mixture.

10.7 HMM Variants

The HMM architecture presented so far is the most commonly applied and it
has been shown to be effective in a wide spectrum of problems. However, there
are some specific domains that require some variations or adaptations for the
HMMs to be as effective as in other cases. This section presents a quick, and
not exhaustive, survey of the major HMM variants presented in the literature.
More extensive surveys can be found in [7][32] for general aspects, in [17] for
control applications, in [10] for econometrics, and in [1][28] for bioinformatics.

Section 10.2 introduces the homogeneity assumption, i.e. the fact that the
transition probabilities do not depend on the step t of the state sequence. The
input-output HMMs (IOHMM) [8] remove such a hypothesis and condition
transition and emission probabilities to an input sequence Y = yL

1 , where L
(the input sequence length) is not necessarily equal to T (the state and ob-
servation sequences length). This means that an IOHMM is not a probability
distribution p(xT

1) defined over the space of the observation sequences, but
rather a conditional distribution p(xT

1 |yL
1). In the simpler case, L = T and

the theory of the IOHMMs is close to that of the HMMs. In fact, transition
probabilities p(st|st−1) and emission probabilities p(xt|st) are simply replaced

10.7 HMM Variants 285

with conditional probabilities of the form p(st|st−1,yt) and p(xt|st,yt) respec-
tively. In more general terms, transition and emission probabilities can be con-
ditioned to a subsequence yt+K

t−K of the input sequence. IOHMMs have been
applied in control theory (where they are called partially observable Markov
decision processes [7]). Their goal is to find a sequence of actions (taken as
an input sequence) minimizing a cost function defined over the sequences of
the observed outputs. In this case, the IOHMM represents the probabilistic
relationship between actions and effects with an hidden state variable.

Based on the fact that HMMs and artificial neural networks (ANN) have
complementary properties, several approaches tried to combine the two algo-
rithms resulting into the so-called hybrid HMM-artificial neural networks mod-
els [11]. HMMs are suitable for sequential data, but they make assumptions
about the distribution of the data. On the other hand, ANNs can approximate
any kind of nonlinear discriminant functions and do not make assumptions
about the data, but they are not made for handling sequential data. One
possible combination approach is to train the ANN in order to provide the
a-posteriori probability of a state given an observation. In other words, if
gk(xt|Θ) is the kth output of an ANN, typically a multilayer perceptron (see
Chapter 8), then:

gk(xt|Θ) � p(st = vk|xt), (10.72)

where Θ is the parameter set of the neural network. The use of such an
approach for sequence recognition (with related training and decoding algo-
rithms) is illustrated in [12][13]. Another combination approach consists in
turning local posterior probabilities into scaled likelihoods defined as follows:

p(st = vk|xt)
p(st = vk)

=
p(xt|st = vk)

p(xt)
(10.73)

where the prior p(st = vk) of state vk can be estimated using the frequence it
has in the data and p(xt) is state independent and is simply a normalization
constant that does not need to be estimated. The advantage of this com-
bination approach is that the scaled likelihoods are trained discriminatively
(thanks to the ANN properties) and can be used in a Viterbi Algorithm to
estimate the global scaled likelihood [22]:

p(O|S,Θ)
p(O)

=
∑
S∈S

T∏
t=2

p(xt|st = vk)
p(xt)

p(st|st−1). (10.74)

These hybrid HMM/ANN approaches provide more discriminant estimates
of the emission probabilities without requiring strong hypotheses about the
statistical distribution of the data.

Some problems require the joint modeling of two sequences xT
1 and yL

1 of
different length. This is typical in multimodal data processing where different
streams of information are extracted from the same events but with different
sampling rates. A typical example are videos where the visual sampling rate

286 10 Markovian Models for Sequential Data

is 24 images per second, while the audio rate is 8000 samples per second. A
recently proposed approach [6] uses two hidden variables to account for such
a situation. The first is a common state variable st and it is associated to the
longest sequence. The second is a synchronization variable τt wich accounts for
the alignment between the two sequences. This means that the asynchronous
HMM models the distribution p(xT

1 ,yL
1 , sT

1 , τT
1), where T > L. The resulting

model is called asynchronous HMM and it can be trained with an apposite
EM algorithm [6].

In some other cases, the models are required to account for non-stationary
changes in the process underlying the observation production. This is espe-
cially needed in econometric models of market changes due to unexpected
events [18][20][36]. A common approach is to use a regression model:

xt = βst
yt + εt (10.75)

where xt is the observation at time t, εt is a random variable with zero-mean
Gaussian distribution, yt is an input sequence, and βst

is a set of parameters
depending on the discrete state variable st. This specifies a particular form
of p(xt|ys, st) for an IOHMM (see above). The joint distribution of xT

1 and
sT
1 requires to model also the state variable. This is typically done through a

transition probability matrix as in the common HMMs.
Another interesting problem is the use of a continuous state variable which

leads to the so-called state-space models (SSM). Most SSMs are based on
transition probabilities of the following kind:

p(st|st−1,xt) = N (st, Ast + Bxt, Σ) (10.76)

i.e. Gaussians distributions where the average is a linear function (A and B
are matrices) of previous state and current observation, a choice motivated
mainly by tractability problems [7]. The Kalman Filter corresponds to such
a model [25].

10.8 N -gram Models and Statistical Language Modeling

The N -gram models, or N -grams tout court, are a simple and effective ap-
proach to estimate the probability of sequences containing symbols belonging
to a finite alphabet. The N -grams can be used for any kind of sequence, but
their most succesful application is the modeling of word sequences in natural
language texts. In fact, even if they do not involve any linguistic knowledge,
the N -grams achieve state of the art performances in language modeling [35]
and are widely applied in speech and handwriting recognition systems (see
Chapter 12). After a general description of the N -grams, the next sections
present the main problems associated to them: the estimation of the parame-
ters and the data sparseness, including the necessity of smoothing and unseen
events probability estimation. The use of the SLM-CMU toolkit, a free soft-
ware package enabling one to build N -gram models, will be illustrated at the
end of this part.

10.8 N -gram Models and Statistical Language Modeling 287

10.8.1 N-gram Models

Consider a finite alphabet T = {t1, t2, . . . , tM} containing M symbols ti and
a sequence W = wL

1 , where wi ∈ T ∀i ∈ (1, . . . , L). W can be assumed as the
product of a Markov source, then the probability p(W) of observing W can
be written as follows:

p(W) = p(w1)
L∏

i=2

p(wi|wi−1
1), (10.77)

where the sequence wi−1
1 is called history hi of wi. The number of possible

histories of wi is M i−1, a quantity that becomes rapidly high even for mod-
erate values of M and i. This can create severe problems in estimating the
probabilities of Equation (10.77). In fact, reliable estimates of p(wi|wi−1

1) can
be obtained only if each wi

1 is represented a sufficient number of times in the
training data. On the other hand, if the number of possible sequences is high,
it can be difficult to collect enough training material.

One possible solution is to group all histories hi = wi−1
1 into classes of

equivalence Φ(hi) : T i−1 → C, where C = (1, . . . , K) is a set of classes
containing K << M i−1 elements. This changes Equation (10.77) into the
following expression:

p(W) = p(w1)
L∏

i=2

p(wi|Φ(hi)). (10.78)

The form of Φ(hi) depends on the specific application and it can involve
domain specific knowledge. However, a common and general approach is to
group all histories ending with the same N − 1 symbols:

p(W) = p(w1)
L∏

i=2

p(wi|Φ(hi)) = p(wN−1
1)

L∏
i=N

p(wi|wi−1
i−N+1), (10.79)

this corresponds to a Markov Model of order N (see Section 10.2) and this is
what is called an N -gram model. Depending on the value of M , the number
of equivalence classes can still grow quickly with N and, in practice, orders
higher than three are rarely used. The problem of p(wN−1

1) can be solved in
different ways. A sequence of N − 1 null symbols can be added before w1 so
that an N −1 long history is present also for wi with i < N . Another solution
is to use histories with less than N − 1 elements when i < N .

10.8.2 The Perplexity

The perplexity is the performance measure used to assess the quality of the
N -gram models. Given a test sequence W = wL

1 , not included in the training
corpus, the perplexity is obtained as follows:

288 10 Markovian Models for Sequential Data

PP =
[

1
p(W)

]L
=

[
L∏

i=1

p(wi|hi)

]− 1
L

. (10.80)

The rationale behind such an expression can be understood by considering
the expression of log PP :

log PP = − 1
L

L∑
i=1

log[p(wi|hi)], (10.81)

the logarithm of the perplexity is the opposite of the average of the logarithm
of p(wi|hi). When the probability p(w|hi) is high, it means that the model
is capable of predicting with high probability the symbols actually appearing
in the test sequence. Since higher values of p(w|h) result into lower values of
− log[p(w|h)], lower PP correspond to better models, i.e. to models where the
average p(w|h) is higher. In other words, the lower the perplexity, the better
the model.

If the distribution p(w|h) is uniform, i.e. p(w|h) = 1/M ∀w ∈ T , where
M is the size of the lexicon, then the perplexity achieves the highest possible
value. In fact, p(w|h) = 1/M is the solution of the following equation:

∂

∂p(w|h)

[
− 1

L

L∑
i=1

log p(wi|hi) + λ

(∑
w′

p(w′|h) − 1

)]
= 0 (10.82)

where λ is a Lagrange multiplier.
When p(w|h) is uniform, the average branching factor, i.e. the average

number of symbols with probability significantly higher than zero, of the N -
gram model is M . This provides a further interpretation of the perplexity as
the average branching factor of the model. If the perplexity is small compared
to M , it means that most of the symbols in the dictionary are discarded by the
model and viceversa. On the other hand, it is not guaranteed that only wrong
symbols are discarded, then the perplexity is not always representative of the
actual performance of the model [27]. However, although such a problem, the
PP is widely applied in the literature and it provides reasonable estimates of
the models performance.

10.8.3 N-grams Parameter Estimation

The probabilities p(wi|wi−1
i−N+1) are the parameters of of the N -gram models

and can be estimated by maximizing the likelihood over a training set of
sequences. The training set can be thought of as a single sequence W = wL

1

and the likelihood of the model can be written as follows:

p(W |{p(w|h)}) =
L∏

i=1

p(wi|hi), (10.83)

10.8 N -gram Models and Statistical Language Modeling 289

where {p(w|h)} is the set of all possible probabilities p(w|h), i.e. the parame-
ters set of the N -gram model. The loglikelihood corresponds to the following
expression:

log p(W |{p(w|h)}) =
L∑

i=1

log p(wi|hi) =
∑
h∈H

∑
w∈T

N(w, h) log p(w|h), (10.84)

where H is the set of all possible histories, T is the set of all possible symbols
and N(w, h) is the number of times the event (h,w), i.e. history h followed
by symbol w, has been observed in the training set. The estimates of p(w|h)
maximizing the likelihood can be found as the solutions of the following equa-
tions (the estimation is addressed as a conditional optimization problem using
the approach described in Section 9.2.1):

∂

∂p(w|h)

[∑
h′∈H

∑
w′∈T

N(w′, h′) log p(w′|h′) −
∑

h′∈H
µh′

(∑
w′∈T

p(w′|h′) − 1

)]
=0

(10.85)
where µh is a Lagrange multiplier and the constraint

∑
w∈T p(w|h) = 1 is

used. The solution of such an equation is:

p(w|h) =
N(w, h)∑

w′∈T N(w′, h)
=

N(w, h)
N(h)

(10.86)

i.e. the parameters correspond to the relative frequencies of sequences (h,w)
with respect to sequences h. The ML training of the N -gram model can then
be performed by simply counting the number of times symbol sequences of
length N appear in the training data. This is very simple, but it leaves open
the problem of the N long sequences that do not appear in the training set.
Moreover, it makes an event appearing two times twice as probable as an
event appearing only once. This is not correct because such small differences
in N(w, h) are likely to be caused by random fluctuations. These problems
are inherent to data sparseness, a phenomenon affecting many N -gram ap-
plications and explained in the next section in the case of natural language
texts.

10.8.4 The Sparseness Problem and the Language Case

The maximum-likelihood estimation of the probabilities p(w|h) relies on the
hypothesis that all events (h,w) are sufficiently represented in the training
set. However, such an hypothesis is unrealistic in most cases and data tend
rather to be sparse, i.e. to contain a high percentage of singletons (the events
appearing only once). Moreover, it happens often that the number of possible
sequences (h,w) is so high that it is not possible to find a training set contain-
ing all possible events. This poses two main problems: the first is the smoothing
of the probabilities estimated for rare events. The second is the estimation of

290 10 Markovian Models for Sequential Data

2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5
x 10

4 Zipf Law

r

n r
33.6% lexicon (0.44% word mass)

64.3% lexicon (1.6% word mass)

55.2% lexicon (1.1% word mass)

82.6% lexicon (4.2% word mass)

Fig. 10.8. The Zipf law. The plot shows the number of words appearing r times as
a function of the r position in the ranking of the represented r values.

the probability of unseen events. Both problems will be addressed in the rest
of this chapter, but this section provides some insights on the sparseness phe-
nomenon by examining the case of natural language texts. Such an example
has been widely studied in the literature because of its importance for speech
and handwriting recognition systems (see Chapter 12), but the considerations
made for the language extend to many other cases.

The consequences of the sparseness can be observed in any collection of
texts. Here we use the Wall Street Journal (WSJ) Corpus (year 1989), one of
the main benchmarks used in the information retrieval literature (Table 10.1
reports the main characteristics of the Corpus). The size of the lexicon (the list
of unique words appearing in the collection) is M = 72560, then the number
of events (h,w) an N -gram has to take into account is MN . For N = 2, the
number of events is of the order of 1012 while only ∼ 5×106 events are available
in the corpus. The number of unseen events is then six orders of magnitude
higher than the number of seen events. This is the first consequence of the
sparseness problem and it is strictly related to the dictionary size. In practice,
only for small dictionaries it is possible to collect enough data to represent a
higher fraction of the possible events. In the case of the language, many unseen
events are not possible from a grammatical point of view and should not be
taken into account. However, any attempt to identify and exclude such events

10.8 N -gram Models and Statistical Language Modeling 291

Table 10.1. Wall Street Journal Corpus. The table reports the main characteristics
of the Wall Street Journal Corpus.

Doc. Num. Words Num Avg. Length Dict. Size

12380 5508825 445.0 72560

required heavy manual work without leading to significant improvements, then
all possible events are typically included in the models.

The second problem is the reliability of the estimates obtained by maxi-
mizing the likelihood. Consider the number nr of symbols appearing r times
in a given data set. In the case of the texts, each word wi is a symbol, and nr

is the number of words appearing exactly r times. Consider now the ranking
in ascending order of the r values represented in the set: r1 is the smallest
represented r, r2 is the smallest r value with the exception of r1, and so on.
The so-called Zipf law [41] shows the relationship between nr and the position
pos(r) of r in the ranking:

nr � 1
pos(r)

. (10.87)

The above relationship is observed experimentally in many natural phenom-
ena where events can be ranked following the number of times they occur.
In simple terms, the Zipf Law says that the number of events appearing r1

times is twice the number of events appearing r2 times, and so on. Figure 10.8
shows nr as a function of pos(r) for the WSJ corpus, the singletons account
for less than 1% of the word mass, but they account for one third of the dic-
tionary, then for one third of the events (h,w). In other words, around 33%
of the events at disposition for the training are represented only once. It is
difficult to identify the minimum number of times an event should be repre-
sented to enable reliable estimates, but we can still observe that roughly two
thirds of the events are represented no more than five times (see Figure 10.8).
For this reason, it is necessary to smooth the ML estimations that give too
much importance to small differences of r that are probably due to random
fluctuations rather than to actual differences in the frequence of the events.
The curve in Figure 10.8 has been obtained using the WSJ corpus, but sim-
ilar results are obtained using any other text collection or, more in general,
any other collection including events produced by natural and technological
phenomena.

It is important to notice that, unlike other cases, the lack of events cannot
be addressed by simply increasing the size of the training set. In fact, the
number of words in the lexicon is related to the size of the corpus (expressed
in number of words) through an increasing monotone relationship known as
Heaps law [21]:

M � kL (10.88)

292 10 Markovian Models for Sequential Data

where k is a constant and L is the number of words of the corpus (the corre-
sponding curve for the WSJ corpus is shown in Figure 10.8). In other words,
the sparseness is an inherent property of the text collections and does not
depend on a simple lack of training data.

The next subsections present some of the main techniques addressing the
problems of smoothing and unseen events probability estimation.

10.9 Discounting and Smoothing Methods
for N -gram Models**

The previous sections show that the estimation of the N -gram models para-
meters is affected by the sparseness problem, i.e. most of the events appearing
in the training set have a frequency too low to enable reliable estimations and
many events that should be taken into account do not appear in the training
set. The methods used to address such problems are referred to as smooth-
ing or discounting techniques. In both cases, part of the probability of events
observed in the training set is moved to unseen events. This has the twofold
effect of providing a probability estimate for unseen events and of smoothing
the probability estimate of seen events, i.e. of reducing the estimate differences
due to small changes in N(h,w) likely to be caused by random effects.

The next subsections present the so-called Turing Good counts [19] and
the Katz’s estimates [26], the most widely applied techniques addressing the
above problems. Other techniques are available and extensive surveys can
be found in [14][31]. The main idea behind such approaches is that the ML
estimates can be modified as follows:

p(h,w) =

⎧⎪⎨⎪⎩
N(h,w)

MN N(h,w) = R

(1 − λN(h,w))
N(h,w)

MN 0 < N(h,w) < R
1

n0

∑
(h′,w′):0<N(h′,w′)<R λN(h′,w′)

N(h′,w′)
MN N(h,w) = 0

(10.89)
where nr is the number of events (h,w) appearing r times in the training
set, R = max(h,w) N(h,w) and λN(h,w) is the discounting factor for events
represented N(h,w) in the training set. The problem is then to find the correct
λr factors for events appearing r times.

10.9.1 The Leaving-One-Out Method

Consider a set of data that must be used to estimate the parameters of a
model. A realistic measure of the model effectiveness can be obtained only
if the test is performed over data separated and independent with respect to
the data used for the training. In general, such a condition is respected by
splitting the data into training and test set (see Chapter 4), but this is not
always possible when there are few data at disposition. In this last case, it is

10.9 Discounting and Smoothing Methods for N -gram Models 293

w w w w ww w w w w w w w w w w ww1 2 3 5 6 7 8 94 10 11 12 13 14 15 16 17 18

w w w w ww w w w w w w w w w w ww1 2 3 5 6 7 8 94 10 11 12 13 14 15 16 17 18

w w w w ww w w w w w w w w w w ww1 2 3 5 6 7 8 94 10 11 12 13 14 15 16 17 18

w w w w ww w w w w w w w w w w ww1 2 3 5 6 7 8 94 10 11 12 13 14 15 16 17 18

..........

Fig. 10.9. The leave-one-out approach. The figure shows that a different event
(h, w) is left out each time and used as test set.

more convenient to apply the Leaving-one-out method (LOO), i.e. a technique
which uses alternatively each sample as a test set (see Figure 10.9).

The LOO can be used also as a basis for the discounting methods because it
can simulate the effect of an event (h,w) not being observed. The consequence
of holding out an event (h,w) is that the number of times N(h,w) such an
event appears in the training set is decreased by one. This means that the
discounting factor to be used for the event (h,w) is λN(h,w)−1 rather than
λN(h,w). The loglikelihood of a model estimated using the LOO method is
then as follows:

log p(W |{λr}) =
∑

(h′,w′) N(h′, w′) log p(w′|h′)
=
∑

(h′,w′):N(h′,w′)=1 log p(w′|h′)
+
∑

(h′,w′):N(h′,w′)>1 N(h′, w′) log p(w′|h′)

=
∑

(h′,w′):N(h′,w′)=1 log
[

1
n0

∑R−1
r=1 λr

rnr

MN−1

]
+
∑

(h′,w′):N(h′,w′)>1 log
[
(1 − λN(h,w)−1)

N(h,w)−1
MN−1

]
.

(10.90)

Since the goal is the estimation of the discount factors, the only addends of
interest are those containing the λ parameters:

log p̃(W |{λr}) =
∑

(h′,w′):N(h′,w′)=1 log
(∑R−1

r=1 λrrnr

)
+
∑

(h′,w′):N(h′,w′)>1 N(h,w) log
(
1 − λN(h,w)−1

)
=
∑

(h′,w′):N(h′,w′)=1 log
(∑R−1

r=1 λrrnr

)
+
∑R

r=2

∑
(h′,w′):N(h′,w′)=r r log(1 − λr−1)

= n1 log
(∑R−1

r=1 λrrnr

)
+
∑R

r=2 rnr log(1 − λr−1)

= n1 log
(∑R−1

r=1 λrrnr

)
+
∑R−1

r=1 (r + 1)nr+1 log(1 − λr).
(10.91)

The last expression can be derived with respect to λr and set equal to zero in
order to find the discounting factor estimates maximizing the likelihood:

294 10 Markovian Models for Sequential Data

∂p̃(W |{λr})
∂λr

= n1
rnr∑R−1

s=1 λssns

− (r + 1)nr+1

1 − λr
. (10.92)

The solution of such an equation system is:

λr = 1 −
(∑R−1

s=1 sns∑R
s=1 sns

)
(r + 1)nr+1

rnr
= 1 −

(
1 − RnR

MN−1

)
(r + 1)nr+1

rnr
.

(10.93)
By plugging the above expression into Equation (10.89), the p(h,w) estimates
for 0 < N(h,w) < R become:

p(h,w) =
(

1 − RnR

MN

)
(N(h,w) + 1)nN(h,w)+1

MNnN(h,w)
, (10.94)

and the probability mass of the unseen events is:∑
(h′,w′):N(H′,w′)=0

(
1 − RnR

MT

)
n1

MT
. (10.95)

The last expression shows how important it is the role of the singletons in
estimating the probability mass of the unseen events. The reason is that an
event appearing once should not have a probability much higher than an
unseen event. In fact the simple presence or absence of (h,w) can be due to
random fluctuations.

10.9.2 The Turing Good Estimates

Consider Equation (10.95), in general RnR/MN << 1 and the probabilities
p(h,w) can be approximated as follows:

p(h,w) � 1
MN

[N(h,w) + 1]nN(h,w)+1

nN(h,w)
. (10.96)

This corresponds to the so-called Turing Good estimates which can be inter-
preted as a relative frequency count where the original count r = N(h,w) is
replaced with a modified value r∗ obtained through a discounting procedure:

r∗ =
(r + 1)nr+1

nr
, (10.97)

where r is often referred to as Turing Good count. The same approximation
holds for the discounting factors λr:

λr = 1 − (r + 1)nr+1

rnr
(10.98)

and for the estimated probability mass of the unseen events:∑
(h,w):N(h,w)=0

p(h,w) � n1

MN
(10.99)

which shows once again the important role played by the singletons in esti-
mating the probability of unseen events.

10.9 Discounting and Smoothing Methods for N -gram Models 295

10.9.3 Katz’s Disconting Model

The Turing Good estimates of Equation (10.97) are used as a starting point
in another widely applied approach proposed in [26] and known as Katz’s
discounting method. The probability of an event (h,w) can be estimated using
both maximum likelihood and Turing Good discounts, the difference between
the corresponding values is:

pML(h,w) − pT (h,w) =
N(h,w)

MN
− N∗(h,w)

MN
= δN(h,w), (10.100)

where N∗(h,w) is the Turing Good count:

N∗(h,w) = [N(h,w) + 1]
nN(h,w)+1

nN(h,w)
. (10.101)

If the difference δN(h,w) is summed over all events represented in the training
corpus, the result is:∑

(h,w):N(h,w)>0

δN(h,w) =
∑
r>0

nr(1 − dr)
r

MN
=

n1

MN
(10.102)

where dr = r∗/r. In other words, the sum over the differences corresponds to
the probability of the unseen events (see Equation (10.99)) and the single term
δN(h,w) can be thought of as the contribution given by the event (h,w) to the
unseen events probability mass. Such an interpretation can be extended to
the case where we consider conditional probabilities p(w|h) rather than joint
probabilities p(h,w), the δN(h,w) changes as follows:

δcond
N(h,w) = (1 − dN(h,w))

N(h,w)
N(h)

. (10.103)

At this point, the estimates of p(w|h) can be obtained by induction. If h = hn
1 ,

we can define h− = hn
2 , then p(w|h−) corresponds to a model of order N − 1.

Since we are defining the p(w|h) by induction, we can consider the p(w|h−)
as given. If N(h) > 0, the probability p(w|h) can be estimated as:

p̃(w|h) =
N∗(h,w)

N(h)
= dN(h,w)

N(h,w)
N(h)

, (10.104)

and this enables one to define a function β(h) that accounts for the probability
of events (h,w′) not observed in the training set:

β(h) =
∑

w′:N(h,w′)>0

δcond
N(h,w′) = 1 −

∑
w′:N(h,w′)>0

p̃(w|h). (10.105)

The probability mass β(h) can be distributed across all symbols w′ such that
N(h,w′) = 0 by using the estimate p(w′|h−):

296 10 Markovian Models for Sequential Data

p(w′|h) =
β(h)∑

w:N(h,w)=0 p(w|h−)
p(w′|h−) = α(h)p(w′|h−). (10.106)

In other words, the conditional probability of the unseen event (h,w′) is ob-
tained as a product between the lower order probability p(w′|h−) and the
normalizing constant α(h).

The above applies to the case where N(h) > 0. If N(h) = 0, then p̃(w|h) =
0 and β(h) = 1. In other words, when an event of a certain order (h,w) is
unseen, its probability is estimated using p(w|h−), i.e. the probability of the
immediately lower order event (h−, w). If the event (h−, w) is unseen, the
order is further lowered until the event is observed. The two cases can be
summarized in a single expression:

p(w|h) = p̃(w|h) + I(p̃(w|h))α(h)p(w|h−), (10.107)

where I(x) is defined as follows:

I(x) =
{

1 x = 0
0 x > 0.

(10.108)

The use of lower order estimates to address the lack of events in the training
data is often referred to as backing off.

If the discounting is applied only to events appearing less than k+1 times,
dr = 1 for r > k and it holds the following:

k∑
r=1

nr(1 − dr)
r

MT
=

n1

MT
(10.109)

which leads to:

dr =
r∗
r − (k+1)nk+1

n1

1 − (k+1)nk+1
n1

. (10.110)

since dr = r′/r, i.e. dr is the ratio between the counts after discount and the
actual counts, the above equation means that:

r′ =
r∗ − (k+1)nk+1

n1
r

1 − (k+1)nk+1
n1

(10.111)

and the Katz’s discounting can be interpreted as a smoothing operation per-
formed over the Turing Good counts r∗.

10.10 Building a Language Model with N -grams

This section provides a quick tutorial on the use of the SLM-CMU toolkit [15]
a free software package aimed at creating statistical language models (SLM)

10.10 Building a Language Model with N -grams 297

based on N -grams.2 Although created explicitly for SLM, the toolkit can be
easily applied for any other kind of problems involving sequences of symbols
belonging to a finite alphabet.

The package includes several functions (listed and described in [15] and
in the documentation of the package) that bring from the raw input to the
N -gram model. As an example, we consider the WSJ corpus described in
Section 10.8.4, the raw input is an ASCII file containing the whole corpus
without any other kind of information (e.g. tags or document delimiters).
The models are built through a sequence of steps:

1. Extraction of the word frequencies. The command textwfreq takes as
input the raw text and gives as output a file containing all unique words
w appearing in the corpus together with their frequencies N(w).

2. Extraction of the dictionary. The command wfreq2vocab takes as input
the counts N(w) produced at the previous step and gives as output a
dictionary. The options enable one to include all the words appearing
more than a certain number k of times or to include the k′ most frequent
words.

3. Extraction of the N -gram counts. The command text2idngram takes as
input the raw text and the dictionary produced at the previous step and
gives as output a file containing all N -grams (h,w) with respective counts
N(h,w). The options enable one to select the order N .

4. Extraction of the N -gram model. The command idngram2lm takes as in-
put the file of the N -gram counts produced at the previous step and the
dictionary, and gives as output the language model. The options enable
one to select discounting strategy, output format, etc.

The above description includes only the basic options, but the package offers
more possibilities and parameters to optimize the models. Moreover, some
functions (not described here) provide some statistics about the content of
the corpus.

Problems

10.1. Consider the HMM λ = {π, A,B} where π = (1, 0, 0),

π = (1, 0, 0); A =

⎛⎝ 0.0 1.0 0.0
0.0 0.0 1.0
0.3 0.1 0.6

⎞⎠ ; B =

⎛⎝ 0.5 0.5 0.0
0.3 0.3 0.4
0.5 0.3 0.2

⎞⎠ (10.112)

What the likelihood of the observation sequence x3
1 = (c2, c2, c1)? If the tran-

sition matrix is modified as follows:
2 The package can be downoloaded for free from the site of the University of Cam-

bridge: svr-www.eng.cam.ac.uk/∼prc14/toolkit.html and it can be easily installed
on several platforms. At the moment of writing this book the site is still active
although the authors of the code do not follow directly the development any more.

298 10 Markovian Models for Sequential Data

A =

⎛⎝0.4 0.2 0.4
0.3 0.6 0.1
0.2 0.2 0.6

⎞⎠ , (10.113)

what is the likelihood of the same sequence x3
1?.

10.2. Demonstrate that the product αt(i)βt(i) can be used to estimate the
probability of passing through state vi at time t using the following equation
(see Section 10.5):

γt(i) =
αt(i)βt(i)
p(O|λ)

=
αt(i)βt(i)∑N

j=1 αt(j)βt(j)
(10.114)

10.3. Demonstrate that the estimates of the GM coefficients in a continuous
density HMM can be obtained using the γ variables as follows:

c
(i)
kn =
∑T

t=1 γtl(k)∑T
t=1 γt(k)

(10.115)

See Equations (10.64) and (10.65) for the meaning of the symbols.

10.4. Demonstrate that the estimates of the initial state probabilities of an
HMM correspond to the γ variables defined in Equation (10.38):

π
(i)
k = γ1(k) (10.116)

10.5. Demonstrate that the following variable:

ξt(i, j) =
∑T

t=2

∑N
n=1 p(O, st−1 = vm, st = vn|λ(i−1))

p(O|λ(i−1))
(10.117)

can be computed using αt(i) and βt(i):

ξt(i, j) =
αt(i)aijbj(xt+1)βt+1(j)

p(O|λ)
. (10.118)

10.6. Demonstrate that the derivative of the following expression:

=
N∑

i=1

G∑
l=1

T∑
t=1

log(wilN (xt,µ
(i)
il , Σ

(i)
il))p(O, st = vi,mst,t = l|λ(i−1)) (10.119)

with respect to µkn is:

T∑
t=1

Σkn(xt − µkn)p(O, st = vk,mst,t = n|λ(i−1)) (10.120)

10.10 Building a Language Model with N -grams 299

10.7. Consider the toolkit described in Section 10.10. Extract the counts
N(w) from a corpus of sequences and plot nr as a function of pos(r) (see
Section 10.8.4 for the meaning of symbols). Is the plot different from Fig-
ure 10.8? If yes provide some explanations.

10.8. Consider the toolkit described in Section 10.10. Extract an N -gram
model from a corpus of sequences using different discounting strategies and
measure the corresponding perplexities over a test set different from the data
used for the training. Identify the discounting strategy leading to the best
results.

References

1. P. Baldi and S. Brunak. Bioinformatics: The Machine Learning Approach. MIT
Press, 2001.

2. L.E. Baum. An inequality and associated maximization technique in statistical
estimation for probabilistic functions of a Markov process. Inequalities, 3:1–8,
1972.

3. L.E. Baum and J. Eagon. An inequality with applications to statistical predic-
tion for functions of Markov processes and to a model of ecology. Bulletin of
the American Mathematical Society, 73:360–363, 1967.

4. L.E. Baum, T. Petrie, G. Soules, and N. Weiss. A maximization technique
occurring in the statistical analysis of probabilistic functions of Markov chains.
Annals of Mathematical Statistics, 41:164–171, 1970.

5. R. Bellman and S. Dreyfus. Applied Dynamic Programming. Princeton Univer-
sity Press, 1962.

6. S. Bengio. An asynchronous hidden Markov model for audio-visual speech recog-
nition. In Advances in Neural Information Processing Systems, pages 1237–1244,
2003.

7. Y. Bengio. Markovian models for sequential data. Neural Computing Surveys,
2:129–162, 1999.

8. Y. Bengio and P. Frasconi. An inout/output HMM architecture. In Advances
in Neural Information Processing Systems, pages 427–434, 1995.

9. J.A. Bilmes. A gentle tutorial of the EM algorithm and its application to para-
meter estimation for Gaussian mixture and hidden markov models. Technical
Report TR-97-021, International Computer Science Institute (ICSI), Berkeley,
1998.

10. R. Bjar and S. Hamori. Hidden Markov Models: Applications to Financial Eco-
nomics. Springer-Verlag, 2004.

11. H. Bourlard and S. Bengio. Hidden Markov models and other finite state au-
tomata for sequence processing. In M.A. Arbib, editor, The Handbook of Brain
Theory and Neural Networks. 2002.

12. H. Bourlard, Y. Konig, and N. Morgan. A training algorithm for statistical
sequence recognition with applications to transition-based speech recognition.
IEEE Signal Processing Letters, 3(7):203–205, 1996.

13. H. Bourlard and N. Morgan. Connectionist Speech Recognition - A Hybrid Ap-
proach. Kluwer Academic Publishers, 1993.

302 References

14. S. Chen and R. Rosenfled. A survey of smoothing techniques for ME models.
IEEE Transactions on Speech and Audio Processing, 8(1):37–50, 2000.

15. P. Clarkson and R. Rosenfled. Statistical language modeling using the CMU-
Cambridge Toolkit. In Proceedings of Eurospeech, pages 2707–2710, 1997.

16. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.
MIT Press, 1990.

17. R.J. Elliott, L. Aggoun, and J.B. Moore. Hidden Markov Models: Estimation
and Control. Springer-Verlag, 1997.

18. S. Godfeld and R. Quandt. A markov model for switching regressions. Journal
of Econometrics, 1:3–16, 1973.

19. I.J. Good. The population frequencies of species and the estimation of popula-
tion parameters. Biometrika, 40(3-4):237–264, 1953.

20. J. Hamilton. A new approach of the economic analysis of non-stationary time
series and the business cycle. Econometrica, 57:357–384, 1989.

21. H.S. Heaps. Information Retrieval - Computational and Theoretical Aspects.
Academic Press, 1978.

22. J. Hennebert, C. Ris, H. Bourlard, S. Renals, and N. Morgan. Estimation of
global posteriors and forward-backward training of hybrid HMM-ANN systems.
In Proceedings of Eurospeech, pages 1951–1954, 1997.

23. J. Hopcroft, R. Motwani, and J. Ullman. Introduction to Automata Theory,
Language and Computations. Addison Wesley, 2000.

24. F. Jelinek. Statistical Aspects of Speech Recognition. MIT Press, 1997.
25. R. Kalman and R. Bucy. New results in linear filtering and prediction. Journal

of Basic Engineering, 83D:95–108, 1961.
26. S. Katz. Estimation of probabilities from sparse data for the language model

component of a speech recognizer. IEEE Transactions on Acoustics, Speech,
and Signal Processing, 35(3):400–401, 1987.

27. D. Klakow and J. Peters. Testing the correlation of word error rate and per-
plexity. Speech Communication, 38(1):19–28, 2002.

28. T. Koski. Hidden Markov Models for Bioinformatics. Springer-Verlag, 2002.
29. A. Markov. An example of statistical investigation in the text of Eugene Onyegin

illustrating coupling of test in chains. Proceedings of the Academy of Sciences
of St. Petersburg, 1913.

30. G.J. McLachlan and T. Krishnan. The EM Algorithm and Extensions. John
Wiley, 1997.

31. H. Ney, S. Martin, and F. Wessel. Statistical language modeling. In S. Young and
G. Bloothooft, editors, Corpus Based Methods in Language and Speech Process-
ing, pages 174–207. Kluwer Academic Publishers, 1997.

32. L. Rabiner. A tutorial on hidden Markov models and selected applications in
speech recognition. In A. Waibel and K.F. Lee, editors, Readings in Speech
Recognition, pages 267–296. 1989.

33. D. Ron, Y. Singer, and N. Tishby. The power of amnesia: learning probabilistic
automata with variable memory length. Machine Learning, 25(2-3):117–149,
1996.

34. D. Ron, Y. Singer, and N. Tishby. Learning with probabilistic automata with
variable memory length. In Proceedings of ACM Conference on Computational
Learning Theory, pages 35–46, 1997.

35. R. Rosenfeld. Two decades of Statistical Language Modeling: where do we go
from here? Proceedings of IEEE, 88(8):1270–1278, 2000.

References 303

36. R. Shumway and D. Stoffer. An approach to time series smoothing and fore-
casting using the EM algorithm. Journal of Time Series Analysis, 4(3):253–264,
1982.

37. E. Vidal, F. Thollard, C. de la Higuera, F. Casacuberta, and R.C. Carrasco.
Probabilistic finite state machines - Part I. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 27(7):1013–1025, 2005.

38. E. Vidal, F. Thollard, C. de la Higuera, F. Casacuberta, and R.C. Carrasco.
Probabilistic finite state machines - Part II. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 27(7):1026–1039, 2005.

39. A.J. Viterbi. Error bounds for convolutional codes and an asymptotically op-
timal decoding algorithm. IEEE Transactions on Information Theory, 13:260–
269, 1967.

40. L. Xu and M.J. Jordan. On convergence properties of the EM algorithm for
Gaussian Mixtures. Neural Computation, 8:129–151, 1996.

41. G. Zipf. Human Behaviour and the Principle of Least Effort. Addison-Wesley,
1949.

11

Feature Extraction Methods and Manifold
Learning Methods

What the reader should know to understand this chapter

• Notions of calculus.
• Chapter 4.

What the reader should know after reading this chapter

• Curse of dimensionality.
• Intrinsic dimensionality.
• Principal component analysis.
• Independent component analysis.
• Multidimensional scaling algorithms.
• Manifold learning algorithms (Isomap, LLE, Laplacian eigenmaps).

11.1 Introduction

In the previous chapters we presented several learning algorithms for classi-
fication and regression tasks. In many applicative problems data cannot be
straightaway used to feed learning algorithms; they first need to have un-
dergone a preliminary preprocessing . To illustrate this concept, we consider
the following example. Suppose we want to build an automatic handwriting
character recognizer, that is a system able to associate to a given bitmap the
correct alphabet letter or digit. We assume that the data have the same sizes,
that the data are bitmaps of n×m pixels; for the sake of simplicity we assume
n = m = 28. Therefore the number of possible configurations is 28 ×28 = 216.
This consideration implies that a learning machine straightly fed by charac-
ter bitmaps will perform poorly since a representative training set can not
be built. A common approach for overcoming this problem consists in rep-
resenting each bitmap by a vector of d (with d � nm) measures computed
on the bitmap, called features, and then feeding the learning machine with

306 11 Feature Extraction Methods and Manifold Learning Methods

the feature vector . The feature vector has the aim of representing in a concise
way the distinctive characteristics of each letter. The more features represent
the distinctive characteristics of each single character the higher is the perfor-
mance of the learning machine. In machine learning, the preprocessing stage
that converts the data into feature vectors is called feature extraction. One of
the main aims of the feature extraction is to obtain the most representative
feature vector using a number as small as possible of features. The use of more
features than strictly necessary leads to several problems. A problem is the
space needed to store the data. As the amount of available information in-
creases, the compression for storage purposes becomes even more important.
The speed of learning machines using the data depends on the dimension of
the vectors, so a reduction of the dimension can result in reduced computa-
tional time. The most important problem is the sparsity of data when the
dimensionality of the features is high. The sparsity of data implies that it is
usually hard to make learning machines with good performances when the di-
mensionality of input data (that is, the feature dimensionality), is high. This
phenomenon, discovered by Bellman, is called the curse of dimensionality [7].

The reasons presented above indicate that an important goal in the feature
extraction consists in reducing the dimensionality of the input data. Firstly,
it can be performed selecting the features that have high discriminant power.
This activity cannot be always performed. For instance, as in applications of
voice information retrieval, we can have a feature vector formed by hundreds
of features. Although the discriminative power of each feature is small, the
contribution of each feature cannot be omitted; otherwise the learning ma-
chine performance degrades. In this case an approach consists of projecting
the original data by means of a nonlinear mapping onto a subspace of dimen-
sionality lower than the original one. These techniques are justified by the
observation that even if data are embedded in Rd this does not necessarily
imply that its actual dimension is d. Figure 11.2 shows a set Ω of data points
lying on a semicircunference. Therefore the dimensionality of Ω is 1, although
the points are embedded in R2. Intuitively, the dimensionality (or intrinsic
dimensionality) [30] of a data set is the minimum number of free variables
needed to represent the data without information loss. Several feature ex-
traction methods can have remarkable advantages with the knowledge of the
dimensionality of the original data.

The aim of this chapter is to introduce the main methods of feature ex-
traction, paying special attention to dimensionality reduction methods. The
chapter is organized as follows: In Section 11.2 the curse of dimensionality is
described in the framework of the function approximation theory. Section 11.3
presents the concept of data dimensionality and describes some algorithms to
estimate it. Sections 11.4 and 11.5 review Principal and Independent Com-
ponent Analysis. Some methods of Multidimensional Scaling are presented in
Section 11.6. Section 11.7 introduces the problem of manifold learning and
describes the main manifold learning algorithms. Finally, some conclusions
are drawn in Section 11.8.

11.2 The Curse of Dimensionality 307

11.2 The Curse of Dimensionality�

In this section we will discuss the curse of dimensionality in the framework
of function approximation theory . The reading of this section can be omitted
by practitioners and readers not interested to this topic. In Chapter 7 we saw
that the training error Etrain and the test error Etest of the learning machine
are connected by means of the following inequality:

Etest ≤ Etrain + Eest

where Eest is estimation error .
We want to estimate the training error of the learning machine using the

function approximation theory. Following the approach proposed in [33], we
consider a normed space of function Φ and a subset of Φ, F . The goal of the
function approximation theory is to approximate a function φ of Φ (φ ∈ Φ)
by means of another function f (f ∈ F) that belongs to F . This can be
formalized as looking for an element in F whose distance from φ is minimal.
If we define the distance of φ from F δ(φ, F) as follows:

δ(φ, F) = inf
f∈F

‖φ − f‖ (11.1)

the aim of approximation theory is to study δ(φ, F) for different subsets F
and function to approximate φ. In the linear theory of the approximation [60]
F is a linear k-dimensional subspace (e.g. the polynomials of a given degrees
or splines with fixed knots). Whereas in the nonlinear approximation theory
F is a k-dimensional nonlinear manifold [21]. According to the approximation
theory, there is usually a family of manifolds {Fk}∞k=1 such that ∪kFk is dense
in Φ and

F1 ⊂ F2 ⊂ . . . ⊂ Fn ⊂ . . .

hence δ(φ, F) is a monotone decreasing function that converges to zero. There-
fore if we can get an Fk arbitrarily close to φ picking a k adequately large.
An interesting parameter is the convergence rate of δ(φ, F) to zero. For the
linear approximation theory it can be shown [60] that δ(φ, F) cannot exceed
the following bound:

δ(φ, F) = O(dn s+α
d) (11.2)

where n is the the number of parameters (e.g. k), d is the dimension of the
input space, α is a positive constant, s the smoothness index of φ, that can
be assumed equal to the number of bounded derivatives of the function.

We can observe that due to presence of d in denominator of the expo-
nent, the rate of convergence exponentially decreases when the dimension in-
creases. Therefore Equation (11.2) is the theoretical justification of the curse
of dimensionality . Similar results have been obtained in the nonlinear ap-
proximation theory [21]. For sake of completeness, we quote that there are
results [4][9][34][45] for particular function spaces with rates of the conver-
gence O(1√

n
). Although these results seem to suggest that some application

308 11 Feature Extraction Methods and Manifold Learning Methods

schemes are not subjected to the curse of dimensionality in particular cases,
their utility is quite limited. In most cases the function spaces Φ for which
the curse of dimensionality does not hold are so specific that it is not clear if
they are adequately large to include functions that are usually encountered in
typical machine learning applications. Therefore we can assume that bound
(11.2) is correct for almost the totality of the machine learning problems.

11.3 Data Dimensionality

In this section we introduce the concept of data dimensionality whose knowl-
edge can be very useful to develop reliable feature extraction methods. Ma-
chine learning usually deals with data represented as vectors of dimension d.
The data is then embedded in Rd, but this does not necessarily imply that its
actual dimension is d. The dimensionality of a data set is the minimum num-
ber of free variables needed to represent the data without information loss.
In more general terms, following Fukunaga [30], a data set Ω ⊂ Rd is said
to have intrinsic dimensionality (ID) equal to M if its elements lie entirely
within an M -dimensional subspace of Rd (where M < d).

Following the classification proposed in [44], there are two approaches for
estimating ID. In the first one (local) ID is estimated using the information
contained in sample neighborhoods, avoiding the projection of the data onto
a lower-dimensional space. In the second approach (global), the data set is
unfolded in the d-dimensional space. Unlike local approaches that use only
the information contained in the neighborhood of each data sample, global
approaches make use of the whole data set.

11.3.1 Local Methods

Local (or topological) methods try to estimate the topological dimension
of the data manifold. The definition of topological dimension was given by
Brouwer [37] in 1913. Topological dimension is the basis dimension of the lo-
cal linear approximation of the hypersurface on which the data resides, i.e. the
tangent space. For example, if the data set lies on an m-dimensional subman-
ifold, then it has an m-dimensional tangent space at every point in the set.
For instance, a sphere has a two-dimensional tangent space at every point and
may be viewed as a two-dimensional manifold. Since the ID of the sphere is
three, the topological dimension represents a lower bound of the ID. If the data
does not lie on a manifold, the definition of topological dimension does not
directly apply. Sometimes the topological dimension is also referred to simply
as the local dimension. This is the reason why the methods that estimate the
topological dimension are called local. The basic algorithm to estimate the
topological dimension was proposed by Fukunaga and Olsen [32]. Alternative
approaches to the Fukunaga-Olsen’s algorithm have been proposed to estimate

11.3 Data Dimensionality 309

locally the ID. Among them the methods [68][87] based on near neighbor al-
gorithm [86] and the methods [10] based on topological representing networks
(TRN) [63] are the most popular.

Fukunaga-Olsen’s Algorithm

Fukunaga-Olsen’s algorithm is based on the observation that, for vectors em-
bedded in a linear subspace, the dimension is equal to the number of nonzero
eigenvalues of the covariance matrix. Besides, Fukunaga and Olsen assume
that the intrinsic dimensionality of a data set can be computed by dividing
the data set in small regions (Voronoi tesselation of data space). Voronoi tes-
selation can be performed by means of a clustering algorithm, e.g. LBG [59].
In each region (Voronoi set) the surface in which the vectors lie is approxi-
mately linear and the eigenvalues of the local covariance matrix are computed.
Eigenvalues are normalized by dividing them by the largest eigenvalue. The
intrinsic dimensionality is defined as the number of normalized eigenvalues
that are larger than a threshold T . Although Fukunaga and Olsen proposed
for T , on the basis of heuristic motivations, values such as 0.05 and 0.01, it is
not possible to fix a threshold value T good for every problem.

11.3.2 Global Methods

Global methods try to estimate the ID of a data set, unfolding the whole data
set in the d-dimensional space. Unlike local methods that use only the infor-
mation contained in the neighborhood of each data sample, global methods
make use of the whole data set.

Among global methods [11][18][58], we describe Fractal-Based Methods
since they are easy to be implemented. Fractal-based techniques are global
methods that have been successfully applied to estimate the attractor dimen-
sion of the underlying dynamic system generating time series [47]. Unless
other global methods, they can provide as ID estimation a non-integer value.
Since fractals are generally1 characterized by a non-integer dimensionality, for
instance the dimension of Cantor’s set and Koch’s curve [62] is, respectively,
ln 2
ln 3 and ln 4

ln 3 , these methods are called fractal.
In nonlinear dynamics many definitions of fractal dimensions [23] have

been proposed. The box-counting and the correlation dimension are the most
popular. The first definition of dimension (Hausdorff dimension) [23][66] is
due to Hausdorff [36]. The Hausdorff dimension DH of a set Ω is defined by
introducing the quantity

Γ d
H(r) = inf

si

∑
i

(ri)d (11.3)

1 Fractals have not always noninteger dimensionality. For instance, the dimension
of Peano’s curve is 2.

310 11 Feature Extraction Methods and Manifold Learning Methods

where the set Ω is covered by cells si with variable diameter ri, and all diam-
eters satisfy ri < r.

That is, we look for that collection of covering sets si with diameters less
than or equal to r that minimizes the sum in (8), and we denote the minimized
sum Γ d

H(r). The d-dimensional Hausdorff measure is then defined as

Γ d
H = lim

r→0
Γ d

H(r). (11.4)

The d-dimensional Hausdorff measure generalizes the usual notion of the total
length, area and volume of simple sets. Haussdorf proved that Γ d

H , for every
set Ω, is +∞ if d is less than some critical value DH and is 0 if d is greater
than DH . The critical value DH is called the Hausdorff dimension of the set.

Since the Hausdorff dimension is not easy to evaluate, in practical appli-
cation it is replaced by an upper bound that differs only in some constructed
examples: the box-counting dimension (or Kolmogorov capacity) [66].

The box-counting dimension DB of a set Ω is defined as follows:
if ν(r) is the number of the boxes of size r needed to cover Ω, then DB is

DB = lim
r→0

ln(ν(r))
ln(1

r)
. (11.5)

It can be shown that if in the definition of Hausdorff dimension the cells have
the same diameter r, Hausdorff dimension reduces to box-counting dimen-
sion. Although efficient algorithms [50] have been proposed, the box-counting
dimension can be computed only for low-dimensional sets because the algo-
rithmic complexity grows exponentially with the set dimensionality.

A good substitute for the box-counting dimension can be the correlation
dimension [35]. Due to its computational simplicity, the correlation dimen-
sion is successfully used to estimate the dimension of attractors of dynamical
systems.

The correlation dimension is defined as follows:
Let Ω = x1,x2, . . . ,x� be a set of points in Rn. If the correlation integral

Cm(r) is defined as:

Cm(r) = lim
N→∞

2
�(� − 1)

�∑
i=1

�∑
j=i+1

I(‖xj − xi‖ ≤ r) (11.6)

where I is an indicator function,2 then the correlation dimension D of Ω is:

D = lim
r→0

ln(Cm(r))
ln(r)

. (11.7)

Correlation and box-counting dimensions are strictly related. It can be shown
that both dimensions are special cases of the generalized Renyi dimension.
2 I(λ) is 1 iff condition λ holds, 0 otherwise.

11.3 Data Dimensionality 311

If the generalized correlation integral Cp is:

Cp(r) =
1

�(� − 1)p−1

�∑
i=1

⎛⎝ �∑
j �=i

I(‖xj − xi‖ ≤ r)

⎞⎠p−1

(11.8)

The generalized Renyi dimension Dp is defined in the following way:

Dp = lim
r→0

1
p − 1

ln(Cp(r))
ln(r)

(11.9)

It can be shown [35] that for p = 0 and p = 2 Dp reduces, respectively, to the
box-counting and the correlation dimension. Besides, it can be proved that
correlation dimension is a lower bound of the box-counting dimension. Never-
theless, due to noise, the difference between the two dimensions is negligible
in applications with real data.

Methods of Estimation of Fractal Dimension

The most popular method to estimate box-counting and correlation dimension
is the log-log plot . This method consists in plotting ln(Cm(r)) versus ln(r).
The correlation dimension is the slope of the linear part of the curve (Fig-
ure 11.1). The method to estimate box-counting is analogous, but ln(ν(r))
replaces ln(Cm(r)). The methods to estimate correlation and box-counting
dimension present some drawbacks. Though correlation and box-counting di-
mension are asymptotic results and hold only for r → 0; r cannot be too small
since too few observations cannot allow to get reliable dimension estimates.
In fact the noise has most influence at small distance. Therefore there is a
trade-off between taking r small enough to avoid non-linear effects and taking
r sufficiently large to reduce statistical errors due to lack of data. The use
of least-squares method makes the dimension estimate not adequately robust
towards the outliers.

Some methods [80][81] have been studied to obtain an optimal estimate
for the correlation dimension. Takens [81] has proposed a method, based on
Fisher’s method of maximum likelihood [22] [31], that allows us to estimate the
correlation dimension with a standard error. Takens’ method is the following.

Let Q be the set Q = {qk | qk < r} where rk is the the Euclidean distance
between a generic couple of points of Ω and r (cut-off radius) is a real positive
number.

Using the maximum likelihood principle it can prove that the expectation
value of the correlation dimension 〈Dc〉 is:

〈Dc〉 = −
⎛⎝ 1
|Q|

|Q|∑
k=1

qk

⎞⎠−1

(11.10)

312 11 Feature Extraction Methods and Manifold Learning Methods

−2.5 −2 −1.5 −1 −0.5 0
−12

−10

−8

−6

−4

−2

0

ln(r)

ln
(C

m
(r

))

plot of ln(C
m

(r)) vs ln(r)

Fig. 11.1. Plot of ln(Cm(r)) vs ln(r).

where |Q| stands for the cardinality of Q.
Takens’ method presents some drawbacks. It requires some heuristics to

set the radius [84]. Besides, the method is optimal only if the correlation
integral Cm(r) assumes the form Cm(r) = arD[1 + br2 + o(r2)] where a and b
are constants. Otherwise Takens’ estimator can perform poorly [83].

Limitations of Fractal Methods

In addition to the drawbacks previously exposed, estimation methods based
on fractal techniques have a fundamental limitation.

It has been proved [24][79] that in order to get an accurate estimate of the
dimension D, the set cardinality � has to satisfy the following inequality:

D < 2 log10 �. (11.11)

The Eckmann-Ruelle inequality (11.11) shows that the number N of data
points needed to accurately estimate the dimension of a D-dimensional set is
at least 10

D
2 . Even for low-dimensional sets this leads to huge values of N .

In order to cope with this problem and to improve the reliability of the
measure for low values of N , the method of surrogate data [85] has been
proposed. The method of surrogate data is an application of a well-known

11.4 Principal Component Analysis 313

statistic technique called bootstrap [25]. Given a data set Ω, the method of
surrogate data consists of creating a new synthetic data set Ω′, with greater
cardinality, that has the same statistical properties of Ω, namely the same
mean, variance and Fourier Spectrum. Although the cardinality of Ω′ can
be chosen arbitarily, the method of surrogate data cannot be used when the
dimensionality of the data set is high. As pointed out previously, a data set
whose dimension is 18 requires at least, on the base of (11.11), a data set with
109 points. Therefore the method of surrogate data becomes computationally
burdensome.

Finally, heuristic methods [12] have been proposed in order to estimate
how fractal techniques underestimate the dimensionality of a data set when
its cardinality is unadequate. These heuristic methods permit inferring the
actual dimensionality of the data set. Since the methods are not theoretically
well-grounded they have to be used with prudence.

11.4 Principal Component Analysis

In this section we introduce the most common algorithm for the reduction the
data dimensionality, i.e the principal component analysis (PCA) or Karhunen-
Loeve transform.

Let Ω = (x1, . . . ,x�) be a data set, formed by vectors xi ∈ Rn, which
has mean 〈x〉 and covariance matrix Σ. Then we introduce the eigenvalue
equation

ΣU = UΛ (11.12)

where U is a n × n matrix, consisting of N eigenvectors as U = [u1, . . . ,un]
and Λ is a diagonal matrix of eigenvalues as⎡⎢⎣λ1 0 · · ·

0
. . . 0

0 · · · λn

⎤⎥⎦
Each of ui component is called principal component . Since if i
= j then
ui · uj = 0 the principal components are uncorrelated .

We can define a new transformation of data that maps the data matrix X
in a new matrix Y , given by:

Y = UT X (11.13)

It can be shown that PCA projects the data along the directions of maximal
variance [1].

Principal component analysis is strictly connected [51] to a standard de-
composition in numerical analysis, namely the singular value decomposition
(SVD).

314 11 Feature Extraction Methods and Manifold Learning Methods

y

x

u

v

Fig. 11.2. Ω Data set. The data set is formed by points lying on the upper semi-
circonference of equation x2 + y2 = 1. The ID of Ω is 1. Neverthless PCA yields two
non-null eigenvalues. The principal components are indicated by u and v.

PCA can be used for estimating the intrinsic data dimensionality. ID is
given by by the number of non-null eigenvalues. PCA is a poor dimensioanlity
estimator, since it tends to overestimate the ID [8]. As shown in Figure 11.2,
a data set formed by points lying on a circumference for PCA has dimension
2 rather than 1.

Although PCA is a poor ID estimator, PCA is widely used for reducing the
data dimensionality. Suppose to order the eigenvectors u1, . . . ,uN on the basis
of size of the respective eigenvalues λ1, . . . , λp. In this way the eigenvector
u1 has the largest eigenvalue λ1 and in general to the kth eigenvector uk

corresponds the kth largest eigenvalue λk. We pick the first k eigenvectors
and we discard the remaining N − k eigenvectors. In this way we project our
original data x = (x1, . . . , xN) ∈ RN onto a vector x′ = (x′

1, . . . , x
′
k) ∈ RK in

a K-dimensional space, where K < N . Discarding the last N − k eigenvectors
we assume that the data information is contained in the first k components
whereas the last N − k components contain noise.

Now we evaluate the information lost discarding last N−k eigenvectors [8].
Let x′ be the projection of x considering all N principal components. Whereas
let x′′ be the projection considering the first K principal components. We have

x′ =
N∑

i=1

x′
iui; x′′ =

K∑
i=1

x′
iui; (11.14)

where {ui}N
i=1 are the principal components.

Therefore the lost information when we discard last N − k eigenvectors is
given by:

11.4 Principal Component Analysis 315

x′ − x′′ =
N∑

i=K+1

x′
iui;

It is possible to show [8] that the average square error E on a dataset Ω =
{x1, . . . ,x�} discarding last N − k eigenvectors is given by:

E =
1
2

�∑
i=1

‖x′
i − x′′

i ‖2 =
1
2

�∑
i=k+1

λi (11.15)

where {λi}N
i=1 are the eigenvalues of the principal components.

11.4.1 Nonlinear Principal Component Analysis

As we have seen PCA is not able to represent nonlinear components. In order
to overcome this limitation, nonlinear algorithms have been proposed to get a
nonlinear PCA. Among different possible approaches [48][51] to get a nonlinear
PCA, the autoassociative approach is the most common one.

It can be shown [3] that an autoassociative three-layers neural network can
only perform a linear PCA. Therefore if we want to perform a nonlinear PCA
it is necessary to use neural network with a more complicated architecture,
e.g. a five-layers neural network.

A neural net for the nonlinear PCA has a typical bottleneck structure,
shown in Figure 11.3. The first (input) and the last (output) layer have the
same number of neurons, while the remaining hidden layers have less neuron
than the first and the last ones. The second, the third and the fourth layer are
called respectively mapping , bottleneck and demapping layer. Mapping and
demapping layers have usually the same number of neurons. Both mapping
and demapping layer are formed by nonlinear units. The bottleneck layer
(or middle layer) consists of linear units whose number m is lower than the
original pattern dimensionality d. Each unit of the bottleneck layer represents
a nonlinear component of data.

The targets used to train nonlinear PCA are simply the input vector them-
selves. Therefore each pattern is presented as both the input and as the target
output. The network is trained with the backpropagation algorithm, mini-
mizing the square error. As optimization algorithm, the conjugate-gradient
algorithm [70] is generally used.

The number of the neurons of the bottleneck layer can be set up equal
to the data dimensionality, if ID has been previously estimated by means of
any ID estimation method (see Section 11.3). On the other hand, if we set
up the the number of the neurons of the bottleneck selecting the one which
minimizes the square error, the number itself can provide an ID estimate.
Nonlinear PCA generally performs better than linear PCA as ID estimator
[27].

Although nonlinear PCA is effective in several contexts, it presents some
drawbacks. As underlined by Malthouse [61], the projections onto curves and

316 11 Feature Extraction Methods and Manifold Learning Methods

Input Layer

Output Layer

Fig. 11.3. A Neural Net for Nonlinear PCA

surfaces are suboptimal. Besides, NLPCA cannot model curves or surfaces
that intersect themselves.

11.5 Independent Component Analysis

In Section 11.4 we saw that principal component analysis yields uncorrelated
components. In this section we present a technique, the independent compo-
nent analysis (ICA) [16][46], that yields statistically independent components.
Our ICA description follows the same approach described in [43].

In order to introduce the ICA,3 we consider the so-called cocktail-party
problem. Suppose we have two people in a room who are speaking at the
same time and two microphones located in different points of the room. We

3 For sake of space, we do not describe the kernel version of ICA [2].

11.5 Independent Component Analysis 317

call s1(t) and s2(t) the signals detected at the time t by the two microphones.
The two signals are linear combination of the sound signals u1(t) and u2(t)
emitted by the two people, that is:

s1(t) = w11u1(t) + w12u2(t)
s2(t) = w21u1(t) + w22u2(t)

where wij (i, j = 1, 2) are unknown mixing parameters that depend upon the
attenuations due to the distances of the microphones from two people.

Since mixing parameters are unknown the cocktail-party problem cannot
be solved using classical numerical analysis methods. Nevertheless, the prob-
lem can be solved making some assumptions about the statistical properties
of the sources u1 and u2. We will show in the rest of the section that it is
adequate to assume that the sources are statistically independent to solve the
cocktail problem.

In order to define ICA, we generalize the cocktail problem introducing a la-
tent variable model . We consider n linear mixtures s1, . . . , sn of n independent
components u1, . . . , un defined as follows:

s1 = a11u1 + · · · + a1nun

. . .

sn = an1u1 + · · · + annun (11.16)

We assume that in our model each mixture sj is a random variable instead of
a signal, as in the cocktail problem. For this reason, the time index in (11.16)
does not appear.

We can rewrite the system (11.16) in a more concise and elegant way
using a matrix notation. If s = (s1, s2, . . . , sn) and u = (u1, u2, . . . , un) are
the vectors whose components are, respectively, si and ui and A the matrix
whose elements are aij the equations (11.16) becomes:

s = Au (11.17)

The model described by Equation (11.17) is called the independent component
analysis (or ICA model).

The ICA model is a generative model , that is a model that describes how
the observed data (i.e s) can be generated by mixing latent variables ui. The
variables ui are called latent since they cannot be directly observed. The
mixing matrix A is assumed unknown. All we know is the observed vector s
and it has to be adequate to estimate A and u. ICA is strictly connected with
the blind source separation (BSS) where we have some source signals, as in
the cocktail party problem, and we do not know anything about the mixing
matrix A, that the mixing process is blind. ICA is one of the most popular
method for BSS.

The ICA model is based on the concept of statistical independence.

318 11 Feature Extraction Methods and Manifold Learning Methods

11.5.1 Statistical Independence

To introduce ICA model we need to define formally the concept of statistical
independence.

Definition 25 (Statistical Independence) Let u1, u2 be two random vari-
ables. Let P (u1, u2) be their joint probability density function. Let P (u1) and
P (u2) be the marginal density probability functions, respectively, of u1 and u2

defined as follows:

P (u1) =
∫

P (u1, u2)du2; P (u2) =
∫

P (u1, u2)du1.

The variables are statistically independent if and only if the joint probability
is given by:

P (u1, u2) = P (u1)P (u2). (11.18)

Besides, if u1, u2 are statistically independent then for any functions f(u1)
and g(u2) the following equation holds:

E [f(u1)g(u2)] = E [f(u1)]E [g(u2)] (11.19)

where E [·] denotes the expectation operator.

The definition of statistical independence can be immediately extended for
any number of random variables larger than two.

Now, we recall the notion of uncorrelatedness.

Definition 26 Let u1, u2 be two random variables. The variables u1, u2 are
uncorrelated if their covariance is null, that is:

E [u1, u2] = E [u1]E [u2] (11.20)

where E [·] denotes the expectation operator.

Uncorrelatedness can be viewed as a weaker form of statistical independence
[43]. Statistical independence implies uncorrelatedness (see Equation (11.19)).
On the contrary, uncorrelatedness does not imply statistical independence (see
Problem 11.9).

11.5.2 ICA Estimation

Having defined formally the concept of statistical independence, we can in-
troduce the ICA model. Firstly, we can show that when the independent
components are all Gaussian, we cannot solve ICA problem. For sake of sim-
plicity, we consider the case of two sources u1 and u2 whose distribution is
Gaussian. Besides, we assume that the mixing matrix A is orthogonal. The
mixed variables s1 and s2 have joint probability density function given by:

11.5 Independent Component Analysis 319

p(s1, s2) =
1
2π

exp(−s2
1 + s2

2

2
) (11.21)

It is possible to show [43] that the joint probability distribution function of
any orthogonal transformation of s1 and s2 is given by (11.21) and that the
mixed variables s1 and s2 are independent. Therefore when both sources are
Gaussian we cannot estimate the mixing matrix A and solve the ICA problem.
It is necessary to remark that the ICA problem can be solved when only one
independent component is Gaussian.

In the ICA model we assume that the independent components are non-
Gaussian. This assumption is in contrast with the statistical theory where
random variables are usually assumed Gaussian. Besides, the central limit
theorem claims that the distribution of a sum of independent random variables
tends to the normal distribution under given conditions. The central limit
theorem implies that each mixed observed variable si is closer to the normal
distribution than each of the original independent components ui. Being said
that, we pass to estimate ICA model, that is to estimate the independent
components.

We consider an observed data vector s which is a mixture of independent
components, that is it can be described by the matricial equation s = Au. For
the sake of simplicity, we assume that the independent components uj have
the same probability distribution function. We define a linear combination of
si, that is:

y = wT x (11.22)

where w is a vector of parameters that has to be computed.
If w is one of the row of A−1, that is the inverse of the mixing matrix

A, Equation (11.22) provides one of the required independent components ui.
Since the mixing matrix A is unknown, the vector cannot be exactly deter-
mined but only estimated.

Now we introduce a further variable z defined as z = AT w. Equa-
tion (11.22) becomes:

y = wT s = wT Au = zT u

Since, on the basis of the central limit theorem, the sum of independent vari-
ables ui is more Gaussian than ui, zT is more Gaussian than the independent
components ui. The variable zT reaches the minimum of Gaussianity when zT

is equal to one of the independent components ui. This observation motivates
the following rule.

Remark 2 (ICA Model Principle) To estimate the ICA model select the
vector w that maximizes the non-Gaussianity of wT s.

To use the ICA Model Principle we require a measure of non-Gaussianity .
The simplest measure of non-Gaussianity is the kurtosis.

320 11 Feature Extraction Methods and Manifold Learning Methods

Kurtosis

The kurtosis (or fourth-order cumulant) of a variable y kurt(y) is defined by:

kurt(y) = E [y4] − 3(E [y2])2.

where E [·] is the expectation operator.
Since for the Gaussian distribution E [y4] is equal to 3(E [y2])2, the kur-

tosis is zero for a Gaussian variable. On the other hand, most non-Gaussian
variables have kurtosis nonzero. Random variables with positive kurtosis is
called sub-Gaussian (or platykurtic). Whereas variables with positive kurtosis
is called super-Gaussian (or leptokurtic). The non-Gaussianity is measured
taken the absolute value of the kurtosis.

Although the kurtosis can be used for optmizing the non-Gaussianity, its
usage presents many drawback. The main drawback of kurtosis is represented
by its large sensitivity to outliers [38]. The value of the kurtosis may be no-
tably affected by few data which can be noise or have poor representativity
since whose values belong to the tail of the probability distribution function.
Therefore kurtosis is not a robust measure of non-Gaussianity and other mea-
sures, for instance the negentropy , are advisable in most practical situations.

Negentropy

The negentropy is a measure of non-Gaussianity strictly connected to the
quantity, defined in in the information theory [19], called entropy . The entropy
provides a measure of the casuality of the variable. The larger is the entropy
of a variable the higher is its casuality.

The entropy for a discrete random variable Y is defined as follows:

H(Y) = −
∑

i

P (Y = yi) log(Y = yi)

where the yi are the values that y can assume.
The definition of the entropy for discrete variables can be generalized for

random variables y with density g(y). In this case, the entropy H(y) (usually
called differential entropy) is given by:

H(y) = −
∫

g(y) log g(y)dy. (11.23)

A fundamental result in information theory says that among all random
variables with equal variance, Gaussian variables have the largest entropy
[19]. This result implies that the entropy can be used to measure the non-
Gaussianity of a variable.

Since it is useful a measure of non-Gaussianity that is nonnegative and
zero for the Gaussian variables, it is preferable to use, as measure of non-
Gaussianity, a modified version of the differential entropy, the so-called ne-
gentropy [43]. The negentropy J(y) of a variable y is given by:

11.5 Independent Component Analysis 321

J(y) = H(G) − H(y) (11.24)

where G is a Gaussian random variable having the same covariance matrix of
y.

For construction, the negentropy is always non-negative and is zero for
the Gaussian variables. Moreover, negentropy is invariant for invertible linear
transformations [16].

Negentropy is the optimal measure of non-Gaussianity under the point
of view of the the information. Nevertheless, computing the negentropy is
difficult since the estimation of the probability density function is required.
Therefore it is convenient in the practical applications, replacing the negen-
tropy with any of its approximations.

A popular method for approximating negentropy is based on higher-order
moments. The approximation of negentropy Ĵ(y) of a variable y, assumed to
be of zero mean and unit variance, is given by:

Ĵ(y) ∼ 1
12

E [y3]2 +
1
48

kurt(y)2. (11.25)

where kurt(·) and E [·] are respectively the kurtosis and the expectation oper-
ator.

Since the right side of Equation (11.25) is function of the kurtosis, this
approximation of negentropy inherits from the kurtosis its poor robustness
towards the outliers.

An effective approximation of negentropy, based on maximum-entropy
principle, has been proposed by Hyvärinen [40]. The Hyvärinen approxima-
tion of negentropy Ĵ(y) of a variable y, assumed to be of zero mean and unit
variance, is given by:

Ĵ(y) ∼
n∑

i=1

αi{E [Ki(y)] − E [Ki(G)]}2 (11.26)

where αi ∈ R, G is a Gaussian variable of zero mean and unit variance and
Ki(·) are nonquadratic functions.

When n is equal to 1, the equation (11.26) becomes:

Ĵ(y) ∝ {E [K(y)] − E [K(G)]}2 (11.27)

which is a generalization of the moment-based negentropy approximation. In
fact, if we assume K(y) = y4 we get exactly Equation (11.25).

Choosing an appropriate form for G(·) it is possible to obtain a more
effective negentropy approximation than the one provided by (11.25). Suitable
choices for the function G(·) are given by:

G(x) =
1
β

log cosh βx β ∈ [1, 2] (11.28)

= − exp(−x2

2
) (11.29)

322 11 Feature Extraction Methods and Manifold Learning Methods

11.5.3 ICA by Mutual Information Minimization

A further approach for the ICA model estimation is based on the mutual
information minimization. The mutual information I(y) n random variables
(y1, . . . , yn) is defined as follows:

I(y) =
n∑

i=1

H(yi) − H(y). (11.30)

where y = (y1, . . . , yn).
The quantity I(y) is also called the Kullback Leibler distance between the

probability density function g(y) and its independence version
∏n

j=1 gj(yj)
where gj is the probability density function of gj .

The Kullback Leibler distance is always nonegative and is null if and only
if the variables are statistically independent. The mutual information has the
property [19] that for any invertible linear transformation y = Wx, we have:

I(y) =
n∑

i=1

[H(yi) − H(x) − log |detW |] (11.31)

where detW stands for the determinant of W .
If the variables yi are uncorralated and have unit variance then detW does

not depend on W (see Problem 11.11), that is it can be viewed as a constant.
Therefore Equation (11.31) becomes:

I(y) = C −
n∑

i=1

J(yi) (11.32)

where C is a constant and J(yi) is the negentropy of the variable yi.
Equation (11.32) underlines the connection between the mutual informa-

tion and the negentropy.
The mutual information can be used for solving ICA model, since it is a

measure of the independence of random variables. The approach, based on mu-
tual information, is alternative to the approach based on the non-Gaussianity
viewed in the section (11.5.2).

In the approach based on mutual information, we consider again the equa-
tion:

y = Wu

and we look for a matrix W such that the mutual information of the observed
data yi is minimized. Equation (11.32) shows that the minimization of the
mutual information is equivalent to maximizing the sum of the negentropies,
that is the measures of non-Gaussianity, of the data yi when yi are constrained
to be uncorrelated. Therefore the formulation of the ICA problem in terms
of minimization of mutual information provides a further justification of the
approach based on the minimization of non-Gaussianity.

11.5 Independent Component Analysis 323

We quote two other minor approaches, strictly connected, for the ICA
model estimation, e.g. the maximum likelihood principle, the infomax princi-
ple. The maximum likelihood method [69] for the ICA problem is essentially
equivalent to the approach based on the minimization of the mutual infor-
mation [43]. The infomax approach is based on the infomax principle [6][65]
which consists in maximizing the output entropy of a neural network having
nonlinear output units. It has been proved [13][67] that the infomax principle
is equivalent to the maximum likelihood principle and hence is similar to the
method of the minimization of the mutual information.

Finally, we conclude our review on the methods of estimation of the ICA
model underlining the connections on a methods, developed in statistics,
called exploratory projection pursuit [29][28]. Exploratory projection pursuit
(also called simply projection pursuit) is a technique for visualizing high-
dimensional data. It has the aim of finding directions such that the data pro-
jections in those directions have interesting distributions, e.g. clusters. The
Gaussian distribution is the least interesting one since fully determined by its
mean and variance. On the other hand, non-Gaussian distributions are the
most interesting since they presents structures such as clusters and long tails.
In the exploratory projection pursuit some projection indices [29][28] have
been proposed in order to measure the non-Gaussianity. Since a way for esti-
mating the ICA model consists in measuring the non-Gaussianity, ICA can be
viewed as a projection pursuit method. Moreover, the non-Gaussianity mea-
sures presented in Section 11.5.2 can be called, using a statistical terminology,
projection indices.

11.5.4 FastICA Algorithm

In this section we conclude our review on independent component analysis
presenting one of the most popular algoritm for estimating ICA, the FastICA
algorithm.

We have to point out that before applying any ICA algorithm on the
data it is very useful, although not compulsory, to preprocess the data. The
preprocessing usually consists in centering the data and the whitening (see
Chapter IV). After centering the data, the data are zero-mean. After the
whitening the data are white, that is the data components are uncorrelated
and their variances are equal to one.

That being said, we pass to introduce the FastICA algorithm [42]. The Fas-
tICA algorithm is based on a fixed-point iteration scheme for finding a maxi-
mum of the non-Gaussianity of wT u, where the measure of non-Gaussianity
is given by (11.27), that is:

Ĵ(y) ∝ {E [K(y)] − E [K(G)]}2

We denote with k(·) and E [·], respectively, the derivative of the function K(·)
and the expectation operator. The FastICA algorithm, whose derivation is
omitted, for one independent component has the following steps:

324 11 Feature Extraction Methods and Manifold Learning Methods

1. Initialize the weight vector w
2. Compute

ŵ = E [uk(wT u)] − E [k′(wT u)]w

where k′(·) denote the derivative of the function k(·)
3. Update the vector w replacing it with

wnew =
ŵ

‖ŵ‖ (11.33)

4. Compute i = wnew · w.
5. If i = 1 return the vector w otherwise go to step 2.

The convergence of the algorithm is reached when the new and the old value
of the vector w has (roughly) the same direction. Therefore in practical ap-
plications, due to the presence of noise, the equality i = 1 has to be replaced
with i ∼ 1.

The FastICA algorithm above described estimates only one of the indepen-
dent components. If we want to estimate n (with n > 1) independent compo-
nents we have to use FastICA using n units with weight vectors w1, . . . ,wn.
If we want to obtain different independent components, avoiding that they
converge at the same maxima, we have to decorrelate the outputs wT

1 , . . . , wT
n

after every iteration of the FastICA algorithm. Among several methods [41]
[49] proposed for the decorrelation, we report the simplest method based on
the Gram-Schmid orthogonalization [53]. In this method each independent
component is estimated separately, that is the kth independent component
(with k ≤ n) is computed after the computation the first k − 1 independent
components. The kth independent component is computed carrying out the
FastICA algorithm for wk and after each algorithm iteration applying to the
new vector wk the following transformation and renormalization :

w′
k = wk −

k−1∑
i=1

(wT
k · wj)wj (11.34)

w′′
k =

w′
k

‖w′
k‖

(11.35)

where w′
k and w′′

k denote respectively the transformed and normalized vector.
Finally, we conclude quoting some properties [43] of the FastICA algo-

rithms that make it preferable to other existing ICA algorithms. FastICA is
faster than other ICA algorithm. It does not require parameters to be tuned
unlike gradient-based ICA algorithms. FastICA estimates the independent
components one by one and this property is quite useful when only some of
indipendent components have to be estimated.

FastICA is a public domain software package, written in Matlab, developed
by Hyvarinen that contains an implementation of the FastICA algorithms. It
can be downloaded from: http:// www.cis.hut.fi/projects/ica/fastica.

11.6 Multidimensional Scaling Methods 325

11.6 Multidimensional Scaling Methods

Multidimensional scaling (MDS) [71][72] methods are dimensionality reduc-
tion techniques that tend to preserve, as much as possible, the distances among
data. Therefore data that are close in the original data set should be projected
in such a way that their projections in the new space, called output space, are
still close. Among multidimensional scaling algorithms, the best-known ex-
ample is MDSCAL, by Kruskal [54] and Shepard [76]. The criterion for the
goodness of the projection used by MDSCAL is the stress. This depends only
on the distances between data. When the rank order of the distances in the
output space is the same as the rank order of the distances in the original
data space, stress is zero. Kruskal’s stress SK is:

SK =

⎡⎢⎢⎣
∑
i<j

[rank(d(xi,xj)) − rank(D(xi,xj))]
2

∑
i<j

rank(d(xi,xj))
2

⎤⎥⎥⎦
1
2

(11.36)

where d(xi,xj) is the distance between the data xi and xj and the D(xi,xj)
is the distance of the projections of the same data in the output space. When
the stress is zero a perfect projection exists. Stress is minimized by iteratively
moving the data in the output space from their initially randomly chosen
positions according to a gradient-descent algorithm. The intrinsic dimension-
ality is determined in the following way. The minimum stress for projections
of different dimensionalities is computed. Then a plot of the minimum stress
versus dimensionality of the output space is performed. ID is the dimension-
ality value for which there is a knee or a flattening of the curve. Kruskal and
Shepard’s algorithm presents a main drawback. The knee or the flattening of
the curve could not exists. A MDS approach close to Kruskal and Shepard’s
one is the popular Sammon’s mapping algorithm [74].

11.6.1 Sammon’s Mapping

Sammon proposed to minimize a stress measure similar to Kruskal’s one. The
stress SS proposed by Sammon has the following expression:

SS =

⎡⎣∑
i<j

(d(xi,xj) − D(xi,xj))2

d(xi,xj)

⎤⎦⎡⎣∑
i<j

d(xi,xj)

⎤⎦−1

(11.37)

Where d(xi,xj) is the distance between patterns xi and xj in the original data
space and D(xi,xj) is the distance in the two- or three-dimensional output
space. The stress is minimized by the gradient-descent algorithm.

Kruskal [55] demonstrated how a data projection very similar to Sammon’s
mapping can be generated from MDSCAL. An improvement to Kruskal’s and

326 11 Feature Extraction Methods and Manifold Learning Methods

Sammon’s methods has been proposed by Chang and Lee [15]. Unlike Sam-
mon and Kruskal who move all points simultaneously in the output space to
minimize the stress, Chang and Lee have suggested to minimize the stress by
moving the points two at a time. In this way, it tries to preserve local struc-
ture while minimizing the stress. The method requires heavy computational
resources even when the cardinality of the data set is moderate. Besides, the
results are influenced by the order in which the points are coupled.

Several other approaches for MDS have been proposed. It is worth men-
tioning Shepard and Carroll’s index of continuity [78], Kruskal’s indices of
condensation [56] and Kruskal and Carroll’s parametric mapping [57]. Surveys
of the classical multidimensional scaling methods can be found in [72][71][77].

Finally, it is worth mentioning the curvilinear component analysis (CCA)
proposed by Demartines and Herault [20]. The principle of CCA is a self-
organizing neural network performing two tasks: vector quantization of the
data set, whose dimensionality is n, and a nonlinear projection of these quan-
tizing vectors onto a space of dimensionality p (p < n). The first task is
performed by means of SOM [52]. The second task is performed by means
of a technique very similar to MDS methods previously described. Since a
MDS that preserve all distances is not possible, a cost function E measures
the goodness of the projection. The cost function E is the following:

E =
1
2

∑
i

∑
j �=i

(d(xi,xj) − D(xi,xj))2F (D(xi,xj), λ) (11.38)

where d(xj ,xj) are Euclidean distances between the points xi and xj of data
space and D(xi,xj) are Euclidean distances between the projections of the
points in the output space; λ is a set of parameters to set up and F (·) is
a function (e.g. a decreasing exponential or a sigmoid) to be chosen in an
opportune way.

CCA seems to have very close performances to Shepard’s MDS based on
index of continuity [20].

11.7 Manifold Learning

Manifold learning [5][14] is a recent appraoch for nonlinear dimensionality re-
duction. Manifold learning algorithms are based on the idea that the intrinsic
dimensionality of many data sets is small though each pattern can have several
hundred of features. Therefore each pattern can be potentially described by
only few parameters. Manifold Learning can be considered a generalization of
the multidimensional scaling. In this section we first recall the mathematical
concepts at the basis of the manifold learning and then we review the main
manifold learning algorithms, that is Isomap, locally linear embedding and
Laplacian eigenmaps.

11.7 Manifold Learning 327

11.7.1 The Manifold Learning Problem

Before introducing the manifold learning problem we have to recall some basi-
lar concepts of topology. Firstly, we define formally the concept of manifold .
For this purpose we consider the semicircumference shown in Figure 11.2. We
have seen that the curve has intrinsic dimensionality equal to 1 though it is
embedded in R2. Since the curve dimensionality is 1 the curve can be repre-
sented by means a unique variable. This concept can be formalized introducing
the mathematical concept of manifold. We will say that the semicircumfer-
ence is a one-dimensional manifold. We pass to define formally the concept of
manifold recalling the following definitions from the topology.

Definition 27 A homeomorphism is a continuos function whose inverse is
also a continuous function

Definition 28 A d-dimensional manifold M is a set that is locally home-
omorphic with Rd, i.e. for each m ∈ M an open neighborhood around m,
called Nm and a homeomorphism h : Nm → Rd exists.

The neighborhood Nm and the homeomorphism are respectively called the
coordinate patch and coordinate chart. The image of the coordinate chart
is called the parameter space.

The manifold is a very general concept. We are interested in the special case
where the manifold is a subset of Rd, that is M ⊂ Rd, and its dimensionality
is such that d � N .

We introduce further definitions that can be useful in the rest of the sec-
tion.

Definition 29 A smooth manifold (or differentiable manifold) is a
manifold such that each coordinate chart h is a diffeomorphism, i.e. h is
differentiable and its inverse h−1 exists and is differentiable, too.

Definition 30 An embedding of a manifold M into RN is a smooth ho-
momorphism from M to a subset of RN .

That being said, we pass to define formally the manifold learning problem.
Let D = {x1, . . . ,x�} ∈ RN be a data set. Our goal is to reduce the number

of features required to represent this data set. We assume that D lies on a d-
dimensional manifold M embedded into RN , with d < N . Besides, we assume
that the manifold is given by a single coordinate chart, that is equivalent
to assume that the manifold is compact. The manifold learning problem is
defined as follows.

Problem 3 (Manifold Learning Problem) Given a data set D =
{x1, . . . ,x�} ∈ RN lying on a d-dimensional manifold M described by a sin-
gle coordinate chart h : M → Rd, find D′ = {y1, . . . ,y�} ∈ Rd such that
yi = h(xi) (for i = 1, . . . , �).

The solution of this problem is called manifold learning .
Now we pass to review some manifold learning algorithms.

328 11 Feature Extraction Methods and Manifold Learning Methods

11.7.2 Isomap

Isomap [82], an acronym of Isometric feature mapping , is one of the most
popular algorithm for manifold learning. Isomap algorithm can be viewed
as an extension of MDS methods. Let D = {x1, . . . ,x�} ∈ M ⊂ RN be a
data set formed by data drawn by the manifold M. Isomap has the aim of
finding a coordinate chart that allows to project the data set in Rd. Isomap
assumes that an isometric chart exists, i.e. a chart that preserves the distances
between the points. Therefore if two data points xi, xj ∈ M have geodetic
distance DM(xi,xj), i.e. the distance along the manifold, then there is a
chart h : M → Rd such that:

‖h(xi) − h(xj)‖ = DM(xi,xj).

Besides, Isomap assumes that the manifold M is smooth enough such that
the geodetic distance between close points can be approximated by a line.
Isomap uses the usual Euclidean distance between points to compute the
geodetic distance between close points. On the contrary, Euclidean distance
is not a good estimate of the geodetic distance between not close points, since
the linear approximation becomes more and more inaccurate increasing the
distance between points. In order to compute the geodetic distance Isomap
builds a neighborhood graph in the following way. Isomap computes for each
data point x the set of its neighbors U(x) which can be composed in two
different ways. In the first way the set of neighbors is formed by its K nearest
neighbors, in the second way the set of neighbors is formed by all points whose
distance is lower than ε. The version of Isomap using the first way is called K-
Isomap, whereas the version using the second way is the so-called ε-Isomap.
After the computation of the set of neighbors for each data point Isomap
build a labelled graph G over the data pattern of the data set D where each
pattern is represented by a vertex of G. Besides, each vertex, corresponding to
a given pattern x, is connected to the vertices, corresponding to the patterns
belonging the set of its neighbors U(x), by a weighted edge. The weighted of
the edge is given by the euclidean distances between the patterns representing
the two vertices.

Then Isomap computes the geodetic distance DM(xi,xj) between all data
points of D by computing the shortest-path between the corresponding ver-
tices on the graph G. The shortest path can be computed by means of the
Dijkstra’s or the Floyd’s algorithm [17] . At the end of this step, Isomap pro-
duces a matrix DM whose element DM(i, j) is given by the geodetic distance
between the data points xi and xj , that is:

DM(i, j) = DM(xi,xj).

The final step of Isomap consists in applying a MDS algorithm (e.g. Sammon’s
mapping) costructing an embedding of the data in d-dimensional space which
preserve as much as possible the geometry of the manifold. Unlike Laplacian

11.7 Manifold Learning 329

Eigenmaps and LLE, Isomap does not require that the dimensionality d of
the manifold is a priori known.

Isomap can be summarized in the following steps:

• Take as input the data set D = {x1, . . . ,x�} ∈ Rn and the parameter K
(or alternatively the parameter ε).

• Compute the set of neighbors for each data point.
• Build the neighborhood graph
• Compute the shortest path graph given the neighborhood graph
• Make a d-dimensional embedding by means of a MDS algorithm.

The unique free parameter is K (or ε) that controls the size of the neigh-
borhood. The parameter value is crucial [82] since the Isomap performances
are strongly influenced by the size of neighborhood. Although in the original
paper the parameter was tuned manually, a few techniques for tuning the
parameter automatically are available [73].

Unlike most of manifold learning algorithms, Isomap guarantees theoret-
ically the fidelity of the manifold reconstruction under given assumptions. If
the manifold is compact, sampled everywhere, isometrically embedded in Rd

and the parameter space (i.e. the image of the chart) is convex then Isomap
can reconstruct the manifold. This theoretical property justifies the increasing
popularity of Isomap in the machine learning community.

A public domain software package implementing Isomap can be downloable
from: http://isomap.stanford.edu.

11.7.3 Locally Linear Embedding

Locally linear embedding (LLE) [75] is based on the idea of visualizing a man-
ifold M as a collection of overlapping coordinate patches. If the neighborhood
sizes are small and the manifold is smooth the patches can be assumed roughly
linear. Besides, the chart from the manifold M to the lower dimensionality
space Rd is assumed to be approximatively linear on the patches. Therefore
the idea underlying LLE consists in looking for local small patches, describing
their geometry and finding a chart to Rd that preserves the manifold geometry
and is roughly linear. Besides, the local patches are assumed overlapped so
that the local mamifold reconstructions can be combined into a global one.

Let D = {x1, . . . ,x�} ∈ RN be a data set lying on a n-dimensional man-
ifold M. As in Isomap, the number of neighbors for a given pattern K is a
parameter of the algorithm. Let U(xi) be the set of the K-nearest neighbors
of the data point xi. The first step of LLE consists in modeling the mani-
fold M as a collection of linear patches and in estimating the geometry of
the patches. The modeling is performed by representing each pattern xi as a
convex combination of its nearest neighbors. The weights Wij are obtained by
the minimization of the following error:

330 11 Feature Extraction Methods and Manifold Learning Methods

�∑
i=1

‖xi −
∑

xj∈U(xi)

Wijxj‖2 (11.39)

subject to∑
xj∈U(xi)

Wij = 1 (11.40)

Wij = 0 xj /∈ U(xi). (11.41)

The matrix Wij provides information about the local geometry of the patches
describing the layout of the data points around xi. The constraint (11.41)
makes explicit that LLE is a local method. On the other hand, the constraint
(11.40) makes the weight matrix invariant to global translations, rotations
and scalings (see Problem 11.12).

The constrained minimization problem can be solved using Lagrange mul-
tipliers. The vector of the reconstruction weights Wi for each pattern xi is
given by:

Wi =

�∑
k=1

C−1
ik

�∑
l=1

�∑
m=1

C−1
lm

(11.42)

where C is the local covariance matrix whose element Cij is given by:

Cjk = (x − ηj)T (xi − ηk)

and ηj and ηk are neighbors of the pattern x.
Since the vector Wi corresponds to the ith column of the matrix W , if we

compute (11.41) for i = 1, . . . , � we obtain the whole reconstruction matrix
W .

The vector Wi defines the local geometry of the manifold around the
pattern xi, i.e. the geometry of the neighborhood patch of xi.

The second step of LLE looks for a configuration in d-dimensions, i.e. the
dimensionality of the parameter space, whose local geometry is described by
the reconstruction matrix W . In LLE the dimensionality d must be apriori
known or estimated before by means of an ID estimation algorithm.

The configuration can be obtained minimizing:

�∑
i=1

‖yi −
�∑

j=1

Wijyi‖2 (11.43)

with respect to y1, . . . ,y� ∈ Rd.
Equation (11.43) can be rewritten in the following matricial form:

Y T MY (11.44)

11.7 Manifold Learning 331

where the element Mij of the matrix is given by:

Mij = δij − Wij − Wji +
�∑

k=1

WkiWkj

and δij is the Kronecker symbol.
The matrix Y is subject to the following constraints:

Y T Y = I
�∑

i=1

Yi = 0

where I is the identity matrix.
The equation (11.44) is a form of Rayleigh’s quotient and is minimized

by setting the column Yi of the matrix Y equal to the d last nonconstant
eigenvectors of M , i.e. the eigenvectors that correspond to d smallest nonzero
eigenvalues of M .

LLE can be summarized as follows:

• Take as input the data set D = {x1, . . . ,x�} ∈ Rn, the the neighborhood
size K and the manifold dimensionality d.

• Compute the reconstruction matrix W , whose column Wi is given by:

Wi =

�∑
k=1

C−1
ik

�∑
l=1

�∑
m=1

C−1
lm

• Compute the low-dimensional embedding. Let M be a matrix defined by:

(I − W)T (I − W)

Compute the matrix Y whose columns are given by the eigenvectors of the
matrix M having eigenvalue nonzero.

• Return the (� × d) matrix Y .

A public domain software package implementing LLE can be downloable from:
http://basis.stanford.edu/HLLE.

11.7.4 Laplacian Eigenmaps

Laplacian Eigenmaps [5] is a manifold learning algorithm based on the spectral
graph theory . Given a graph G and a matrix of edge weights W , the graph
Laplacian4 is defined as
4 This is not the unique definition of graph Laplacian, for other definitions see [64]

332 11 Feature Extraction Methods and Manifold Learning Methods

L = D − W

where D is a diagonal matrix whose elements Dii are given by

Dii =
∑

j

Wij .

The Laplacian provides informations about the graph, for instance the full
connession of a graph. In the Laplacian Eigenmaps the Laplacian provides
local information about the manifold. In the Laplacian Eigenmaps a local
similarity matrix W is defined. The matrix W measures how much points are
close each other and can be defined in two different ways:

• Wij = 1 if the pattern xj is one of the k-neighobors of xi (that is xj ∈
U(xi)) and Wij = 0 otherwise.

• Wij = G(xi,xj) = exp(−−‖xi−xj‖2

2σ2 if xj ∈ U(xi), 0 otherwise. G(·) is
called the Gaussian heat kernel .

Laplacian eigenmaps uses the similarity matrix W to find the data points
y1, . . . ,y� which are the d-dimensional image of the points x1, . . . ,x�. As in
LLE, the manifold dimension d must be a priori known or estimated before
by an ID algorithm.

Laplacian Eigenmaps minimize a cost function based on the following ob-
servation. If two data points have a large degree of similarity (i.e Wij is
large) then they are close each other on the manifold. Therefore their low-
dimensional image should be close. This observation can be expressed to the
following constrained minimization problem:

min
�∑

i=1

�∑
j=1

Wij(yi − yj)2. (11.45)

subject to

Y T DY = 1. (11.46)

where the jth column of the matrix Y is given by yi.
The constraint (11.46) is necessary to avoid the trivial solution in which

all y1, . . . ,y� are given by the d-dimensional null vector (whose components
are equal to zero).

The constrained minimization problem can be solved using Lagrange mul-
tipliers. It is possible to show that the constrained minimization problem is
equivalent to the generalized eigenvalue problem, defined as follows:

LY = λDY

whose solution is given by n last non-costant eigenvectors of M , i.e. the eigen-
vectors whose respective eigenvalue are nonzero.

Laplacian Eigenmaps can be summarized as follows:

11.8 Conclusion 333

• Take as input the data set D = {x1, . . . ,x�} ∈ Rn, the the neighborhood
size K and the manifold dimensionality d.

• Set Wij = exp(−−‖xi−xj‖2

2σ2 if xj ∈ U(xi), 0 otherwise.
• Let U be the matrix whose columns are given by the non-constant eigen-

vectors (whose respective eigenvalues are nonzero) of LY = λDY .
• Return the (� × n) U matrix.

Although Laplacian eigenmaps is based on spectral graph theory is quite simi-
lar to LLE. This similarity has been theoretically shown by Belkin and Niyogi
who proved that under certain assumptions LLE is equivalent to Laplacian
Eigenmaps.

11.8 Conclusion

In this chapter we have presented some feature extraction methods and mani-
fold learning algorithms. Firstly, we have discussed the curse of dimensionality
in the framework of the function approximation theory. We have introduced
the concept of data dimensionality describing some algorithms to estimate it.
Then we have reviewed popular feature extraction methods such as princi-
pal and independent component analysis. We have also described statistical
techniques, i.e. the multidimensional scaling algorithms, for data dimension-
ality reduction. Finally, we have introduced the problem of manifold learning
describing main manifold learning algorithms.

Problems

11.1. Consider the the data set A [39] of the Santa Fe time series competition
were considered time series. Use the method of delays that is for each sample of
the time series x(t) build a new vector X(t) = {x(t), x(t−1), . . . , x(t−(d−1))},
formed by the same pattern and its (d− 1) antecedent samples. Let Ω be the
manifold generated by data points X(t). Estimate the dimensionality of Ω by
means of the Grassberger-Procaccia algorithm. Assume in your experiments
d = 10. Verify that your ID estimate fulfills Eckmann-Ruelle inequality. Com-
pare your results with [12].

11.2. Consider a data set Ω = {x1, . . . ,x�} formed by vectors xi ∈ RN .
Project the data along the first k, with k < N , eigenvectors. Show that the
average square error E on the dataset Ω = is given by:

E =
1
2

�∑
i=k+1

λi

where {λi}N
i=1 are the eigenvalues of the principal components (for the proof

see [8]).

334 11 Feature Extraction Methods and Manifold Learning Methods

11.3. Consider the singular value decomposition defined as follows. Let A be
a real m×n matrix and l = min(m,n). There are orthogonal matrices U and
V such that

A = UDV T

where U ∈ Rm×m, V ∈ Rn×n, D = diag(σ1, . . . , σl) ∈ Rm×n, that is if m > n
has the form

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

λ1 0 · · ·
0

. . . 0
0 · · · λl

0 · · · 0
· · · · · · · · ·
0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
otherwise is the transpose. Prove that Y in (11.13) is given by Y = DV T .

11.4. Implement PCA using a mathematical toolbox.
Test your implementation projecting Iris Data [26], that can be dowloaded

by ftp.ics.uci.edu/pub/machine-learning-databases/iris, along the major two
principal components. Evaluate the information loss.

11.5. Repeat Problem 11.4 replacing Iris data with Wisconsin Breast Cancer
Database [88] that can be dowloaded by ftp.ics.uci.edu/pub/machine-learning-
databases/breast-cancer-wisconsin. Compare the results.

11.6. Prove that the variances of the independent components cannot be de-
termined.

11.7. Prove that the order of the independent components cannot be fixed.
Namely we cannot label any of the independent components as the first one.

11.8. Prove that if u1, u2 are two random variables statistically independent
then for any functions f(u1) and g(u2) the equation (11.19) holds, that is:

E [f(u1)g(u2)] = E [f(u1)]E [g(u2)]

11.9. Consider two random variables u1, u2 ∈ R2 having the same probabil-
ity of assuming any of the following values: {(0, 0.5),(0,-0.5),(0.5,0),(-0.5,0)}.
Show that u1 and u2 are uncorrelated but not statistically independent.

11.10. Consider two independent random variables u1, u2. Prove that the
kurtosis kurt(·) satisfies the following properties:

kurt(u1 + u2) = kurt(u1) + kurt(u2)
kurt(αu1) = α4kurt(u1) (α ∈ R)

11.8 Conclusion 335

11.11. The mutual information I(y), for any invertible linear transformation
y = Wx, is given by:

I(y) =
n∑

i=1

[H(yi) − H(x) − log |detW |]

Prove that if the variables yi are uncorrelated and have unit variance, detW
does not depend by W , that is it is a constant.

11.12. Prove that the reconstruction matrix Wij of the LLE defined by:

‖xi −
∑

xj∈U(xi)

Wijxj‖2

subject to: ∑
xj∈U(xi)

Wij = 1; Wij = 0 xj /∈ U(xi)

is invariant to the global translations.

References

1. Principal Component Analysis. Principal Component Analysis. Springer-Verlag,
1986.

2. F.R. Bach and M.I. Jordan. Kernel independent component analysis. Journal
of Machine Learning Research, 3(1):1–48, 2002.

3. P. Baldi and K. Hornik. Neural networks and principal component analysis:
learning from examples without local minima. Neural Networks, 2(1):53–58,
1989.

4. A.R. Barron. Universal approximation bounds for superpositions of a sigmoidal
function. IEEE Transactions on Information Theory, 39(3):930–945, 1993.

5. M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and
data representation. Neural Computation, 15(6):1373–1396, 2003.

6. A. Bell and T. Sejnowski. An information-maximization approach to blind
separation and blind deconvolution. Neural Computation, 7(6):1129–1159, 1995.

7. R. Bellman. Adaptive Control Processes: A Guided Tour. Princeton University
Press, 1961.

8. C. Bishop. Neural Networks for Pattern Recognition. Cambridge University
Press, 1995.

9. L. Breiman. Hinging hyperplanes for regression, classification, and function
approximation. IEEE Transactions on Information Theory, 39(3):999–1013,
1993.

10. J Bruske and G. Sommer. Intrinsic dimensionality estimation with optimally
topology preserving maps. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 20(5):572–575, May 1998.

11. F. Camastra. Data dimensionality estimation methods: A survey. Pattern Recog-
nition, 36(12):2945–2954, December 2003.

12. F. Camastra and A. Vinciarelli. Estimating the intrinsic dimension of data with
a fractal-based method. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 24(10):1404–1407, October 2002.

13. J.-F. Cardoso and B. Laheld. Equivalent adaptive source separation. IEEE
Transactions on on Signal Processing, 44(12):3017–3030, 1996.

14. G. Cayton. Algorithms for manifold learning. Technical report, Computer
Science and Engineering department, University of California, San Diego, 2005.

15. C. L. Chang and R. C. T. Lee. A heuristic relaxation method for nonlinear
mapping in cluster analysis. IEEE Transactions on Computers, C-23:178–184,
February 1974.

338 References

16. P. Comon. Independent component anaysis - a new concept? Signal Processing,
36(?):287–314, 1994.

17. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.
MIT Press, 1990.

18. J. Costa and A. O. Hero. Geodetic entropic graphs for dimension and en-
tropy dimension in manifold learning. IEEE Transactions on Signal Processing,
52(8):2210–2221, 2004.

19. T. M. Cover and J. A. Thomas. Elements of Information Theory. Jphn Wiley,
1991.

20. P. Demartines and J. Herault. Curvilinear component analysis: A self-organizing
neural network for nonlinear mapping in cluster analysis. IEEE Transactions
on Neural Networks, 8(1):148–154, January 1997.

21. R. A. DeVore. Degree of nonlinear approximation. In Approximation Theory,
Vol. VI, pages 175–201. Academic Press, 1991.

22. R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. John Wiley,
2001.

23. J. P. Eckmann and D. Ruelle. Ergodic theory of chaos and strange attractors.
Review of Modern Physics, 57(3):617–659, 1985.

24. J. P. Eckmann and D. Ruelle. Fundamental limitations for estimating dimen-
sions and lyapounov exponents in dynamical systems. Physica, D-56:185–187,
1992.

25. B. Efron and R. J. Tibshirani. An Introduction to the Bootstrap. Chapman &
Hall, 1993.

26. R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals
of Eugenics, 7(2):179–188, 1936.

27. D. Fotheringhame and R. J. Baddeley. Nonlinear principal component analysis
of neuronal spike train data. Biological Cybernetics, 77(4):282–288, 1997.

28. J. H. Friedman. Exploratory projection pursuit. Journal of the American Sta-
tistical Association, 82(397):249–260, 1987.

29. J. H. Friedman and J. W. Tukey. A projection pursuit algorithm for expoloratory
data analysis. IEEE Transactions on Computers, C-23(9):881–890, 1974.

30. K. Fukunaga. Intrinsic dimensionality extraction. In Classification, Pattern
Recognition and Reduction of Dimensionality, Vol. 2 of Handbook of Statistics,
pages 347–362. North Holland, 1982.

31. K. Fukunaga. An Introduction to Statistical Pattern Recognition. Academic
Press, 1990.

32. K. Fukunaga and D. R. Olsen. An algorithm for finding intrinsic dimensionality
of data. IEEE Transactions on Computers, 20(2):165–171, 1976.

33. F. Girosi. Regularization theory, radial basis functions and networks. In From
Statistics to Neural Networks, pages 166–187,. Springer-Verlag, 1994.

34. F. Girosi and G. Anzellotti. Rates of convergence of approximation by translates.
Technical report, Artificial Intelligence Laboratory, Massachussets Institute of
Technology,, 1993.

35. P. Grassberger and I. Procaccia. Measuring the strangeness of strange attrac-
tors. Physica, D9(1-2):189–208, 1983.

36. F. Hausdorff. Dimension und äusseres mass. Math. Annalen, 79(1-2):157–179,
1918.

37. A. Heyting and H. Freudenthal. Collected Works of L.E.J Brouwer. North-
Holland Elsevier, 1975.

References 339

38. P. Huber. Projection pursuit. The Annals of Statistics, 13(2):435–475, 1985.
39. U. Hübner, C. O. Weiss, N. B. Abraham, and D. Tang. Lorenz-like chaos in nh3-

fir lasers. In Time Series Prediction. Forecasting the Future and Understanding
the Past, pages 73–104. Addison Wesley, 1994.

40. A. Hyvärinen. New approximations of differential entropy for independent com-
ponent analysis and projection pursuit. In Advances in Neural Information
Processing Systems 10, pages 273–279. MIT Press, 1998.

41. A. Hyvärinen. The fixed-point algorithm and maximum likelihood for indepen-
dent component analysis. Neural Processing Letters, 10(1):1–5, 1999.

42. A. Hyvärinen and E. Oja. A fast fixed-point algorithm for independent compo-
nent analysis. Neural Computation, 9(7):1483–1492, 1997.

43. A. Hyvärinen and E. Oja. Independent component analysis: Algorithms and
applications. Neural Networks, 13(4-5):411–430, 2000.

44. A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice-Hall,
1988.

45. L. K. Jones. A simple lemma on greedy approximation in hilbert space and
convergence rates for projection pursuit regression and neural network training.
Journal of the Royal Statistical Society, 20(1):608–613, March 1992.

46. C. Jutten and J. Herault. Blind separation of sources, part i: An adaptive
algorithm based on neuromimetic architecture. Signal Processing, 24(1):1–10,
1991.

47. D. Kaplan and L. Glass. Understanding Nonlinear Dynamics. Springer-Verlag,
1995.

48. J. Karhunen and J. Joutsensalo. Representations and separation of signals using
nonlinear pca type learning. Neural Networks, 7(1):113–127, 1994.

49. J. Karhunen, E. Oja, L. Wang, R. Vigario, and J. Joutsensalo. A class of neural
networks for independent component analysis. IEEE Transactions on Neural
Networks, 8(3):486–504, 1997.

50. B. Kégl. Intrinsic dimension estimation using packing numbers. In Advances in
Neural Information Processing 15, pages 681–688. MIT Press, 2003.

51. M. Kirby. Geometric Data Analysis: An Empirical Approach to Dimensionality
Reduction and the Study of Patterns. John Wiley, 2001.

52. T. Kohonen. Self-Organizing Map. Springer-Verlag, 1995.
53. G. A. Korn and T. M. Korn. Mathematical Handbook for Scientists and Engi-

neers. Dover, 1961.
54. J. B. Kruskal. Multidimensional scaling by optimizing goodness of fit to a

nonmetric hypothesis. Psychometrika, 29(1):1–27, 1964.
55. J. B. Kruskal. Comments on a nonlinear mapping for data structure analysis.

IEEE Transaction on Computers, C-20:1614, December 1971.
56. J. B. Kruskal. Linear transformation of multivariate data to reveal clustering.

In Multidimensional Scaling, vol. I, pages 101–115. Academic Press, 1972.
57. J. B. Kruskal and J. D. Carroll. Geometrical models and badness-of-fit functions.

In Multivariate Analisys, vol. 2, pages 639–671. Academic Press, 1969.
58. E. Levina and P. Bickel. Maximum likelihood estimation of intrinsic dimension.

In Advances in Neural Information Processing 17, pages 777–784. MIT Press,
2005.

59. Y. Linde, A. Buzo, and R. Gray. An algorithm for vector quantizer design.
IEEE Transaction on Communications, 28(1):84–95, 1980.

60. G. G. Lorentz. Approximation of Functions. Chelsea Publishing, 1986.

340 References

61. E. C. Malthouse. Limitations of nonlinear pca as performed with generic neural
networks. IEEE Transaction on Neural Networks, 9(1):165–173, 1998.

62. B. Mandelbrot. Fractals: Form, Chance and Dimension. Freeman, 1977.
63. T. Martinetz and K. Schulten. Topology representing networks. Neural Net-

works, 7(3):507–522, 1994.
64. B. Mohar. Laplace eigenvalues of graphs: a survey. Discrete Mathematics,

109(1-3):171–183, 1992.
65. J.-P. Nadal and N. Parga. Nonlinear neurons in the low noise limit: a factorial

code maximizes information transfer. Networks, 5(4):565–581, 1994.
66. E. Ott. Chaos in Dynamical Systems. Cambridge University Press, 1993.
67. B. A. Pearlmutter and L. C. Parra. Maximum likelihood blind source separation:

A context-sensitive generalization of ica. In Advances in Neural Information
Processing 9, pages 613–619. MIT Press, 1997.

68. K. Pettis, T. Bailey, T. Jain, and R. Dubes. An intrinsic dimensionality esti-
mator from near-neighbor information. IEEE Transaction on Pattern Analysis
and Machine Intelligence, 1(1):25–37, 1979.

69. D.-T. Pham, P. Garrat, and C. Jutten. Separation of a mixture of independent
sources through a maximum likelihood approach. In Proceeding EUSIPCO92,
pages 771–774, 1992.

70. W. H. Press, B. P. Flannery, S. A. Teulkosky, and W. T. Vetterling. Numerical
Recipes: The Art of Scientific Computing. Cambridge University Press, 1989.

71. A. K. Romney, R. N. Shepard, and S. B. Nerlove. Multidimensionaling Scaling,
vol. 2, Applications. Seminar Press, 1972.

72. A. K. Romney, R. N. Shepard, and S. B. Nerlove. Multidimensionaling Scaling,
vol. I, Theory. Seminar Press, 1972.

73. O. Samko, A. D. Marshall, and P.L. Rosin. Selection of the optimal parameter
value for the isomap algorithm. Pattern Recognition Letters, 27(9):968–979,
2006.

74. J. W. Jr. Sammon. A nonlinear mapping for data structure analysis. IEEE
Transaction on Computers, C-18(5):401–409, May 1969.

75. L. K. Saul and S. Roweis. Think globally, fit locally: unsupervised learning of
low dimensional manifolds. Journal of Machine Learning Research, 4:119–155,
June 2003.

76. R. N. Shepard. The analysis of proximities: Multimensional scaling with an
unknown distance function. Psychometrika, 27(3):219–246, June 1962.

77. R. N. Shepard. Representation of structure in similarity data problems and
prospects. Psychometrika, 39(4):373–421, December 1974.

78. R. N. Shepard and J. D. Carroll. Parametric representation of nonlinear data
structures. In Multivariate Analysis, pages 561–592. Academic Press, 1969.

79. L. A. Smith. Intrinsic limits on dimension calculations. Physics Letters,
A133(6):283–288, 1988.

80. R. L. Smith. Optimal estimation of fractal dimension. In Nonlinear Modeling
and Forecasting, SFI Studies in the Sciences of Complexity vol. XII, pages 115–
135. Addison Wesley, 1992.

81. F. Takens. On the numerical determination of the dimension of an attractor.
In Dynamical Systems and Bifurcations, Proceedings Groningen 1984, pages 99–
106. Springer-Verlag, 1984.

82. J. B. Tanenbaum, V. de Silva, and J. C. Langford. A global geometric framework
for nonlinear dimensionality reduction. Science, 290(12):2319–2323, December
2000.

References 341

83. J. Theiler. Lacunarity in a best estimator of fractal dimension. Physics Letters,
A133(4-5):195–200, 1988.

84. J. Theiler. Statistical precision of dimension estimators. Physical Review,
A41:3038–3051, 1990.

85. J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and J. D. Farmer. Testing
for nonlinearity in time series: the method for surrogate date. Physica, D58(1-
4):77–94, 1992.

86. G. V Trunk. Statistical estimation of the intrinsic dimensionality of a noisy
signal collection. IEEE Transaction on Computers, 25(2):165–171, 1976.

87. P. J. Verveer and R. Duin. An evaluation of intrinsic dimensionality estimators.
IEEE Transaction on Pattern Analysis and Machine Intelligence, 17(1):81–86,
January 1995.

88. W. H. Wolberg and O. Mangasarian. Multisurface method of pattern separation
for medical diagnosis applied to breast cytology. Proceedings of the National
Academy of Sciences, U.S.A., 87(1):9193–9196, 1990.

12

Speech and Handwriting Recognition

What the reader should know to understand this chapter

• Hidden Markov models (Chapter 10).
• Language models (Chapter 10).
• Bayes decision theory (Chapter 3).

What the reader should know after reading this chapter

• State-of-the-art in speech and handwriting recognition.
• Training of a language model.
• Software packages for the application of hidden Markov models.

12.1 Introduction

This chapter presents speech and handwriting recognition, i.e. two major ap-
plications involving the markovian models described in Chapter 10. The goal
is not only to present some of the most widely investigated applications of
the literature, but also to show how the same machine learning techniques
can be applied to recognize data apparently different like handwritten word
images and speech recordings. In fact, the only differences between handwrit-
ing and speech recognition systems concern the so-called front-end , i.e. the
low-level processing steps dealing directly with the raw data (see Section 12.2
for more details). Once the raw data have been converted into sequences of
vectors, the same recognition approach, based on hidden Markov models and
N -grams, is applied to both problems and no more domain specific knowl-
edge is needed. The possibility of dealing with different data using the same
approach is one of the main advantages of machine learning, in fact it makes
it possible to work on a wide spectrum of problems even in absence of deep
problem specific knowledge.

346 12 Speech and Handwriting Recognition

Both speech and handwriting recognition have been investigated for several
decades. The reason is that writing and speaking are two of the most common
forms of human communication, then the possibility of converting spoken and
handwritten data into digital texts can lead people to interact more naturally
with computers. Moreover, huge amounts of information important for several
activity domains are still stored under the form of handwritten documents
(e.g. forms, letters, historical documents, etc.) and speech recordings (radio
and television news, etc.).

This chapter focuses on systems recognizing unconstrained handwritten
texts and conversational speech. Both problems require to apply not only
HMMs to model the sequences of vectors extracted from the data, but also
N -grams to provide a-priori probabilities for certain sequences of words being
written or uttered. The above problems represent the most difficult challenge
for current state-of-the-art systems. The recognition of less complex data like
single handwritten or spoken words has been not only investigated, but it
is also applied in real world problems like the recognition of handwritten
addresses or spoken digits in cellular phones (see Section 12.8).

Chapter 10 has presented a tool for the creation of N -gram based language
models (see Chapter 10) and this chapter will describe HTK, 1 the most
commonly applied software package for training and testing hidden Markov
models. The two packages are compatible with each other and can be used to
build recognizer prototypes.

More extensive information about speech and handwriting recognition is
available in both surveys [69][82][88] and monographies [5][39][84][72], for
HMMs and N -grams, the reader can refer to Chapter 10 and references
therein.

The rest of this chapter is organized as follows: Section 12.2 describes the
structure of a recognition system. Section 12.3 presents the low-level process-
ing aspects for both handwritten and spoken data. Section 12.4 focuses on
HMM training issues. Section 12.5 shows the recognition process and the
performance measures. Section 12.6 presents some results obtained on hand-
written data. Section 12.7 shows results obtained by state-of-the-art speech
recognition systems. Section 12.8 presents the major applications involving
spoken and handwritten data.

12.2 The General Approach

Figure 12.1 shows the general structure of speech and handwriting recogni-
tion systems. The horizontal dotted line splits the scheme into two major
stages: the first is called front end and it converts the input data into a se-
quence of vectors (often called observatiobs or feature vectors), the second is

1 At the time this book is being written, the package can be downloaded at
http://htk.eng.cam.ac.uk.

12.2 The General Approach 347

Viterbi

SLM

Lexicon

Front End

Mary

Recognition

Inpunt Independent

Input Dependent

Fig. 12.1. Recognition system structure. The picture shows the general scheme of
a recognition system. The vertical dotted line separates the feature extraction stage
(which requires input dependent approaches) from the recognition process (which
does not depend on the input).

called recognition and it converts the sequence of vectors into a digital word
corresponding (hopefully) to the input image or utterance. The most impor-
tant aspect of the split is that all steps that depend on the specific kind of
data under examination (speech or handwriting) are concentrated in the front
end. In other words, while the front end involves different algorithms when
dealing with speech rather than handwriting, the recognition involves exactly
the same machine learning techniques, namely hidden Markov models and
N -grams (see Chapter 10), trained over different data.

The front end can be thought of as a function mapping the input data into
a sequence of feature vectors. The main reason for the use of vector sequences
rather than single vectors is that both handwritten words and spoken utter-
ances are composed of smaller basic units, the letters in the first case and the
phonemes (see Chapter 2) in the second case. Moreover, the use of single vec-
tors for each word would lead to classification problems involving too many
classes. In fact, realistic recognition problems require at least 20000 words in

348 12 Speech and Handwriting Recognition

the lexicon (see below) while few examples ara available for each one of them
(see the Zipf law in Chapter 10). The same problem does not apply to letters
(at least for certain alphabets) and phonemes. In both cases around 40-50
classes are sufficient and a significant number of examples for each letter or
phoneme can be collected using few thousands of words.

In both cases the sequence of vectors is obtained by first splitting the data
into fragments and then by applying a feature extraction algorithm to each
fragment. In the case of speech, the data is a soundwave (see Chapter 2), i.e. a
signal s[n] containing physical measurements obtained at regular time steps.
The fragments are obtained by isolating short signal windows (typically 30
ms long) shifted by 10-20 ms with respect to each other (see Section 2.5.3). In
the case of handwriting, the data are images and there are two main ways to
split the data: the first is to find points likely to be the frontier between two
neighboring characters and then to split the data in their correspondence. The
second is to have a fixed width window shifting from left to right by regular
intervals and spanning the whole image.

The recognition is based on hidden Markov models and N -grams (see
Chapter 10 for more details) and converts the sequence of vectors given as
output by the front end into a digital text corresponding (if everything works
correctly) to the actual written or spoken words. In general terms, the recogni-
tion identifies the sequence of words that best matches the sequence of vectors
corresponding to the data. However, the set of the possible transcriptions is
constrained by the lexicon, i.e. a predefined list of words accompanied by their
transcriptions in terms of basic units (see Section 12.4). The output of the
recognizer can contain only words belonging to the lexicon and this results
into a major problem: if the raw data contain out-of-vocabulary (OOV) words,
this automatically results into a transcription error. On the other hand, the
lexicon provides an important constraint that limits, sometimes significantly,
the number of hypotheses that the system has to take into account before pro-
viding the output. On average, the lower the number of words in the lexicon,
the easier the recognition task. In fact, a limited number of hypotheses means
that the computational burden is lower and that the risk of misclassifications
due to ambiguities between similar words is reduced. For this reason, the lex-
icon size is one of the most important factors in defining the complexity of a
recognition task (see Section 12.8).

The N -gram models (see Chapter 10 for more details) are necessary to
deal with sentences and provide the a-priori probability of a certain sequence
of words being written or uttered. The models are trained using large text
corpora and the same model can be used for both speech and handwriting
data as long as they use the same language.

In the next sections, all processing steps will be explained in more detail.

12.3 The Front End 349

12.3 The Front End

This section describes the front end of both speech and handwriting recogni-
tion systems. The main difference between speech and handwriting is that in
the first case there are few theoretically grounded methods that are applied
by most systems, while in the second case, the front end is rather based on
empirical algorithms and each system presented in the literaure uses different
techniques. However, despite the wide spectrum of different approaches there
is at least consensus on which tasks must be carried out. For this reason, the
description of the handwriting front end will focus on the description of such
operations, while the description of the speech front end will focus on the Mel
frequency cepstrum coefficients extraction, maybe the most common front end
in speech recognition systems.

12.3.1 The Handwriting Front End

The first step in the handwriting front end is so-called preprocessing which
takes as input the raw data images and gives as output a binary image where
only the words to be recognized are displayed. This step depends on the data,
e.g. in bank checks it is often necessary to remove security background tex-
tures; in forms it can be necessary to remove rulers and cases used to guide the
writers; in the case of historical documents it can be necessary to remove hu-
midity traces or other effects. All above tasks can be performed using common
image processing techniques such as binarization, texture recognition, and fil-
tering, but the high variability in the input data can require more specific and
refined techniques.

The second step is so-called normalization, i.e. the removal of the variabil-
ity unnecessary to the recognition process. In the case of handwritten words,
the normalization addresses slope and slant. The first is the angle between
the horizontal direction and the direction of the line on which the word is
aligned, the second is the angle between the vertical direction and the direc-
tion of the strokes supposed to be vertical in an ideal model of handwriting
(see Figure 12.2). The literature proposes different techniques to normalize
handwritten words, but none of them appears to overperform the others. On
the other hand, there is consensus about the effectiveness of the normalization
in improving the recognition systems performance.

After the normalization, the handwritten images can be converted into
vector sequences. This step is called feature extraction and it involves two
tasks, the first is the segmentation into word subunits, the second is the con-
version of each subunit into a single vector. The segmentation is performed
using two major approaches. The first tries to split the data in correspon-
dence of points expected to delimit basic patterns that can be grouped into
few classes (the so-called atoms). The most common techniques split the data
in corresondence of minima and maxima of the word contour, on the sides
of loops, etc. The second approach is based on the so-called sliding window,

350 12 Speech and Handwriting Recognition

Slant

Slope

Fig. 12.2. Handwritten word normalization. The upper picture shows slant and
slope, the central picture shows the so-called core region (the region containing the
character bodies), and the lower picture shows the result of the normalization.

i.e. a fixed width window shifting by a predefinite number of pixels and span-
ning the image from left to right (in general the patterns identified by two
consecutive window positions overlap each other).

After the segmentation, a feature extraction process is applied to each
subunit. The literature proposes a wide range of techniques (see [85] for an
extensive survey), the most common features try to detect structural charac-
teristics (i.e. loops, holes, vertical strokes, etc.), account for the distribution of
foreground pixels in the bounding box containing the subunit, provide a mea-
sure of the alignment of foreground pixels along a set of predefined directions,
etc.

In general, the front end of the handwriting system is based on empirical
considerations that do not involve any principled or theoretically justified
approach. On the other hand, the major efforts are typically made at the
recognition level, where a correct application of machine learning approaches

12.3 The Front End 351

Hamming
Wndow

Fast Fourier
Transform

Mel Scale
Filtering

Discrete Cosine
Transform O

Fig. 12.3. MFCC extraction block diagram.

can make a significant difference in terms of recognition rate (percentage of
words correctly recognized).

12.3.2 The Speech Front End

As opposed to the front end of handwriting, the speech front end is based
on signal processing methods and few techniques are used by most of the
recognition systems. This section focuses on the Mel frequency cepstrum co-
efficients (MFCC) extraction, which is based on techniques shown in other
parts of this book (see in particular Chapter 2 and Appendix B). It is one of
the most widely applied speech processing techniques. Other popular meth-
ods, e.g. the linear prediction coefficients (LPC), can be found in specialized
monographies [39].

Figure 12.3 shows the block diagram of the MFCC extraction, the first
step is the application of a Hamming window (see Section 2.5.3) to the signal.
This step corresponds to the segmentation of the handwriting images and the
window width is typically fixed at 30 ms. The shift between two consecutive
window positions is in general 10 ms. Such values represent a good tradeoff
between the need of being short enough to detect phonemes boundaries and
the need of being long enough to avoid local fluctuations. Both parameters
have been validated through decades of experiments and, although not sup-
ported by any theoretic argument, have been shown empirically to give good
results. The effect of the Hamming window can be observed in Figure 12.4,
the first two plots from above show the raw signal and its convolution with
30 ms wide windows shifted by 50 ms. Each window isolates a segment of the
raw signal which is then used for the following steps of the processing.

The second step of the MFCC extraction is the application of the Fourier
Transform (see Appendix B) to each segment. The number of retained coef-
ficients is 129, another parameter that has no theoretic support, but it has
been shown to be effective through extensive empirical validation. The result
is that the spectrum of the signal, i.e. the distribution of the energy at different
frequencies is available at each window position. The graphical representation
of such an information is called spectrogram and it is depicted in the third plot
of Figure 12.4, the horizontal axis corresponds to the time, while the vertical
one corresponds to the frequencies. A simple observation of the spectrogram
shows that the characteristics of the signal are constant for certain time inter-
vals and change suddenly to reach a different configuration that remain stable
in the following time interval. The stability intervals roughly correspond to
the different phonemes, i.e. to the different articulator configurations used in
the voicing process (see Chapter 2 for more details).

352 12 Speech and Handwriting Recognition

0 100 200 300 400 500 600
−0.1

−0.05

0

0.05

0.1

time (ms)

A
m

pl
itu

de

Soundwave

0 100 200 300 400 500 600
−0.1

−0.05

0

0.05

0.1

time (ms)

A
m

pl
itu

de

Effect of Hamming Windows (60 ms shift)

time (ms)

F
re

qu
en

cy
 (

kH
z)

Spectrogram

100 200 300 400 500 600
 0.00

 1.00

 2.00

 3.00

 4.00

0 500 1000 1500 2000 2500 3000 3500 4000
 0.00

 0.50

 1.00

Frequency (Hz)

F
ilt

er

Critical Band Filters

Fig. 12.4. MFCC extraction. From the top to the bottom the plot show the orig-
inal signal, some of the time segments extracted with the Hamming windows, the
spectrogram and the Mel filters.

The spectrogram provides rich information about the signal, but it can-
not be easily handled. It is necessary to select only part of its content. This
is the goal of the following step in the MFCC extraction process. There is
physiological evidence that humans cannot distinguish between frequencies
belonging to the same critical band (see Chapter 2), i.e. frequency intervals
centered around the so-called critical frequencies. For this reason, it is possi-
ble to sum the energies of the frequencies falling into the same critical band.
As a result, each column of the spectrogram can be summarized by around
20 values (another empirical parameter) accounting for the total energy in a
given critical band. This requires first to identify the critical frequencies and

12.4 HMM Training 353

this is done by using the Mel scale (hence the name Mel frequency cepstrum
coefficient) introduced in Chapter 2. The critical frequencies are uniformly
distributed along the Mel scale and the critical bands are centered around
them. The width of the bands is set emiprically with the only constraint that
neighboring bands must have some degree of overlapping. The lowest plot in
Figure 12.4 shows the filters centered around the critical frequencies (which
are equispaced along the Mel scale, but not in the natural frequencies shown
in the plot) and getting more and more coarse at higher frequencies (the am-
plitude of the filters is the same along the Mel scale, but the plot shows the
filters in the natural frequencies domain).

At this point of the extraction process, the original signal is converted
into a sequence of 20-22 dimensional vectors where each component accounts
for the energy in a critical band. The last operation is the application of a
discrete cosine transform (see Appendix B) to such vectors with the goal of
decorrelating the data, i.e. of transforming the data so that the covariance
between different components is null. Only the first coefficients of the DCT
(in general 12) are retained and the resulting vector is the result of the front
end process. The use of the DCT is at the origin of the name Cepstrum. In
fact, the DCT can be interpreted as an inverse FT and, since it is applied to
the spec-trum, it leads to the ceps-trum. Although born as a joke, the name
is used still today.

12.4 HMM Training

This section focuses on the training of hidden Markov models and N -grams
for the recognition of speech and handwriting. While in the previous sections
we had to distinguish between the two kinds of data, from now on both hand-
writing and speech can be addressed exactly in the same way. The training
techniques and the use of the trained models in the recognition process are in-
dependent of the data and no more distinction will be made unless necessary.
The next sections focus on the preparation of training material and lexicon
and on the practical details of HMM training. For each operation involving
the HMMs, we provide the HTK commands necessary to perform the task.

12.4.1 Lexicon and Training Set

The Baum-Welch algorithm, i.e. the expectation-maximization technique used
to train the HMMs, has been described in Chapter 10. Here we focus on the
practical details (including the use of HTK) of the HMM training in speech
and handwriting recognition.

The first element necessary for the training is the training set, i.e. a set of
examples (handwriting images or spoken utterances) like those shown in Fig-
ure 12.5, for which the transcription is available. The second element needed
for the training is the lexicon, i.e. the list of unique words that the recognizer

354 12 Speech and Handwriting Recognition

Θr ΘyΘa Θ/m Θ/eh Θ/r Θ/iy

Mary

M a r y

Mary

/m /eh /r /iy

ΘΜ

Fig. 12.5. The lexicon. The picture shows (from top to bottom) the raw data, the
transcription (Mary for both speech and handwriting), the codification (M a r y
for handwriting and /m /eh /r /iy for speech), and the word model obtained by
concatenating single letter or phoneme models (Θx is the HMM corresponding to
letter or phoneme x).

can give as output with their corresponding codification in terms of subunits.
Figure 12.5 shows the difference between the data, the transcription, the cod-
ification in terms of subunits and the word models. The figure shows that the
transcription is the same for both speech and handwriting, but the codification
changes depending on the data: in the case of the handwriting, the subunits
are letters, then the word Mary is coded with the sequence of the letters M a r
y, in the case of the speech, the word is coded with the sequence of phonemes
/m /eh /r /iy corresponding to the sounds produced when uttering Mary.
The lexicon contains, for each word, both the transcription and the codifica-
tion. While the codification in terms of letters is unique, the codification in
terms of phonemes can change. In fact, there are several sets of phonemes for
a given language (the phonemes are manually defined and there is no general
agreement on the best phoneme set). Moreover, given a phoneme set, there
can be more than one way of pronouncing a word, then more than one valid
codifications. Despite the above details, the important point is that the lexi-
con provides for each word a sequence of symbols belonging to a predefinite
set that cannot be changed without changing the recognition system.

The codification enables us to clarify a first important point when we say
that we use HMMs for the recognition: there is one model for each subunit,
i.e. for each letter or for each phoneme, then word models are built as a
concatenation of subunit models (see bottom of Figure 12.5). This is important
because it enables us to model any word using a small set of HMMs (letters in
latin alphabet are 26 and the phoneme sets contain around fourty elements).
In the figure, Θx denotes the HMM corresponding to symbol x and the word
model Θw is obtained by concatenating the subunit models composing word

12.4 HMM Training 355

w (there is ambiguity between w as a word symbol and w as a w letter symbol,
but this should not create problems in the following).

12.4.2 Hidden Markov Models Training

The first problem to be addressed is the selection of the model topology.
In speech and handwriting recognition, the topology is typically left-right
(see Chapter 10) to account for spatial and temporal evolution of written
and spoken words respectively. The second choice to be made is the emission
probability function. The most commonly applied function is the mixture of
Gaussians (see Chapter 10) and this is the case also in this chapter. This
is the reason why the last step of the MFCC extraction is a DCT aiming
at the decorrelation of the data. In fact, when the covariance of different
components is null, the covariance matrices of the Gaussians can be diagonal
and this spares a large number of parameters. In this way, given a certain
amount of material, the training is more effective.

At this point the training can start and the models must be initialized. The
most common approach is the flat initialization: all transition probabilities
that must be different from zero are set to a uniform distribution and means
and variances of all Gaussians appearing in the models are set to the global
mean and variance of the training data at disposition. This task is performed
by HTK using the following command:

HCompV hmmFile listTrainingFiles

where hmmFile is the file containing the models (see the HTK manual [94]
for the format) and listTrainingFiles is the list of the files containing the
feature vectors extracted from the training examples (the function has several
options enabling one to control finer details).

After the initialization, the actual training can start. For each training
example, a different HMM is built by concatenating the subunit models cor-
responding to the words the example contains. At this point, the Baum-Welch
algorithm can be implemented through the following three steps that are re-
iterated until a stopping criterion (see below) is met:

1. The model corresponding to each training sample is aligned with the se-
quence of vectors using the Viterbi algorithm. This leads to a segmentation
that associates each data segment to a specific subunit model.

2. Each training sample is processed in order to count the number of times a
feature vector corresponds to a given state in a given model, the number
of times a transition between two given states in each model takes place,
compute the means and the variances of the feature vectors corresponding
to each state in each model.

3. Counts, means and variances estimated in the second step are used to
obtain new estimates of initial state probabilities, transition probabili-
ties, means and variances of Gaussians in the mixtures, coefficients of the
Gaussians in the mixtures.

356 12 Speech and Handwriting Recognition

The process can be stopped when a certain number of iterations has been
reached or when the variation between two following estimates falls below a
predefined threshold.

The process outlined above is called embedded reestimation because the
subunit models are trained as a part of a larger model rather than as separate
entities. The advantage is not only that this is a more realistic situation (letters
and phonemes are always part of a word), but it enables one to avoid the
manual segmentation of the samples into subunits through an expensive and
time consuming manual work.

The embedded reestimation can be performed using the following HTK
command:

HERest hmmFile listTrainingFiles,

see above for the meaning of the function arguments (the function options
enable to control finer details of the training).

At the end of the training, the parameters of each subunit model are set to
the values maximizing the likelihood of the training data. The training must
be performed only once for a given system, provided that the training data
are representative of the data to be encountered in the application setting.
The next sections show how the models obtained during the training are used
to perform the recognition.

12.5 Recognition and Performance Measures

This section focuses on the actual recognition process, i.e. on the use of the
models described above to transcribe data, and on the way the performance
of a recognition system is measured.

12.5.1 Recognition

The recognition can be formulated as the problem of finding the word sequence
Ŵ = {ŵ1, . . . , ŵN} (where wi belongs to the dictionary V) maximizing the
a posteriori probability p(ΘW |O), where O = {o1, . . . ,oM} is the vector se-
quence extracted from the data. Following the Bayes theorem (see Chapter 5):

Ŵ = arg max
W

p(O|ΘW)p(W)
p(O)

(12.1)

and, since O is constant during the recognition, the above equation can be
rewritten as:

Ŵ = arg max
W

p(O|ΘW)p(W). (12.2)

The last equation shows that the a-posteriori probability of a word sequence
is estimated through the product of two terms: the first is the likelihood

12.5 Recognition and Performance Measures 357

p(O|ΘW) of the vector sequence O given the model corresponding to the
word sequence W , the second is the a priori probability p(W) of the word
sequence W being written/uttered. The problem is then how to estimate the
two terms for a given word sequence W .

The likelihood is estimated using the HMMs obtained during the train-
ing. Given a word sequence W and a vector sequence O, p(O|ΘW) is in fact
estimated using the Viterbi algorithm (see Chapter 10) which provides both
the likelihood estimate (the highest possible value given O and W) and the
alignment of the model with the data, i.e. it attributes each vector in the
sequence to one of the HMMs composing the subunit sequence corresponding
to W . This is interesting because it gives the segmentation of the data into
words and letters or phonemes as a side product of the recognition process.
The probability p(W) is estimated using the N -gram models trained over a
text corpus independent of the data to be recognized (see Chapter 10). Once
the product P (O|ΘW)p(W) has been estimated for all possible sequences, the
recognition simply gives as output the word sequence W corresponding to the
highest value.

This approach leaves open an important problem: as the size of the lexicon
increases, the number of possible word sequences becomes quickly high and
the computational burden needed to align each sequence model with a given
observation sequence becomes too heavy. The approaches dealing with such a
problem are out of the scope of this book, but the interested reader can refer
to [4][30] and references therein.

12.5.2 Performance Measurement

The performance of a recognition system is measured through the percentage
of correctly transcribed words, called word recognition rate (WRR), or through
its complement, i.e. the percentage of words uncorrectly transcribed, called
word error rate (WER). The two measures are related through the following
equation:

WER = 100 − WRR (12.3)

and are thus equivalent (in this chapter we will use the WRR).
For the recognition of single words, the computation of the WRR is

straightforward; in fact, it simply corresponds to the percentage of test sam-
ples that have been correctly transcribed, 2 but the problem is more difficult
for the recognition of word sequences. In fact, in this case a recognizer can
perform three kinds of errors (see Figure 12.6) [40][42]:

Substitution The position of a word in the output sentence is correctly iden-
tified, but the transcription does not correspond to the word actually
written/uttered (word summit in Figure 12.6).

2 In this case, the decoding takes into account the fact that each sample corresponds
to a single word and does not try to align the data with more than one word.
This avoids deletion and insertion errors that are explained in the following.

358 12 Speech and Handwriting Recognition

α

α

α+γ

α+β
α

α

α+γ

at
the

economic
summit
which

will
take
place

in
Venice

which
we all
take

placing

summer
economic

after

Venice

economic

after

summer
which we

all
take

placing

Venice

α+γ

α

α+β

α+γ

after economic summer which we all take placing Venice

deletion substitution deletioninsertion

Fig. 12.6. Handwritten word normalization. The upper picture shows slant and
slope, the central picture shows the so-called core region (the region containing the
character bodies), and the lower picture shows the result of the normalization.

Insertion A single word is split into two or more words and the result is
not only a substitution, but also the insertion of one or more nonexisting
words (word will in Figure 12.6).

Deletion Two or more words are transcribed as a single word and the result
is not only a substitution, but also the loss of an existing word (words at
the and place in in Figure 12.6).

Moreover, there are different ways of aligning the automatic transcription
of a sentence with the groundtruth (i.e. the actual data transcription) and
this requires to have a criterion to select the alignment to be used for the
performance measurement (see Figure 12.6). The reason is that groundtruth
and automatic transcription do not necessarily contain the same number of
words. More than one word of the groundtruth can be associated to the same
word of the transcription (leading to a deletion) or vice versa (leading to an
insertion).

The most common approach is to associate a penalty with each alignment
and to select the alignment with the lowest penalty (Figure 12.6 shows two
alignments and respective penalties). The penalty for a given alignment is
obtained as follows:

P = αS + βI + γD (12.4)

where α, β and γ are coefficients to be set empirically, S is the number of sub-
stitutions, I is the number of insertions and D is the number of deletions. The
National Institute of Standards and Technologies (NIST), which promotes the
comparison between results obtained in different groups by providing common
benchmarks, proposes to set α = 4 and β = γ = 3, while the HTK package

12.6 Recognition Experiments 359

proposes α = 10 and β = γ = 7. The coefficient values do not affect signif-
icantly the resulting WRRs, but it is important to use the same coefficients
when comparing different results.

Once the alignment has been selected, the WRR is estimated as follows:

WRR =
N − D − S

N
× 100% (12.5)

where N is the total number of words in the groundtruth transcription. The
above expression ignores the insertion errors (this does not affect the number
of correctly recognized words), then a further measure, called Accuracy has
been defined that try to better acount for the matching between groundtruth
and automatic transcription:

A =
N − D − S − I

N
× 100%. (12.6)

There are no common criteria to decide whether to use A or WRR. In general,
the A is a better measure when the goal is to obtain a transcription as close
as possible to the groundtruth, while the WRR is useful when the goal is to
transcribe correctly as many words as possible, e.g. in call routing.3 However,
A and WRR are strongly correlated and systems with high WRR have high
A and viceversa.

The HTK tool provides a routine that computes the different performance
measures given the groundtruth data and the automatic transcriptions:

HResults hmmList recFile

where hmmList is the list of the HMMs used by the recognizer (letter mod-
els for handwriting and phoneme models for speech) and recFile is the file
containing the recognizer output. Several options enable to set the above men-
tioned parameters and to give the path to the files containing the groundtruth
transcriptions of the data.

12.6 Recognition Experiments

This section focuses on practical issues involved in the recognition of uncon-
strained texts. The experiments involve handwritten data as an example, but
all the considerations apply also to speech recognition experiments. The first
dataset we use will be referred to as the Cambridge database and it is com-
posed of a text written by a single person.4 The Cambridge database was
3 Call routing is the problem of automatically finding an operator capable of ad-

dressing the needs expressed by a person contacting a call center. In this case,
a perfect transcription is not necessary; the only important thing is to recognize
the few keywords identifying the user needs and the right operator

4 The data is publicly available and it can be downloaded at the following ftp
address: ftp.eng.cam.ac.uk/pub/data.

360 12 Speech and Handwriting Recognition

originally presented in [76] and contains 353 handwritten text lines split into
training (153 lines), validation (83 lines) and test (117 lines) sets. The lines are
kept in the same order as they were written to reproduce a realistic situation
where the data available at a certain time are used to obtain a system capable
of recognizing the data that will be written in the future. The second dataset
we use is composed of pages written by several persons, it can be obtained at
University of Bern [61][95] and it will be referred to as the IAM database. It
is split into training, validation and test sets containing 416, 206 and 306 lines
respectively. The data is split in such a way that the writers represented in the
training set are not represented in the test set. This is assumed to reproduce
a realistic situation where the data produced by a certain number of writers
is used to recognize the data written by other persons.

The next sections show how to select a lexicon and how the use of N -grams
improves the performance of a recognition system.

12.6.1 Lexicon Selection

The lexicon of a recognizer is determined by the data to be recognized, e.g. in
postal applications reading handwritten addresses the lexicon contains town
names (see Section 12.8). In the case of unconstrained hanwdritten or spoken
data, the only information available about the data to be recognized is the
language that will be used. In fact, if the data are really unconstrained nothing
can be said about their content. This is a problem because the recognizer can
give as output only words belonging to the lexicon (see Section 12.4) and the
number of OOV words must be minimized in order to reduce the amount of
errors due to a mismatch between lexicon and data.

Although it is a generic information, the use of a language rather than
another still represents an important constraint. In fact, this enables one to
consider a corpus of texts written in a certain language and to extract from
them the words most likely to appear in the data to be recognized. In the case
of the experiments presented in this chapter, the language of the test data is
English and the lexicon has been extracted from the TDT-2 corpus (see below
for more details) [33], a collection of texts containing 20,407,827 words in total
(the number of unique words appearing in the corpus is 192,209). A lexicon
of size M can be obtained by extracting the M most frequent words in the
corpus. The rationale behind such an approach is that the words appearing
more frequently in a sufficiently representative collection of texts are likely to
appear also in other texts written in the same language. This applies especially
to functional words (prepositions, articles, conjunctions, etc.) and words of
common use (to be, to have, etc.), but it is true also for other words.

The effectiveness of a lexicon can be measured in terms of coverage, i.e.
percentage of the words in the test data that appear in the lexicon. The plot in
Figure 12.7 shows the coverage with respect to the test set of the Cambridge
and IAM databases for dictionaries of size ranging from 10,000 to 50,000.
Although the text written in the test data is independent from the TDT-2

12.6 Recognition Experiments 361

10 15 20 25 30 35 40 45 50
90

91

92

93

94

95

96

97

98

99
Test Set Coverage

Lexicon Size (kWords)

C
ov

er
ag

e
(%

)

Cambridge database
IAM database

Fig. 12.7. Lexicon coverage. The plot shows the effect of the lexicon size on the
coverage. 50,000 words are needed to cover more than 95% of the test data used in
this chapter.

corpus, the 10,000 most frequent words appearing in this last cover more than
90% in both cases. On the other hand, the size of the lexicon must be multi-
plied by five to improve the coverage by few more points. This means that the
increase of the coverage leads to undesirable effects such as heavier compu-
tational burden and highest misclassification probability. The effect of these
two conflicting effects will be evident in the recognition results (see below)
which show how the best WRR is achieved for lexicon sizes corresponding
to a tradeoff between coverage improvement and above mentioned negative
side-effects.

12.6.2 N-gram Model Performance

Once the lexicon has been selected, it is possible to train the N -gram models.
In fact, the probabilities of observing the N -grams are estimated only for the
words belonging to the lexicon. The reason is that these are the only words
that exist for the recognizer. If M is the size of the lexicon, the number of
possible N -grams is MN , then the size of the language model increases quickly
with the number of lexicon entries. This is one of the main reasons for keeping

362 12 Speech and Handwriting Recognition

as low as possible the size of the dictionary, while trying to increase as much
as possible the coverage.

In the experiments presented in this chapter, the N -gram models have
been trained over the TDT-2 corpus [33], a collection of transcriptions from
several broadcast and newswire sources (ABC, CNN, NBC, MSNBC, Associ-
ated Press, New York Times, Voice of America, Public Radio International).
For each one of the five lexica described above, three models (based on un-
igrams, bigrams and trigrams, respectively) have been created. The plots in
Figure 12.8 and 12.9 show the perplexities of the N -grams as a function of
the lexicon size. The perplexity is estimated over the part of the text cov-
ered by the lexicon, without taking into account OOV words. This happens
because the only part of the text where the language model can be effective
is the one covered by the lexicon. For this reason, we are interested to know
the language model performance only over such part of the text. In practice,
when an OOV word is encountered, the history is reset. The first term after
the OOV word can be modeled only with unigrams, the second one at most
with bigrams and only the third one can make use of trigrams. This increases
significantly the perplexity and simulates the fact that the language model
can only guess wrong words in correspondence of OOV words. The perplexity
measured including the OOV words is lower, but less realistic with respect to
the recognition task. In fact, during the recognition, the information about
the presence of an OOV word is not available and the model can only guess
a wrong word (independently of its perplexity). Some systems try to address
the above limit by detecting the OOVs [40]. In this way, rather than than
giving a wrong transcription, the system provides a warning.

A significant improvement is obtained when passing from unigrams to
bigrams, but no further improvement is obtained when applying trigrams. This
happens for several reasons. The first is that the handwritten text is split into
lines and only the words after the third one can take some advantages from
the trigram model. Since a line contains on average 10 words, this means that
only ∼80% of the data can actually benefit from the trigram model (while
90% of the data can be modeled with bigrams). A second problem is that
the percentage of trigrams covered by the corpus in the test set is ∼40%.
This further reduces the number of words where the trigram model can have
a positive effect. The coverage in terms of bigrams is much higher (around
85%) and the percentage of words over which the model can have an effect is
more than 90%. On average, when trigrams are applied, ∼45% of the words
in the test set are modeled with a trigram, ∼40% with a bigram and ∼15%
with a unigram. This results in an average history length of 2.3. On the
other hand, when the language is modeled with bigrams, ∼85% of the words
are guessed with bigrams and ∼15% with unigrams. The resulting average
history length is 1.8. For these reasons, the bigram and trigram models have
a similar perplexity and do not make a big difference in terms of recognition
performance.

12.6 Recognition Experiments 363

10 15 20 25 30 35 40 45 50
0

200

400

600

800

1000

1200

1400

1600
LM Perplexity (Cambridge)

Lexicon Size (kWords)

P
er

pl
ex

ity

unigram
bigram
trigram

Fig. 12.8. Language model perplexity. The plots show the perplexity of the N -gram
models as a function of the lexicon size.

In the case of spoken data, the effect due to the division into lines is
not observed. On the other hand, other effects limit the effectiveness of the
language models: the sentences boundaries are not detected, then the last
words of a sentence and the first words of the following sentence form spurious
N -grams. Moreover, hesitations and grammatical errors of the spontaneous
speech are not modeled by N -grams trained on written, gramatically correct,
texts.

12.6.3 Cambridge Database Results

This section reports the results obtained on the Cambridge database. Sec-
tion 12.4 shows that the word models are obtained as concatenations of single
letter models. In principle, the characteristics of each letter model should be
set separately, but it is common practice to use the same topology for all letter
models. In the case of handwriting, the topology is left-right (see Chapter 10)
and the two parameters to set are the number of states S and the number of
Gaussians G in the mixtures. The same value of S and G is used for every
model and the results are satisfactory. Since S and G cannot be set a-priori,
a validation phase is necessary. Models with 10 ≤ S ≤ 14 and 10 ≤ G ≤ 15
are trained over the training set and tested, without using N -grams, over the

364 12 Speech and Handwriting Recognition

10 15 20 25 30 35 40 45 50
0

200

400

600

800

1000

1200

1400

1600
LM Perplexity (IAM)

Lexicon Size (kWords)

P
er

pl
ex

ity

unigram
bigram
trigram

Fig. 12.9. Language model perplexity over the IAM test set. The plots show the
perplexity of the N -gram models as a function of the lexicon size.

validation set. The system corresponding to the couple (S,G) giving the best
results (over the validation set) is selected as optimal. The system selected
in the validation phase (S = 12 and G = 12) is retrained over the union
of training and validation set and the resulting system is used in the actual
recognition experiments.

For each one of the five lexica described above, four versions of the system
are tested over the test set. The first version (called baseline) makes no use of
N -grams, the other ones use unigram, bigram and trigram models correspond-
ing to the lexicon under consideration. The performance is measured using the
WRR. The performance is the result of a tradeoff between the improvement of
the test set coverage and the increase of the lexicon size. The application of the
N -gram models has a significantly positive effect (the statistical confidence
is higher than 90%). Moreover, the SLMs make the system more robust with
respect to the increase of the lexicon size so that it is possible to maximize
the benefit of the improved coverage.

The insertions have an important influence on the performance of the sys-
tem. Sometimes, when part of a word corresponds to an entry in the lexicon
(e.g. unmentionable is composed of the entries un, mention and able) the
decoder favours the transcription splitting the bigger word, especially when
the shorter words are more frequently represented in the training corpus. No

12.6 Recognition Experiments 365

10 15 20 25 30 35 40 45 50
76

78

80

82

84

86

88

90

92
WRR (Cambridge)

Lexicon Size (kWords)

W
R

R
 (

%
)

baseline

unigram

trigram

Fig. 12.10. System performance over Cambridge database. The plot on the left
(right) shows the recognition rate (accuracy) of the system. The performance is
measured over the test set for the four systems considered: baseline (no SLM),
unigrams, bigrams and trigrams.

deletion error is observed. This is due to the fact that the spaces between
neighboring words are typically evident, and are never missed (condition nec-
essary to observe a deletion).

The systems using unigrams, bigrams and trigrams are equivalent in terms
of performance. This is due, in our opinion, to the fact that the handwriting
model alone has a high performance. The space for improvement is thus re-
duced. Most content words are recognized without the help of the language
models. N -grams are actually helpful only to recognize functional words that
are an important source of error because they are typically short (two or three
letters). On the other hand, the performance of the language models over the
functional words is not significantly improved by increasing their order. For
this reason, the use of bigrams and trigrams does not result in a higher recog-
nition or accuracy.

The situation is different for multiple writer (or speaker) data where the
handwriting (or acoustic) model alone is weak. In this case, the HMMs have a
low performance over the words where N -grams of different order have a sig-

366 12 Speech and Handwriting Recognition

10 15 20 25 30 35 40 45 50
28

30

32

34

36

38

40

42

44

46

48
WRR (IAM)

Lexicon Size (kWords)

W
R

R
 (

%
)

baseline

unigram

bigram

trigram

Fig. 12.11. System performance over IAM database. The plot shows the word
recognition rate over the test set of the IAM database.

nificantly different effectiveness. This leads to an improvement when passing
from unigrams to trigrams.

12.6.4 IAM Database Results

This section describes the results obtained over the IAM database. The para-
meters S and G were set using the same method as described in the previous
section for Cambridge database. Models with 19 ≤ S ≤ 23 and 10 ≤ G ≤ 15
are trained over the training set and tested, without using N -grams, over the
validation set. The selected model (S = 20 and G = 12) is retrained over the
union of training and validation set and it is used in the actual recognition
experiments.

The dictionaries and the language models are the same as those used in
the single writer experiments. The performance of the systems is measured
in terms of WRR (see previous section). For each dictionary, four recognizers
are tested: the first (called baseline) makes no use of language models. The
others use alternatively unigrams, bigrams and trigrams.

Also in this case, the use of N -grams has a two-fold positive effect: the
performance is not only improved (independently of the metric used), but the

12.7 Speech Recognition Results 367

system is also more robust with respect to an increase of the lexicon size.
Figure 12.11 shows that the performance of the systems using the language
models is stable when the lexicon size passes from 10,000 to 50,000, while
accuracy and recognition of the baseline system are significantly lowered.

The increase of the language model order produces an improvement (sta-
tistical significance higher than 90%). The language models can play a role
not only over the functional words (see previous section) but also over the
content words where the difference of the order results in a better local per-
plexity. The error is mostly due to substitution (around 45%). Insertion and
deletion rates are about 9% and 4%, respectively.

12.7 Speech Recognition Results

This section presents the results achieved with state-of-the-art recognition
systems over different kinds of data, namely broadcast news, phone conversa-
tional speech and meeting recordings. The literature presents results achieved
over many other sources of data, but the three above are the most represen-
tative and challenging for nowadays speech recognition systems. Moreover,
the most important international evaluations are perfomed using exactly such
kind of data.

The automatic transcription of broadcast data is one of the most inves-
tigated tasks in speech recognition. This has two main reasons: the first is
that the news are an important source of information and their transcrip-
tion has important applications, the second is that broadcast news data are
particularly suitable for speech recognition. In fact, news are typically read
by professional speakers in a radio or television studio where there are no
background noises or other disturbing phenomena. Moreover, news speakers
typically read a text that respects grammatical rules. As a consequence, the
language models trained over text corpora fit well the content of the spo-
ken data and no disfluencies like interruptions, repetitions or hesitations are
observed.

For the above reasons, speech recognition performances obtained over
broadcast news are typically higher than those obtained over other kinds of
data. Table 12.1 shows the results obtained in one of the last international
evaluations carried out by the National Institute for Standards and Technol-
ogy (NIST). The tests are performed over 6 hours of news with a dictionary
of 59,000 words and more complete results are reported in [26][62]. The table
shows that the average WER is around 13% for all systems, but for some spe-
cific speakers the error rate goes down to around 5%. All systems are based on
the approach described in the previous part of the chapter, i.e. they use hid-
den Markov models for the acoustic modeling and apply 3-grams as language
models.

The NIST organizes an evaluation also for phone conversational speech.
This is a rather difficult task because it combines two majour sources of dif-

368 12 Speech and Handwriting Recognition

Table 12.1. Speech recognition results on broadcast news. The table reports the
results obtained over broadcast news by several groups: LIMSI (at INRIA in France),
BBN (Boston, USA), Cambridge University (CU) and a combination of LIMSI and
CU systems.

System WER (%)

LIMSI 12.8
BBN 13.0
CU 13.3

LIMSI/CU 13.0

Table 12.2. Speech recognition results on phone conversational speech. The ta-
ble reports the results obtained over phone conversations by SRI+ICSI+UW and
LIMSI+BBN.

System WER (%)

LIMSI+BBN 21.5
SRI+ICSI+UW 24.0

ficulties: the first is the low quality of phone speech due to noise and low
sampling frequency (8 kHz). The second is that conversational speech in-
cludes phenomena hard to tackle such as disfluencies (see above) and over-
lapping speech. Table 12.2 shows the results obtained over 6 hours of phone
conversations using a dictionary of 59000 words by two groups: the first in-
cludes Stanford Research Institute (SRI), International Computer Science In-
stitute (ICSI) and University of Washington (UW) [83], the second includes
the LIMSI and BBN [62].

Meeting data are more and more frequently used because they enable re-
searchers two investigate new kinds of problems, namely the high number of
speakers involved in a given recording, a wide range of dialogue phenomena
(interruptions, floor grabbing, etc.), and the so-called back-channel interjec-
tions, i.e. expressions like yeah or hmm that overlap the utterances of the
person holding the floor at a given time. Descriptions of experiments and re-
sults obtained by different groups over the same data are presented in [35]
and the WER is around 30%.

12.8 Applications

This section shows the major applications involving speech and handwriting
recognition technologies. Although both domains are still subject of research
and the recognition problem cannot be considered solved, there are some real
world application where tight experimental constraints (see below for more
details) make the recognition easy enough to achieve satisfactory results. The

12.8 Applications 369

next two sections show some of the more succesful cases for both speech and
handwriting.

12.8.1 Applications of Handwriting Recognition

Many works about handwriting recognition are dedicated to the bank check
legal amount recognition. The developed systems are good enough to be used
in commercial products as described in [32], where a family of systems able to
work on french, english and american checks is claimed to have a performance
close to a human reader (rejecting 30-40% of the data).

The reading of legal amounts involves small lexicons (between 25 and 30
words) and each word to be recognized is produced by a different writer. An
important advantage in bank check reading is the presence of the courtesy
amount (the amount written in digits). This can be read reliably, but is not
relevant from a legal point of view, so an automatic check processing sys-
tem must read also the amount written in letters. On the other hand, the
redundancy of information when reading both courtesy and legal amount can
improve the performance of the system.

In [47][65][67], an implicit segmentation is applied, and the recognition
is performed with an Hidden Markov Model. A segmentation free approach
is proposed in [34][57][91], where a sliding window is applied to the amount
image and a recurrent neural network is used in conjunction with HMMs. The
sliding window is also used in [43], where a correction mechanism activated
by a mismatch between courtesy and legal amount is proposed. In [73], the
scaled images of the legal amount are considered as random field realizations
and recognized in conjunction by HMM and Markov random fields [15]. A
combination of methods based on analytic and global features was presented
in [17][18][19][20]. This approach is especially conceived to work on italian
amounts: these are more difficult to recognize because they are obtained by
joining several basic words. In [32], the human performance is said to be
around 99%. This rate can be achieved by current automatic readers only by
discarding the more ambiguous samples.

Although the success of bankcheck reading systems, most works in the
literature concern postal applications. The data involved in this domain are
completely unconstrained, each word is written by a different writer, the words
can be cursive, handprinted or a mix of the two styles. The lexicon depends,
in general, on the output of a zip code recognizer. When the zip code is
recognized, it is not even necessary to read further informations in the address.
When there is unacceptable ambiguity on the last, last two or last three digits
of the zip code, then it is necessary to read the town name and the lexicon
will contain ten, hundred or towsand words respectively.

Several works are based on segmentation and dynamic programming [13][24]
[63][77]. In [63], the performance is improved by using, together with the
segmentation based system, a segmentation free system based on HMM. The
combination of two different approaches (lexicon free and lexicon directed) is

370 12 Speech and Handwriting Recognition

also described in [77][81]. Techniques to calculate the score of a lexicon word,
given the single character confidences, are proposed in [13] and [24].

A system based on HMM is presented in [12], where a modified Viterbi
algorithm is described. In [23], after having performed an explicit segmenta-
tion, the system uses an HMM based technique to combine two feature sets:
the first oriented to characters, the second to ligatures. The segmentation sta-
tistics (the probability of segmenting each letter into n primitives) are taken
into account during the recognition process in [46][11][45][49]. A minimum
edit distance modified to better represent the errors that can occur in a cur-
sive word recognition is described in [74]. In [22][55][54][68], the possibility of
reading handwritten lines is investigated to recognize different forms assumed
by the same address (e.g. Park Avenue or Park Av.).

The current frontier in handwriting recognition is the automatic transcrip-
tion of unconstrained documents, where the handwritten information is mixed
with other kinds of data and where there is no hint about the content (apart
the language of the text). In postal and bankcheck applications, the envi-
ronment involving the system is a source of informations that have a strong
influence on the recognition process. In the works presented in this section,
the recognition was performed over data that did not allow the use of any
other information than the handwritten words themselves. At most, if the
words belong to a text, the linguistic knowledge would be introduced. The
data used in the works related to this subfield of cursive word recognition is
often created ad hoc by asking writers (in some case cooperatives) to produce
samples.

In [6][21] the words produced by few writers are recognized. Both works
are based on explicit segmentation and use different level representations of
the words that allow making hypotheses about the transcription and looking
for its confirmation at the feature level. In [21], the confirmation is obtained as
a degree of alignment of letter prototypes with the actual handwritten data.
In [6] the confirmation is given by matching the sequence of expected events
(e.g. loops, curve strokes of various shape, etc.) with the actual sequence
detected in the handwritten word.

In [92][93], a word is segmented explicitly first and then an HMM is used
to find the best match between the fragments (the similarity with character
prototypes is used to calculate the probability of a fragment beeing a certain
letter) and words in the lexicon. In [7][8], the words written by cooperative
writers are represented, after a skeletonization of the word, as a sequence of
strokes organized in a graph. Each stroke is represented by a feature vector
and their sequence is recognized by an HMM.

The first example of recognition of data extracted from a text (to our
knowledge) is presented in [75][76]. The selection of the text is addressed by
linguistic criteria, the text is extracted from a corpus supposed to be repre-
sentative of the current English. This allows the use of linguistic knowledge
in recognition. The data is produced by a single writer, so that an adaptation
to his/her writing style can play a role in improving the system performance.

12.8 Applications 371

In [75][76], the words are skeletonized and then a uniform framing is per-
formed. From each frame a feature vector is extracted and an HMM is used
for the recognition. A recurrent neural network is used to calculate the emis-
sion probabilities of the HMM.

The use of linguistic knowledge was shown to be effective in recognizing
whole sentences rather than single words in [56][58][59][60][89][90][96]. The
applied language models are based on statistic distributions of unigrams and
bigrams [40]. The use of syntactical constraints (expressed by transition prob-
abilities between different syntactical categories) was experimented in [79][80].

12.8.2 Applications of Speech Recognition

One of the most successful applications of speech recognition is the automa-
tion of customer care systems, i.e. phone based businness services addressing
the needs of clients calling by phone. Following [2], such systems perform
three tasks of increasing complexity: the first is the recognition of commands
belonging to a predefined set (often small), the second is the so-called call
routing, i.e. the redirection of the call to an appropriate operator based on the
needs expressed by the clients, and the third is the information gathering, i.e.
the extraction of specific data (e.g. addresses or names) from client calls.

The recognition of commands involves two strong constraints, the small
dictionary size and the command grammar, i.e. the rules that must be re-
spected for command sequences being valid. The application of such a tech-
nology to a smart home, i.e. an apartment where the devices can be activated
through vocal commands, has been investigated in [64] and the results show
that the major problem is the noise due to both environment and communi-
cation channels (e.g. phones) used to send input to the systems. The same
applies to the recognition of commands for cellular phones [16][87] as well as
portable devices [10][53], and the approach commonly applied is to make the
front end more robust with respect to the noise. In general, the command
recognition systems associated to small devices, must be trained by the user
by repeating a certain number of times the commands to be transcribed. Al-
though such an effort is small, still it represents an obstacle for many users
and this has limited the diffusion of this kind of products.

The second task by increasing complexity order (see above) is the call
routing. The first real-world system was deployed in the nineties [31] and it
was based on the selection of salient segments from the automatic transcrip-
tion of calls. However, the attempt to understand the calls has been quickly
abandoned in favor of Information Retrieval (see below) oriented approaches,
i.e. of techniques that model texts as vectors and apply pattern recognition
techniques in order to correctly classify the call [14] and such an approach is
still today dominant [38][50][52]. The main problem of this approach is that it
requires large amounts of labeled material which is not always easy to obtain
and some attempts are currently being made in order to build effective routers
with little data [86].

372 12 Speech and Handwriting Recognition

The third problem, i.e. the information gathering, has been addressed only
recently and it is still at an early stage due to its multiple difficulties. A re-
cent approach is the so-called distillation [29][70][71], i.e. the use of templates
like The player XXX has scored in the YYY vs ZZZ match to find data seg-
ments likely to provide important information. The main problem of such a
technique is that it can be difficult to find templates precise enough to cap-
ture only relevant information and flexible enough to cover all variants of the
same statement. Different pproaches include the use of submitted queries as
templates [9][10][37][97], the identification of the topic [51], the detection of
discourse markers [44] or more application specific criteria [66].

The second important domain of application of speech recognition system
is the spoken document retrieval, i.e. the application of information retrieval
technologies to automatic transcritpion of speech recordings. Most of the re-
search on the retrieval of speech recordings has been made in the framework
of the TREC conferences5 [27]: several groups worked on the same database
(TDT-3 [33]) containing both manual (WRR ∼90 percent) and automatic
(WRR ∼70 percent) transcriptions of broadcast news recordings. The TDT-
3 dataset is composed of around 25,000 documents and in addition a set of
queries with their respective relevance judgements. The participants equipped
with an ASR system could use their own transcriptions which enabled the
evaluation of the WER impact on the retrieval performance. The works pre-
sented in the TREC context do not try to model the noise: the techniques
succesfully applied on clean texts have been shown to be effective also on
noisy automatic transcriptions. All systems are based on the Vector Space
Model (VSM) [3], where documents and queries are converted into vectors
and then compared through matching functions. In most cases, the documents
are indexed with tf.idf [3] and matched with the Okapi formula [1][25][28][41],
along with other approaches [36][48][78]. During the extensive experiments
and comparisons performed in the TREC framework, at least two important
conclusions emerge: (a) The retrieval is more effective over transcriptions at
the word, rather than at the phoneme level. Some attempts were made to
recognize documents as phoneme sequences and then to match them with the
query words, but the performances were much lower than in the alternative
approach [27]. (b) There is almost no retrieval performance degradation when
increasing the WER from around 10 percent to around 40 percent [27].

5 At the time this book is being written, the proceedings are available online at the
site http://nist.trec.gov.

References

1. D. Abberley, S. Renals, D. Ellis, and T. Robinson. The THISL SDR system at
TREC-8. In Proceedings of 8th Text Retrieval Conference, pages 699–706, 1999.

2. D. Attwater, M. Edgington, P. Durston, and S. Whittaker. Practical issues in the
application of speech technology to network and customer service applications.
Speech Communication, 31(4):279–291, 2000.

3. R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison
Wesley, 1999.

4. L.R. Bahl, V. De Gennaro, P.S. Gopalakrishnan, and R.L. Mercer. A fast ap-
proximate acoustic match for large vocabulary speech recognition. IEEE Trans-
actions on Speech and Audio Processing, 1(1):59–67, 1993.

5. H. Bourlard and N. Morgan. Connectionist Speech Recognition - A Hybrid Ap-
proach. Kluwer, 1994.

6. R.M. Bozinovic and S.N. Srihari. Off-line cursive script word recognition. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 11(1):69–83, Janu-
ary 1989.

7. H. Bunke, M. Roth, and E.G. Schukat-Talamazzini. Off-line cursive handwriting
recognition using hidden Markov models. Pattern Recognition, 28(9):1399–1413,
September 1995.

8. Horst Bunke, M. Roth, and E.G. Schukat-Talamazzini. Off-line recognition of
cursive script produced by a cooperative writer. In Proceedings of International
Conference on Pattern Recognition, pages 383–386, 1994.

9. W. Byrne, D. Doermann, M. Franz, S. Gustman, J. Hajic, D. Oard, M. Picheny,
J. Psutka, B. Ramabhadran, D. Soergel, T. Ward, and Wei-Jing Zhu. Automatic
recognition of spontaneous speech for access to multilingual oral history archives.
IEEE Transactions on Speech and Audio Processing, 12(4):420–435, 2004.

10. E. Chang, F. Seide, H.M. Meng, Zhuoran Chen, Yu Shi, and Yuk-Chi Li. A
system for spoken query information retrieval on mobile devices. IEEE Trans-
actions on Speech and Audio Processing, 10(8):531–541, 2002.

11. M.Y. Chen and A. Kundu. An alternative to variable duration HMM in hand-
written word recognition. In Proceedings of International Workshop on Frontiers
in Handwriting Recognition, 1993.

12. M.Y. Chen, A. Kundu, and J. Zhou. Off-line handwritten word recognition
using a hidden Markov model type stochastic network. IEEE Transactionson
Pattern Analysis and Machine Intelligence, 16(5):481–496, May 1994.

374 References

13. W. Chen, P. Gader, and H. Shi. Lexicon-driven handwritten word recognition
using optimal linear combinations of order statistics. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 21(1):77–82, January 1999.

14. J. Chu-Carroll and B. Carpenter. Vector based natural language call routing.
Computational Linguistics, 25(3):361–388, 1999.

15. F.S. Cohen. Markov random fields for image modelling e analysis. In U. De-
sai, editor, Modelling and Applications of Stochastic Processes, pages 243–272.
Kluwer Academic Press, 1986.

16. S. Deligne, S. Dharanipragada, R. Gopinath, B. Maison, P. Olsen, and H. Printz.
A robust high accuracy speech recognition system for mobile applications. IEEE
Transactions on Speech and Audio Processing, 10(8):551–561, 2002.

17. V. Di Lecce, A. Dimauro, Guerriero, S. Impedovo, G. Pirlo, and A. Salzo. A new
hybrid approach for legal amount recognition. In Proceedings of International
Workshop on Frontiers in Handwriting Recognition, pages 199–208, Amsterdam,
2000.

18. G. Dimauro, S. Impedovo, and G. Pirlo. Automatic recognition of cursive
amounts on italian bank-checks. In S. Impedovo, editor, Progress in Image
Analysis and Processing III, pages 323–330. World Scientific, 1994.

19. G. Dimauro, S. Impedovo, G. Pirlo, and A. Salzo. Bankcheck recognition sys-
tems: re-engineering the design process. In A. Downton and S. Impedovo, edi-
tors, Progress in Handwriting Recognition, pages 419–425.

20. G. Dimauro, S. Impedovo, G. Pirlo, and A. Salzo. Automatic bankcheck process-
ing: A new engineered system. In Automatic Bankcheck Processing, pages 5–42.
World Scientific Publishing, 1997.

21. S. Edelman, T. Flash, and S. Ullman. Reading cursive handwriting by alignment
of letter prototypes. International Journal of Computer Vision, 5(3):303–331,
March 1990.

22. A. El Yacoubi, J.M. Bertille, and Gilloux M. Conjoined location and recognition
of street names within a postal address delivery line. In Proceedings of Inter-
national Conference on Document Analysis and Recognition, volume 1, pages
1024–1027, Montreal, 1995.

23. A. El-Yacoubi, M. Gilloux, R. Sabourin, and C.Y. Suen. An HMM,-based ap-
proach for off-line unconstrained handwritten word modeling and recognition.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(8):752–
760, August 1999.

24. John T. Favata. General word recognition using approximate segment-string
matching. In Proceedings of International Conference on Document Analysis
and Recognition, volume 1, pages 92–96, Ulm, 1997.

25. M. Franz, J.S. McCarley, and R.T. Ward. Ad hoc, cross-language and spoken
document information retrieval at IBM. In Proceedings of 8th Text Retrieval
Conference, pages 391–398, 1999.

26. M.J. Gales, D.Y. Kim, P.C. Woodland, H.Y. Chan, D. Mrva, R. Sinha, and S.A.
Tranter. Progress in the CU-HTK boradcast news transcription system. IEEE
Transactions on Audio, Speech and Language Processing, 14(5):1513–1525, 2006.

27. J.S. Garofolo, C.G.P. Auzanne, and E.M. Voorhees. The TREC spoken doc-
ument retrieval track: A success story. In Proceedings of 8th Text Retrieval
Conference, pages 107–129, 1999.

28. J.L. Gauvain, Y. de Kercadio, L. Lamel, and G. Adda. The LIMSI SDR system
for TREC-8. In Proceedings of 8th Text Retrieval Conference, pages 475–482,
1999.

References 375

29. C. Gerber. Found in translation. Military Information Technology, 10(2), 2006.
30. P.S. Gopalakrishnan, L.R. Bahl, and R.L. Mercer. A tree search strategy for

large vocabulary continuous speech recognition. In Proceedings of the IEEE
International Conference on Acoustic, Speech and Signal Processing, pages 572–
575, 1995.

31. A. Gorin, G. Riccardi, and J. Wright. How may I help you? Speech Communi-
cation, 23(2):113–127, 1997.

32. N. Gorski, V. Anisimov, E. Augustin, O. Baret, D. Price, and J.C. Simon.
A2iA check reader: A family of bank check recognition systems. In Proceedings
of International Conference on Document Analysis and Recognition, volume 1,
pages 523–526, Bangalore, 1999.

33. D. Graff, C. Cieri, S. Strassel, and N. Martey. The TDT-3 text and speech
corpus. In Proceedings of Topic Detection and Tracking Workshop, 2000.

34. D. Guillevic and C.Y. Suen. HMM word engine recognition. In Proceedings
of International Conference on Document Analysis and Recognition, volume 2,
pages 544–547, Ulm, 1997.

35. T. Hain, L. Burget, J. Dines, G. Garau, M. Karafiat, M. Lincoln, J. Vepa, and
V. Wan. The AMI meeting transcription system: progress and performance.
In IEEE International Conference on Acoustics, Speech and Signal Processing,
2007.

36. B. Han, R. Nagarajan, R. Srihari, and M. Srikanth. TREC-8 experiments at
SUNY at Buffalo. In Proceedings of 8th Text Retrieval Conference, pages 591–
596, 1999.

37. J.H.L. Hansen, R. Huang, B. Zhou, M. Seadle, J.R. Deller, A.R. Gurijala, M. Ku-
rimo, and P. Angkititrakul. Speechfind: Advances in spoken document retrieval
for a national gallery of the spoken word. IEEE Transactions on Speech and
Audio Processing, 13(5):712–730, 2005.

38. Q. Huang and S. Cox. Task-independent call-routing. Speech Communication,
48(3-4):374–389, 2006.

39. X. Huang, A. Acero, and H.-W. Hon. Spoken Language Processing: A Guide to
Theory, Algorithm and System Development. Prentice-Hall, 2001.

40. F. Jelinek. Statistical Methods for Speech Recognition. MIT Press, 1997.
41. S.E. Johnson, P. Jourlin, K. Spärck-Jones, and P.C. Woodland. Spoken docu-

ment retrieval for TREC-8 at Cambridge University. In Proceedings of 8th Text
Retrieval Conference, pages 197–206, 1999.

42. D. Jurafsky and J.H. Martin. Speech and Language Processing: an Introduc-
tion to Natural Processing Computational Linguistics, and Speech Recognition.
Prentice-Hall, 2000.

43. G. Kaufmann and H. Bunke. Automated reading of cheque amounts. Pattern
Analysis and Applications, 3:132–141, march 2000.

44. T. Kawahara, M. Hasegawa, K. Shitaoka, T. Kitade, and H. Nanjo. Automatic
indexing of lecture presentations using unsupervised learning of presumed dis-
course markers. IEEE Transactions on Speech and Audio Processing, 12(4):409–
419, 2004.

45. G. Kim and V. Govindaraju. Handwritten word recognition for real time appli-
cations. In Proceedings of International Conference on Document Analysis and
Recognition, volume 1, pages 24–27, Montreal, 1995.

46. G. Kim and V. Govindaraju. A lexicon driven approach to handwritten word
recognition for real time application. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 19(4):366–379, 1997.

376 References

47. S. Knerr, E. Augustin, O. Baret, and D. Price. Hidden Markov model based
word recognition and its application to legal amount reading on French checks.
Computer Vision and Image Understanding, 70(3):404–419, June 1998.

48. W. Kraaij, R. Pohlmann, and D. Hiemstra. Twenty-one at TREC-8 using lan-
guage technology for information retrieval. In Proceedings of 8th Text Retrieval
Conference, pages 285–300, 1999.

49. A. Kundu, Y. He, and M.Y. Che. Alternatives to variable duration HMM in
handwriting recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 20(11):1275–1280, November 1998.

50. H.-K.J. Kuo and L. Chin-Hui. Discriminative training of natural language call
routers. IEEE Transactions on Speech and Audio Processing, 11(1):24–35, 2003.

51. M. Kurimo. Thematic indexing of spoken documents by using self-organizing
maps. Speech Communication, 38(1-2):29–45, 2002.

52. C.H. Lee, B. Carpenter, W. Chou, J. Chu-Carroll, W. Reichl, A. Saad, and
Q. Zhou. On natural language call routing. Speech Communication, 31(4):309–
320, 2000.

53. D. Li, W. Kuansan, A. Acero, H. Hsiao-Wuen, J. Droppo, C. Boulis, W. Ye-
Yi, D. Jacoby, M. Mahajan, C. Chelba, and X.D. Huang. Distributed speech
processing in miPad’s multimodal user interface. IEEE Transactions on Speech
and Audio Processing, 10(8):605–619, 2002.

54. S. Madhvanath, E. Kleinberg, and V. Govindaraju. Holistic verification of hand-
written phrases. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 1999.

55. S. Madhvanath, E. Kleinberg, V. Govindaraju, and S.N. Srihari. The HOVER
system for rapid holistic verification of off-line handwritten phrases. In Pro-
ceedings of International Conference on Document Analysis and Recognition,
volume 2, pages 855–859, Ulm, 1997.

56. U. Marti and H. Bunke. Towards general cursive script recognition. In Proceed-
ings of International Workshop on Frontiers in Handwriting Recognition, pages
379–388, Korea, 1998.

57. U. Marti, G. Kaufmann, and Bunke H. Cursive script recognition with time de-
lay neural networks using learning hints. In W. Gerstner, A. Gernoud, M. Hasler,
and J.D. Nicoud, editors, Artificial Neural Networks - ICANN97, pages 973–979.
Springer Verlag, 1997.

58. U.-V. Marti and H. Bunke. A full english sentence database for off-line hand-
writing recognition. In Proceedings of International Conference on Document
Analysis and Recognition, volume 1, pages 705–708, Bangalore, 1999.

59. U.V. Marti and H. Bunke. Handwritten sentence recognition. In Proceedings
of International Conference on Pattern Recognition, volume 3, pages 467–470,
Barcelona, 2000.

60. U.V. Marti and H. Bunke. Using a statistical language model to improve the
performance of an HMM-based cursive handwriting recognition system. Inter-
national Journal of Pattern Recognition and Artificial Intelligence, 2001.

61. U.V. Marti and H. Bunke. The IAM-database: an English sentence database
for offline handwriting recognition. International Journal of Document Analysis
and Recognition, 5(1):39–46, january 2002.

62. S. Matsoukas, J.L. Gauvain, G. Adda, T. Colthurst, C.L. Kao, O. Kimball,
L. Lamel, F. Lefevre, J.Z. Ma, J. Makhoul, L. Nguyen, R. Prasad, R. Schwartz,
H. Schwenk, and B. Xiang. Advances in transcription of broadcast news and

References 377

conversational telephone speech within the combined EARS BBN/LIMSI. IEEE
Transactions on Audio, Speech and Language Processing, 14(5):1541–1556, 2006.

63. M. Mohamed and P. Gader. Handwritten word recognition using segmentation-
free hidden Markov modeling and segmentation-based dynamic programming
techniques. IEEE Transactions on Pattern Analysis and Machine Intelligence,
18(5):548–554, May 1996.

64. S. Möller, J. Krebber, and P. Smeele. Evaluating the speech output component
of a smart-home system. Speech Communication, 48(1):1–27, 2006.

65. C. Olivier, T. Paquet, M. Avila, and Y. Lecourtier. Recognition of handwritten
words using stochastic models. In Proceedings of International Conference on
Document Analysis and Recognition, volume 1, pages 19–23, Montreal, 1995.

66. M. Padmanabhan, G. Saon, J. Huang, B. Kingsbury, and L. Mangu. Auto-
matic speech recognition performance on a voicemail transcription task. IEEE
Transactions on Speech and Audio Processing, 10(7):433–442, 2002.

67. T. Paquet and Y. Lecourtier. Recognition of handwritten sentences using a
restricted lexicon. Pattern Recognition, 26(3):391–407, 1993.

68. J. Park, V. Govindaraju, and S.N. Srihari. Efficient word segmentation driven by
unconstrained handwritten phrase recognition. In Proceedings of International
Conference on Document Analysis and Recognition, volume 1, pages 605–608,
Bangalore, 1999.

69. R. Plamondon and S.N. Srihari. On-line and off-line handwriting recognition:
A comprehensive survey. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 22(1):63–84, 2000.

70. D. Ponceleon and S. Srinivasan. Automatic discovery of salient segments in im-
perfect speech transcripts. In ACM Conference on Information and Knowledge
Management, pages 490–497, 2001.

71. D. Ponceleon and S. Srinivasan. Structure and content based segmentation
of speech transcripts. In ACM Conference on Research and Development in
Information Retrieval (SIGIR), pages 404–405, 2001.

72. L.R. Rabiner and B.H. Juang. Fundamentals of Speech Recognition. Prentice-
Hall, 1993.

73. G. Saon. Cursive word recognition using a random field based hidden Markov
model. International Journal of Document Analysis and Recognition, 1(1):199–
208, 1999.

74. G. Seni, V. Kripasundar, and R.K. Srihari. Generalizing edit distance to in-
corporate domain information: Handwritten text recognition as a case study.
Pattern Recognition, 29(3):405–414, 1996.

75. A.W. Senior. Off-Line Cursive Handwriting Recognition Using Recurrent Neural
Network. PhD thesis, University of Cambridge, UK, 1994.

76. A.W. Senior and A.J. Robinson. An off-line cursive handwriting recognition
system. IEEE Transactions on Pattern Analysis and Machine Intelligence,
20(3):309–321, March 1998.

77. M. Shridar, G. Houle, and Kimura F. Handwritten word recognition using
lexicon free and lexicon directed word recognition algorithms. In Proceedings
of International Conference on Document Analysis and Recognition, volume 2,
pages 861–865, Ulm, 1997.

78. A. Singhal, S. Abney, M. Bacchiani, M. Collins, D. Hindle, and F. Pereira.
AT&T at TREC-8. In Proceedings of 8th Text Retrieval Conference, pages 317–
330, 1999.

378 References

79. R.K. Srihari. Use of lexical and syntactic techniques in recognizing handwritten
text. In Proceedings of ARPA workshop on Human Language Technology, pages
403–407, 1994.

80. R.K. Srihari and C. Baltus. Incorporating syntactic constraints in recognizing
handwritten sentences. In Proceedings of International Joint Conference on
Artificial Intelligence, pages 1262–1267, 1993.

81. S.N. Srihari. Handwritten address interpretation: a task of many pattern recog-
nition problems. International Journal of Pattern Recognition and Artificial
Intelligence, 14(5):663–674, 2000.

82. T. Steinherz, E. Rivlin, and N. Intrator. Off-line cursive script word recognition
- a survey. International Journal on Document Analysis and Recognition, 2(2):1–
33, 1999.

83. A. Stolcke, B. Chen, H. Franco, V.R. Rao Gadde, M. Graciarena, M.Y. Hwang,
K. Kirchhoff, A. Mandal, N. Morgan, X. Lei, T. Ng, M. Ostendorf, K. Sönmez,
A. Venkataraman, D. Vergyri, W. Wang, J. Zheng, and Q. Zhu. Recent innova-
tions in speech-to-text transcriptions at SRI-ICSI-UW. IEEE Transactions on
Audio, Speech and Language Processing, 14(5):1729–1744, 2006.

84. Lee S.W., editor. Advances in Handwriting Recognition. World Scientific Pub-
lishing Company, 1999.

85. O.D. Trier, A.K. Jain, and T. Taxt. Feature extraction methods for character
recognition-A survey. Pattern Recognition, 10(4):641–662, 1996.

86. G. Tur, R. Schapire, and D. Hakkani-Tr. Active learning for spoken language
understanding. In IEEE International Conference on Acoustics, Speech and
Signal Processing, 2003.

87. I. Varga, S. Aalburg, B. Andrassy, S. Astrov, J.G. Bauer, C. Beaugeant,
C. Geissler, and H. Hoge. ASR in mobile phones - an industrial approach.
IEEE Transactions on Speech and Audio Processing, 10(8):562–569, 2002.

88. A. Vinciarelli. A survey on off-line cursive word recognition. Pattern Recogni-
tion, 35(7):1433–1446, 2002.

89. A. Vinciarelli. Noisy text categorization. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 27(12):1882–1895, 2005.

90. A. Vinciarelli, S. Bengio, and H. Bunke. Offline recognition of unconstrained
handwritten texts using HMMs and statistical language models. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 26(6):709–720, 2004.

91. W. Wang, A. Brakensiek, A. Kosmala, and G. Rigoll. HMM based high ac-
curacy off-line cursive handwriting recognition by a baseline detection error
tolerant feature extraction approach. In Proceedings of International Workshop
on Frontiers in Handwriting Recognition, pages 209–218, Amsterdam, 2000.

92. B.A. Yanikoglu and P.A. Sandon. Off line cursive handwriting recognition using
neural networks. In Proceedings of SPIE Conference on Applications of Artificial
Neural Networks, 1993.

93. B.A. Yanikoglu and P.A. Sandon. Off-line cursive handwriting recognition using
style parameters. Tech. Rep. PCS-TR93-192 Dartmouth College, 1993.

94. S. Young, D. Kershaw, J. Odell, D. Ollason, V. Valtchev, and P. Woodland. The
HTK book. http://htk.eng.cam.ac.uk/docs/docs/shtml, 2000.

95. M. Zimmermann and H. Bunke. Automatic segmentation of the IAM off-line
database for handwritten english text. In Proceedings of 16th International
Conference on Pattern Recognition, volume IV, pages 35–39, 2002.

References 379

96. M. Zimmermann, J.-C. Chappelier, and H. Bunke. Offline grammar-based recog-
nition of handwritten sentences. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 28(5):818–821, 2006.

97. V. Zue, S. Seneff, J.R. Glass, J. Polifroni, C. Pao, T.J. Hazen, and L. Hethering-
ton. Juplter: a telephone-based conversational interface for weather information.
IEEE Transactions on Speech and Audio Processing, 8(1):85–96, 2000.

13

Automatic Face Recognition

What the reader should know to understand this chapter

• Basic notions of image processing (Chapter 3).
• Support vectors machines and kernel methods (Chapter 9).
• Principal component analysis (Chapter 11).

What the reader should know after reading this chapter

• State-of-the-art in automatic face recognition.
• How to implement a basic automatic face recognition system.
• How to measure the performance of a face recognition system.

13.1 Introduction

The problem of automatic face recognition (AFR) can be stated as follows:
given an image or a video showing one or more persons, recognize the indi-
viduals that are portrayed in a predefined dataset of face images [72]. Such a
task has been studied for several decades. The earliest works appeared at the
beginning of the 1970s [28][29], but it is only in the last few years that the do-
main has reached its maturity. The reason is twofold: on one hand, necessary
computational resources are now easily available and recognition approaches
achieve, at least in controlled conditions, satisfactory results. On the other
hand, several applications of commercial interest require robust face recogni-
tion systems, e.g. multimedia indexing, tracking, human computer interaction,
etc.

However, the most common and important application of face recognition
is secure access, i.e. the control of the access to electronic resources such as
bank accounts, confidential documents, sites requiring parental control, etc.
In other words, the face is supposed to replace, or at least to support, the
most common form of secure access, i.e. the entry of a password. From this

382 13 Automatic Face Recognition

point of view, face recognition can be considered as a branch of biometry,
the domain that tries to use physical human characteristics, e.g. fingerprint,
voice, etc., to certify the identity of a person. The advantages of biometry over
password entry are multiple: physical characteristics are more difficult to forge
or steal, they cannot be forgotten as can happen with a password; they are
virtually different for each human being, etc. Some biometric features, espe-
cially fingerprints, are more effective than faces as a recognition clue, but the
use of the face has some important advantages [49]; in particular, people can
be identified without their collaboration, i.e. without explicitly participating
in an identification process. This is especially important in analyzing media
(the people appearing in news or movies are not necessarily available), remote
surveillance applications, detection of suspects in an open environment, etc.

The first part of this chapter provides a general overview of the AFR
domain and describes the different approaches presented in the literature
(see [72] for an extensive survey). The major steps of the recognition process
are shown in detail and, for each one of them, a survey of the most impor-
tant methods is proposed. While Chapter 12 has shown that the same machine
learning approach can be applied to different kinds of data, this chapter shows
that different machine learning approaches are applied to the same data. In
fact, AFR can be considered as a classification problem and most of the clas-
sifiers presented in the previous part of the book (neural networks, support
vector machines, etc.) have been applied in face recognition.

The second part of the chapter presents experiments performed with a
system often used as a baseline for comparison with more sophisticated ap-
proaches. The system extracts PCA features from the face images and classi-
fies them using support vector machines (see the rest of the chapter for more
details). The goal of the experiments is not to show state-of-the-art results,
more recent techniques achieve better performances, but rather to provide
practical details for laboratory exercices on an AFR toy problem. In fact,
the experiments are performed with software and data that can be obtained
on the web: the XM2VTS face database, the TorchVision utilities1 for face
recognition and the svmLight SVM package (see Chapter 9). Special atten-
tion will be paid to TorchVision, a user-friendly package implementing all the
steps of the face recognition process. Detailed descriptions of the TorchVision
functions are provided throughout the chapter.

Face recognition technologies and, more generally, biometry are the sub-
ject of both surveys [23][71][72] and monographies [24][32][66] that the inter-
ested reader can consult for deeper information. Recent approaches involve
the recognition of 3D face models [33][57], but this chapter focuses on the
recognition of face images, a domain that is better established and has been
extensively investigated in the literature.

1 At the time this book is being written, the TorchVision utilities and the fea-
tures extracted from the XM2VTS dataset are available on the following website:
http://pyverif.idiap.ch.

13.2 Face Recognition: General Approach 383

The rest of this chapter is organized as follows: Section 13.2 describes the
general architecture of an AFR system. Section 13.3 presents the face localiza-
tion problem. Section 13.4 introduces the face image normalization techniques.
Section 13.5 presents the most common feature extraction techniques used in
AFR. Section 13.6 describes the most common machine learning approaches
used in AFR. Section 13.7 shows the most important databases available for
benchmarking purposes. Section 13.8 presents the laboratory experiments.

13.2 Face Recognition: General Approach

The general architecture of a face recognition system is shown in Figure 13.1.
The recognition process includes four main steps: localization, normalization,
feature extraction and recognition.

The first step of the process is the identification of the correct position of
the face in an input image. The localization can be considered as a simplified
version of the more general detection problem, i.e. of the localization of an
arbitrary number of faces appearing in arbitrary positions in an image (see
Section 13.3). In the case of the AFR systems, the images are supposed to
contain only one face and the images are typically centered around the face
under examination. However, even in such a simplified situation, localization
errors can still happen and have an influence on the recognition results [41][54].

The normalization, like in the case of handwriting and speech recognition
(see Chapter 12), is the elimination of the variability unnecessary to the recog-
nition process. In the case of AFR, most of the undesired variability is due
to lighting changes. This is especially problematic for the feature extraction
step because it has been shown both empirically [1] and formally [11] that
no function of an image can be illumination invariant. The feature extrac-
tion can be thought of as a function mapping images into vectors. Traditional
approaches to lighting normalization include common image processing tech-
niques such as histogram equalization, gain/offset correction and non-linear
transforms of the image intensity (see [21][52] for a description of such algo-
rithms). However, recent works show that better results, at least in the case
of AFR, are obtained through biology inspired techniques, in particular the
so-called retinex theory (see Section 13.4) [35].

The following step is the feature extraction, i.e. the conversion of the input
image into a format suitable for the classification step. The feature extraction
approaches can be grouped into two classes: holistic and local. In the first case,
the features are extracted from the whole face image and the result is a single
vector per image. In the second case, the features are extracted from different
parts of the same image and the result is a sequence of vectors. The most
common feature extraction techniques in holistic approaches are principal
component analysis and linear discriminant analysis (see Chapter 11). Local
approaches focus on specific parts of the image that are more likely to help
the recognition (e.g. the eyes) and extract the features from there. In some

384 13 Automatic Face Recognition

Fig. 13.1. AFR systems architecture. The figure shows the general scheme of an
AFR system.

other cases, the same feature extraction technique is applied to image blocks
(sometimes partially overlapping) positioned over a grid spanning the whole
image. Some works simply apply PCA to local regions rather than to the
whole image [46]; others involve Gabor filters [14], Gabor wavelets [34][50] or
discrete the cosine transform (see Appendix B) [58].

The last step of the process is classification. In an AFR system, the goal of
classification is to find the identity of the person portrayed in the input image
and it is known a priori that the same person is portrayed in at least one
of the pictures in the predefined set of images available to the classifier (see
Figure 13.1). Such a task is also known as closed set identification in opposition
to the open set identification where a picture of the person portrayed in the
input image is not necessarily available in the predefined set of images. This
Chapter focuses on the first case (closed set identification) and the classifier
gives as output the identity I∗ such that:

I∗ = arg max
I

Λ(X,XI) (13.1)

where X and XI are the representations of the input image and of an im-
age of identity I in the set of images, and Λ(X,XI) is a score accounting
for the matching of X and XI given by the classifier (see Section 13.6 for
more details). The value of Λ(X,XI) is obtained using different algorithms.
In some cases is a simple Euclidean or Mahalanobis distance between vectors
extracted from the images. Other approaches use elastic graph matching [34],
generative models [10], and discriminant models [27] such as neural networks
(see Chapter 8) and support vector machines (see Chapter 9).

The next sections described in more detail each step of the process.

13.3 Face Detection and Localization 385

13.3 Face Detection and Localization

This section describes the face detection and localization problem. This is
the first step in any technology aiming at the analysis of face images (face
recognition, facial expression recognition, etc.) or using the presence of faces
in an image to perform other tasks, e.g. the detection of user presence in smart
interfaces. Although similar and overlapping, detection and localization are
not exactly the same problem. The detection is the task of finding all faces (if
any) in an image and it is not known a priori whether the image contains faces
or not (and if yes how many). The localization is the task of identifying the
exact position of a single face known in advance to be in the image. The main
difference between detection and localization is then in the available a priori
knowledge about the presence and number of faces actually appearing in each
image. The localization is especially important in face recognition because
many systems require the user to stand in front of a camera or are applied to
passport-like pictures. The quality of the localization affects the recognition
performance [41] and both detection and localization are the subject of at
least two major surveys that are the basis of this section [23][71].

Following [71], the main problems in detecting and localizing faces are:

• pose: pan and tilt with respect to the camera
• structural components variability : glasses, scarfs, beards, etc.
• expression: smile, amazement, etc.
• occlusion: presence of objects between the camera and the face to be de-

tected
• imaging conditions: illumination, source of lighting, camera settings, etc.

All of the approaches proposed in the literature try to deal with the above
problems and their effectiveness depends in large measure on how controlled
are the above factors. In the case of face recognition, pose, expression, occlu-
sion and imaging conditions are relatively costrained. As mentioned above,
the users are often required to stand in front of the camera and the most
natural posture does not involve large variations in the position of the head.
Moreover, the expression tends to be neutral, no occlusion is allowed, and the
imaging conditions can be controlled. On the other hand, no constraint can be
imposed on structural elements. This is especially difficult when the pictures
of the same person are taken at large intervals of time.

The main approaches to detection and localization problems can be split
into two major classes: the first includes the approaches using a priori knowl-
edge abouth the so-called facial features (i.e. eyes, nose, lips, etc.). The tech-
niques belonging to this class try to detect facial features in an image and
then use their mutual position to infer the presence of a face. The second
class includes the approaches that do not use a priori knowledge about facial
features but rather try to classify each region of an image as either belonging
to a face or not.

386 13 Automatic Face Recognition

The methods using a priori knowledge are often called knowledge-based and
typically use a top-down approach, i.e. they first analyze the image at large
scale to find the regions most likely to contain a face, then they perform finer
analysis on the candidate regions to detect details such as eyes, eyebrows, etc.
(see e.g. [31][70]). The main problem with such approaches is that the a priori
knowledge is often used under the form of rules, e.g. there must be a certain
distance between the eyes, that lead to false alarms, i.e. to the detection of
faces where there are other objects, when they are too flexible, but result into
false negatives, i.e. they miss actually appearing faces, when they are too rigid.
Moreover, the rules are often not capable of dealing with the large variablity
of conditions that can be found in an image.

Some knowledge-based approaches try to overcome the above problems by
using the template matching, i.e. structures where the face elements can be
moved to fit the data, e.g. the nose must lie on the direction perpendicular to
the line connecting the eyes, but such a condition can be relaxed to a certain
extent by deforming the template (see e.g. [13][16]). The main problem of such
approaches is that they cannot deal effectively with variations in scale, pose
and shape [71].

Techniques classifying image regions as either belonging or not to a face
are typically based on a bottom-up approach, i.e. they infer the presence
of a face starting from low-level features not influenced by pose and scale
variations as well as lighting variations and other sources of undesired vari-
ability (see above). Some techniques try identify the regions most likely to
corresponds to facial features by using edge detection techniques (i.e. sudden
change regions) [12], connected components in gray-level images [17], local fea-
ture extractors and random graph matching [36], etc. Many other approaches
are based on the identification of the textures most likely to corresponds to
human faces or to recognize the skin color (see [23][71] for a wide bibliogra-
phy).

This class of approaches includes also the so-called appearance-based meth-
ods, i.e. techniques that learn from large set of images to distinguish between
face and nonface regions. This is the most recent recent trend and the results
are good compared to the previous approaches. The only problem is that ma-
chine learning approaches require large amounts of labeled data (often each
image pixel must be labeled separately) and this can be an obstacle. Most of
the algorithms presented in the previous chapters have been used for the face
detection and localization problems: principal component analysis [30][64],
neural networks [8][62], support vector machines [19][45] and hidden Markov
models [56].

The performance of a detection and localization systems is measured
through the percentage of faces correctly identified out of a test set of images
or videos. However, such information alone is not enough because it takes into
account only false negatives, i.e. nondetection of faces actually appearing in
the data, while detection systems perform also another kind of error, i.e. the
false positive, the detection of a nonexisting face. Such a figure must then be

13.4 Lighting Normalization 387

included in the evaluation. On the other hand, since detection and localiza-
tion are typically the first step of a longer process, recent works suggest to
evaluate the localization through the impact on the end-application [54]. In
other words, the best system is not the one that best locates faces, but the
one that results into the best recognition or identification performance.

13.3.1 Face Segmentation and Normalization with TorchVision

The TorchVision package contains a face segmentation tool based on the eyes
position. When the eyes position is known, the segmentation plays the role of
the face localization. The typical command line is as follows (see the package
website for more details and for sample data):

faceExtract inputImg.pgm inputImg.pos -facemodel 3 -oneface
-postype 1 -norm -savebin outputImg.bindata

where inputImg.pgm is the input image in pgm format (see Chapter 3),
inputImg.pos is the file containing the position of the eyes, and the options
have the following effects:

• facemodel specifies the image dimensions (in the example, the value 3
leads to 64×80 pixels output images).

• oneface specifies that the input image contains only one face.
• postype specifies the format of the eyes position file.
• norm specifies that the pixel values of the output image will be normalized

between 0 and 1.
• savebin specifies the name and the format of the output image.

Figure 13.2 shows the results of the function on a sample image. The circles in
the input image are the position of the eyes as given in the inputImg file, and
the smaller images on the right side show the output image both before and
after the normalization of the pixel values (see documentation on the package
site for more information about available options and their effect).

13.4 Lighting Normalization

The goal of lighting normalization is to eliminate the variability due to il-
lumination differences between images. While the other steps of the AFR
process are performed with many different approaches, the normalization is
performed with relatively few standard techniques. Traditional methods in-
clude histogram equalization, gain/offset correction, nonlinear transforms (e.g.
logarithmic) of the image intensity and homomorphic filtering (all the algo-
rithms are described in [52]). However, bio-inspired techniques based on the
so-called retinex theory [35] have been shown in recent years to perform bet-
ter than the above algorithms [60][9]. For this reason, this section focuses

388 13 Automatic Face Recognition

003_1_1.pgm 003_1_1.pos

003_1_1.bindata 003_1_1.inorm.bindata

Fig. 13.2. Face localization. The picture shows how the face is first localized and
then normalized out of the original image (courtesy of Sébastien Marcel).

on two retinex-based algorithms known as center/surround retinex [25][26],
and Gross and Brajovic’s (GB) [18].

Following the retinex theory, an image I(x, y) can be reconstructed as
follows:

I(x, y) = R(x, y)L(x, y) (13.2)

where R(x, y) is the reflectance, i.e. the fraction of incident light energy re-
flected at point (x, y), and L(x, y) is the lighting map underlying the image,
i.e. the function giving the incident light energy at point (x, y). The normal-
ization can be thought of as a process which transforms the lighting map of all
images into the same target function L∗(x, y), but such an operation can be
performed only after reconstructing R(x, y). For this reason, retinex theory
based algorithms focus on the estimation of the reflectance map. The next
two sections show how this is done in Center/Surround Retinex and Gross
and Brajovic’s algorithms.

13.4.1 Center/Surround Retinex

The model proposed in [25][26] estimates the reflectance in a pixel (x, y) as
a weighted average of the surrounding pixels. The first version of the algo-
rithm [26] performs the average at a single scale and estimates the reflectance
as follows:

R(x0, y0) = log I(x0, y0) − log[I(x, y) ∗ Gσ(x, y)] (13.3)

where Gσ(x, y) is a Gaussian filter (GF) of variance σ2. The GF has the
following form:

Gσ(x, y) =
1√
2πσ

exp
(
− (x − x0)2 + (y − y2

0)
2σ2

)
(13.4)

13.4 Lighting Normalization 389

and its application results in a blurred version of the original image. The
rationale behind such an approach is that a weighted sum of the intensities
surrounding a pixel provides a better estimation of the same pixel. The use of
the logarithm in Equation (13.3) corresponds to the logarithmic relationship
between intensity and human eye perception of intensity (see Chapter 3).

The same algorithm has been proposed in a multiscale version in [25]:

R(x, y) =
S∑

σ=1

(log I(x0, y0) − log[I(x, y) ∗ Gσ(x, y)]) (13.5)

where the use of several values of σ enables one to deal with both uniform,
changes can be observed only at large scales with high σ values, and variable,
changes can be observed at small scales with low σ values, illumination maps
depending on the region.

13.4.2 Gross and Brajovic’s Algorithm

The GB algorithm estimates the luminance L(x, y) by minimizing the follow-
ing expression:

E(L) =
∫

Ωx

∫
Ωy

ρ(x, y) [L(x, y) − I(x, y)]2 dxdy+λ

∫
Ωx

∫
Ωy

(L2
x +L2

y)dxdy

(13.6)
where Ωx and Ωy are the x and y domains, ρ(x, y) is the diffusion coefficient,2

λ is a parameter weighting the importance of the second integral, and Lx

and Ly are the derivatives of L with respect to x and y. The first term of
Equation 13.6 accounts for the similarity between I(x, y) and L(x, y), while
the second one is a smoothing term.

13.4.3 Normalization with TorchVision

The TorchVision function for the normalization performs an histogram equal-
ization and a Gaussian smoothing (see [40] for details). The command line is
as follows:

binfacenormalize inputImg.bindata 64 80 -unnorm -mirroradd -norm
-o output.bindata

where inputImg.bindata is the input image (in bindata format), 64 is the
number of image columns, and 80 is the number of image rows. The option
effects are as follows:

• unnorm specifies that the pixel values of the input image are normalized
between 0 and 1.

2 The diffusion coefficient is a factor of proportionality representing the amount of
energy diffusing across a unit area through a unit energy gradient in unit time.

390 13 Automatic Face Recognition

• mirroradd specifies that the mirror image of the input face is added to the
output image (this helps the recognition and verification performance).

• norm specifies that the pixel values of the output image will be normalized
between 0 and 1.

• o stands for output and specifies the name of the output image.

The results of the function are in Figure 13.2 (lower image on the right side).

13.5 Feature Extraction

This section presents some feature extraction methods frequently applied in
AFR. Special attention is paid to the application of principal component
analysis (see Chapter 11) and the extraction of the so-called eigenfaces. Such
an approach is one of the earliest of the literature, but it is still today used as
a baseline for comparison with other techniques [72]. Feature extraction tech-
niques for face recognition can be broadly grouped into two classes: holistic
approaches and local approaches (see Section 13.2 for more details). In the
first case, the face image is converted into a single vector resulting from the
application of an algorithm to the whole image face. In the second case, the
face image is converted into a set of vectors extracted from selected regions of
the image. The next two subsections show the two above approaches in more
detail.

13.5.1 Holistic Approaches

This section presents the main holistic feature extraction approaches with a
special attention to the PCA. The reason is not only that the PCA is often
used as a baseline for comparison with other approaches, but also that the
eigenvectors can be visualized. This provides a rather clear visual example of
how the PCA works, i.e. of how the most important information is captured
by projecting the images onto the eigenvectors.

Proposed for AFR in [30][61], the PCA has been applied for the first time
in [64] resulting into the first successful AFR system [44][48][65][72]. The ra-
tionale behind the application of the PCA is that natural images tend to be
redundant, especially when they contain the same object and are the output
of a normalization process [47][55], then the PCA is a suitable representa-
tion because it decorrelates the data end enables one to capture most of the
information contained in the faces using few features.

In holistic approaches, each image is considered as a point in the data
space. In other words, the images are considered as vectors where each com-
ponent corresponds to a pixel. Average face images contain several thousands
of pixels (Section 13.8 shows examples where the face images contain 5120
pixels), then they cannot be fed directly to a classifier because of the curse
of dimensionality (see Section 11). The application of the PCA can signifi-

13.5 Feature Extraction 391

Fig. 13.3. Eigenfaces. The figure shows the 100 eigenfaces corresponding to the 100
eigenvectors with higher eigenvalues extracted from a face image database.

cantly reduce the number of features necessary to represent the same data.
Figure 13.3 shows the first hundred eigenvectors extracted from the training
set of the XM2VTS database (see Section 13.8), one of the benchmarks most
commonly used in the literature. The eigenvectors are the basis of the space
of the face images; then they are face images as well. For this reason it is
possible to visualize them and to see ghostlike faces often called eigenfaces
(see Figure 13.3) [64]. The clear areas correspond to higher components, i.e.
to the face regions that are more weighted when a face image is projected
onto the eigenvectors. The first eigenface seems to account, not surprisingly,
for eyes, nose and upper lips; the second one seems to account especially for

392 13 Automatic Face Recognition

the lower part of the mouth; the third one corresponds to the eyebrows area,
and so on. This provides an intuitive explanation of where most of the face
variance is concentrated.

Figure 13.4 shows the percentage of data variance retained as a function
of the number of eigenvectors. The first 20 eigenvectors correspond to more
than 50% of the data variance, but to reach 90% it is necessary to include
around 250 eigenfaces (this point is not plotted in the figure). This is evident
in Figure 13.5 where several faces are reconstructed using 10%, 20%,. . .,100%
of the data variance. Each reconstructed image is the linear combination of
the number of eigenvectors corresponding to a given value of variance. The
coefficients of the linear combination are the projections of the original im-
ages onto the corresponding eigenvectors. The difference between the different
images becomes evident only at 50% of the variance and this is confirmed by
the recognition results presented in Section 13.8. In fact, the percentage of
faces correctly recognized increases quickly up to a number of eigenvectors
corresponding to 50-60% of the variance, and then increases slowly as more
information is added. This means that the first eigenvectors contain most of
the information while the others give less and less significant contributions
(see Section 13.8 and Figure 13.11 for more details).

The results show that, in such a representation, less than 30 features (the
projection onto the first eigenfaces) are sufficient to achieve satisfactory re-
sults [72]. The original dimension of the images is then reduced by around 170
times and the application of the classfiers presented in the previous chapters
is possible.

The earliest approaches performed the recognition by simply finding the
nearest neighbor in the set of images at disposition (see Figure 13.1) [64]. Such
an approach has then been refined by applying a Bayesian approach [43],
increasing the amount of data at disposition [50] and by trying to identify
subspaces more informative than others [62].

The PCA is just one way to convert high dimension vectors into lower
dimension data preserving most of the information. The other approaches
are presented in detail in Chapter 11 and have been often applied in face
recognition, in particular linear discriminant analysis with different vari-
ants [5][15][39] [42][63][73] and independent component analysis [3][4]. Other
feature extraction approaches are based on genetic algorithms [37] and kernel
methods [2][38][71][69][75][74].

13.5.2 Local Approaches

Local approaches do not convert face images into a single vector, but rather
into a sequence of vectors extracted from regions supposed to be more in-
formative. In some cases, the feature extraction techniques applied to single
regions are the same as those applied to the images as a whole in holistic
approaches, e.g. the local PCA in [46], but in most cases, local approaches use
different kinds of feature extraction techniques. The two-dimensional Gabor

13.5 Feature Extraction 393

10 20 30 40 50 60 70 80 90 100
10

20

30

40

50

60

70

80
Variance vs No. of Eigenvectors

No. of Eigenvectors

T
ot

al
 V

ar
ia

nc
e

P
er

ce
nt

ag
e

(%
)

Fig. 13.4. Variance. The plot shows the value of the data variance captured as a
function of the number of retained eigenvectors.

wavelets [14] have been succesfully applied in [34][50]. The authors of such
works overimpose a grid over a face image and identify the pixels (i0, j0) cor-
responding to the grid nodes. For each node (i0, j0) they extract a feature
vector where the components are the output of Gabor filters with different
directions and scales.

Other approaches split the images into nonoverlapping blocks and apply a
discrete cosine transform (see Appendix B) to each one of them [20][58][59] or
to the blocks containing more informative regions like the eye area [22]. The
feature vector sequences resulting from the different local areas are typically
modeled using hidden Markov models (see Chapter 10) [10].

13.5.3 Feature Extraction with TorchVision

The TorchVision package implements three feature extraction methods: PCA
and LDA (suitable for holistic approaches), and DCT (suitable for local
approaches). The features are extracted from the face images after the
application of localization and normalization functions (faceExtract and
binfacenormalize, respectively).

The PCA extraction is performed with the following command example:

trainPCA list.dat n -verbose -save model.pca

394 13 Automatic Face Recognition

Fig. 13.5. Reconstruction. Each row shows how a face image is reconstructed using
an increasing number of eigenvectors. The first image (starting from the left) uses
10 eigenvectors; the second uses 20 eigenvectors; and so on. The last image of each
row is the original picture.

where list.dat is the list containing the names of the files to be processed
and n is the number of pixels in the images of list.dat. The effect of the
options is as follows:

• verbose specifies that the program provides output about the steps being
performed at each moment.

• save specifies the file where the principal components must be stored (in
the case of the example the name of the output file is model.pca).

13.5 Feature Extraction 395

The eigenvalues can be converted into images for visualization purposes with
the following function:

pca2pgm model.pca nCol nRow -eigenface n -verbose

where model.pca is the file containing the principal components (output of
the function trainPca), and nCol and nRow are the number of columns and
rows respectively in the images from where the PCs have been extracted. The
effect of the options is as follows:

• eigenface specifies the number of eigenvectors to be converted into images
(n in the example).

• verbose specifies that the program provides output about the steps being
performed at each moment.

The results are shown in Figure 13.3. The images can be projected onto the
the eigenfaces to produce compact feature vectors (see Section 13.5). This
can be done in two possible ways: the first is by projecting the images onto a
predefined number of eigenfaces, the second is by projecting the images onto
a number of eigenfaces accounting for a predefined fraction of data variance
(see Section 13.5).

The function for the projection onto a predefined number of eigenfaces is
as follows:

bindata2pca inputImg.bindata model.pca n -noutput nEig -o
output.bindata

where inputImg.bindata is the image to be projected onto the eigenvectors
(in bindata format), model.pca is the file containing the principal components
(obtained with function trainPca), and n is the number of pixels in the input
images. The effect of the options is as follows:

• noutput specifies the number (nEig in the example) of eigenvectors to be
used.

• o stands for output and specifies the name of the output data.

The function for the projection onto a number of eigenfaces accounting for a
predefined fraction of the data variance is as follows:

bindata2pca inputImg.bindata model.pca n -variance fVar -o
output.bindata

and the meaning of the symbols is the same as in the case of the projection
onto a predefinite number of eigenvectors (see above). The effect of the options
is as follows:

• variance specifies the fraction (fVar in the example) of variance to be
used (it must be a number between 0 and 1).

• o stands for output and specifies the name of the output data.

396 13 Automatic Face Recognition

The results of the projection are shown in Figure 13.5. The picture shows that
the higher the number of eigenvectors, the better are the approximation of
the original image.

The images represented in the PCA space can be used to extract linear
discriminant analysis features using the following command:

trainLDA fileList.dat n -n classes 200 -save model.lda

where fileList.dat is the list containing the names of the reconstructed
images to be used, and n is the number of eigenvectors onto which the images
have been projected. The effect of the options is as follows:

• n classes specifies the number of classes in the data (in this case the
number of identities).

• save specifies the name of the file where the LDA subspace axes have been
stored (model.lda in the example).

Once the LDA has been performed, the reconstructed images can be projected
onto the LDA subspace axes to obtain new feature vectors. The command is
as follows:

bindata2lda inputImg.bindata model.lda n -n output m -o
outputImg.bindata

where inputImg.bindata is the input image in bindata format (see above),
model.lda is the file containing the LDA axes (see function trainLDA) and n
is the number of eigenvectors onto which the reconstructed image inputImg
has been projected. The effect of the options is as follows:

• n output specifies the number of LDA axes onto which the input image
must be projected, i.e. the dimension of the output vector.

• o specifies the name of the output file.

PCA and LDA are the two holistic feature extraction approaches implemented
in TorchVision. The package implements also the Discrete Cosine Transform
through the following command:

bindata2dctbindata inputImg.bindata m n outputImg.dct.bindata
-unnorm -block b -overlap o -dctdim d

where inputImg.bindata is an input image in bindata format (see above),
m and n are the number of columns and rows in the image, respectively, and
outputImg.dct.bindata is the name of the file containing the feature vector.
The effect of the options is as follows:

• unnorm specifies that the input image is normalized (pixel values between 0
and 1) and must be converted into a gray-level image (pixel values between
0 and 255).

• block specifies the size of the square blocks from which the DCT is ex-
tracted (b in the example).

13.6 Classification 397

003_1_1.inorm.bindata

003_1_1.dct.bindata

Fig. 13.6. DCT feature extraction. The image shows how the DCT features are
extracted from different blocks of the image (courtesy of Sébastien Marcel).

• overlap specifies the overlap between neighboring blocks (o in the exam-
ple).

• dctdim specifies the number of DCT coefficients to be retained, i.e. the
dimension of the feature vectors (d in the example).

The feature extraction approach implemented by bindata2dctbindata is
shown in Figure 13.6.

13.6 Classification

The classification step depends on the feature extraction approach: holistic
methods use classifiers such as neural networks or SVM that can be thought
of as mappings between the space of the faces and the space of the identi-
ties, while local approaches use hidden Markov models which can provide the
likelihood for sequences of vectors given a face model. However, the goal of
the classification step is the same in both cases: given a set of images (see
Figure 13.1) F and an input image (not belonging to F), the classifier must
find the image in F which portrays the same person as the input image. In
general, F contains more than one image per person in order to account for
the variability due to pose, ageing, hair style, etc.

This chapter focuses on close set recognition, i.e. the person in the input
image is supposed to be represented in F . The problem is then similar to
speech and handwriting recognition (see Chapter 12) where the recognizer
can give as output only words appearing in the dictionary. The two main
problems for a classifier in AFR are that few examples (typically less than
10) per identity are available and that the number of output classes (i.e. of
identities) is high (several hundreds).

The earliest approaches (e.g. [64]) were based on a nearest neighbor ap-
proach: the images of F and the input images are converted into vectors.
Then, given an input vector x, the system assigns the identity of the image

398 13 Automatic Face Recognition

x
Y

N

Fig. 13.7. Neural networks classification. The feature extraction is fed to a neural
network which has an output for each identity. The network is trained to have
positive output fir the correct identity and negative output for the others.

corresponding to the vector f∗ such that:

f∗ = arg min
f∈F

(f − x)2. (13.7)

However, once the size of the available data sets F has started to grow, it
is possible to apply classifiers such as neural networks and support vector
machines which need to be trained on a sufficient amount of data in order
to perform correctly. Neural networks are trained over the images of F and
associate to an input image one of the identities represented in F . In other
words, the NN correspond to a mapping f capable of associating identities to
face images:

f : X → I (13.8)

where X is the data space and I is the list of the identities represented in F
(see Figure 13.7).

Since the SVMs are binary classifiers, it is necessary to train a different
SVM for each identity in I. The SVMs are supposed to provide positive scores
to images portraying the same person they correspond to and negative scores
to the others. In case of multiple positive answers, the tie can be broken by
selecting the identity of the SVM giving the highest score:

I∗ = arg max
I∈I

αI(x) (13.9)

where I is an identity and αI(x) is the score that the SVM corresponding to
I assigns to x (see Figure 13.8).

While Chapter 12 has shown that the same machine learning approach
can be applied to different data, this section shows that different machine
learning approaches can be applied to the same data. Given a representation
of a face image (PCA, ICA, etc., see Section 13.5), different algorithms can be
applied for the classification. The same applies to the use of HMMs in local
approaches. Chapter 12 shows how HMMs model sequences of feature vectors
extracted from spoken and handwritten words and the HMMs can be used
in the same way to model vectors sequences extracted from face images (see
Figure 13.9).

13.7 Performance Assessment 399

1I

2I

NI

x
.....

N

Y

N

Fig. 13.8. SVM classification. The feature vector is fed to N SVMs corresponding
to the N possible identities. Each SVM is trained to give positive answer only for
images portraying persons of the same identity they correspond to.

xi

...

...

x
x

x

1
2

N

Fig. 13.9. HMM classification. An HMM is trained for each identity so that it is
possible to know the likelihood of the vector sequence given each identity model.

13.7 Performance Assessment

The performance assessment problem has two basic requirements: the first is
the definition of a performance metric capable of measuring correctly the effec-
tiveness of the system; the second is the definition of standard benchmarks, i.e.
common data and experimental protocols used by the whole research commu-
nity. The advantage of the second aspect is that results obtained by different
groups can be compared rigorously. While the first condition is typically met
in any domain, good performance measures are available for every application,
the realization of the second condition is the exception rather than the rule.
AFR is one of the exceptions and at least two major benchmarks (FERET
and FRVT) are available to the researchers. This is an important advantage
because the different techniques proposed in the literature can be compared
in the same conditions and rigorous answers about the effectiveness of one or
the other can be obtained.

The next sections present the different benchmarks and show, whenever
possible, the results achieved using different approaches.

400 13 Automatic Face Recognition

(1) (2) (3) (4) (5)

Fig. 13.10. FERET database. The figure shows images from a set (faces 1 to 3)
and from its duplicate (faces 4 and 5). The duplicate faces have been photographed
two years after the first three

13.7.1 The FERET Database

The FERET database has been collected at the National Institute of Stan-
dard and Technology (NIST) in the United States and aims at benchmarking
two major applications: AFR and automatic face verification (AFV), i.e. the
process of accepting or rejecting the identity claim made by a person (typi-
cally called client). This section focuses on AFR results [50][51], but results
of the AFV assessment are available in [53].

The database contains 14,126 images split into 1,564 sets [50]. Each set
contains 5-11 images of the same person taken in different conditions, e.g. with
and without glasses or with different facial expressions. The total number of
identities is 1,199 and 365 sets are made of duplicates, i.e. of images of a person
represented in another set, but at a different moment. In some cases there are
two years of difference between the pictures of one set and the pictures of
the duplicate. The FERET database aims at reproducing the so-called law-
enforcement scenario where one person is asked to identify a suspect in a
collection of pictures showing frontal faces of previously arrested people. From
an AFR point of view the above scenario has two main problems: high number
of classes (1,199) and few training samples for each class (5-11).

The latest FERET tests were performed as follows: each participating
team is provided with two sets of images: the target set (3,323 images) and
the query set (3,816 images). Both query and target sets were not available in
the training phase, then at the moment of the test both sets are not known
to the systems. Given an image in the query set, the recognition systems
find the best matching image in the target set. If the query image and best
matching target image show the same person, then the recognition process is
correct. The percentage of query images for which the recognition process is
correct is the performance metric of the test. Several teams have participated
in the test: Massachussets Institute of Technology (MIT) [43][64] Michigan
State University (MSU) [63][73], Rutgers University (RU) [67], University of
South California (USC) [68] and the University of Maryland (UM) [15]. Some
of the teams (MIT and UM) participated with more than one system. The
complete results are available in [50], tests were performed in different con-

13.7 Performance Assessment 401

ditions and using different protocols to highlight different properties of the
systems. Overall, the best system is the one described in [43] and based on
holistic PCA representation and Bayesian approaches for the classification.

The FERET database is still available at NIST and, although no more
official evaluations have been carried out, is still used today as a benchmark
in many works of the literature.

13.7.2 The FRVT database

The FRVT (face recognition vendor test) database and related official tests
can be considered as the continuation of the FERET evaluation campaigns.3

Five companies participated in the evaluations (see [6][72] for their names),
hence the name vendor test. The main goal of FVRT is to investigate the
problems left open by FERET, i.e. the effect of on the performance of the
following effects: different facial expressions, use of lossy image compression
algorithms, distance of the face from the camera, lighting changes, media used
for image storing (CCD rather than film), head pose, image resolution and
delay between different images [6][7].

Each of the above effects has been investigated by creating an appropriate
dataset (often including FERET data). The results are reported in [7] (in
extensive form) and [72] (in coincise form). The finding of the evaluation can
be summarized as follows:

• Effect of compression rate. No statistically significant changes are observed
for compression rates up to 30:1. The recognition rate decreases from 63%
to 56% when compressing the images 40 times using the JPEG algorithms
(see Chapter 3). This is important for the applications running on portable
devices such as cellular phones (e.g. identification of the owner), or through
the web (e.g. remote recognition for accessing web based services).

• Effect of the media. The results obtained using digital cameras and 35mm
films are similar. This is important in applications like indexing and con-
tent analysis of journals and other printed materials.

• Effect of the expression. The expression affects slightly (less than 3%) the
recognition rate. This is important when the subject cannot be asked to
have a neutral expression (e.g. in personal albums).

• Effect of lighting. The effect of the lighting is significant, more than 30%
of change, especially when moving from indoor to outdoor where the illu-
mination cannot be controlled. This seems to suggest that for the moment
recognition applications must be limited to controlled environments.

• Effect of pose. The pose is the angle by which the head is rotated with
respect to the camera. The results show slight changes (less than 5%)
when the pose is in the interval [−25o, 25o], but major recognition rate
decreases (more than 50%) when the pose is higher than 40o. In other

3 At the time this book is being written, the informations about past and future
FRVT evaluations are available at the following site: www.frvt.org.

402 13 Automatic Face Recognition

words, the frontal pose is not a strict requirement, but no major deviations
with respect to such a conditions are allowed.

• Effect of resolution. The resolution is measured through the number of
pixels separating the two eyes, this roughly accounts for the number of
pixels on the face of the subject. Moderate changes (less than 5%) are
observed when passing from 60 to 15 pixels, with the exception of two
participating systems.

• Effect of time delay. The results show no major changes when recognizing
face images separated by up to two years. This is important because the
set of available images must not be updated too frequently.

While they provide excellent indications about the limits of AFR technologies,
the FRVT results do not give any hint about the algorithms used by the dif-
ferent systems. The reason is that the vendors participating in the evaluations
keep the details of their products confidential.

13.8 Experiments

This section proposes some experiments that can be easily implemented using
TorchVision and svmLight, the support vector machine package presented in
Chapter 9. The goal is not to achieve state-of-the-art results because more
recent approaches achieve better performances, but rather to suggest some
laboratory exercices based on material accessible on the web. The first three
steps of the processing (localization, normalization and feature extraction) are
performed using the TorchVision functions described in the previous part of
the chapter and this section focuses solely on the classification step. All the
experiments we perform are based on PCA features, but the reader can repeat
the experiments using other features to compare the results. Two classification
approaches are used: the first is the simple Euclidean distance between the
input faces and the faces available in the training set, the second is based on
support vector machines. The experiments are performed over the XM2VTS
database,4 but it is possible to use other data.

The next sections describe the data, the results obtained using the Euclid-
ean distance and the results obtained using the SVMs.

13.8.1 Data and Experimental Protocol

The experiments described in this section are based on the XM2VTS database,
a multimodal collection of face images and videos accompanied by speech sam-
ples of each portrayed individual. The experiments of this section use only the
4 At the time this book is being written the data is available at cost price at the

following website: http://www.ee.surrey.ac.uk/Research/VSSP/xm2vtsdb.
Feature vectors extracted from the database are available on
http://TorchVision.idiap.ch/documentation.php, following the link Ex-
amples or Labs.

13.8 Experiments 403

face images and all other data are not considered. The face image data set
contains 2333 samples showing 295 individuals. All individuals participated
in four capture sessions where they have been photographed two times. As a
result, there are eight pictures per person, with the exception of few individ-
uals who could not participate in all sessions. The images of the first three
sessions are used as a training set (for a total of 1747 faces), while the others
are used as test set (for a total of 586 faces). Some samples of the database are
shown in Figure 13.5 (rightmost column) as a result of the projection onto all
eigenfaces extracted from the training set. Each person appearing in the test
set is represented also in the training set and the total number of identities is
295.

13.8.2 Euclidean Distance-Based Classifier

The classification based on Euclidean distance is probably the easiest possible
approach to the problem of face recognition. If X is the set of the feature
vectors extracted from the training set (see previous section) and y is the
feature vector extracted from the face to be recognized, then the classification
step simply finds the vector x∗ ∈ X such that:

x∗ = arg min
x∈X

(x − y)2. (13.10)

If I(x) is the identity of the face from where x has been extracted, then I(x∗)
is assigned to y.

In the case of our experiments, the vectors are the projections of the images
onto the first D eigenfaces extracted from the training set. If the vectors y
and x∗ are extracted from images of the same person, then y is correctly
recognized. The performance measure is simply the percentage of images in
the test set that have been correctly recognized.

The value of D is typically set by preserving a certain amount of variance
(typically 90%), but for didactical purposes our experiments are performed
varying D from 5 to 50 step 5. The goal is to show how the recognition
performance changes as a function of the amount of variance retained and
that relatively good recognition performances can be achieved even with few
eigenvectors. In realistic settings, the value of D must be set through cross-
validation, i.e. by selecting the value that give satisfactory results on a set of
data independent from the training and from the test set.

The results of the experiments are reported in Figure 13.11 where the plot
shows the recognition rate as a function of D. After growing relatively fast
at the first steps, the recognition rate is multiplied by more than four when
passing from D = 5 to D = 25, the curve increases more slowly. The reason is
that the amount of useful information brought by the eigenfaces is lower and
lower when increasing D (see Figure 13.4). The plot stops at D = 50 and this
accounts for around 70.0% of the data variance, but the performance values
can be measured also for higher D. When around 90.0% of the variance is

404 13 Automatic Face Recognition

5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60
Recognition Rate vs No. of Eigenfaces

No. of Eigenfaces

R
ec

og
ni

tio
n

R
at

e
(%

)
Euclidean
Pol.Kernel d=2
Pol.Kernel d=3
Pol.Kernel d=4

Fig. 13.11. Euclidean distance performance. The plot shows the recognition rate
as a function of the number of eigenfaces used to represent the data.

retained (D = 250), the recognition rate is 22.9%, just three points more than
the performance at D = 50.

Such results are far from the state-of-the-art (just see SVM-based exper-
iments for better results), but we might wonder how good (or bad) they are
in absolute terms, i.e. independently of the comparison with other systems.
One of the most common ways of answering such a question is to estimate
the performance of a system working randomly, i.e. a system that gives as
output an identity drawn with uniform probability distribution from the set
of the possible identities. For such a system, the probability p0 of correctly
identifying an image is:

p0 =
1
N

, (13.11)

where N is the total number of identities in the dataset. In our case, N = 295
and p0 � 0.3%, then the system performs around 10 times better than chance
even when D = 5 (the ratio rises to 76.3 when D = 50). The ratio between the
actual performance of a system and the performance of a system operating
randomly is a good metric to assess the actual effectiveness of the system. In
fact, if the performance of a system is comparable to the performance of a
random guess, the results are due to chance rather than to the actual effect
of the algorithms.

13.8 Experiments 405

13.8.3 SVM-Based Classification

In the experiments reported in this section, a different SVM is trained for
each of the 295 identities represented in the training set. The SVM related to
identity i is trained to give positive answer when the person appearing in the
probe image y has identity i and negative answer otherwise. If αi is the score
that the SVM related to identity i assigns to y, then the classification step
finds the identity k such that:

k = arg max
i∈(1,...,N)

αi (13.12)

and y is assigned the identity k. The SVMs are trained and tested using the
SVMLight package which implements different kernels. In the experiments
presented in this chapter, we used the polynomial kernel with degree d = 2,
d = 3 and d = 4. The recognition performance is measured as in the case of
the Euclidean-distance based classifier and Figure 13.11 shows the recognition
rate as a function of D.

The results are similar to those obtained with the distance-based classifier
only for D = 5. This seems to suggest that the amount of information the first
eigenfaces account for is too small for any classifier. However, the difference
becomes significant at D = 10 and never stops to grow as D increases. The
difference between kernels of various degree is not significant and the three
curves are close to each other. Like in the case of the distance based classifier,
the curve is steep for low values of D, when few eigenfaces add a significant
amount of variance, and then increases at a lower rate. The recognition rate
for D = 250 (roughly 90% of the data variance) is 61.8 percent for d = 2, 60%
for d = 3 and 57.4% for d = 4.

References

1. Y. Adini, Y. Moses, and S. Ullman. Face recognition: the problem of compen-
sating for changes in illumination detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 19(7):721–732, 1997.

2. F.R. Bach and M.I. Jordan. Kernel independent component analysis. Journal
of Machine Learning Research, 3:1–48, 2002.

3. M.S. Bartlett, H.M. Lades, and T. Sejnowski. Independent component repre-
sentation for face recognition. In Proceedings of SPIE Symposium of Electronic
Imaging: Science and Technology, pages 528–539, 1998.

4. M.S. Bartlett, J.R. Movellan, and T. Sejnowski. Face recognition by Independent
Component Analysis. IEEE Transactions on Neural Networks, 13(6):1450–1464,
2002.

5. P.N. Belhumeur, J.P. Hespanha, and D.J. Kriegman. Eigenfaces vs. fisherfaces:
recognition using class specific linear projection. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 19:711–720, 1997.

6. D.M. Blackburn, J.M. Bone, and P.J. Phillips. FRVT 2000 executive overview.
Technical report, www.frvt.org, 2000.

7. D.M. Blackburn, J.M. Bone, and P.J. Phillips. FRVT 2000 evaluation report.
Technical report, www.frvt.org, 2001.

8. G. Burel and D. Carel. Detection and localization of faces on digital images.
Pattern Recognition Letters, 15(10):963–967, 1994.

9. F. Cardinaux. Face Authentication based on local features and generative models.
PhD thesis, Ecole Polytechnique Fédérale de Lausanne, 2005.

10. F. Cardinaux, C. Sanderson, and S. Bengio. User authentication via adapted
statistical models for face images. IEEE Transactions on Signal Processing,
54(1):361–373, 2006.

11. H. Chen, Belhumeur, and D. Jacobs. In search of illumination variants. In
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,
pages 254–261, 2000.

12. D. Chetverikov and A. Lerch. Multiresolution face detection. Theoretical Foun-
dations of Computer Vision, 69:131–140, 1993.

13. I. Craw, H. Ellis, and J. Lishman. Automatic extraction of face features. Pattern
Recognition Letters, 5:183–187, 1987.

14. J. Daugman. Uncertainty relation for resolution in space, spacial frequency
and orientation optimized by two-dimensional visual cortical filters. Journal of
Optical Society of America, 2(7), 1985.

408 References

15. K. Etemad and R. Chellappa. Discriminant analysis for recognition of human
face images. Journal of Optical Society of America, A14:1724–1733, 1997.

16. V. Govindaraju. Locating human faces on photographs. International Journal
of Computer Vision, 19(2):129–146, 1996.

17. H.P. Graf, E. Cosatto, D. Gibbon, M. Kocheisen, and E. Petajan. Multimodal
system for locating heads and faces. In Proceedings of Second International
Conference on Face and Gesture Recognition, pages 88–93, 1996.

18. R. Gross and V. Brajovic. An image preprocessing algorithm for illumination
invariant face recognition. In Proceedings of International Conference on Audio
and Video Based Biometric Person Authentication, pages 254–259, 2004.

19. G. Guo, S.Z. Li, and K. Chan. Face recognition by Support Vector Machines. In
Proceedings of IEEE International Conference on Automatic Face and Gesture
Recognition, pages 196–201, 2000.

20. Z.M. Hafed and M.D. Levine. Face recognition using the Discrete Cosine Trans-
form. International Journal of Computer Vision, 43(3):167–188, 2004.

21. R.M. Haralick and L.G. Shapiro. Computer and Robot Vision. Prentice-Hall,
2002.

22. B. Heisele, H. Purdy, J. Wu, and T. Poggio. Face recognition: component-based
versus global approaches. Computer Vision and Image Understanding, 91(1-
2):6–21, 2003.

23. E. Hjelmas and B.K. Low. Face detection: A survey. Computer Vision and
Image Understanding, 83:236–274, 2001.

24. A.K. Jain, R. Bolle, and S. Pankanti, editors. Biometrics - Personal Identifica-
tion in Networked Society. Kluwer, 1999.

25. D.J. Jobson, Z. Rahman, and G.A. Woodell. A multiscale retinex for bridging
the gap between color images and the human observation of scenes. IEEE
Transactions on Image Processing, 6(3):451–462, 1997.

26. D.J. Jobson, Z. Rahman, and G.A. Woodell. Properties and performance of a
center/surround retinex. IEEE Transactions on Image Processing, 6(3):451–462,
1997.

27. K. Jonsson, J. Kittler, Y.P. Li, and J. Matas. Support vector machines for face
authentication. Image and Vision Computing, 2002.

28. T. Kanade. Computer recognition of human faces. Birkhauser, 1973.
29. M.D. Kelly. Visual identification of people by computer. Technical Report

AI-130, Stanford University, 1970.
30. M. Kirby and L. Sirovich. Application of the karhunen-loève procedure for the

characterization of human faces. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 12(1):103–108, 1990.

31. C. Kotropoulos and I. Pitas. Rule based face detection in frontal views. In
Proceedings of IEEE International Conference on Acoustics, Speech and Signal
Processing, pages 2537–2540, 1997.

32. S.Y. Kung, M.W. Mak, and S.H. Lin. Biometric Authentication - a Machine
Learning Approach. Prentice-Hall, 2005.

33. I.C. Kyong, K.W. Bowyer, and P.J. Flynn. Multiple-nose recgion matching
for 3D face recognition under varying facial expression. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 28(10):1695–1700, 2006.

34. M. Lades, J. Vorbruggen, J. Buhmann, J. Lange, C.V.D. Malburg, and R. Wurtz.
Distortion invariant object recognition in the dynamic link architecture. IEEE
Transactions on Computing, 2:300–311, 1993.

References 409

35. E.H. Land and J.J. McCann. Lightness and retinex theory. Journal of the
Optical Society of America, 61:1–11, 1971.

36. T.K. Leung, M.C. Burl, and P. Perona. Probabilistic affine invariants for recog-
nition. In Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition, pages 678–684, 1998.

37. C. Liu and H. Wechsler. Evolutionary pursuit and its application to face recogni-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22:570–
582, 2000.

38. J. Lu, K.N. Plataniotis, and A.N. Venetsanopoulos. Face recognition using ker-
nel discriminant analysis algorithms. IEEE Transactions on Neural Networks,
14(1):117–126, 2003.

39. J. Lu, K.N. Plataniotis, and A.N. Venetsanopoulos. Face recognition using
LDA-based algorithms. IEEE Transactions on Neural Networks, 14(1):195–200,
2003.

40. S. Marcel and S. Bengio. Improving face verification using skin color informa-
tion. In Proceedings of International Conference on Pattern Recognition, 2002.

41. A.M. Martinez. Recognizing imprecisely localized, partially occluded, and ex-
pression variant faces from a single sample per class. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 24(6):748–763, 2002.

42. A.M. Martinez and A.C. Kak. PCA versus LDA. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 23(2):228–233, 2001.

43. B. Moghaddam and A. Pentland. Probabilistic visual learning for object rep-
resentation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
19:696–710, 1997.

44. H. Moon and P.J. Phillips. Computational and performance aspects of PCA-
based face recognition algorithms. Perception, 30:303–321, 2001.

45. E. Osuna, R. Freund, and F. Girosi. Training support vector machines: An
application to face detection. In Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition, pages 130–136, 1997.

46. C. Padgett and G. Cottrell. Representing face images for emotion classification.
In Advances in Neural Information Processing Systems, 1997.

47. P. Penev and Atick. Local feature analysis: a general statistical theory for object
representation. Network: Computation in Neural Systems, 7(3):477–500, 1996.

48. A. Pentland, B. Moghaddam, and T. Starner. View based and modular
eigenspaces for face recognition. In Proceedings of IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 84–91, 1994.

49. P.J. Phillips, R.M. McCabe, and R. Chellappa. Biometric image processing and
recognition. In Proceedings of European Conference on Signal Processing, 1998.

50. P.J. Phillips, H. Moon, S.A. Rizvi, and P.J. Rauss. The FERET evaluation
methodology for face recognition algorithms. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 22(10):1090–1104, 2000.

51. P.J. Phillips, H. Wechsler, J. Huang, and P. Rauss. The FERET database
and evaluation procedure for face recognition algorithms. Image and Vision
Computing, 16(5):296–305, 1998.

52. Z. Rahman, G. Woodell, and D. Jobson. A comparison of the multiscale retinex
with other image enhancement techniques. In Proceedings of IS&T 50th An-
niversary Conference, pages 19–23, 1997.

53. S.A. Rizvi, P.J. Phillips, and H. Moon. A verification protocol and statistical
performance analysis for face recognition algorithms. In Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition, pages 833–838, 1998.

410 References

54. Y. Rodriguez, F. Cardinaux, S. Bengio, and J. Mariéthoz. Estimating the qual-
ity of face localization for face verification. In Proceedings of International
Conference on Image Processing, 2004.

55. D.L. Ruderman. The statistics of natural images. Network: Computation in
Neural Systems, 5(4):598–605, 1994.

56. F. Samaria and S. Young. HMM based architecture for face identification. Image
and Vision Computing, 3(1):71–86, 1991.

57. C. Samir, A. Srivastava, and M. Daoudi. Three-dimensional face recognition us-
ing shapes of facial curves. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 28(11):1858–1863, 2006.

58. C. Sanderson and K.K. Paliwal. Polynomial features for robust face authenti-
cation. In Proceedings of International Conference on Image Processing, 2002.

59. C. Sanderson and K.K. Paliwal. Fast features for face authentication under
illumination direction changes. Pattern Recognition Letters, 24:2409–2419, 2003.

60. J. Short, J. Kittler, and J. Messer. A comparison of photometric normalization
algorithms for face verification. In Proceedings of IEEE International Conference
on Automatic Face and Gesture Recognition, pages 254–259, 2004.

61. L. Sirovich and M. Kirby. Low dimensional procedure for the characterization
of human face. Journal of Optical Society of America, 4(3):519–525, 1987.

62. K.-K. Sung and T. Poggio. Example-based learning for view based human face
detection. IEEE Transactions on Pattern Analysis and Machine Intelligence,
20(1):39–51, 1998.

63. D.L. Swets and J. Weng. Using discriminant eigenfeatures for image retrieval.
IEEE Transactions on Image Processing, 18:831–836, 1996.

64. M. Turk and A. Pentland. Eigenfaces for recognition. Journal of Cognitive
Neuroscience, 3(1):71–86, 1991.

65. M.A. Turk and A. Pentland. Face recognition using eigenfaces. In Proceedings
of IEEE Conference on Computer Vision and Pattern Recognition, pages 3–6,
1991.

66. J. Wayman, A.K. Jain, D. Maltoni, and D. Maio, editors. Biometric Systems.
Springer-Verlag, 2005.

67. J. Wilder. Face recognition using transform coding of grayscale projections and
the neural tree network. In R.J. Mammone, editor, Artificial Neural Networks
with Applications in Speech and Vision, pages 520–536. Chapman Hall, 1994.

68. L. Wiskott, J.-M. Fellous, N. Kruger, and C. von der Malsburg. Face recognition
by elastic bunch graph matching. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 17(7):775–779, 1997.

69. H.-M. Yang. Face recognition using kernel methods. In Advances in Neural
Information Processing Systems, 2002.

70. M.H. Yang and T.S. Huang. Human face detection in complex background.
Pattern Recognition, 27(1):53–63, 1994.

71. M.H. Yang, D. Kriegman, and N. Ahuja. Detecting faces in images: a survey.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(1):34–58,
2002.

72. W. Zhao, R. Chellappa, P.J. Phillips, and A. Rosenfeld. Face recognition: A
literature survey. ACM Computing Surveys, 35(4):399–458, 2003.

73. W. Zhao, A. Krishnaswamy, R. Chellappa, D. Swets, and J. Weng. Discrim-
inant analysis of principal components for face recognition. In P.J. Phillips,
V. Bruce, F.F. Soulie, and T.S. Huang, editors, Face Recognition: from Theory
to Applications, pages 73–85. Springer-Verlag, 1998.

References 411

74. S. Zhou and R. Chellappa. Multiple exemplar discriminant analysis for face
recognition. In Proceedings of International Conference on Pattern Recognition,
pages 191–194, 2004.

75. S. Zhou, R. Chellappa, and B. Moghaddam. Intra-personal kernel space for face
recognition. In Proceedings of IEEE International Conference on Automatic
Face and Gesture Recognition, pages 235–240, 2004.

14

Video Segmentation and Keyframe Extraction

What the reader should know to understand this chapter

• Basic notions of image processing (Chapter 3).
• Clustering techniques (Chapter 6).

What the reader should know after reading this chapter

• State-of-the-art in video segmentation and shot detection.
• Feature extraction techniques for images.
• Performance measures for video segmentation systems.

14.1 Introduction

The goal of this chapter is to show how clustering techniques are applied
to perform video segmentation, i.e. to split videos into segments meaning-
ful from a semantic point of view. The segmentation is the first step of any
process aimed at extracting from videos high level information, i.e. information
which is not explicitly stated in the data, but it rather requires an abstraction
process [10][17][22]. The video segmentation can be thought of as the parti-
tioning of a text into chapters, sections and other parts that help the reader to
better access the content. In more general terms, the segmentation of a long
document (text, video, audio, etc.) into smaller parts addresses the limits of
the human mind in dealing with large amounts of information. In fact, hu-
mans are known to be more effective when managing five to nine information
chunks rather than a single information block corresponding to the sum of
the chunks [30].

The general structure of a video is shown in Figure 14.1: the highest level
segments are the scenes or stories, i.e. parts which are semantically coherent
from the point of view of subject, people involved, etc. The intermediate layer
are the shots, i.e. unbroken sequences of frames taken by one camera. The

414 14 Video Segmentation and Keyframe Extraction

transition between one shot and the following can be abrupt or gradual. In
the first case the transition is called cut, in the second case is called fade or
dissolve. At the lowest level there are the keyframes, i.e. the frames supposed
to best represent the shot content. The vertical dotted line of Figure 14.1
separates logical and physical layers. Scenes and stories are said to form the
logical layer because they are not characterized by physical properties, but
rather by the author view, i.e. by the way the author organizes the video [40].
On the contrary, shots and keyframes are characterized by physical properties
that enable one to extract them automatically. This is the reason why this
chapter focuses on shot boundary detection and keyframe extraction.

The main problem in shot segmentation is to detect correctly the bound-
aries between one shot and the following one. This is done by applying two ma-
jor approaches: the first estimates the difference between consecutive frames
and identifies shot transitions as the points where such difference exceeds some
threshold. The second is to apply clustering techniques to feature vectors ex-
tracted from single frames and to group into a shot all frames that tend to
cluster together. Shot boundaries can be identified objectively and this enables
one to have quantitative performance measures for automatic shot detection
systems. The same does not apply to keyframe extraction because the most
representative frame of a shot can be identified only on a subjective basis.
However, it is still possible to ask human assessors to evaluate keyframe ex-
traction systems and to provide judgments like in the case of the MOS score
described in Chapter 2.

The main applications of video segmentation are digital libraries, video
on demand, video browsing, video indexing and retrieval, etc. (see [40] for
a survey) and in general all applications involving large collections of video
recordings (see Section 14.2 for a quick survey). Video segmentation is the
subject of both monographies [18][26][39] and surveys [10][17][22] that the
interested reader can consult for more extensive information.

The rest of this chapter is organized as follows: Section 14.2 proposes a
survey of major applications involving shot boundary detection and keyframe
extraction. Section 14.3 presents the most common approaches to the prob-
lem of shot segmentation. Section 14.4 shows how to develop a simple shot
boundary detection system using software packages available on the web. Sec-
tion 14.5 describes keyframe extraction techniques. Section 14.6 shows how to
create a simple keyframe extraction system using free software packages.

14.2 Applications of Video Segmentation

This section presents a survey of the major applications involving shot bound-
ary detection and keyframe extraction. One of the most important domains
where such tasks are performed is video indexing, i.e. the conversion of
videos into a format suitable for retrieval systems. In such a context, the
approach is typically as follows: first videos are segmented into shots, then

14.2 Applications of Video Segmentation 415

Scenes Shots

t(sec)

Keyframes

Logical Layer Physicl Layer

0

6

4

2

8

10

12

14

16

18

Fig. 14.1. Video structure. The picture shows the main components of a video.

keyframes are extracted from each shot. At this point, the problem of search-
ing through videos can be performed through image retrieval, i.e. by retriev-
ing keyframes similar to an image submitted as query. Such an approach is

416 14 Video Segmentation and Keyframe Extraction

followed in [6][33][38][41][52] and, with some variants, in [19][23][25]: in [19]
the authors try to group shots based on their content rather than to focus
on single shots, in [23][50] the segmentation is performed hierarchically and
in [9][25][49][54] hidden Markov models (see Chapter 10) are used to keep
into account temporal constraints in an expected sequence of shots, in [28]
the authors evaluate the impact of relevance feedback on the retrieval per-
formance. Mathematical models based on video production techniques are
proposed in [16][51][53].

Another important domain of application is video browsing, i.e. any tech-
nique trying to show the whole content of a video in a form as concise and
accessible as possible. The need behind such an application is that users are
often interested to watch only part of the video, e.g. the goals in a soccer
match, and it should be possible to find such segment without watching the
whole video. The most common approach is to segment approximately into
scenes (see Figure 14.1) and then present the video as a sequence of keyframes.
In this way few images can summarize several minutes. The users can then
select the keyframes in order to access the corresponding video segments. Such
an approach is used in [4][11][13][44][48]. The work in [4] tries to simplify the
interaction of the users with the videos, while particular emphasis on using as
less images as possible to represent a given video is placed in [48]. The works
in [1][3][11][12][24][44] try to select the shots to be shown to the users based
on content analysis rather than on simple physical properties. The use of un-
supervised approaches to identify content coherent segments (and respective
keyframes) is illustrated in [13][21][31]. The effects of real-time constraints on
shot segmentation for browsing purposes are presented in [42].

Most of the applications aiming at analyzing the video content, i.e. what
are the informations displayed in the video, use shots and keyframes as ele-
mentary units of information [8][43]: in [29] the authors use content analysis
for coding purposes, in [45] the focus is on the use of compressed data to per-
form rapid scene analysis, and in [14][20][46][47] unsupervised techniques are
used to explore the content of video collections. The application of principal
component analysis (see Chapter 11) in such a domain is illustrated in [36].
Other applications are summarization [2][5], object detection [27], commer-
cials detection [15][35], place identification [37] and classification of edit effects
and motion [32][34].

14.3 Shot Boundary Detection

This section presents the main techniques for shot boundary detection in
videos. The general scheme of a system is shown in Figure 14.2: given a
sequence of frames f = {f1, . . . , fF }, the system computes a discontinuity
function z(k, k + L) at each point k. The function z(k, k + L) measures the
difference between frames k and k+L in the sequence. The parameter L is an
offset and it must be set a priori. The value of L must be a tradeoff between

14.3 Shot Boundary Detection 417

k

k+1

k+2

k+3

k+4

Discontinuity
Computation

Transition
Detector

z(k+1,k+3)

z>T

Fig. 14.2. Shot boundary detection system. The figure shows the general scheme
of a shot boundary detection system: the frames are used to compute z(k, k + L),
in this case L = 2, and the shot detector inserts a boundary if z(k, k + L) > T .

two conflicting needs: the first is the detection of abrupt changes that can be
identified by simply comparing two consecutive frames, i.e. L = 1; the second
is the detection of smooth transitions where the change is evident only when
comparing frames at a certain distance from each other, i.e. L > 1. Whenever
z(k, k + L) > T , where T is a predefined threshold, the system inserts a shot
boundary.

The main problem of such an approach is that the parameters L and T
must be set empirically and there is no guarantee that the two major criteria
for robustness are met [17]:

• satisfactory detection performance across as many different videos as pos-
sible (this aspect depends critically on T).

• satisfactory detection performance for both hard and gradual transitions
(this aspect depends critically on L)

The next sections present some of the most commonly applied approaches
used to compute z(k, k + l) and the performance measures used to assess the
effectiveness of shot boundary detection systems.

14.3.1 Pixel-Based Approaches

The simplest form of discontinuity function is the pixel-by-pixel difference
between frames k and k + L. In the case of gray-level images, the expression
of the difference is:

z(k, k + L) =

∑R
i=1

∑C
j=1 |Ik(i, j) − Ik+L(i, j)|

CR
(14.1)

where Ik(i, j) is the intensity level of pixel (i, j) in frame k, C is the number
of columns per frame, and R is the number of rows per frame. When the
frames are color images, then the value of each pixel corresponds to a triple
c = (c1, c2, c3) and the difference function becomes:

418 14 Video Segmentation and Keyframe Extraction

z(k, k + L) =

∑R
i=1

∑C
j=1

∑3
c=1 |Ik(i, j, c) − Ik+L(i, j, c)|

CR
, (14.2)

where Ik(i, j, c) is the value of the c component of pixel (i, j) in frame k (see
Chapter 3 for the meaning of ci components).

Pixel comparison is often used as a baseline for comparison with more
complex approaches, but it has a major drawback, i.e. it cannot distinguish
between a small change in a large area and a large change in a small area.
As an example consider two frames such that Ik+L(i, j) = Ik(i, j) + 1. The
two images are visually similar and they are unlikely to correspond to a shot
transition. The value of z(k, k + L) for the frames of the above example is 1
and it can be obtained also for two images where the changes are concentrated
in a small area: {

Ik+L(i, j) = Ik(i, j) + CR/P 2 i, j ≤ P
Ik+L(i, j) = Ik(i, j) i, j > P

(14.3)

where P is an arbitrary constant such that P ≤ C and P ≤ R. The above
images are visually different and they are likely to correspond to a shot tran-
sition, but the value of the difference is the same as in the first of the above
examples where the images were not likely to account for a shot boundary.

The above effect is reduced by introducing the following function (the
extension to color images is straightforward):

DP (k, k + L, i, j) =
{

1 if|Ik(i, j) − Ik+L(i, j)| > T2

0 otherwise (14.4)

where T2 is an arbitrary threshold. The difference between two frames can
then be computed as follows:

z(k, k + L) =

∑R
i=1

∑C
j=1 DP (k, k + L, i, j)

CR
(14.5)

(the extension to color images is straightforward). This function addresses the
problem described above, i.e. the distinction between large changes concen-
trated in small areas and small changes diffuse over large areas, but leaves
open another problem: when the camera captures a subject moving slowly
from left to right, the number of pixels where the threshold T2 is exceeded
is high, but this does not correspond to a shot transition. The problem is
typically avoided by replacing the value of each pixel with the average of the
surrounding pixels.

14.3.2 Block-Based Approaches

Pixel-based approaches are sensitive to moving objects, i.e. they tend to insert
shot transitions where the images show an object moving with respect to a
fixed background. In general this is not correct because the frame sequence

14.3 Shot Boundary Detection 419

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

t (sec)

z(
k,

k+
1)

Pixel−by−Pixel Difference

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5
x 10

4

t (sec)

z(
k,

k+
1)

Global Histogram Difference

Fig. 14.3. Discontinuity functions. The upper plot shows the pixel-based difference,
the lower plot shows the global histogram-based difference.

is unbroken (see the definition of shot in Section 14.1) even if the object
changes position. Block-based approaches deal with such a problem by using
discontinuity functions of the following form:

z(k, k + L) =
B∑

n=1

D(k, k + L, n) (14.6)

where B is the number of blocks, and D(k, k + L, n) is the difference between
block n in frames k and k + L. A block is a subset of the image, e.g. a
square with lower left corner in pixel (i, j) and upper right corner in pixel
(i+N, j +N). The difference function D(.) is typically one of the pixel-based
expressions described in the previous section. In some cases, the blocks cover
the whole image (eventually overlapping each other), while in other cases they
are arranged over a grid supposed to cover the most important areas of the
images.

Block-based approaches are more robust than pixel-based approaches to
moving objects or to slow movements of the camera, but they are slower
because they require more computation.

420 14 Video Segmentation and Keyframe Extraction

14.3.3 Histogram-Based Approaches

Both pixel- and block-based approaches are affected by the spatial disposition
of gray levels (or colors) in the frame. This is the reason why objects changing
position or camera movements create problems. Histogram-based approaches
deal with such an effect because they use information related to the ditribution
of pixel values without taking into account their position.

If N gray-level values 1, 2, . . . , N are possible, the histogram Hk of frame k
is an N -dimensional vector where component Hk(i) accounts for the number
of occurrences (or for the percentage) of pixels where the gray level is i. In the
case of color images, the number of possible colors is N3 and the histogram has
the same number of components. The simplest discontinuity function based
on histograms is the following:

z(k, k + L) =
N∑

i=1

|Hk(i) − Hk+L(i)| (14.7)

and simply corresponds to the difference between vectors Hk and Hk+L.
Similar approaches try to enhance the difference between histograms ex-

tracted in different shots by using a χ2 variable as discontinuity function:

z(k, k + L) =
N∑

i=1

|Hk(i) − Hk+L(i)|2
Hk+L(i)

. (14.8)

However, the above function tends also to enhance differences between frames
of the same shot and this results in the insertion of false transitions. The same
discontinuity functions can be applied to image blocks such as in the case of
pixel-based techniques (see above).

14.3.4 Clustering-Based Approaches

The approaches described so far have two major drawbacks: the first is that
they require us to set empirically one or more thresholds. This is a problem
because threshold values are often data dependent and the algorithms fail in
matching the first condition stated at the beginning of this section, i.e. that the
performance of the system should be uniform across different kinds of data and
require minimum effort in parameter tuning when changing data. The second
is that each algorithm is adapted to a specific problem, but fails in addressing
the others: e.g. histogram-based approaches address the problem of moving
objects (see above), but have problems in detecting gradual transitions. In
other words, the above approaches do not meet the second condition stated
at the beginning of the section, i.e. that the algorithms must be capable of
detecting with satisfactory performance all kinds of transitions.

Clustering-based approaches try to address the above limits by applying
unsupervised learning algorithms to frame changes. The reason is that clus-
tering algorithms do not require us to set thresholds and are expected to

14.3 Shot Boundary Detection 421

0 10 20 30 40 50 60 70
0

1

2

3

4

5

6

7
x 10

5

Pixel−by−Pixel Difference

G
lo

ba
l H

is
to

gr
am

 D
iff

er
en

ce

Histogram vs Pixel Difference

Fig. 14.4. Histogram vs. pixel difference for a single video. Each point in the plot
corresponds to a pair of consecutive frames in a 60-seconds long video. The horizontal
axis is the pixel-by-pixel difference and the vertical axis is the global histogram axis.
The points close to the upper right corner of the plot are the actual shot transitions
of the video.

group all frame changes into two classes: shot transitions and others. The sec-
ond is that clustering algorithms enable us to use multiple features capable
of addressing at the same time the different problems presented above. This
concept is illustrated in Figure 14.4 where the horizontal axis is the pixel-
based difference and the vertical axis is the global histogram-based difference.
Each point corresponds to a pair of consecutive frames in the video used in
Figure 14.1. The four points close to the upper right corner correspond to the
actual shot boundaries of the video.1 The separation between ordinary frames
and shot boundaries is evident. In this video, the two classes are even linearly
separable, but the problem is more difficult when the plots are obtained using
large databases of videos. In fact, the variability of the data tend to form
different clusters corresponding to different kinds of transitions: sometimes
the last image of a shot is very different from the first image of the following

1 Figure 14.4 includes the whole video and this is the reason why the shot bound-
aries are four rather than one as shown in Figure 14.1 which shows only the first
20 seconds.

422 14 Video Segmentation and Keyframe Extraction

0 10 20 30 40 50 60 70
0

1

2

3

4

5

6

7

8
x 10

5

Pixel−by−Pixel Difference

G
lo

ba
l H

is
to

gr
am

 D
iff

er
en

ce

Histogram vs Pixel Difference

Fig. 14.5. Histogram vs. pixel difference for several videos (see Figure 14.4). Normal
frames tend to concentrate in the lower left corner (where the two differences are
close to zero), while shot boundaries tend to cluster towards the upper right corner
(where the two differences are significantly higher than zero.

shot and the boundary is clear; other times, the new shot is simply a different
view of the same subject and the transition is more difficult to capture. Such
a situation is evident in Figure 14.5 where the points are extracted from a set
of 15 videos. However, clustering-based approaches have been shown through
extensive experiments to be more robust than other methods.

14.3.5 Performance Measures

The performance of a shot boundary detection system is measured in terms
of precision π and recall ρ: the first is the fraction of frames identified as shot
boundaries by the system that correspond to real shot boundaries; the second
is the percentage of real shot boundaries that have been detected as such by
the system. In mathematical terms, if Rd is the set of frames that the system
claims to be shot boundaries and Rt is the set of frames that correspond to
real shot boundaries, then the precision is defined as follows:

π =
|Rd ∩ Rt|

|Rd| , (14.9)

14.4 Shot Boundary Detection with Torchvision 423

where |.| is the cardinality of the set, and the recall is:

ρ =
|Rd ∩ Rt|

|Rt| . (14.10)

The above expressions show that precision and recall can be interpreted as
probabilities: π is the probability that a frame identified as a boundary by
the system is actually a boundary, and ρ is the probability that a boundary
is identified as such by the system.

precision and recall are not independent and must always be used together.
Consider as an example a video with N shot boundaries and F frames. If
all frames are classified as shot boundaries, then ρ = 100% and the system
seems to work correctly, but π = N/F , i.e. the smallest possible value for the
precision given N and F . Conversely, a system that classifies as shot boundary
only the frame with the highest difference with respect to its following frame
(see above) would probably have π = 100% because such a frame is likely to
be a shot boundary, but the recall would be 1/N , i.e. the smallest possible
value given N and F . Both above examples show that using only ρ or only π
is potentially misleading.

14.4 Shot Boundary Detection with Torchvision

This section shows how a simple shot boundary detection system can be im-
plemented using Torchvision,2 the software package presented in Chapter 13.
Given a video, the first problem is to extract the frame it contains and this
can be done using the following function:

avi2avippm -ppm -ffmpeg -I num video.avi

where video.avi is the video to be analyzed (in AVI format) and the effect
of the options is as follows:

• ppm specifies the format of the image files where the frames are stored
(only the ppm format is currently available).

• ffmpeg specifies that the encoder is mpeg.
• I specifies the number of frames to be extracted (if no value is specified,

the program extracts all the frames in the video).

The above program gives as output an image for each frame of the video.
In general there are 24 frames per second, then even a short video results in
several thousands of pictures. The images are numbered following the frame
order and this enables one to calculate the differences between frames k and
k+L using the algorithms described in Section 14.3. The Torchvision package
contains a function that perfoms the pixel-by-pixel difference:
2 At the time this book is being written, the package can be downloaded from
http://torch3vision.idiap.ch.

424 14 Video Segmentation and Keyframe Extraction

imagediff frame k.ppm frame l.ppm

where frame k.ppm and frame l.ppm are the two images to be compared.
Once the parameter L has been set, the imagediff function enables one to
obtain a difference value at each instant and to plot a curve like the one of
Figure 14.3.

Alternatively, Torchvision proposes also a function for collecting the image
histograms from gray-level images:

histopgm frame.pgm

where frame.pgm is the image file containing a frame in pgm format.
The joint use of both imagediff and histopgm enables one to obtain

scatter plots like those in Figure 14.4 and 14.5. Such data can be clustered
using the techniques and the packages presented in Chapter 6.

14.5 Keyframe Extraction

The segmentation into shots is the first step of many video processing appli-
cations (see Section 14.2). However, shots are still difficult to handle. They
are often replaced with one of their frames supposed to be representative of
their content. By representative it is meant here that the application of any
algorithm to such a frame leads to the same results that would be obtained
by applying the same algorithm to the whole shot.

The most common approach to the keyframe extraction problem is to
extract a feature vector from each frame and then to apply a clustering al-
gorithm to the resulting data. After, the keyframe is identified as the frame
closest to the centroid of the largest or of the smallest cluster: in the first case,
the rationale is to represent the shot with the frame showing the most fre-
quent characteristics, in the second case the rationale is to represent the shot
with the rarest characteristics. Since there are no metrics accounting for the
keyframe extraction process, none of the above approaches can be proposed as
better than the other. In general, both techniques lead to reasonable results
and allow one to perform further processing steps such as indexing, retrieval,
browsing, etc.

Another typical approach is to avoid the segmentation into shots and to
cluster the whole set of frames extracted from a given video. In this case, the
frames closest to the cluster centroids are expected to be representative of the
video content because they are at the center of densest regions, i.e. they show
characteristics common to many different frames.

An example of such a technique is shown in Figure 14.6 where each point
corresponds to a frame in a 75 seconds long video and the circles are centered
around the centroids found by applying the K-means algorithm presented in
Chapter 6. The features have been obtained as follows: the histogram has
been extracted from each frame and principal component analysis (see Chap-
ter 11) has been applied to the resulting vectors. The features x1 and x2 (the

14.5 Keyframe Extraction 425

−10 −8 −6 −4 −2 0 2

x 10
4

−4

−3

−2

−1

0

1

2

3
x 10

4 Keyframe Extraction

x
1

x 2

Fig. 14.6. Frame clustering. Each point corresponds to a frame and each circle
corresponds to a centroid obtained with the K-means algorithm.

horizontal and vertical axis of Figure 14.6 respectively) are the projections of
the histogram vectors onto the first two principal components.

The frames belonging to each shot tend to cluster because they are visu-
ally similar and their histograms are thus close to each other. The transitions
between neighboring shots are gradual and this results into the points con-
necting different clusters in a filament-like structure. The original dimension
of the histograms is 256, but the use of just two features leads to satisfactory
results. The reason is that many frames are similar to one another (cameras
capture 24 frames per second and no major changes happen at such a time-
scale), then there is a large amount of redundancy. Section 14.6 shows how to
apply the above approach using the Torch package.

In the approaches described so far, no temporal constraints are taken into
account, i.e. the order of the frames along the video is not used. In some cases,
such an information is useful because the visual difference between temporally
close frames can be due to local effects such as illumination changes or moving
objects. In this case, the frames should cluster together despite the visual
differences.

426 14 Video Segmentation and Keyframe Extraction

14.6 Keyframe Extraction with Torchvision and Torch

This section shows how to perform keyframe extraction by using the Torch
package [7], an extensive software library including the most common tech-
niques applied in machine learning 3.

The first step of the process is the conversion of the video into a sequence
of images and it can be performed using the function avi2avippm described in
Section 14.4. The following step is the extraction of the histograms from the
single frame images and it can be performed using the function histopgm
described in Section 14.4. The PCA can be extracted using the function
trainPca of TorchVision as explained in Chapter 13.

The last step is the application of the K-means algorithm to the projec-
tions of the histogram algorithms onto the first N principal components. An
implementation of the K-means is available in Torch and it can be called as
follows:

kmeans -save model -one file data.dat

where the meaning of the options is as follows:

• -save specifies the file where the centroid coordinates must be stored
(model in the example).

• one file specifies that all training examples are in a single file (called
data.dat in the example).

Once the K centroids are available, is up to the user to the decide whether to
select as keyframes the images closest to largest or smallest clusters.

This section proposes the K-means because it is the simplest clustering
algorithm and it represents a good basline. However, any other clustering
algorithm can be used for the same application. Chapter 6 presents a large
variety of clustering algorithms including available software packages that
implement them.

3 At the time this book is being written, the package is publicly available at the
following website: http://www.torch.ch.

References

1. M. Abdel-Mottaleb, N. Dimitrova, R. Desai, and J. Martino. CONIVAS: content
based image and video access system. In Proceedings of ACM International
Conference on Multimedia, pages 427–428, 1996.

2. A. Aner-Wolf and J. Kender. Video-summaries and cross-referencing through
mosaic based representation. Computer Vision and Image Understanding,
95(2):201–237, 2004.

3. H. Aoki, S. Shmotsuji, and O. Hori. A shot classification method of selecting
effective key-frames for video browsing. In Proceedings of ACM International
Conference on Multimedia, pages 1–10, 1996.

4. R. Castagno, T. Ebrahimi, and M. Kunt. Video segmentation based on multiple
features for interactive multimedia applications. IEEE Transactions on Circuits
and Systems for Video Technology, 8(5):562–571, 1998.

5. Z. Cernekova, I. Pitas, and Nikou. Information theory-based shot cut/fade
detection and video summarization. IEEE Transactions on Circuits and Systems
for Video Technology, 16(1):82–91, 2006.

6. H.S. Chang, S. Sull, and S.U. Lee. Efficient video indexing scheme for content-
based retrieval. IEEE Transactions on Circuits and Systems for Video Technol-
ogy, 9(8):1269–1279, 1999.

7. R. Collobert, S. Bengio, and J. Mariéthoz. Torch: a modular machine learning
software library. Technical Report 02-46, IDIAP, 2002.

8. P.L. Correia and F. Pereira. Classification of video segmentation application
scenarios. IEEE Transactions on Circuits and Systems for Video Technology,
14(5):735–741, 2004.

9. J.M. Corridoni and A. Del Bimbo. Structured representation and automatic
indexing of movie information content. Pattern Recognition, 31(12):2027–2045,
1998.

10. N. Dimitrova, H.J. Zhang, B. Shahraray, I. Sezan, T. Huang, and A. Zakhor.
Application of video-content analysis and retrieval. IEEE Multimedia, 9(3):42–
55, 2002.

11. A.D. Doulamis and N.D. Doulamis. Optimal content-based video decomposition
for interactive video navigation. IEEE Transactions on Circuits and Systems
for Video Technology, 14(6):757–775, 2004.

428 References

12. X. Du and G. Fan. Joint key-frame extraction and object segmentation for
content-based video analysis. IEEE Transactions on Circuits and Systems for
Video Technology, 16(7):904–914, 2006.

13. X. Gao and X. Tang. Unsupervised video-shot segmentation and model-free
anchorperson detection for news video story parsing. IEEE Transactions on
Circuits and Systems for Video Technology, 12(9):765–776, 2002.

14. D. Gatica-Perez, A. Loui, and M.T. Sun. Finding structure in home videos by
probabilistic hierarchical clustering. IEEE Transactions on Circuits and Systems
for Video Technology, 13(6):539–548, 2003.

15. J.M. Gauch and A. Shivadas. Finding and identifying unknown commercials
using repeated video sequence detection. Computer Vision and Image Under-
standing, 103(1):80–88, 2006.

16. A. Hamampur, T. Weymouth, and R. Jain. Digital video segmentation. In
Proceedings of ACM International Conference on Multimedia, pages 357–364,
1994.

17. A. Hanjalic. Shot boundary detection: unraveled and resolved? IEEE Transac-
tions on Circuits and Systems for Video Technology, 12(2):90–105, 2002.

18. A. Hanjalic. Content Based Analysis of Digital Video. Springer-Verlag, 2004.
19. A. Hanjalic, R.L. Lagendijk, and J. Biemond. Automated high-level movie seg-

mentation for advanced video-retrieval systems. IEEE Transactions on Circuits
and Systems for Video Technology, 9(4):580–588, 1999.

20. A. Hanjalic and H.J. Zhang. An integrated scheme for automated video ab-
straction based on unsupervised cluster-validity analysis. IEEE Transactions
on Circuits and Systems for Video Technology, 9(8):1280–1289, 1999.

21. V. Kobla, D. Doermann, and C. Faloutsos. VideoTrails: representing and visual-
izing structure. In Proceedings of ACM International Conference on Multimedia,
pages 335–346, 1997.

22. I. Koprinska and S. Carrato. Temporal video segmentation: a survey. Signal
Processing: Image Communication, 16:477–500, 2001.

23. J. Lee and B.W. Dickinson. Hierarchical video indexing and retrieval for
subband-coded video. IEEE Transactions on Circuits and Systems for Video
Technology, 10(5):824–829, 2000.

24. M.S. Lee, Y.M. Yang, and S.W. Lee. Automatic video parsing using shot bound-
ary detection and camera operation analysis. Pattern Recognition, 34(3):711–
719, 2001.

25. R. Leonardi, P. Migliorati, and M. Prandini. Semantic indexing of soccer audio-
visual sequences: a multimodal approach based on controlled Markov chains.
IEEE Transactions on Circuits and Systems for Video Technology, 14(5):634–
643, 2004.

26. Y. Li and J. Kuo. Video Content Analysis Using Multimodal Information.
Springer-Verlag, 2003.

27. L. Lije and G. Fan. Combined key-frame extraction and object-based video seg-
mentation. IEEE Transactions on Circuits and Systems for Video Technology,
15(7):869–884, 2005.

28. S.D. MacArthur, C.E. Brodley, A.C. Kak, and L.S. Broderick. Interactive
content-based image retrieval using relevance feedback. Computer Vision and
Image Understanding, 88(2):55–75, 2002.

29. T. Meier and K.N. Ngan. Video segmentation for content-based coding. IEEE
Transactions on Circuits and Systems for Video Technology, 9(8):1190–1203,
1999.

References 429

30. G.A. Miller. The magic number seven plus or minus two: some limits on capacity
for processing information. Psychology Review, 63:81–97, 1956.

31. C.W. Ngo, T.C. Pong, and R.T. Chin. Video partitioning by temporal slice
coherency. IEEE Transactions on Circuits and Systems for Video Technology,
11(8):941–953, 2001.

32. N.V. Patel and I.K. Sethi. Video shot detection and characterization for video
databases. Pattern Recognition, 30(4):583–592, 1997.

33. M.J. Pickering and S. Rüger. Evaluation of key-frame based retrieval techniques
for video. Computer Vision and Image Understanding, 92(2-3):217–235, 2003.

34. S. Porter, M. Mirmehdi, and B. Thoams. Temporal video segmentation and
classification of edit effects. Image and Vision Computing, 21(13-14):1097–1106,
2003.

35. K.M. Pua, Gauch J.M., S.E. Gauch, and J.Z. Miadowicz. Real-time repeated
video sequence identification. Computer Vision and Image Understanding,
93(3):310–327, 2004.

36. E. Sahouria and A. Zakhor. Content analysis of video using principal component
analysis. IEEE Transactions on Circuits and Systems for Video Technology,
9(8):1290–1298, 1999.

37. F. Schaffalitzky and A. Zisserman. Automated location matching in movies.
Computer Vision and Image Understanding, 92(2-3):217–235, 2003.

38. M.A. Smith and M.G. Christel. Automating the creation of a digital video
library. In Proceedings of ACM International Conference on Multimedia, pages
357–358, 1995.

39. M.A. Smith and T. Kanade. Multimodal Video Characterization and Summa-
rization. Springer-Verlag, 2004.

40. C.G.M. Snoek and M. Worring. Multimodal video indexing: a review of the
state-of-the-art. Multimedia Tools and Applications, 25(1):5–35, 2005.

41. K.W. Sze, K.M. Lam, and G. Qiu. A new key frame representation for video
segment retrieval. IEEE Transactions on Circuits and Systems for Video Tech-
nology, 15(9):1148–1155, 2005.

42. Y. Taniguchi, A. Akutsu, Y. Tonomura, and H. Hamada. An intuitive and effi-
cient access interface to real-time incoming video based on automatic indexing.
In Proceedings of ACM International Conference on Multimedia, pages 25–33,
1995.

43. B.T. Truong, S. Venkatesh, and C. Dorai. Scene extraction in motion pictures.
IEEE Transactions on Circuits and Systems for Video Technology, 13(1):5–15,
2003.

44. S. Tsekeridou and I. Pitas. Content-based video parsing and indexing based on
audi-visual interaction. IEEE Transactions on Circuits and Systems for Video
Technology, 11(4):522–535, 2001.

45. D. Wang. Unsupervised video segmentation based on watersheds and temporal
tracking. IEEE Transactions on Circuits and Systems for Video Technology,
8(5):539–546, 1998.

46. B.L. Yeo and B. Liu. Rapid scene analysis on compressed video. IEEE Trans-
actions on Circuits and Systems for Video Technology, 5(6):533–544, 1995.

47. M. Yeung, B.L. Yeo, and B. Liu. Segmentation of video by clustering and graph
analysis. Computer Vision and Image Understanding, 71(1):94–109, 1998.

48. M.M. Yeung and B.L. Yeo. Video visulization for compact presentation and fast
browsing of pictorial content. IEEE Transactions on Circuits and Systems for
Video Technology, 7(5):771–785, 1997.

430 References

49. H. Yi, D. Rajan, and L.T. Chia. A motion-based scene tree for compressed
video content management. Image and Vision Computing, 24(2):131–142, 2006.

50. H.H. Yu and W. Wolf. A hierarchical multiresolution video shot transition
detection scheme. Computer Vision and Image Understanding, 75(1-2):196–213,
1999.

51. H.J. Zhang, C.Y. Low, S.W. Smoliar, and J.H. Wu. Video parsing, retrieval and
browsing: an integrated and content-based solution. In Proceedings of ACM
International Conference on Multimedia, pages 15–24, 1995.

52. H.J. Zhang, J. Wu, D. Zhong, and S.W. Smoliar. An integrated system for
content-based video retrieval and browsing. Pattern Recognition, 30(4):643–658,
1997.

53. H.J. Zhang, J.H. Wu, C.Y. Low, and S.W. Smoliar. A video parsing, index-
ing and retrieval system. In Proceedings of ACM International Conference on
Multimedia, pages 359–360, 1995.

54. Y.J. Zhang and H.B. Lu. A hierarchical organization scheme for video data.
Pattern Recognition, 35(11):2381–2387, 2002.

Part IV

Appendices

A

Statistics

A.1 Fundamentals

This section provides the fundamentals of probability and statistics. The con-
cept of probability of an event is introduced as a limit of the relative frequency,
i.e. of the number of times an experiment has such an event as outcome. Based
on such a definition, the rest of this section introduces the addition law, defines
the conditionality and the statistical independence.

A.1.1 Probability and Relative Frequency

Consider the simple experiment of tossing an unbiased coin: two mutually
exclusive outcomes are possible, head (H) or tail (T), and the result is random,
i.e. it cannot be predicted with certainty because too many parameters should
be taken into account to model the motion of the coin. On the other hand, if
the experiment is repeated a sufficient number of times and a whole series of
independent trials under identical conditions is obtained, the outcome shows
some regularities: the fraction of experiments with outcome H, the so-called
relative frequency of H, is always around 1/2:

n(H)
n

� 1
2

(A.1)

where n(H) is the number of times that the outcome is H and n is the total
number of experiments. The same considerations apply to the T outcome and
this is what the common language means whan it says that the probability of
H or T is 50 percent.

In more general terms, if an experiment has K mutually exclusive possible
outcomes A1, A2, . . . , AK , the probability p(Ai) of observing the outcome Ai

can be thought of as the following limit:

p(Ai) = lim
n→∞

n(Ai)
n

(A.2)

434 A Statistics

(see above for the meaning of symbols). This result is known as the strong law
of large numbers and it provides the definition of the probability.1

A.1.2 The Sample Space

A random experiment is characterized by a set Ω of mutually exclusive ele-
mentary events ω that correspond to all its possible outcomes. Ω is called a
sample space and an event A is said to be associated with it when it is always
possible to decide whether the occurrence of an elementary event ω leads to
the occurrence of A or not. As an example consider the rolling of a die;, the
sample space contains six elementary events ω1, . . . , ω6 corresponding to the
number of spots on each of the die faces. The event of having an even number
of spots is associated to Ω because it is a characteristic that can be clearly
attributed to each of the elementary events, and it can be thought of as a set
A = {ω2, ω4, ω6}. In the following, A will refer not only to an event, but also
to the corresponding set of its underpinning elementary events and whenever
there is no ambiguity, the distinction will not be made.

Based on the above, an event can be defined as a subset of the sample
space and this enables to interpret the event properties and relationships in
terms of sets and subsets as shown in Figure A.1. Two events Ai and Aj are
said to be mutually exclusive when the occurrence of one prevents the other
from occurring. This situation is shown in Figure A.1 (a) where the sets of
elementary events corresponding to Ai and Aj are disjoint. When Ai and Aj

contain exactly the same elements of the sample space, then the occurrence of
one corresponds to the occurrence of the other and the two events are said to
be equivalent (Figure A.1 (b)). The union Ai ∪ Aj of two events is the event
including all elements ω of both Ai and Aj , while their intersection Ai ∩ Aj

contains only elementary events belonging to both Ai and Aj , as shown in
Figure A.1 (c) and (d), respectively. Two events Ai and Aj are called com-
plementary when Ai = Ω − Aj = Āj and the occurrence of one is equivalent
to the nonoccurrence of the other. The difference between complementarity
and mutual exclusivity is that Āi contains all events of Ω that are mutually
exclusive with respect to Ai. On the other hand, complementarity and mutual
exclusivity are the same property when there are only two events. The event
Ai implies Aj when Ai ⊂ Aj , i.e. when the occurrence of Ai corresponds to
the occurrence of Aj , but the vice versa is not true. This situation is depicted
in Figure A.1 (f).

A.1.3 The Addition Law

Consider two mutually exclusive events Ai and Aj and the event A = Ai∪Aj .
If both Ai and Aj belong to the sample space of an experiment repeated n of
1 The Strong law of large numbers will not be demonstrated in this appendix.

However, the interested reader can find the demonstration and related issues in
most of the academic statistics textbooks

A.1 Fundamentals 435

Fig. A.1. Relationships between events. This figure shows the different relationships
between events in the sample space. Plot (a) shows mutually exclusivity, plot (b)
shows equivalence, plot (c) and (d) correspond to union and intersection respectively,
plot (e) shows the complementarity and plot (f) shows the inclusion.

times under identical conditions, then the relationship between the respective
relative frequencies is as follows:

n(A)
n

=
n(Ai)

n
+

n(Aj)
n

. (A.3)

Section A.1.1 shows that the relative frequency tends to the probability when
n → ∞; thus the above equation corresponds to:

P (A) = P (Ai) + P (Aj). (A.4)

If the mutually exclusive events are k, then A = A1 ∪ A2 . . . Ak and it is
possible to write:

P (A) = P (A1 ∪ A2 . . . Ak−1) + P (Ak) (A.5)

and the above expression, after applying k− 2 times Equation (A.4), leads to
the addition law for probabilities:

P (A) = P

(
k⋃

l=1

Al

)
=

k∑
l=1

P (Al). (A.6)

The above expression is valid only for mutually exclusive events, but an
addition law can be obtained also for arbitrary events. This requires to demon-
strate some key relationships between probabilitites:

436 A Statistics

Theorem A.1. The formulas

0 ≤ P (A) ≤ 1 (A.7)

P (Ai − Aj) = P (Ai) − P (Ai ∩ Aj) (A.8)

P (Aj − Ai) = P (Aj) − P (Ai ∩ Aj) (A.9)

P (Ai ∪ Aj) = P (Ai) + P (Aj) − P (Ai ∩ Aj) (A.10)

where Ai − Aj stands for event Ai occurring without event Aj occurring as
well, hold for arbitrary events A, Ai and Aj. Moreover, if Ai ⊆ Aj, then:

P (Ai) ≤ P (Aj). (A.11)

Equation (A.7) follows from the fact that the probability can be interpreted
as a limit of the relative frequency n(A)/n. The value of n(A) is the number
of times the experiment has A as outcome, thus it cannot be less than 0 and
it cannot be more than n. As a consequence:

0 ≤ n(A)
n

≤ 1. (A.12)

Such relationships hold also when n → ∞ and this leads to Equation (A.7).
The events Ai, Aj and Ai ∪ Aj can be written as unions of mutually

exclusive events as follows:

Ai = (Ai − Aj) ∪ (Ai ∩ Aj)
Aj = (Aj − Ai) ∪ (Ai ∩ Aj)

Ai ∪ Aj = (Ai − Aj) ∪ (Aj − Ai) ∪ (Ai ∩ Aj)

Since all events involved in the above equations are mutually exclusive, the
application of the addition law leads to Equations (A.8), (A.9) and (A.10),
respectively.

When Ai ⊂ Aj , the probability of Aj − Ai is:

P (Aj − Ai) = P (Aj) − P (Ai ∩ Aj) = P (Aj) − P (Ai) (A.13)

because Ai ∩ Aj = Ai. Since P (Aj − Ai) ≥ 0,

P (Ai) ≤ P (Aj). (A.14)

which corresponds to Equation A.12.
After proving the relationships of Theorem A.1, it is possible to avoid the

requirement of the mutual exclusivity for the addition law:

Theorem A.2. Given any n events A1, A2, . . . , An, let

P1 =
n∑

i=1

P (Ai) (A.15)

A.1 Fundamentals 437

P2 =
∑

1≤i≤j≤n

P (AiAj) (A.16)

P3 =
∑

1≤i≤j≤k≤n

P (AiAjAk) . . . (A.17)

where AiAj . . . Ak is a shorthand for Ai ∩ Aj . . . ∩ Ak, then:

P

(
n⋃

l=1

Al

)
= P1 − P2 + P3 + . . . + (−1)n+1Pn. (A.18)

When n = 2, Equation (A.18) corresponds to Equation (A.10); then it is
proved. Suppose now that (A.18) holds for n − 1; then:

P

(
n⋃

l=2

Al

)
=

n∑
i=2

P (Ai) −
∑

2≤i≤j≤n

P (AiAj) + . . . (A.19)

and

P

(
n⋃

l=2

A1Al

)
=

n∑
i=2

P (A1Ai) −
∑

2≤i≤j≤n

P (A1AiAj) + (A.20)

Based on Equation (A.10), it is possible to write:

P

(
n⋃

l=1

Al

)
= P (A1) + P

(
n⋃

l=2

Al

)
− P

(
n⋃

l=2

A1Al

)
(A.21)

and by (A.19) and (A.20) this corresponds to:

P

(
n⋃

l=1

Al

)
= P (A1) +

n∑
i=2

P (Ai) −
∑

2≤i≤j≤n

P (AiAj) + · · ·+

+
n∑

i=2

P (A1Ai) −
∑

2≤i≤j≤n

P (A1AiAj) + · · · = P1 − P2 + . . . + (−1)n+1Pn.

The proofs for all n follows by mathematical induction.

A.1.4 Conditional Probability

Given two events A and B, it can be interesting to know how the occurrence
of one event influences the occurrence of the other one. This relationship is
expressed through the conditional probability of A on the hypothesis B, i.e.
the probability of observing A when B is know to have occurred:

P (A|B) =
P (AB)
P (B)

(A.22)

438 A Statistics

where AB = A ∩ B. Since AB ⊆ B, then 0 ≤ P (A|B) ≤ 1. When A and
B are mutually exclusive, the intersection AB is empty and the conditional
probability is null. At the other extreme, if A ⊂ B, then P (A|B) = 1 because
the event B imply the event A. If A =

⋃
k Ak and the Ak events are mutually

exclusive; then it holds the following addition law for conditional probabilities:

P (A|B) =
∑

k

P (Ak|B). (A.23)

It is often convenient to express the probability of an event A as a sum of con-
ditional probabilities with respect to an exhaustive set of mutually exclusive
events Bk, where exhaustive means that

⋃
k Bk = Ω:

P (A) =
∑

k

P (A|Bk)P (Bk). (A.24)

Such equation can be demonstrated by observing that A =
⋃

k ABk and P (A)
can thus be expressed as follows:

P (A) =
∑

k

P (ABk) =
∑

k

P (ABk)
P (Bk)

P (Bk) (A.25)

and, by (A.22), the above expression corresponds to Equation (A.24).

A.1.5 Statistical Independence

Consider the case of two experiments with different sample spaces Ω1 and
Ω2. If the experiments are performed always together, it can be interesting to
know how the outcome of one experiment is influenced by the outcome of the
other one. An example of such a situation is the rolling of two dice; in fact
they can be considered as separate experiments leading to separate outcomes.
The probability P (A1, A2) of having outcome A1 for the first experiment and
A2 for the second one can be estimated with the relative frequency:

P (A1, A2) � n(A1, A2)
n

. (A.26)

If the number of trials n is sufficiently high and we take into account only the
cases where the outcome of the second experiment is A2, then we can estimate
the probability of observing A1 as outcome of the first experiment as follows:

P (A1) � n(A1, A2)
n(A2)

. (A.27)

In fact, as n → ∞, n(A2) tends to the infinity as well and the left side of the
above equation corresponds to the relative frequency of the event A1. This
leads to the following expression for P (A1, A2):

A.2 Random Variables 439

P (A1, A2) � n(A1, A2)
n

=
n(A1, A2)

n(A2)
n(A2)

n
� P (A1)P (A2) (A.28)

when two experiments satisfy the above equation when n → ∞, i.e. when
P (A1, A2) = P (A1)P (A2), they are said statistically independent. On the con-
trary, when P (A1, A2)
= P (A1)P (A2), the events are said to be statistically
dependent .

A.2 Random Variables

This section provides the main notions about random variables and probability
distributions. The rest of this section introduces the concepts of mean value,
variance, probability distribution and covariance.

A.2.1 Fundamentals

A variable ξ is said random when its values depend on the events in the sample
space of an experiment, i.e. when ξ = ξ(ω). Random variables are associated
to functions called probability distributions that give, for any couple of values
x1 and x2 (with x1 ≤ x2), the probability P (x1 ≤ ξ ≤ x2) of ξ falling between
x1 and x2. When ξ assumes values belonging to a finite set or to a countable
infinity, the variable is called discrete and:

P (ξ = x) = pξ(x) (A.29)

where pξ(x) is the probability distribution of ξ. In this case the probability
distribution is discrete as well and:

P (x1 ≤ ξ ≤ x2)
x2∑

x=x1

pξ(x) (A.30)

where the sum is carried over all values between x1 and x2. If the sum is carried
over all possible values of ξ, i.e. over the whole sample space underlying ξ,
then the result is 1: ∞∑

x=−∞
pξ(x) = 1. (A.31)

When a random variable takes values in a continuous range, then it is said
continuous and its distribution function is continuous as well:

P (x1 ≤ ξ ≤ x2) =
∫ x2

x1

pξ(x)dx. (A.32)

where pξ(x) is called the probability density function. If the integration domain
covers the whole range of x, i.e. the whole sample space of the experiment
underpinning ξ, then the result is 1:

440 A Statistics ∫ ∞

−∞
pξ(x)dx = 1. (A.33)

While in the case of discrete variables it is possible to assign a probability
to each value that ξ can take, in the case of the random variables it is only
possible to have the probability pξ(x)dx of ξ falling in a dx wide interval
around x, i.e. of ξ − x being smaller than an arbitrary value ε.

At each probability distribution function corresponds a cumulative proba-
bility function F (x) that gives the probability P (ξ ≤ x) of ξ being less than x.
In the case of discrete variables, F (x) is a staircase function and it corresponds
to the following sum:

F (x)
x∑

x′=−∞
pξ(x′). (A.34)

In the case of continuous random variables, F (x) is:

F (x) =
∫ x

−∞
pξ(x′)dx′ (A.35)

and it is a continuous function.
Consider now the random point ξ = (ξ1, ξ2). The probability of ξ cor-

responding to a point (x1, x2) is given by the joint probability distribution
pξ1ξ2(x1, x2):

pξ1ξ2(x1, x2) = P (ξ1 = x1, ξ2 = x2). (A.36)

The probability P (x′
1 ≤ ξ1 ≤ x′′

1 , x′
2 ≤ ξ2 ≤ x′′

2) can be obtained by summing
over the corresponding probabilities:

P (x′
1 ≤ ξ1 ≤ x′′

1 , x′
2 ≤ ξ2 ≤ x′′

2) =
x′′
1∑

x1=x′
1

x′′
2∑

x2=x′
2

pξ1ξ2(x1, x2), (A.37)

the above is the probability of ξ falling in the region enclosed by the lines
ξ1 = x′

1, ξ1 = x′′
1 , ξ2 = x′

2 and ξ2 = x′′
2 . When ξ1 and ξ2 are continuous

variables, the sums are replaced by integrals and the above probability is
written as follows:

P (x′
1 ≤ ξ1 ≤ x′′

1 , x′
2 ≤ ξ2 ≤ x′′

2) =
∫ x′′

1

x′
1

∫ x′′
2

x′
2

pξ1ξ2(x1, x2)dx1dx2 (A.38)

where pξ1ξ2(x1, x2) is called joint probability density.
The definitions given for two-dimensional random points can be extended

to n-dimensional points corresponding to n-tuples of discrete or continuous
random variables.

A.2 Random Variables 441

A.2.2 Mathematical Expectation

The mathematical expectation or mean value E [ξ] of a discrete random variable
ξ corresponds to the following expression:

E [ξ] =
x=∞∑

x=−∞
xpξ(x) (A.39)

where the series is supposed to converge absolutely, i.e. it holds the following:

x=∞∑
x=−∞

|x|pξ(x) < ∞. (A.40)

A variable η = φ(x), where φ(ξ) is some function of ξ, is a random variable
and P (η = y) can be obtained as a sum of the pξ(x) over the x values such
that φ(x) = y:

P (η = y) =
∑

x:φ(x)=y

pξ(x) (A.41)

The mathematical expectation E [η] of η can thus be obtained as follows:

E [η] =
y=∞∑

y=−∞
yP (η = y) =

y=∞∑
y=−∞

y
∑

x:φ(x)=y

pξ(x) =
x=∞∑

x=−∞
φ(x)pξ(x) (A.42)

and the above definition can be extended to a function of an arbitrary number
n of random variables φ(ξ1, ξ2, . . . ξn):

E [φ(ξ1, ξ2, . . . , ξn)] =
∞∑

x1=−∞
. . .

∞∑
xn=−∞

φ(x1, x2, . . . , xn)pξ1ξ2...ξn
(x1, . . . , xn)

(A.43)
The mean value of a linear combination of random variables is given by

the linear combination of the mean values of the single variables:

E [aξ1 + bξ2] = aE [ξ1] + bE [ξ2]. (A.44)

In fact, based on Equation (A.43), we can write:

E [aξ1 + bξ2] =
∞∑

x1=−∞

∞∑
x2=−∞

(ax1 + bx2)pξ1ξ2(x1, x2) =

= a

∞∑
x1=−∞

∞∑
x2=−∞

x1pξ1ξ2(x1, x2) + b

∞∑
x1=−∞

∞∑
x2=−∞

x2pξ1ξ2(x1, x2) =

= aE [ξ1] + bE [ξ2].

When ξ1 and ξ2 are independent:

442 A Statistics

E [ξ1ξ2] =
∞∑

x1=−∞

∞∑
x2=−∞

x1x2pξ1(x1)pξ2(x2) = E [ξ1]E [ξ2]. (A.45)

When ξ is continuous, then the mathematical expectation is obtained as
an integral:

E [ξ] =
∫ ∞

−∞
xpξ(x)dx. (A.46)

For the variable η = φ(ξ), the mathematical expectation is:

E [η] =
∫ ∞

−∞
φ(x)pξ(x)dx, (A.47)

the demonstration follows the same steps as for the corresponding property
of discrete variables (see above). The same applies for the mean value of a
function φ(ξ1, . . . , ξn) of an arbitrary number n of random variables:

E [φ(ξ1, . . . , ξn)] =
∫ ∞

−∞
. . .

∫ ∞

−∞
φ(ξ1, . . . , ξn)pξ1...ξn

(x1, . . . , xn)dx1 . . . dx2.

(A.48)
The properties demonstrated for the discrete variables can be demonstrated
also for the continuous ones by replacing sums with integrals. This is possible
because the formal properties of sums and integrals are the same.

A.2.3 Variance and Covariance

The variance (or dispersion) D[ξ] of a random variable is the mathematical
expectation E [(ξ−µ)2] of the quantity (ξ−µ)2, where µ = E [ξ]. The variance
expression for a discrete variable is

D[ξ] = E [(ξ − µ)2] =
∞∑

x=−∞
(x − µ)2pξ(x) (A.49)

while for a continuous variable it is:

D[ξ] = E [(ξ − µ)2] =
∫ ∞

−∞
(x − µ)2pξ(x)dx. (A.50)

The properties of the variance can be demonstrated without distinguishing
between continuous and discrete random variables; in fact they are mostly
based on the properties of the mathematical expectation that have the same
form for both continuous and discrete variables. It follows from the definition
that:

D[ξ] = E [(ξ − µ)2] = E [(ξ2 − 2µξ + µ2)] = E [ξ2] − 2µE [ξ] + µ2 = E [ξ2] − µ2,
(A.51)

then

A.2 Random Variables 443

D[cξ] = E [c2ξ2] − (E [cξ])2 = c2D[ξ] (A.52)

because E [cξ] = cE [ξ] (see the previous section).
If ξ1 and ξ2 are two independent random variables, then:

D[ξ1 + ξ2] = E [(ξ1 + ξ2 − µ1 − µ2)2] =

= E [(ξ1 − µ1)2] + E [(ξ2 − µ2)2] + 2E [(ξ1 − µ1)(ξ2 − µ2)],

= D[ξ1] + D[ξ2] + 2E [(ξ1 − µ1)]E [(ξ2 − µ2)],

since E [(ξi − µi)] = 0, the above corresponds to:

D[ξ1 + ξ2] = D[ξ1] + D[ξ2]. (A.53)

Consider a random point ξ = (ξ1, ξ2, . . . , ξn), the mathematical expecta-
tion of the product (ξi −µi)(ξj −µj), where µi and µj are the mean values of
ξi and ξj , respectively, is called covariance σij of ξi and ξj :

σij = E [(ξi − µi)(ξj − µj)], (A.54)

based on the above definition, σii = D[ξi]. The n × n matrix Σ such that
Σij = σij is called covariance matrix of ξ and it has the variances of the ξi

variables on the main diagonal.

B

Signal Processing

B.1 Introduction

The goal of this appendix is to provide basic notions about signal processing,
the domain involving mathematical techniques capable of extracting from sig-
nals information useful for several tasks. The data considered in this book,
i.e. audio recordings, images and videos, can be considered as signals and the
techniques presented in this appendix are often applied to analyze them. Sec-
tion B.2 is dedicated to a quick recall of complex numbers because most signal
processing techniques include functions defined on the complex domain. Sec-
tion B.3 is dedicated to the z -transform, a mathematical approach to represent
signals through infinite series of powers that make easier to study the effect
of systems (see Section 2.5). Section B.3.2 introduces the Fourier transform,
a special case of the z -transform that enables us to analyze the frequency
properties of signals. Section B.3.3 presents the Discrete Fourier Transform,
a representation for periodic digital signals that can be applied also for finite
lenght generic signals and represents sequences through sums of elementary
sines and cosines. Section B.4 describes the discrete cosine transform, a rep-
resentation commonly applied in image processing and close to the Discrete
Fourier Transform.

The content of this appendix is particularly useful for understanding Chap-
ter 2, Chapter 3 and Chapter 12.

B.2 The Complex Numbers

The complex numbers are an extension of the real numbers containing all roots
of quadratic equations. If j is the solution of the following equation:

x2 = −1 (B.1)

then the set C of complex numbers is represented in standard form as:

446 B Signal Processing

{a + bj : a, b ∈ R} (B.2)

where the symbol : stands for such that and R is the set of the real numbers.
A complex number is typically expressed with a single variable z, the number
a is called real part Re(z) of z, and b is called the imaginary part Im(z) of z.
The plan having as coordinates the values of a and b is called complex or z
plan. Each point of such plan is a complex number and, vice versa, all complex
numbers correspond to one point of such plan. The horizontal axis of the z
plan is called the real axis, while the vertical one is defined imaginary axis.
The sum and product between complex numbers are defined as follows:

(a + bj) + (c + dj) = (a + b) + (c + d)j (B.3)

(a + bj)(c + dj) = (ac − bd) + (ad + bc)j (B.4)

where the fact that j2 = −1 is applied. Two complex numbers z1 and z2 that
have the same real part a, but imaginary parts b and −b, respectively, are said
to be complex conjugates and this is expressed by writing z2 = z∗1 .

Since the complex numbers can be interpreted as vectors in the z plan, it
is possible to define their modulus1 |z| as follows:

|z| =
√

a2 + b2. (B.5)

The modulus can be calculated as |z| =
√

zz∗ and, as a consequence, |z| = |z∗|.
Since the complex numbers can be thought of as vectors in the z plan, it

is possible to express them in polar form (see Figure B.1). In fact, if r = |z|
and tan θ = b/a, then a = r cos θ and b = r sin θ, and by the Euler’s equation:

ejθ = r cos θ + j sin θ, (B.6)

it is possible to write:
z = reiθ. (B.7)

The number r is called the magnitude and the angle θ is called argument
and expressed by Arg(z). The argument of a complex number is not unique
because z is not changed by adding integer multiples of 2π to θ. The argument
in the interval] − π, π] (where the] on the left side means that the left
extreme is not included) is called principal value. The complex conjugate of
z = r(cos θ + j sin θ) is r(cos θ − j sin θ), i.e. z∗ is obtained by changing θ
into −θ. In other words, two complex conjugates have the same magnitude by
opposite arguments.

The complex numbers ejθ, with θ ∈]−π, π], define the so-called unit circle
in the z plan. The equation zN = 1 has N complex roots with magnitude 1.
Since the roots are complex numbers, they can be identified as follows:

1 The modulus is the distance of the point representing a complex number from
the origin of the plane where a and b are the axes.

B.3 The z -Transform 447

Im(z)

Re(z)

(a+jb)b

r

θ
rcos

rsin

θ

θ

a

−b (a−jb)

Fig. B.1. Complex plan. The figure shows a complex number and its complex
conjugate in the complex plan. The real and imaginary parts can be expressed in
terms of r and θ to obtain the polar form.

(ejθ)N = ejNθ = 1. (B.8)

Since ejθ = 1 when θ = 2kπ (where k is an integer), the last equation corre-
sponds to Nθ = 2kπ, then:

θ =
2kπ

N
(B.9)

and the N roots of 1 are the complex exponentials ej 2kπ
N , where k =

0, 1, . . . , N − 1.
When k > N−1, the value of the argument is simply increased by multiples

of 2π and the roots are the same as those corresponding to the k values
between 0 and N − 1. The roots of 1 are used to represent periodic signals
with the discrete Fourier transform (see Section B.3.3).

B.3 The z -Transform

Given a continuous signal s(t), it is possible to obtain, through an A/D conver-
sion including sampling and quantization, a digital signal {s[0], . . . , s[N − 1]}
such that:

s[n] = s(nT) = s(n/F) (B.10)

where n is an integer, T is called sampling period and F is the sampling
frequency. Issues related to sampling (see Section 2.3.1) and quantization (see
Section 2.7) have been discussed in Chapter 2. A digital signal of length N , i.e.
including N samples in the sequence {s[n]}, can be thought of as an infinite
length signal such that s[n] = 0 for n < 0 and n ≥ N . In the rest of this

448 B Signal Processing

appendix, digital signals will be referred to as signals and denoted with s[n]
whenever there is no ambiguity between sequences and single samples.

The z-transform of a digital signal {s[n]} is defined by the following pair
of equations:

S(z) =
∞∑

n=−∞
s[n]z−n (B.11)

s[n] =
1

2πj

∮
C

S(z)zn−1dz (B.12)

where Equation (B.11) defines the direct transform, Equation (B.12) defines
the inverse one and C is a closed contour that encircles the z plan origin and
lies in the region of existence of S(z) (see below).

The z -transform can be seen as an infinite series of powers of the variable
z−1 where the s[n] are the coefficients. The series converges to a finite value
when the following sufficient condition is met:

∞∑
n=−∞

|s[n]||z−n| < ∞. (B.13)

The above equation corresponds to a region of the z plan, called the region of
convergence, which has the following form:

R1 < |z| < R2 (B.14)

and the values of R1 and R2 depend on the characteristics of the sequence
{s[n]}. Consider, for example, a rectangular window w[n] of length N (see
Section 2.5), the z -transform is:

W (z) =
N−1∑
n=0

z−n =
1 − z−N

1 − z−1
(B.15)

and the region of convergence is 0 < |z| < ∞. Such a result applies to any
finite length sequence.

Consider now the sequence s[n] = anu[n], where u[n] is 1 for n ≥ 0 and 0
otherwise. In this case, the z -transform is:

S(z) =
∞∑

n=0

anz−n =
1

1 − az−1
(B.16)

and the series converges for |z| > |a|. This result applies to infinite length
sequences which are non-zero only for n ≥ 0 and it corresponds to a region of
convergence of the form |R1| < |z| < ∞.

The case of a sequence different from zero only when n < 0 can be studied
by considering the case of s[n] = bnu[−n−1] (where u[n] is the same function
as in the previous example):

B.3 The z -Transform 449

S[n] =
−1∑

n=−∞
bnz−n =

1
1 − bz−1

. (B.17)

Such series converges for |z| < |b| and, in terms of Equation B.14, this corre-
sponds to the form 0 < |z| < R2.

The last example concerns an infinite length sequence which is different
from zero for −∞ < n < ∞. Such case is a combination of the last two
examples and it leads to a region of convergence of the form R1 < |z| < R2.

B.3.1 z-Transform Properties

The z -transform has several properties that are demonstrated in the following.
The first is the linearity:

Theorem B.1. If s[n] = as1[n] + bs2[n], then:

S(z) = aS1(z) + bS2(z). (B.18)

The demonstration follows directly from the definition of the z -transform:

S(z) =
∞∑

n=−∞
(s1[n] + bs2[n])z−n = aS1(z) + bS2(z) (B.19)

Consider the signal s[n − n0], where n0 is a constant integer. The effect on
the z -transform is described by the following theorem.

Theorem B.2. The z-transform Sn0(z) of a signal sn0 [n] = s[n − n0] is re-
lated to the z-transform S(z) of s[n] through the following relationship:

Sn0(z) = z−n0S(z). (B.20)

The z -transform of sn0 [n] can be written as:

Sn0(z) =
∞∑

n=−∞
s[n − n0]z−n, (B.21)

if m = n − n0, then the last equation becomes:

Sn0(z) =
∞∑

m=−∞
s[m]z−m−n0 = z−n0S(z) (B.22)

The elements of a sequence can be weighted with an exponential resulting
into a signal sa[n] = ans[n]. The effect on the z -transform is as follows:

Theorem B.3. The z-transform Sa(z) of the signal sa[n] = ans[n] is related
to the z-transform S(z) of s[n] through the following relationship:

Sa(z) = S(za−1). (B.23)

450 B Signal Processing

Following the definition of the z -transform, it is possible to write that:

Sa(z) =
∞∑

n=−∞
ans[n]z−n =

∞∑
n=−∞

s[n]
(z

a

)−n

= S(za−1) (B.24)

Theorem B.4. The z-transform Sn(z) of the signal ns[n] is related to the
z-transform S(z) of s[n] through the following expression:

Sn(z) = −z
dS(z)

dz
. (B.25)

The expression of Sn(z) is:

Sn(z) =
∞∑

n=−∞
ns[n]z−n = z

∞∑
n=−∞

ns[n]z−n−1. (B.26)

Since −nz−n−1 is the derivative of z−n, the above corresponds to:

Sn(z) = −z

∞∑
n=−∞

s[n]
d(z−n)

dz
= −z

dS(z)
dz

(B.27)

Theorem B.5. The z-transform S−(z) of the signal s[−n] is related to the
z-trasnform S(z) of the signal s[n] through the following expression:

S−(z) = S(z−1). (B.28)

Following the definition of the z -transform:

S−(z) =
∞∑

n=−∞
s[−n]z−n. (B.29)

If m = −n, the above equation becomes:

S−(z) =
∞∑

m=−∞
s[m]zm =

∞∑
m=−∞

s[m]
(

1
z

)−m

= S(z−1) (B.30)

Theorem B.6. The z-transform C(z) of the convolution of two digital signals
c[n] = s[n]∗h[n] corresponds to the product of the z-transforms S(z) and H(z)
of s[n] and h[n], respectively:

C(z) = S(z)H(z). (B.31)

The convolution between s[n] and h[n] is c[n] =
∑∞

k=−∞ s[k]h[n−k], thus the
z -transform of c[n] is:

C(z) =
∞∑

n=−∞

∞∑
k=−∞

z−ns[k]h[n − k] =
∞∑

k=−∞
s[k]

∞∑
n=−∞

h[n − k]z−n. (B.32)

If n − k = m, the above expression can be rewritten as:

C(z) =
∞∑

k=−∞
s[k]z−k

∞∑
m=−∞

h[m]z−m = S(z)H(z) (B.33)

B.3 The z -Transform 451

Im(z)

Re(z)

ω
1

−1

1

−1

Fig. B.2. Unit circle. The figure shows the unit circle in the z plan. The angle ω
identifies a point on the unit circle.

B.3.2 The Fourier Transform

The Fourier Tranform (FT) is defined through the following two equations:

S(ejω) =
∞∑

n=−∞
s[n]e−jωn (B.34)

s[n] =
1
2π

∫ π

−π

S(ejω)ejωndω (B.35)

where Equation (B.34) defines the inverse transform and Equation (B.35)
defines the inverse one. The FT corresponds to the z -transform when z = ejω,
i.e. when z lies on the unit circle of the z plan. Since |ejω| = 1, the condition
for the existence of the FT is (see Equation (B.13)):

∞∑
n=−∞

|s[n]| < ∞. (B.36)

The region of convergence of the above series can be deduced from the exam-
ples described in Section B.3 by posing z = ejω. This corresponds to impose as
a condition that the unit circle lies in the region of convergence R1 < |z| < R2.
In the case of finite-length sequences, when R1 = 0 and R2 = ∞, the FT exists
always. For sequences different from zer only when n ≥ 0, the region of con-
vergence is R1 < |z| < ∞ and the FT exists when R1 < 1. For infinite-length
sequences different from zero when n < 0, R1 = 0 and R2 is a finite constant;
thus the FT exists when R2 > 1. For the last example in Section B.3, i.e. an
infinite length sequence different from zero for both n < 0 and n ≥ 0, both
R1 and R2 are finite constants and the FT exists when R1 < 1 < R2.

452 B Signal Processing

j2 ωe
je ω

3jωe

4jω
e

5jωe

Im(z)

Re(z)

−1

1

1

ω

Fig. B.3. DFT interpretation. The DFT can be thought of as a sampling of the
z -transform along the unit circle. The figure shows the points corresponding to
integer multiples of the angle ω = π/6, where the z -transform is sampled in the case
of period 6.

An important aspect of the FT is that it is a periodic function of ω with
period 2π. This can be shown by replacing ω with ω +2π in Equations (B.11)
and (B.12), but also by observing that ω determines the position on the unit
circle of the z plan (see Figure B.2). When ω is increased by an integer multiple
of 2π, the position on the unit circle is always the same; thus the FT has the
same value.

The properties demonstrated in Section B.3.1 for the z -transform can be
extended to the FT by simply replacing z with ejω. However, the properties
hold only when the FTs exist.

B.3.3 The Discrete Fourier Transform

If a digital signal ŝ[n] is periodic with period N , i.e. ŝ[n] = ŝ[n + N] for
−∞ < n < ∞, then it can be represented by a Fourier series:

Ŝ[k] =
N−1∑
n=0

ŝ[n]e−j 2π
N kn (B.37)

ŝ[n] =
1
N

N−1∑
k=0

Ŝ[k]ej 2π
N kn (B.38)

where Equation (B.37) defines the direct transform and Equation (B.38)
defines the inverse one. The discrete Fourier transform (DFT) is an exact
representation for any periodic digital signal, but it can be used, with some
precautions, to represent finite-length nonperiodic sequences. In fact, consider

B.4 The Discrete Cosine Transform 453

the z -transform of a digital signal s[n] which is equal to zero for n < 0 and
n ≥ N :

S(z) =
N−1∑
n=0

s[n]z−n, (B.39)

if z = ej 2π
N k, the above equation becomes:

S(ej 2π
N k) =

N−1∑
n=0

s[n]e−j 2π
N kn, (B.40)

i.e. it corresponds to the Ŝ[k] value for a periodic signal ŝ[n] obtained by
replicating infinite times s[n]. In other words, given a finite length signal
s[n], it is possible to create an infinite length periodic signal ŝ[n] such that
ŝ[n+rN] = s[n], where r is an integer. The DFT is an exact representation of
ŝ[n], but it can be used to represent s[n] when only the intervals 0 ≤ n ≤ N−1
and 0 ≤ k ≤ N − 1 are taken into account. Equation (B.40) can be thought
of as a sampling of the z -transform on the unit circle of the z plan (see
Figure B.3). For this reason, the properties of the DFT are the same as those
of the z -transform with the constraint that z = exp(−2jπkn/N).

B.4 The Discrete Cosine Transform

The discrete cosine transform (DCT) is commonly applied in image coding
and can be computed via the DFT. Given the N long signal s[n], 0 ≤ n < N ,
it is possible to obtain a signal se[n] of length 2N in the following way:

se[n] =
{

s[n] 0 ≤ n < N
0 N ≤ n < 2N − 1.

(B.41)

The signal se[n] can then be used to create a 2N long sequence y[n] defined
as:

y[n] = se[n] + se[2N − 1 − n], (B.42)

i.e. a symmetric signal where the first N samples correspond to those of the
original s[n] sequence and the remaining N correspond to the same samples,
but in a reversed order (see Figure B.4).

The DFT of y[n] can be written as follows:

Y [k] =
2N−1∑
n=0

y[n]e−j 2π
2N kn, (B.43)

but by definition (see Equation (B.42)), y[n] = y[2N − 1 − n], then the DFT
of y[n] can be rewritten as:

454 B Signal Processing

1 N 2N

s e[n
]

Fig. B.4. Extended signal. The plot shows a signal obtained by adding se[n] and
se[2N − 1 − n].

Y [k] =
N−1∑
n=0

s[n](e−j 2π
2N kn + e−j 2π

2N k(2N−n−1)). (B.44)

The N point DCT C[k] of s[n] is then defined as:

C(k) =
{

Y [k]e−j π
2N kn 0 ≤ k < N.

0 otherwise.
(B.45)

By plugging Equation (B.43) into the definition of C(k), the result is (for
0 ≤ k < N):

C(k) =
N−1∑
n=0

2s[n] cos
(

(2n + 1)kπ

2N

)
. (B.46)

One of the most important aspects of the DCT is that its coefficients are
always real, while in the case of the DFT they are typically complex. The
DCT defined in this section is often referred to as even symmetrical DCT.

The inverse transform requires as a first step the definition of a 2N -point
DFT Y [k]:

Y (k) =

⎧⎨⎩
C[k]e−j 2π

2N
k
2 0 ≤ k < N

0 k = N

−C[2N − k]e−j 2π
2N

k
2 N + 1 ≤ k ≤ 2N − 1.

(B.47)

This enables us to obtain the inverse DFT as follows:

y[n] =
1

2N

2N−1∑
k=0

Y [k]ej 2π
2N kn (B.48)

where 0 ≤ n ≤ 2N − 1, and the inverse DCT corresponds to the following:

s[n] =
{

y[n] 0 ≤ n ≤ N − 1
0 otherwise.

(B.49)

B.4 The Discrete Cosine Transform 455

By definition (see (Equation B.47)) C[k] = C[2N −k] (k = 1, . . . , N −1), then
y[n] can be rewritten as a sum over N elements:

y[n] =
1

2N
C[0] +

1
2N

N−1∑
k=1

C[k](e−j πk
2N (2n+1) − e−j π

2N (2N−k)(2n+1)) = (B.50)

=
1

2N
C[0] +

1
N

N−1∑
k=1

C[k] cos
(

πk(2n + 1)
2N

)
. (B.51)

In other words, we can write the inverse DCT as:

s[n]

{
1
N

∑N−1
k=1 α(k)C[k] cos

(
πk(2n+1)

2N

)
0 ≤ n ≤ N − 1

0 otherwise,
(B.52)

where α(k) = 1/2 for k = 0 and α(k) = 1 for k = 1.

C

Matrix Algebra

C.1 Introduction

The goal of this appendix is to provide the main notions about matrix algebra
and eigenvector calculation. Section C.2 introduces basic definitions and ma-
trix operations, Section C.3 shows matrix determinants and their properties
and Section C.4 presents eigenvalues and eigenvectors.

C.2 Fundamentals

An m × n matrix is a rectangular array of numbers composed of m rows and
n columns:

A =

⎛⎜⎜⎝
a11 a12 . . . a1n

a21 a22 . . . a2n

.
am1 am2 . . . amn

⎞⎟⎟⎠ (C.1)

where the aij entries are called elements. The above expression is often written
in the following more compact form:

A = [aij]. (C.2)

When m = n, i.e. the number of columns and rows is the same, the matrix is
said to be square and the elements aii, where i = 1, 2, . . . , n, form the main
diagonal of the matrix. The following sum:

T (A) =
n∑

k=1

akk (C.3)

is called the trace of the matrix. The trace can be calculated only for square
matrices because only these have a main diagonal. Given a matrix A = [aij],
the matrix AT = [aji] is called the transpose of A and it can be obtained by

458 C Matrix Algebra

interchanging rows and columns of A. If AT = A, the matrix is said symmetric.
The transpose of an m × n matrix is an n × m one, thus a matrix cannot be
symmetric if m
= n, i.e. if it is not square.

Given two matrices A = [aij] and B = [bij], their sum is defined as follows:

A + B = [aij + bij]. (C.4)

In other words, the element ij of the sum corresponds to the sum of the ij
elements of A and B. The subtraction A−B corresponds to the matrix where
the element ij is aij − bij :

A − B = [aij − bij]. (C.5)

The multiplication of a matrix A by a scalar c is defined as follows:

A = [caij], (C.6)

the result of such an operation is that each element of A is multiplied by c.
The multiplication A · B between two matrices is calculated as follows:

A · B =

[∑
k

aikbkj

]
, (C.7)

i.e. the element ij corresponds to the dot product of the ith row of A and of
the jth column of B. This means that two matrices can be multiplied only
when the number of columns of the first one is equal to the number of rows
of the second one. A matrix I such that A · I = A is called identity matrix.

Given two matrices X and Y , if the follwoing holds:

XY = Y X = I (C.8)

then Y is the inverse matrix of X and viceversa. Only square matrices can
be inverted because this is the only case where both XY and Y X have the
same number of rows and columns. In the case of a rectangular matrix X, it
is possible to define the so-called Moore Penrose pseudoinverse X̂:

X̂ = XT (XT X)−1. (C.9)

C.3 Determinants

Consider the following 2 × 2 square matrix:

A =
(

a11 a12

c21 a22

)
(C.10)

the expression det(A) = a11a22 − a12a21 is called determinant of A. If the
matrix is 3 × 3, then the determinant can be obtained as follows:

C.3 Determinants 459

det(A) =
3∑

i=1

(−1)i+jaijdet(Aij) =
3∑

j=1

(−1)i+jaijdet(Aij) (C.11)

where i and j can be selected arbitrarily and Aij is a matrix obtained by
removing column j and row i from A. In other words, the calculation of the
determinant is performed by first selecting one column (or one row) arbitrar-
ily, and then by multiplying its elements ij by (−1)i+jdet(Aij). In order to
simplify the calculations, it is advised to select the row or the column with
the highest number of null elements. In fact this minimizes the number of
addends of the sums in Equation (C.11). When A is n×n with n > 3, det(A)
can be obtained recursively starting from the above expressions. Only square
matrices have a determinant because only in this case the iterative removal
of one column and one row brings to a 2 × 2 matrix.

The above technique is formalized in the Laplace expansion theorem:

Theorem C.1. The determinant of a matrix A can be calculated as follows:

det(A) =
∑

MkAn−k (C.12)

where the sum goes over all determinants Mk of order k that can be formed of
rows i1, . . . , ik and columns j1, . . . , jk, and An−k is the product of the number
(−1)i1+...+ik+j1+...+jk and the determinant of the matrix remaining from A
by deleting the rows i1, . . . , ik and the columns j1, . . . , jk used to form Mk.

The demonstration is omitted and the reader can refer to any academic text-
book on matrix algebra.

The determinant of a matrix has several properties that are shown and
proved in the following.

Theorem C.2. If A is an n × n matrix and c is a scalar, then det(cA) =
cndet(A).

The proof can be obtained inductively. In the case of the 2 × 2 matrix of
Equation (C.10), the expression of det(cA) is as follows:

det(cA) = ca11ca22 − ca12ca21 = c2(a11a22 − a12a21) = c2det(A). (C.13)

If the property holds for an n− 1×n− 1 matrix, then the determinant of cA,
where A is an n × n matrix, can be calculated as follows:

det(cA)=
n∑

i=1

(−1)i+jcaijdet(cAij)=
n∑

i=1

(−1)i+jcaijc
n−1det(Aij)= cndet(A),

(C.14)
and this demonstrates the theorem.

Theorem C.3. If A and B are n × n square matrices, then det(AB) =
det(A)det(B).

460 C Matrix Algebra

Theorem C.4. If AT is the transpose of A, then det(AT) = det(A).

The demonstration can be obtained by induction. When A is a 2 × 2 matrix
like in Equation (C.10), then AT is as follows:

A =
(

a11 a21

c12 a22

)
. (C.15)

By the definition of determinant:

det(A) = a11a22 − a12a21 = det(AT) (C.16)

and the theorem is demonstrated for n = 2. If A is now an n + 1 × n + 1
matrix, its determinant can be obtained as:

det(A) =
n+1∑
i=1

(−1)i+jaijdet(Aij) =
n+1∑
i=1

(−1)i+j(AT)jidet(AT
ji) = det(AT)

(C.17)
where the last passage is based on the fact that (Aij)T = AT

ji.

Theorem C.5. Consider an n × n matrix A, det(A)
= 0 if and only if A is
nonsingular.

The first step is to demonstrate that if A is nonsingular, then det(A)
= 0. If
A is non singular, A−1 exists and AA−1 = I, where I is the identity matrix.
By property C.3:

det(AA−1) = det(A)det(A−1) = det(I) = 1 (C.18)

and this is possible only if det(A)
= 0.
The second step is to prove that if det(A)
= 0, then A−1 exists. The demon-

stration can be made by contradiction. If det(A) = 0 and A−1 exists, then
det(A)det(A−1) = 1 (see above), but this is not possible because det(A) = 0.

C.4 Eigenvalues and Eigenvectors

Consider the square matrix A, the scalar λ is defined eigenvector of A if it
exists a nonzero vector x (called eigenvector) such that:

Ax = λx, (C.19)

where λ and x are said to form an eigenpair. If x is an eigenvector of A, then
any other vector cx, where c is a scalar, is an eigenvector of A:

A(cx) = cAx = cλx = λ(cx). (C.20)

The eigenvectors form the basis of a vectorial space called eigenspace. When
λ = 0, the eigenspace is called null space or kernel of A. When A is the identity

C.4 Eigenvalues and Eigenvectors 461

matrix I, the equation Ix = x is always satisfied, i.e. all n-dimensional vectors
are eigenvectors (with λ = 1) of the n × n identity matrix.

The eigenpairs can be found by solving the equation Ax = λx that can be
rewritten as follows:

(A − λI)x = 0. (C.21)

where the second member is the null vector. The eigenvectors form the null
space of the matrix A − λI and they can be known once the eigenvalues are
available. On the other hand, the above equation can have nonzero solutions
only if A − λI is singular, i.e. if

det(A − λI) = 0. (C.22)

The above characteristic equation involves λ, but not x; however, the eigen-
vectors can be obtained when the last equation is solved and the eigenvectors
are available.

D

Mathematical Foundations of Kernel Methods

D.1 Introduction

Mercer kernels (or positive definite kernels) are the foundations of powerful
machine learning algorithms called kernel methods. Mercer kernels project im-
plicitly the data in a high-dimensional feature space by means of a nonlinear
mapping. The kernel theory has been developed during the first four decades
of the twentieth century by some of the most brilliant mathematicians of the
time. The concept of positive definite kernel has been introduced by [10]. Later
on, remarkable contributions have been provided by [12][19][15][16][17][2][3].
In machine learning, the use of kernel functions to make computations, has
been introduced by [1] in 1964. In 1995 a learning algorithm, support vec-
tor machine (SVM) [5] was introduced. SVM (see Chapter 9) uses Mercer
kernels, as a preprocessing, to enpower a linear classifier (optimal hyperplane
algorithm) so as to make the classifier able to solve nonlinear tasks.

The aim of this appendix is to present an overview of the kernel theory,
focusing on the theoretical aspects that are relevant for kernel methods (see
Chapter 9), such as the Mercer kernels and the reproducing kernel Hilbert
spaces.

The appendix is organized as follows: in Section D.2 the definitions of
scalar product, norm and metric are recalled; in Section D.3 positive definite
functions and matrices are presented; Section D.4 is devoted to conditionate
positive definite kernels and matrices; negative definite functions and matrices
are described in Section D.5; Section D.6 presents the connections between
negative and definite kernels; Section D.7 shows how a metric can be computed
by means of a positive definite kernel; Section D.8 describes how a positive
definite kernel can be represented by means of a Hilbert space. finally some
conclusions are drawn in Section D.9.

464 D Mathematical Foundations of Kernel Methods

D.2 Scalar Products, Norms and Metrics

The aim of this section is to recall the concepts of inner product, norm and
metric [14].

Definition D.1. Let X be a set. A scalar product (or inner product) is
an application · : X × X → R satisfying the following conditions:

(a) y · x = x · y ∀x, y ∈ X
(b) (x + y) · z = (x · z) + (y · z) ∀x, y, z ∈ X
(c) (αx) · y = α(x · y) ∀x, y ∈ X ∀α ∈ R

(d) x · x ≥ 0 ∀x ∈ X
(e) x · x = 0 ⇐⇒ x = 0
(f) x · (y + z) = (x · y) + (x · z) ∀x, y, z ∈ X

Axioms (a) and (b) imply (f). Using axiom (d) it is possible to associate to
the inner product a quadratic form ‖ · ‖, called the norm, such that:

‖x‖2 = x · x.

More generally, the norm can be defined in the following way.

Definition D.2. The seminorm ‖ · ‖ : X → R is a function that has the
following properties:

‖x‖ ≥ 0 ∀x ∈ X

‖αx‖ = |α|‖x‖ ∀α ∈ R ∀x ∈ X

‖x + y‖ ≤ ‖x‖ + ‖y‖ ∀x, y ∈ X

x = 0 =⇒ ‖x‖ = 0 ∀x ∈ X

Besides, if

x = 0 ⇐⇒ ‖x‖ = 0 (D.1)

the function ‖ · ‖ : X → R is called norm.

Norms and inner products are connected by the Cauchy-Schwarz’s inequality:

|x · y| ≤ ‖x‖‖y‖.

Definition D.3. Let X be a set. A function ρ : X × X → R is called a
distance on X if:

(a) ρ(x, y) ≥ 0 ∀x, y ∈ X
(b) ρ(x, y) = ρ(y, x) ∀x, y ∈ X
(c) ρ(x, x) = 0 ∀x ∈ X

The (X, ρ) is called a distance space.
If ρ satisfies, in addition, the triangle inequality

D.3 Positive Definite Kernels and Matrices 465

(d) ρ(x, y) ≤ ρ(x, z) + ρ(y, z) ∀x, y, z ∈ X

then ρ is called a semimetric on X.
Besides, if

(e) ρ(x, y) = 0 ⇒ x = y

In this case (X, ρ) is called a metric space.

It is easy to show that the function ρ(x, y) = ‖x − y‖ is a metric. We
conclude the section introducing the concept of Lp spaces.

Definition D.4. Consider countable sequences of real numbers and let 1 ≤
p < ∞. The Lp space is the set of sequences z = z1, . . . , zn, . . . such that

‖z‖p =

(∞∑
i=1

|zi|p
) 1

p

< ∞

D.3 Positive Definite Kernels and Matrices

We now introduce the concept of positive definite matrices.

Definition D.5. A n × n matrix A = (ajk), ajk ∈ R, is called a positive
definite matrix iff 1

n∑
j=1

n∑
k=1

cjckajk ≥ 0 (D.2)

for all n ∈ N, c1, . . ., cn ⊆ R.

The basic properties of positive definite matrices are underlined by the fol-
lowing result.

Theorem 17 A matrix is positive definite iff is symmetric and has all eigen-
values non-negative.

A matrix is called strictly positive definite if all eigenvalues are positive. The
following result (Sylvester’s criterion), whose proof is omitted, is a useful tool
to establish if a matrix is strictly positive definite.

Theorem 18 Let A = (ajk) be a symmetric n×n matrix. A is strictly positive
definite iff

det(ajk)j,k≤p > 0 p = 1, . . . , n

i.e. all its minors have positive determinants.

Now we introduce the concept of positive definite kernels.

1 iff stands for if and only if.

466 D Mathematical Foundations of Kernel Methods

Definition D.6. Let X be a nonempty set. A function ϕ : X × X → R is
called a positive definite kernel (or Mercer kernel) iff

n∑
j=1

n∑
k=1

cjckϕ(xj , xk) ≥ 0

for all n ∈ N, x1, . . ., xn ⊆ X and c1, . . ., cn ⊆ R .

The following result, which we do not prove, underlines the basic properties
of positive definite matrices.

Theorem 19 A kernel ϕ on X × X

• is positive definite iff is symmetric.
• is positive definite iff for every finite subset X0 ⊆ X the restriction of ϕ

to X0 × X0 is positive definite.

Besides, if ϕ is positive definite, then ϕ(x, x) ≥ 0 ∀x ∈ X.

An example of Mercer kernel is the inner product , as stated by the following
corollary.

Corollary 3 The inner product is a positive definite (Mercer) kernel.

Proof
Applying the properties of the inner product, we have:

n∑
j=1

n∑
k=1

cjckxj · xk =
n∑

j=1

cjxj ·
n∑

j=1

cjxj = ‖
n∑

j=1

cjxj‖2 ≥ 0

For Mercer kernels an inequality analogous to Cauchy Schwarz’s one holds,
as stated by the following result.

Theorem 20 For any positive definite kernel ϕ the following inequality holds

|ϕ(x, y)|2 ≤ ϕ(x, x)ϕ(y, y). (D.3)

Proof
Without losing generality, we consider the matrix

A =
(

a b
b d

)
where a, b, d ∈ R. Then, for w, z ∈ R we have:

(w z)
(

a b
b d

)(
w
z

)
= aw2 + 2bwz + dz2

= a

[
w +

b

a
z

]2
+

z2

a

[
ad − b2

]
(∀a
= 0)

The matrix A is positive definite iff a ≥ 0, d ≥ 0 and

D.3 Positive Definite Kernels and Matrices 467

det

(
a b
b d

)
= ad − b2 ≥ 0

Therefore for any positive definite kernel ϕ we have

|ϕ(x, y)|2 ≤ ϕ(x, x)ϕ(y, y)

Since both sides of the inequality are positive, we get:

|ϕ(x, y)| ≤
√

ϕ(x, x)
√

ϕ(y, y) (D.4)

��
If we define ‖x‖ϕ

�
=
√

ϕ(x, x) a pseudonorm, the inequality (D.4) becomes

|ϕ(x, y)| ≤ ‖x‖ϕ‖y‖ϕ

that recalls the Cauchy Schwarz’s inequality of the inner product.
The following remark underlines that ‖x‖ϕ is a pseudonorm.

Remark 3 ‖x‖ϕ is not a norm, since x = 0 does not imply ‖x‖ϕ = 0.

Proof
We consider the kernel ϕ(x, y) = cos(x − y), x, y ∈ R. ϕ is a Mercer

kernel, since we have:

n∑
i=1

n∑
j=1

cicj cos(xi − xj) =
n∑

i=1

n∑
j=1

cicj [cos(xi) cos(xj) + sin(xi) sin(xj)]

=

[
n∑

i=1

ci cos(xi)

]2
+

[
n∑

i=1

ci sin(xj)

]2
≥ 0

But ‖x‖ϕ = 1 ∀x. ��
Now we introduce the result that allows to use Mercer kernels to make

inner products.

Theorem 21 Let K be a symmetric function such that for all x, y ∈ X,
X ⊆ R

K(x, y)
�
= Φ(x) · Φ(y) (D.5)

where Φ : X → F and F , which is a Hilbert space,2 is called the feature
space.

K can be represented in terms of (D.5) iff K = (K(xi, xj))n
i,j=1 is semi

definite positive, i.e. K is a Mercer kernel.
Besides, K defines an explicit mapping if Φ is known, otherwise the map-

ping is implicit.

2 see Section D.8.

468 D Mathematical Foundations of Kernel Methods

Proof
We prove the proposition in the case of finite dimension space. Consider

a space X = [x1, . . . , xn] and suppose that K(x, y) is a symmetric function
on X. Consider the matrix K = (K(xi, xj))n

i,j=1. Since K is symmetric, an
orthogonal matrix V = [v1, . . . , vn] exists such that K = V ΛV T , where Λ is
a diagonal matrix that has, the eigenvalues λi of K, as elements, while vi are
the eigenvectors of K.

Now we consider the following mapping Φ : X → Rn

Φ(xi)
�
= (
√

λtvti)n
t=1

We have:

Φ(xi) · Φ(xj) =
n∑

i=1

λtvtivtj = (V ΛV T)ij = Kij = K(xi, xj).

The requirement that all the eigenvalues of K are non-negative descends from
the definition of Φ since the argument of the square root must be non-negative.
��

For the sake of completeness, we cite Mercer’s theorem 3 which is the
generalization of the proposition D.5 for the infinite dimension spaces.

Theorem 22 Let X(X ⊆ Rn) be a compact set. If K is a continuous sym-
metric function such that the operator TK :

(TKf)(·) =
∫

X

K(·, x)f(x)dx (D.6)

is positive definite, i.e.∫
X×X

K(x, y)f(x)f(y)dxdy ≥ 0 ∀f ∈ L2(X) (D.7)

then we can expand K(x, y) in a uniformly convergent series in terms of eigen-
functions Φj ∈ L2(X) and positive eigenvalues λj > 0,

K(x, y) =
∞∑

j=1

λjΦj(x)Φj(y) (D.8)

It is necessary to point out the following remark.

Remark 4 The condition (D.7) corresponds to the condition (D.4) of the
definition of the Mercer kernels in the finite case.

3 The theorem was originally proven for X = [a, b]. In [7] the theorem was extended
to general compact spaces.

D.3 Positive Definite Kernels and Matrices 469

Now we provide examples of Mercer kernels that define implicit and explicit
mapping. The kernel K(x, y) = cos(x − y), x, y ∈ R defines an explicit
mapping. Indeed, we have

K(x, y) = cos(x − y) = cos(x) cos(y) + sin(x) sin(y)

that is the inner product in a Feature space F defined by the mapping Φ :
R → R2

Φ(x) =
(

cos(x)
sin(x)

)
On the contrary, the Gaussian 4 G = exp(−‖x − y‖2) is a case of a Mercer
kernel with an implicit mapping, since Φ is unknown. The possibility to use
Mercer kernels in order to perform inner product makes their study quite
important for computer science. In the rest of this section we will present
methods to make Mercer kernels.

D.3.1 How to Make a Mercer Kernel

The following theorem shows that Mercer kernels satisfy quite a number of
properties.

Theorem 23 Let ϕ1 and ϕ2 be Mercer kernels respectively over X × X and
X ⊆ Rn, a ∈ R+, · and

⊗
the inner and the tensor product, respectively.

Then the following functions are Mercer kernels:

1. ϕ(x, z) = ϕ1(x, z) + ϕ2(x, z)
2. ϕ(x, z) = aϕ1(x, z)
3. ϕ(x, z) = ϕ1(x, z) · ϕ2(x, z)
4. ϕ(x, z) = ϕ1(x, z)

⊗
ϕ2(x, z)

Proof
The proofs of the first and the second properties are immediate.

n∑
i=1

n∑
j=1

cicj [ϕ(xi, xj)] =
n∑

i=1

n∑
j=1

cicjϕ1(xi, xj) +
n∑

i=1

n∑
j=1

cicjϕ2(xi, xj) ≥ 0

n∑
i=1

n∑
j=1

cicj [aϕ(xi, xj)] = a

n∑
i=1

n∑
j=1

cicjϕ(xi, xj) ≥ 0.

Since the product of positive definite matrices is still positive definite, the
third property is immediately proved.

The tensor product of two positive definite matrices is positive definite,
since the eigenvalues of the product are all pairs of products of the eigenvalues
of the two components. ��

The following corollaries provide useful methods in order to make Mercer
kernels.
4 For the proof of the positive definiteness of the Gaussian see Corollary 9.

470 D Mathematical Foundations of Kernel Methods

Corollary 4 Let ϕ(x, y) : X × X → R be positive definite. The following
kernels are also positive definite:

1. K(x, y) =
n∑

i=0

ai[ϕ(x, y)]n ai ∈ R+

2. K(x, y) = exp(ϕ(x, y))

Proof
The first property is an immediate consequence of the Theorem 23. Re-

garding the second item, the exponential can be represented as:

exp(ϕ(x, y)) = 1 +
∞∑

i=1

[ϕ(x, y)]i

i!

and is a limit of linear combinations of Mercer kernels. Since Mercer kernels
are closed under the pointwise limit, the item is proved. ��
Corollary 5 Let f(·) : X → X be a function. Then ϕ(x, y) = f(x)f(y) is
positive definite.

Proof
We have:

n∑
i=1

n∑
j=1

cicjf(xj)f(xk) =

(
n∑

i=1

cif(xi)

)2

≥ 0

��
The foregoing propositions are very useful to make new Mercer kernels

by means of existing Mercer kernels. Nevertheless to prove that a kernel is
positive definite is generally not a trivial task. The following propositions,
that we do not prove, are useful criteria that allow to state if a kernel is
positive definite.

Theorem 24 (Bochner) If K(x− y) is a continuous positive definite func-
tion, then there exists a bounded nondecreasing function V (u) such that
K(x − y) is a Fourier Stjelties transform of V (u), that is:

K(x − y) =
∫ ∞

−∞
ei(x−y)udV (u)

If the function K(x − y) satisfies this condition, then it is positive definite.

Theorem 25 (Schoenberg) Let us call a function F (u) completely mono-
tonic on (0,∞), provided that it is in C∞(0,∞) and satisfies the condition:

(−1)nF (n)(u) ≥ 0 u ∈ (0,∞), n = 0, 1, . . .

Then the function F (‖x−y‖) is positive definite iff F (
√‖x − y‖) is continuous

and completely monotonic.

D.4 Conditionate Positive Definite Kernels and Matrices 471

Theorem 26 (Polya) Any real, even, continuous function F (u) which is
convex on (0,∞), i.e. satisfies F (αu1 + (1 − α)u2 ≤ αF (u1) + (1 − α)f(u2)
for all u1, u2 and α ∈ (0, 1), is positive definite.

On the basis of these theorems, one can construct different Mercer kernels of
the type K(x − y).

D.4 Conditionate Positive Definite Kernels and Matrices

Although the class of Mercer kernels is adequately populated, it can be useful
to identify kernel functions that, although non-Mercer kernels, can be used,
in similar way, to compute inner products. To this purpose we define the
conditionate positive definite matrices and kernels [13].

Definition D.7. A n×n matrix A = (aij) aij ∈ R is called a conditionate
positive definite matrix of order r if it has n−r non-negative eigenvalues.

Definition D.8. We call the kernel ϕ a conditionate positive definite
kernel of order r iff is symmetric (i.e ϕ(x, y) = ϕ(y, x) ∀x, y ∈ X) and

n∑
j=1

n∑
k=1

cjckϕ(xj , xk) ≥ 0

∀n ≥ 2, x1, . . ., xn ⊆ X and c1, . . ., cn ⊆ R, with
n∑

j=1

cjP (x) = 0 where P (x) is

a polynomial of order r − 1.

Examples of conditionate positive kernels are 5:

k(x, y) = −
√
‖x − y‖2 + α2 α ∈ R Hardy multiquadric (r = 1)

k(x.y) = ‖x − y‖2 ln ‖x − y‖ thin plate spline (r = 2)

As pointed out by [9] conditionally positive definite kernels are admissible for
methods that use a kernel to make inner products. This is underlined by the
following result.

Theorem 27 If a conditionate positive definite kernel k(x, y) can be repre-

sented as k(x, y)
�
= h(‖x − y‖2), then k(x.y) satisfies the Mercer condition

(6).

Proof
In [8, 11] it was shown that conditionate positive definite kernels h(‖x −

y‖2) generate semi-norms and ‖.‖h defined by:

5 The conditionate positive definiteness of Hardy multiquadrics is shown in Corol-
lary 7.

472 D Mathematical Foundations of Kernel Methods

‖f‖2
h =
∫

h(‖x − y‖2)f(x)f(y)dxdy (D.9)

Since ‖f‖2
h is a seminorm, ‖f‖2

h ≥ 0. Since the right side of (D.9) is the
Mercer’s condition for h(‖x − y‖2), h(‖x − y‖2) defines a scalar product in
some feature space. Hence k(x, y) can be used to perform an inner product.
��

This result enlarges remarkably the class of kernels, that can be used to
perform inner products.

D.5 Negative Definite Kernels and Matrices

We introduce the concept of negative definite matrices.

Definition D.9. A n × n matrix A = (aij) aij ∈ R is called a negative
definite matrix iff

n∑
j=1

n∑
k=1

cjckajk ≤ 0 (D.10)

∀n > 2, c1, . . ., cn ⊆ R.

Since the previous definition involves integers n > 2, it is necessary to point
out that any 1 × 1 matrix A = (a11) with a11 ∈ R is called negative defi-
nite. The basic properties of negative definite matrices are underlined by the
following result.

Theorem 28 A matrix is negative definite iff is symmetric and has all eigen-
values ≤ 0.

A matrix is called strictly negative definite if all eigenvalues are negative.
Now we introduce the concept of the negative definite kernels.

Definition D.10. We call the kernel ϕ a negative definite kernel iff is
symmetric (i.e ϕ(x, y) = ϕ(y, x) ∀x, y ∈ X) and

n∑
j=1

n∑
k=1

cjckϕ(xj , xk) ≤ 0

∀n ≥ 2, x1, . . ., xn ⊆ X and c1, . . ., cn ⊆ R with
n∑

j=1

cj = 0.

In analogy with the positive definite kernel, the following result holds:

Theorem 29 A kernel ϕ is negative definite iff for every finite subset X0 ⊆ X
the restriction of ϕ to X0 × X0 is negative definite.

An example of a negative definite kernel is the square of the Euclidean dis-
tance.

D.5 Negative Definite Kernels and Matrices 473

Corollary 6 The kernel ϕ(x, y) = ‖x − y‖2 is negative definite.

Proof
We have:

n∑
i,j=1

cicjϕ(xj , xk) =
n∑

i,j=1

cicj‖xi − xj‖2

=
n∑

i=1

n∑
j=1

cicj [‖xi‖2 − 2(xi · xj) + ‖xj‖2]

=
n∑

j=1

cj

n∑
i=1

ci‖xi‖2 +
n∑

i=1

ci

n∑
j=1

cj‖xj‖2−2
n∑

i,j=1

cicj(xi · xk)

= −2
n∑

i=1

n∑
j=1

cicj(xi · xk)

⎛⎝since

n∑
j=1

cj = 0

⎞⎠
≤ 0

since the inner product is positive definite. ��
Important properties of negative definite kernels are stated by the following

lemma, whose proof [4] is omitted for the sake of brevity.

Lemma D.11. If ψ : X×X → R is negative definite and satisfies ψ(x, x) ≥ 0
∀x ∈ X then the following kernels are negative definite

• ψα for 0 < α < 1.
• log(1 + ψ)

Consequence of the lemma is that Hardy multiquadrics is a conditionate pos-
itive definite kernel.

Corollary 7 The Hardy multiquadrics −√α2 + ‖x − y‖2 is a conditionate
positive definite kernel of order 1, for α ∈ R.

Proof
The kernel ψ(x, y) = α2 + ‖x − y‖2 is negative definite,

n∑
i=1

n∑
j=1

cicj [α2 + ‖xi − xj‖2] = α2

(
n∑

i=1

ci

)2

+
n∑

i=1

n∑
j=1

cicj‖xi − xj‖2

=
n∑

i=1

n∑
j=1

cicj‖xi − xj‖2

(
since

n∑
i=1

ci = 0

)
≤ 0

for Corollary 6.
Therefore, for the previous lemma, ϕ(x, y) = ψ(x, y)

1
2 is still negative def-

inite. Hence, the opposite of ϕ, i.e. the Hardy multiquadrics, is a conditionate
positive definite kernel of order 1. ��

474 D Mathematical Foundations of Kernel Methods

One consequence of Lemma D.11 is the following fundamental result that
characterizes negative definite kernels.

Corollary 8 The Euclidean distance is negative definite. More generally, the
kernel ψ(x, y) = ‖x − y‖α is negative definite for 0 < α ≤ 2.

Proof
The result is immediate consequence of Corollary 6 and Lemma D.11. ��

D.6 Relations Between Positive and Negative
Definite Kernels

Positive and negative definite kernels are strictly connected. If K is positive
definite then −K is negative definite. On the contrary, if K is negative definite,
then −K is a conditionate positive definite kernel of order 1. Besides, positive
and negative definite functions are related by the following lemma.

Lemma D.12. Let X be a nonempty set, x0 ∈ X, and let ψ : X ×X → R be
a symmetric kernel. Put ϕ(x, y) := ψ(x, x0) + ψ(y, x0) − ψ(x, y) − ψ(x0, y0).
Then ϕ is positive definite iff ψ is negative definite.

If ψ(x0, x0) ≥ 0 and ϕ0(x, y) := ψ(x, x0) + ψ(y, x0) − ψ(x, y), then ϕ0 is
positive definite iff ψ is negative definite.

Proof

For c1, . . . , cn ∈ R,
n∑

j=1

cj = 0 and x1, . . . , xn ∈ X we have

n∑
j=1

n∑
i=1

cicjϕ(xi, xj) =
n∑

j=1

n∑
i=1

cicjϕ0(xi, xj)

= −
n∑

j=1

n∑
i=1

cicjψ(xi, xj).

Therefore positive definiteness of ϕ implies the negative definiteness of ψ.
On the other hand, suppose that ψ is negative definite. Let c1, . . . , cn ∈ R

and x1, . . . , xn ∈ X. We put c0 = −
n∑

j=1

cj = 0. Then

D.6 Relations Between Positive and Negative Definite Kernels 475

0 ≥
n∑

j=0

n∑
i=0

cicjψ(xi, xj)

0 ≥
n∑

j=1

n∑
i=1

cicjψ(xi, xj)+
n∑

j=1

cjc0ψ(xj , x0)+
n∑

i=1

cic0ψ(xi, x0)+‖c0‖2ψ(x0, x0)

0 ≥
n∑

j=1

n∑
i=1

cicj [ψ(xi, xj) − ψ(xj , x0) − ψ(xi, x0) + ψ(x0, x0)]

0 ≥ −
n∑

j=1

n∑
i=1

cicjϕ(xi, xj)

Hence ϕ is positive definite. Finally, if ψ(x0, x0) ≥ 0 then

n∑
j=1

n∑
i=1

cicjϕ0(xi, xj) =
n∑

j=1

n∑
i=1

cicj [ϕ(xi, xj)] + ψ(x0, x0)

⎛⎝ n∑
j=1

cj

⎞⎠2

≥ 0

��
The following theorem is very important since it allows us to prove that

the Gaussian kernel is positive definite.

Theorem 30 (Schoenberg) Let X be a nonempty set and let ψ : X ×X →
R be a kernel. Then ψ is negative definite iff exp(−tψ) is positive definite
∀t > 0.

Proof
If exp(−tψ) is positive definite then 1 − exp(−tψ) is negative definite

n∑
i=1

n∑
j=1

cicj [1 − exp(−tψ)] =

(
n∑

i=1

ci

)2

−
n∑

i=1

n∑
j=1

cicj exp(−tψ)

= −
n∑

i=1

n∑
j=1

cicj exp(−tψ)

(
since

n∑
i=1

ci = 0

)
≤ 0

since exp(−tψ) is definite positive.
The negative definite is also the limit

limt→0+
1
t
(1 − exp(−tψ)) = ψ

On the other hand, suppose that ψ is negative definite. We show that for
t = 1, the kernel exp(−tψ) is positive definite. We choose x0 ∈ X and, for
Lemma D.12, we have:

−ψ(x, y) = ϕ(x, y) − ψ(x, x0) − ψ(y, x0) + ψ(x0, x)

476 D Mathematical Foundations of Kernel Methods

where ϕ is positive definite. Since

exp(−ψ(x, y)) = exp(ϕ(x, y)) exp(−ψ(x, x0)) exp(−ψ(y, x0)) exp(ψ(x0, x))

we conclude that exp(−ψ) is positive definite. The generic case ∀t > 0, can
be derived for induction. ��

An immediate consequence of the previous theorem is the following result.

Corollary 9 The Gaussian exp(−‖x−y‖2

σ2) is positive definite, for x, y ∈ Rn

and σ ∈ R.
More generally, ψ(x, y) = exp(−a‖x − y‖α), with a > 0 and 0 < α ≥ 2, is

positive definite.

Proof
The kernel ‖x − y‖α with 0 < α ≥ 2 is negative definite, as shown in

Corollary 8. Therefore for Theorem 30 the Gaussian is positive definite. ��
We conclude this section reporting, without proving them, the following

results.

Lemma D.13. A kernel ψ : X × X → R is negative definite iff (t + ψ)−1 is
positive definite ∀t > 0.

Theorem 31 A kernel ψ : X × X → R is negative definite iff its Laplace
transform L(tψ)

L(tψ) =
∫ +∞

0

exp(−tsψ)dµ(s)

is positive definite ∀t > 0.

Consequence of the Lemma D.13, is the following result.

Corollary 10 Inverse Hardy multiquadrics ψ(x, y) = (α2 + ‖x − y‖2)−
1
2 ,

α ∈ R is positive definite.

Proof
Since (α2 + ‖x − y‖2)−

1
2 is definite negative (see Corollary 7), Inverse

Hardy multiquadrics is definite positive for Lemma D.13. ��

D.7 Metric Computation by Mercer Kernels

In this section we show how to compute a metric by means of a Mercer kernel.
Thanks to a fundamental result [15][16], it is possible to associate a metric to
a kernel . In order to show that we consider, associated to a Mercer kernel K,
the kernel d(x, y):

d(x, y)
�
= K(x, x) − 2K(x, y) + K(y, y).

The kernel d(x, y) is negative definite.

D.7 Metric Computation by Mercer Kernels 477

Corollary 11 If K(x, y) is positive definite then d(x,y) is negative definite.
Besides,

√
d(x, y) is negative definite.

Proof
We have:

n∑
i,j=1

cjcid(xj , xi) =

n∑
i,j=1

cjci[K(xi, xi) − 2K(xi, xj) + K(xj , xj)]

=

n∑
j=1

cj

n∑
i=1

ciK(xi, xi) − 2

n∑
i,j=1

cjciK(xi, xj)+

n∑
i=1

ci

∑
j=1

cjK(xj , xj)]

= −2

n∑
i=1

n∑
j=1

cjciK(xi, xj)

(
since

n∑
j=1

cj = 0

)
≤ 0

since K is definite positive.
Now we show that d(x, y) ≥ 0

d(x, y) = K(x, x) − 2K(x, x)K(y, y) + K(y, y)

≥ K(x, x) − 2
√

K(x, x)K(y, y) + K(y, y)

≥
[√

K(x, x) −
√

K(y, y)
]2

≥ 0.

Hence, for Lemma D.11,
√

d(x, y) is negative definite. ��
Now we introduce the result [15][16].

Theorem 32 (Schoenberg) Let X be a nonempty set and ψ : X × X → R

be negative definite. Then there is a space H ⊆ RX and a mapping x �→ ϕx

from X to H such that

ψ(x, y) = ‖ϕx − ϕy‖2 + f(x) + f(y)

where f : X → R. The function f is non-negative whenever ψ is.
If ψ(x, x) = 0 ∀x ∈ X then f = 0 and

√
ψ is a metric on X.

Proof
We fix some x0 ∈ X and define

ϕ(x, y) =
1
2

[ψ(x, x0) + ψ(y, x0) − ψ(x, y) − ψ(x0, y0)]

which is positive definite for Lemma D.12. Let H be the associated space for
ϕ and put ϕx(y) = ϕ(x, y). Then

‖ϕx − ϕy‖2 = ϕ(x, x) + ϕ(y, y) − 2ϕ(x, y)

= ψ(x, y) − 1
2

[ψ(x, x) + ψ(y, y)]

478 D Mathematical Foundations of Kernel Methods

By setting f(x) := 1
2ψ(x, x) we have:

ψ(x, y) = ‖ϕx − ϕy‖2 + f(x) + f(y).

The other statements can be derived immediately. ��
As pointed out by [6], the negative definiteness of the metric is a property

of L2 spaces. Schoenberg’s theorem can be reformulated in the following way:

Theorem 33 Let X be a L2 space. Then the kernel ψ : X × X → R is
negative definite iff

√
ψ is a metric.

An immediate consequence of Schoenberg’s theorem is the following result.

Corollary 12 Let K(x, y) be a positive definite kernel. Then the kernel

ρK(x, y)
�
=
√

K(x, x) − 2K(x, y) + K(y, y)

is a metric.

Proof
The kernel d(x, y) = K(x, x)−2K(x, y)+K(y, y) is negative definite. Since

d(x, x) = 0 ∀x ∈ X, applying Theorem 1 we get that ρK(x, y)
�
=
√

d(x, y) is
a distance. ��

Hence, it is always possible to compute a metric by means of a Mercer ker-
nel, even if an implicit mapping is associated with the Mercer kernel. When an
implicit mapping is associated to the kernel, it cannot compute the positions
Φ(x) e Φ(y) in the feature space of two points x and y; nevertheless it can
compute their distance ρK(x, y) in the feature space. Finally, we conclude this
section, providing metric examples that can be derived by Mercer kernels.

Corollary 13 The following kernels ρ : X × X → R+

• ρ(x, y) =
√

2 − 2 exp(−‖x − y‖α) with 0 < α < 2
• ρ(x, y) =

√
(‖x‖2 + 1)n + (‖y‖2 + 1)n − 2(x · y + 1)n with n ∈ N

are metrics.

Proof
Since (x · y + 1)n and exp(−‖x − y‖α) with 0 < α < 2 are Mercer

kernels, the statement, by means of the Corollary 12, is immediate. ��

D.8 Hilbert Space Representation of Positive
Definite Kernels

First, we recall some basic definitions in order to introduce the concept of
Hilbert space.

D.8 Hilbert Space Representation of Positive Definite Kernels 479

Definition D.14. A set is a linear space (or vector space) if the addition
and the multiplication by a scalar are defined on X such that, ∀x, y ∈ X and
α ∈ R

x + y ∈ X

αx ∈ X

1x = x

0x = 0
α(x + y) = αx + αy

Definition D.15. A sequence xn in a normed linear space6 is said to be a
Cauchy sequence if ‖xn − xm‖ → 0 for n,m → ∞.

A space is said to be complete when every Cauchy sequence converges to
an element of the space.

A complete normed linear space is called a Banach space.
A Banach space where an inner product can be defined is called a Hilbert

space.

Now we pass to represent positive definite kernels in terms of a reproducing
kernel Hilbert space (RKHS).

Let X be a nonempty set and ϕ : X × X → R be positive definite. Let
H0 be the space the subspace of RX generated by the functions {ϕx|x ∈ X}
where ϕx(y) = ϕ(x, y).

If f =
∑

j cjϕxj
and g =

∑
i diϕyi

, with f, g ∈ H0, then∑
i

dif(yi) =
∑
i,j

cjdiϕ(xj , yi) =
∑

j

cjg(xj) (D.11)

The foregoing formula does not depend on the chosen representations of f and
g and is denoted 〈f, g〉. Then the inner product 〈f, g〉 =

∑
i,j cicjϕ(xi, xj) ≥ 0

since ϕ is definite positive. Besides, the form 〈·, ·〉 is linear in both arguments.
A consequence of (D.11) is the reproducing property

〈f, ϕx〉 =
∑

j

cjϕ(xj , x) = f(x) ∀f ∈ H0 ∀x ∈ X

〈ϕx, ϕy〉 = ϕ(x, y) ∀x, y ∈ X

Moreover, using Cauchy Schwarz’s inequality, we have:

‖〈f, ϕx〉‖2 ≤ 〈ϕx, ϕx〉〈f, f〉
|f(x)|2 ≤ 〈f, f〉ϕ(x, x) (D.12)

Therefore 〈f, f〉 = 0 ⇐⇒ f(x) = 0 ∀x ∈ X.
6 A normed linear space is a linear space where a norm function ‖ · ‖ : X → R is

defined that maps each element x ∈ X into ‖x‖.

480 D Mathematical Foundations of Kernel Methods

Hence, the form 〈·, ·〉 is an inner product and H0 is a Pre-Hilbertian space.7

H, the completion of H0, is a Hilbert space, in which H0 is a dense subspace.
The Hilbert function space H is usually called the reproducing kernel Hilbert
space (RKHS) associated to the Mercer kernel ϕ. Hence, the following result
has been proved.

Theorem 34 Let ϕ : X × x → R be a Mercer kernel.
Then there is a Hilbert space H ⊆ RX and a mapping x �→ ϕx from X to

H such that

〈ϕx, ϕy〉 = ϕ(x, y) ∀x, y ∈ X

i.e. ϕ for H is the reproducing kernel.

D.9 Conclusions

In this appendix, the mathematical foundations of the Kernel methods have
been reviewed focusing on the theoretical aspects which are relevant for Ker-
nel methods. First we have reviewed Mercer kernels. Then we have described
negative kernels underlining the connections between Mercer and negative
kernels. We have also described how a positive definite kernel can be repre-
sented by means of a Hilbert space. We conclude the appendix providing some
bibliographical remarks. Mercer kernel and RKHS are fully discussed in [3]
which also represents a milestone in the kernel theory. A good introduction to
the Mercer kernels, more accessible to less experienced readers, can be found
in [4]. Finally, the reader can find some mathematical topics of the kernel
theory discussed in some handbooks on Kernel methods, such as [18][20].

7 A Pre-Hilbertian space is a normed, noncomplete space where an inner product
is defined.

References

1. M. Aizerman, E. Braverman, and L. Rozonoer. Theoretical foundations of the
potential function method in pattern recognition learning. Automation and
Remote Control, 25:821–837, 1964.

2. N. Aronszajn. La theorie generale de noyaux reproduisants et ses applications.
Proc. Cambridge Philos. Soc., 39:133–153, 1944.

3. N. Aronszajn. Theory of reproducing kernels. Trans. Amer. Math. Soc., 68:337–
404, 1950.

4. C. Berg, J.P.R. Christensen, and P. Ressel. Harmonic Analysis on Semigroups.
Springer-Verlag, 1984.

5. N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Ma-
chines. Cambridge University Press, 2000.

6. M. Deza and M. Laurent. Measure aspects of cut polyhedra: l1-embeddability
and probability. Technical report, Departement de Mathematiques et d’ Infor-
matique, Ecole Normale Superieure, 1993.

7. N. Dumford and T. J. Schwarz. Linear Operators Part II: Spectral Theory, Self
Adjoint Operators in Hilbert Spaces. John Wiley, 1963.

8. N. Dyn. Interpolation and approximation by radial and related functions. In
Approximation Theory, pages 211–234. Academic Press, 1991.

9. F. Girosi. Priors, stabilizers and basis functions: From regularization to ra-
dial,tensor and additive splines. Technical report, MIT, 1993.

10. D. Hilbert. Grundzüge einer allgemeinen theorie der linearen integralgleichun-
gen. Nachr. Göttinger Akad. Wiss. Math. Phys. Klasse, 1:49–91, 1904.

11. W. R. Madych and S. A. Nelson. Multivariate interpolation and conditionally
positive definite functions. Mathematics of Computation, 54:211–230, 1990.

12. J. Mercer. Functions of positive and negative type and their connection with
the theory of integral equations. Philos. Trans. Royal Soc., A209:415–446, 1909.

13. C. A. Micchelli. Interpolation of scattered data: distance matrices and condi-
tionally positive definite,. Constructive Approximation, 2:11–22, 1986.

14. W. Rudin. Real and Complex Analysis,. Mc Graw-Hill, 1966.
15. I. J. Schoenberg. Metric spaces and completely monotone functions. Ann. of

Math., 39:811–841, 1938.
16. I. J. Schoenberg. Metric spaces and positive definite functions. Trans. Amer.

Math. Soc., 44:522–536, 1938.

482 References

17. I. J. Schoenberg. Positive definite functions on spheres. Duke. Math. J., 9:96–
108, 1942.

18. B. Schölkopf and A.J. Smola. Learning with Kernels. MIT Press, 2002.
19. I. Schur. Bemerkungen zur theorie der beschränkten bilininearformen mit un-

endlich vielen veränderlichen. J. Reine Angew. Math., 140:1–29, 1911.
20. J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cam-

bridge University Press, 2004.

Index

A-Law compander, 31, 33
Cp statistics, 163
Lp space, 465
N -grams, 266, 286, 345

discounting, 292
equivalence classes, 287
history, 287
parameters estimation, 288
smoothing, 292

ε-Isomap, 328
ε-insensitive loss function, 229
µ-Law compander, 31, 33
z -transform, 447

properties, 449
region of existence, 448

a posteriori probability, 94
A/D conversion, 22
AAC, 35
absolute threshold of hearing, 36
accuracy, 359
achromatic colors, 63
acoustic impedance, 17, 20
acoustic waves

energy, 17
frequency, 15
intensity, 17
period, 15
physics, 15
pressure variations, 15
propagation, 16
source power, 17
speed, 17

activation functions, 175

ADABOOST, 201

ADALINE, 185

adaptive boosting, 203

addition law

for arbitrary events, 436

for conditional probabilities, 438

for mutually exclusive events, 434

adjacency matrix, 254

Advanced Audio Coding, 35

affinity matrix, 254

agglomerative hierarchical clustering,
144

agglomerative methods, 143

AIC, 163

AIFF, 33

Akaike Information Criterion, 163

aliasing, 24

amplitude, 15

Angstrom, 57

annealed entropy, 161

approximations of negentropy, 321

arcing, 202

articulators, 20

articulators configuration, 20

Artificial Neural Networks, 174

artificial neurons, 175

asynchronous HMMs, 285

AU, 33

audio

acquisition, 22

encoding, 32

format, 32

484 Index

storage, 32
time domain processing, 38

auditory channel, 20
auditory peripheral system, 20
autoassociative approach, 315
autocorrelation function, 45
average distortion, 126
average magnitude, 41
average value reduction, 71

B-frame, 74
B-VOP, 76
back-propagation, 188
bagging, 201
Banach space, 479
bankcheck reading, 369
Bark scale, 22
baseline JPEG algorithm, 68
basic colors, 58
basilar membrane, 21
Batch K-MEANS, 128
batch learning, 192
batch update, 127
Baum-Welch Algorithm, 278
Bayer’s pattern, 56
Bayes classifier, 95
Bayes classifier optimality, 95
Bayes decision rule, 94, 98
Bayes discriminant error, 152
Bayes error, 95
Bayes formula, 94
Bayes problem, 95
Bayes risk, 98
Bayes Theorem, 94
Bayesian Information Criterion, 163,

164
Bayesian learning, 237
Bayesian Theory of Decision, 91
Bayesian voting, 200
best approximation property, 186
bias, 150
bias-variance dilemma, 150, 151
bias-variance trade-off, 151
BIC, 163, 164
Bidirectional Frame, 74
Bidirectional VOP, 76
bigram, 362
binary classification, 98
binary classifier, 98

binary code, 68
bit-rate, 32
blind source separation, 317
blue difference component, 62
blue-green, 53
Bochner theorem, 470
boosting, 202
bootstrap, 201
bootstrap aggregation, 201
bottleneck layer, 315
bottom-up strategy, 69
boundary bias term, 152
boundary error, 152
Bounded Support Vectors, 246
box-counting dimension, 310
Bregman methods, 224
brightness, 59, 64
BSS, 317
BTD, 91

Cambridge database, 360
camera movement, 420
capacity term, 154
Cauchy kernel, 256
Cauchy Schwarz’s inequality, 464
Cauchy sequence, 479
CCA, 326
CCD, 54
Central Limit Theorem, 319
centroid, 107
cepstrum, 353
Chernoff’s bound, 160
chroma, 59, 64
chromatic colors, 63
chromatic response functions, 66
chromaticity coordinates, 60, 61
chromaticity diagram, 61
chrominance, 70
chrominance components, 62
Chunking and Decomposition, 223
CIE, 59
CIE XYZ, 59
class, 86, 92, 95
class-conditional probability density

function, 92
classification, 86, 173
classification learning, 86
classifier, 86, 95, 153
classifier complexity, 154

Index 485

classifiers
combination, 198
diversity, 198

cluster, 118
clustering, 118, 420
clustering algorithms, 87
clustering methods, 118
CMOS, 54
CMU-SLM toolkit, 296
CMY, 59, 62
cochlea, 21, 36
cocktail-party problem, 316
codebook, 122, 194
codevector, 122
codevectors, 194
coin tossing, 433
color gamut, 61
color interpolation, 56
color models, 59
color quantization, 58
color space, 59
Colorimetric models, 59
compact discs, 32
complete data likelihood, 121
complex exponentials, 446
complex numbers, 445

conjugate, 446
modulus, 446
polar representation, 446
standard representation, 445

compositor, 76
compression, 125
conditional optimization problem, 213
conditional risk, 97
conditionally positive definite, 256
conditionate positive definite kernel,

471
conditionate positive definite matrix,

471
cones, 52
confidence term, 154
conjugate gradient, 222
consistency, 253
consistency of ERM principle, 160
consistent model selection criterion, 164
Constrained Maximum, 224
convex objective function, 215
convex optimization problem, 215
coordinate chart, 327

coordinate patch, 327
cornea, 52
correlation dimension, 310
correlation integral, 310
covariance, 103, 443
covariance matrix, 103, 443
coverage, 361
critical band, 21, 353
critical frequence, 24
cross-entropy, 193
crossvalidated committees, 201
crossvalidation, 166
crystalline lens, 52
cumulative probability function, 440
curse of dimensionality, 88, 306, 307
Curvilinear Component Analysis, 326

d-dimensional Hausdorff measure, 310
DAG, 229
DAGSVM, 229
data, 85, 93
data dimensionality, 308
DCT, 70
DCT coefficients, 71
dead codevectors, 129
deciBel scale, 18

sound pressure level, 18
decision boundaries, 101
decision function, 95
decision regions, 101
decision rule, 92, 97
decoder, 76
decoding, 127
Delaunay triangulation, 123
deletion, 358
demapping layer, 315
demosaicing, 56
dendrogram, 143
deterministic annealing, 251
dichotomizer, 98
die rolling, 434
diffeomorphism, 327
differentiable manifold, 327
differential entropy, 320
digital audio tapes, 32
digital camera, 54
digital rights management, 77
digital signal, 38

486 Index

Digital Video, 73
Digital Video Broadcasting, 73
dimensionality reduction methods, 88
Dirichlet Tesselation, 123
discontinuity function, 417
Discrete Cosine Transform, 70, 351, 453
Discrete Fourier Transform, 452
discriminability, 109
discriminant function, 100
discriminant function rule, 100
discriminant functions, 100
dispersion, 442
distance space, 464
diversity, 198
divisive methods, 143
DRM, 77
DV, 73
DVB, 73

E-step, 121
ears, 20
Eckmann-Ruelle Inequality, 312
effective number of parameters, 168
eigenvalues, 460
eigenvectors, 460
embedded reestimation, 356
empirical average distortion, 126
Empirical Quantization Error, 124
Empirical Quantization Error in Feature

Space, 250
empirical risk, 153, 160
Empirical Risk Minimization Principle,

160
encoding, 127
energy, 41
ensemble methods, 197

ADABOOST, 201
bagging, 201
Bayesian voting, 200
bootstrap aggregation, 201
crossvalidated committees, 201
error-correcting output code, 204

entropy, 161
entropy coding, 68
entropy encoding, 68
entropy of the distribution, 165
Epanechnikov Kernel, 256
ERM Principle, 160
error, 95

error function, 152

error surface, 190

global minima, 191

local minima, 191

error-correcting output code, 204

estimation error, 154, 307

Euler equation, 446

events

complementary, 434

disjoint, 434

elementary, 434

equivalent, 434

exhaustive set, 438

intersection, 434

mutually exclusive, 434

statistically dependent, 439

statistically independent, 438

union, 434

evidence, 94

Expectation-Maximization method, 120

Expected Distortion Error, 124

expected loss, 97, 160

Expected Quantization Error, 124

expected risk, 153

expected value of a function, 102

expected value of a variable, 102

exploratory projection pursuit, 323

farthest-neighbor cluster algorithm, 144

FastICA algorithm, 323

FCM, 141

feature extraction, 306

Feature Space, 220, 243, 467

Feature Space Codebook, 250

feature vector, 92, 306

features, 92, 305

Fermat optimization theorem, 213

field of view, 55

first choice multiplier, 225

first milestone of VC theory, 161

Fisher discriminant, 239

Fisher linear discriminant, 240

fixed length code, 68

focal length, 55

forest, 69

Index 487

Fourier Transform, 353, 451
region of existence, 451

fourth-order cumulant, 320
FOV, 55
fovea centralis, 52
fractal-based methods, 309
frame, 72, 416
front end, 348, 349
front-end, 345
Fukunaga-Olsen’s algorithm, 309
function approximation theory, 307
function learning, 86
fundamental frequency, 19
Fuzzy C-Means, 141
fuzzy clustering, 250
fuzzy competitive learning, 142

Gaussian heat kernel, 332
Gaussian Mixture, 270

parameters estimation, 281
Gaussian Processes, 233, 237
GCV, 167
General Topographic Mapping, 137
generalization error, 153
generalized correlation integral, 311
Generalized crossvalidation, 166
Generalized Linear Discriminants, 183
generalized Lloyd algorithm, 128
Generalized Portrait, 218
generalized Renyi dimension, 310
generative model, 317
geodetic distance, 328
Geometric distribution, 112
GIF, 67
glottal cycle, 19
glottis, 18
gradient descent, 192
Gram matrix, 222
Gram-Schmid orthogonalization, 324
graph cut problem, 253
graph Laplacian, 331
graylevel image, 56
grayscale image, 56
greedy algorithm, 70
growth function, 162
GTM, 137
GTM Toolbox, 141

Hamming window, 351

handwriting recognition, 345
applications, 368
front end, 349
normalization, 349
preprocessing, 349
segmentation, 350
subunits, 350

hardware oriented color models, 59
Hardy multiquadrics, 471, 473
Hausdorff dimension, 309
HCV, 59, 64
Heaps Law, 290
Heaviside function, 177
Hertz, 17
Hidden Markov Models, 266, 345

backward variable, 276
continuous density, 269
decoding problem, 274
discrete, 269
embedded reestimation, 356
emission functions estimation, 281
emission probability functions, 269
ergodic, 267
flat initialization, 355
forward variable, 272
independence assumptions, 269
initial states probability, 280
initial states probability estimation,

280
learning problem, 278
left-right, 267
likelihood problem, 271
parameters initialization, 279, 355
state variables, 267
three problems, 270
topology, 267
transition matrix, 267
transition probabilities, 267
transition probabilities estimation,

280
trellis, 272
variants, 284

hierarchical clustering, 118, 142, 143
Hilbert space, 478, 479
HIS, 64
histogram, 420
HLS, 59
HSB, 59, 64, 65
HSV, 59, 64

488 Index

HTK, 346, 353, 355
hue, 59, 62, 64
hue coefficient functions, 66
Huffman coding, 68, 165
Huffman’s algorithm, 69
Hybrid ANN/HMM models, 285
hyperbolic tangent, 178
Hyvarinen approximation of negentropy,

321

I-frame, 74
I-VOP, 76
i.i.d., 93
IAM database, 360
ICA, 316
ICA model, 317
ICA Model Principle, 319
ill-posed problems, 226
image

histogram, 420
image file format standards, 66
image processing, 51
impulse response, 40
incomplete data, 120
incomplete data likelihood function, 121
independent and identically distribuited,

93
Independent Component Analysis, 316,

317
independent components, 317
independent trials, 433
infinite VC dimension, 163
infomax principle, 323
inner product, 464, 466, 469, 480
Input Output HMMs, 284
insertion, 358
intensity, 17, 63, 64
International Telecommunications

Union, 31
Intra VOP, 76
Intra-frame, 74
intrinsic dimensionality, 137, 306, 308
Inverse Hardy Multiquadrics, 476
iris, 52
Iris Data, 113, 145, 169, 256, 334
Isomap, 328
isomap, 326
isometric chart, 328

Isometric feature mapping, 328

Jensen inequality, 215
JND, 58
JPEG, 68
just noticeable difference, 58

K-fold Crossvalidation, 166
K-Isomap, 328
k-means, 425
Karhunen-Loeve Transform, 313
Karush-Kuhn Tucker conditions, 216
Katz’s discounting model, 295
Kernel Engineering, 255
Kernel Fisher Discriminant, 239
Kernel K-Means, 250, 254
Kernel Methods, 463
Kernel PCA, 242
Kernel Principal Component Analysis,

242
kernel property, 228
Kernel Ridge Regression, 233
kernel trick, 211, 250
keyframe, 413

extraction, 416, 424
KKT conditions, 219, 232
Kolmogorov capacity, 310
KPCA, 242
kriging, 237
Kronecker delta function, 138
Kruskal’s stress, 325
Kuhn Tucker conditions, 216
Kuhn Tucker Theorem, 215
Kullback-Leibler distance, 322
kurtosis, 319

Lagrange multipliers, 214
Lagrange Multipliers Method, 213
Lagrange’s multipliers theorem, 214
Lagrange’s stationary condition, 214
Lagrangian, 214
Lagrangian function, 215
Lagrangian SVM, 225
Laplacian Eigenmaps, 326, 331
large numbers

strong law of, 434
latent variable method, 137
latent variable model, 317
latent variables, 317

Index 489

LBG algorithm, 128
learner, 84
learning by analogy, 85
learning from examples, 85
learning from instruction, 85
learning machine, 85
learning problem, 85, 160
learning rate, 130, 192
Learning Vector Quantization, 194
learning with a teacher, 86
leave-one-out crossvalidation, 166
leptokurtic, 320
letters, 353
lexicon, 348, 353, 360

coverage, 361
selection, 360

lightness, 63
likelihood, 94
likelihood ratio, 99
linear classifier, 107
Linear Discriminant Analysis, 239
Linear Discriminant Functions, 107, 180
Linear Programming, 222
linear space, 479
LLE, 329
Lloyd interation, 128
local optimal decision, 70
Locally Linear Embedding, 326, 329
log-log plot, 311
logarithmic compander, 30
logistic sigmoid, 178, 182
long-wavelength, 57
loss function, 96
lossless compression, 32
lossy compression, 32, 68
lossy data compression, 70
loudness, 17
luminance, 62
LVQ PAK, 196

M-step, 122
machine learning, 83
macroblocks, 74
Mahalanobis distance, 103
Manhattan distance, 133
manifold, 327
manifold learning, 326, 327
manifold learning problem, 327

mapping layer, 315
Markov Models, 266

independence assumptions, 266
Markov random walks, 254
masking, 36
mathematical expectation, 441

linearity, 441
matrix, 457

characteristic equation, 461
determinants, 458
eigenvalues, 460
eigenvectors, 460

maximum likelihood algorithm, 237
maximum likelihood principle, 193
Maximum Likelihood problem, 119
MDL, 165
MDS, 325
MDSCAL, 325
mean of a variable, 102
mean value, 441

linearity, 441
measure of non Gaussianity, 319
medium-wavelength, 57
Mel FrequencyCepstrum Coefficients,

351
Mel Scale, 353
Mel scale, 22
membership matrix, 251
Mercer kernel, 466
Mercer theorem, 467
method of surrogate data, 312
metric space, 465
MFCC, 351
microphone, 23
mid-riser quantizer, 28
mid-tread quantizer, 28
minimum algorithm, 144
Minimum Description Length, 165
minimum Mahalanobis distance

classifier, 108
minimum Mahalanobis distance rule,

108
minimum weighted path length, 69
minimum-distance classifier, 107
minimum-distance rule, 107
model assessment, 155
model complexity, 153
model selection, 149, 155
monochromatic image, 57

490 Index

monochromatic primary, 60

moving average, 39

MPEG, 34, 73

layers, 34

MPEG-1, 73

MPEG-2, 73, 74

MPEG-21, 77

MPEG-4 standard class library, 75

MPEG-4 terminal, 75

MPEG-7, 77

MPEG-7 description schemes, 77

Multiclass SVMs, 228

Multidimensional Scaling, 325

Multilayer networks, 186

MultiLayer Perceptron, 179

Multilayer Perceptron, 186

multivariate Gaussian density, 102

mutual information minimization, 322

nearest prototype classification, 194

nearest-neighbor cluster algorithm, 144

necessary and sufficient condition for
consistency of ERM principle, 162

negative definite kernel, 472

negative definite matrix, 472

negentropy, 320

neighborhood graph, 328

Neural Computation, 175

Neural Gas, 134

Neural Networks, 174

activation functions, 175

architecture, 179

bias, 179

connections, 179

layers, 179

off-line learning, 192

on-line learning, 192

parameter space, 190

weights, 179

Neurocomputing, 175

neurons, 174

Ng-Jordan algorithm, 253

nonlinear component, 315

Nonlinear PCA, 315

norm, 464

normal Gaussian density, 102

normalization, 349

normalized frequency, 23
normed linear space, 479
NTSC, 62, 72
NTSC color space, 62
Nyquist frequence, 24

o-v-o method, 229
o-v-r method, 228
observation sequence, 266, 268
Occam’s razor, 156
One Class SVM, 245, 251
One Class SVM extension, 251
one-versus-one method, 229
one-versus-rest method, 228
Online K-MEANS, 129
online update, 127
operating characteristic, 110
optic chiasma, 54
optimal encoding tree, 70
Optimal Hyperplane, 217, 218
Optimal Hyperplane Algorithm, 217,

463
optimal quantizer, 127
Out-Of-Vocabulary words, 348, 362
oval window, 21

P-frame, 74
P-VOP, 76
PAL, 63, 72
Parallel Distributed Processing, 175
partitioning clustering, 118
pattern, 92
PCA, 242, 313
Perceptron, 185
perceptual coding, 35
perceptual quality, 32
perceptually uniform color models, 63
perplexity, 287, 362
PGM, 67
phase, 15
phonemes, 353
photopic vision, 57
Physichological color models, 59
Physiologically inspired models, 59
piece-wise linear function, 178
pinna, 20
pitch, 17, 19
pixel, 55
platykurtic, 320

Index 491

PNG, 67

Polya theorem, 471

polychotomizer, 98

polytope, 122

poor learner, 150

Portable Bitmap, 67

portable graymap, 67

Portable Image File Formats, 67

Portable Network Map, 67

portable pixmap, 67

positive definite kernel, 466

positive definite matrix, 465

positive semidefinite matrix, 103

postal applications, 369

posterior, 94

Postscript, 67

PPM, 67

Pre-Hilbertian space, 480

precision, 422

Predicted VOP, 76

Predictive frame, 74

preprocessing, 305, 349

primal-dual interior point, 222

primary hues, 63

principal component, 313

Principal Component Analysis, 242,
313, 425

principal component analysis, 104

principal components, 105

prior, 94

prior probability, 92, 94

Probabilistic Finite State Machines, 266

probability

conditional, 437

definition of, 434

probability density, 439

probability density function, 101

probability distribution

joint, 440

probability distributions

definition of, 439

probability of error, 95

projection indices, 323

prototype-based classifier, 174, 194

prototyped-based clustering, 118

Pulse Code Modulation, 28

pupil, 52

pure colors, 59

quadratic loss, 192
Quadratic Programming, 221
quantization, 27

error, 28, 30
linear, 27
logarithmic, 30

Quantization table, 71
quantizer, 125, 126

optimal, 126

radiance function, 58
random point, 440
random variables

continuous, 439
definition of, 439
discrete, 439

recall, 422
Receiver Operating Characteristic

Curve, 110
recognition process, 348
red difference component, 62
regression, 86, 173
regularization constant, 221
regularization costant, 226
reinforcement learning, 85, 86
rejection, 96
relative frequency, 433
reproducing kernel, 480
reproducing kernel Hilbert space, 227,

479, 480
reproducing property, 479
retina, 52
retinal array, 52
retinotopic map, 132
RGB, 59
RGB image, 61
RGB model, 59, 61
ridge regression, 233
risk, 97
RKHS, 227, 479, 480
robust clustering algorithm, 145
ROC curve, 110
rods, 53
rote learning, 84
row-action methods, 224

saccadic, 52
Sammon’s mapping, 325
sample space, 434

492 Index

sampling, 23

frequency, 23

period, 23

sampling theorem, 25

saturation, 59, 62–64

saturation coefficient functions, 66

scalar product, 464

Schoenberg theorem, 470, 475, 476

Schwartz criterion, 164

scotopic light, 53

SECAM, 63

second choice multiplier, 225

second milestone of VC theory, 162

Self Organizing Feature Map, 132

Self-Organizing Map, 132

semimetric, 465

sensor resolution, 55

sensor size, 55

sequential data, 265

Shannon frequence, 24

Shannon’s theorem, 165

shattered set of points, 156

shattering coefficient, 161

Shi and Malik algorithm, 254

short term analysis, 40

short-wavelength, 57

shot, 413

boundaries, 422

boundary, 414

shot boundary, 416

detection, 416

signal-to-noise Ratio, 28

simplex method, 222

single layer networks, 180

Singular Value Decomposition, 313, 334

slack variables, 221

slant, 349

Slater conditions, 216

slope, 349

SMO for classification, 223

SMO for One Class SVM, 247

smooth homomorphism, 327

smooth manifold, 327

SOCMF, 60

SOFM, 132

softmax function, 193

SOM, 132

SOM Toolbox, 134

SOM-PAK, 134

Spam Data, 146, 169

sparseness, 289

sparsest separating problem, 222

spatial redundance, 73

spatial resolution of image, 55

Spectral Clustering Methods, 252

spectral graph theory, 331

spectrogram, 351

speech production, 18

speech recognition, 345

applications, 368, 371

front end, 351

SRM, 159

standard observer color matching
functions, 60

state of nature, 92

state space models, 286

stationary point, 213

statistical independence, 317, 438

Statistical Language Modeling, 266, 296

Statistical Learning Theory, 159

statistically independence, 103

statistically independent components,
316

steepest gradient descent algorithm, 130

step function, 178

stress, 325

strong hue, 63

Structural Risk Minimization, 159

sub-Gaussian, 320

substitution, 358

subtractive primaries, 62

subunits, 354

sufficient condition for consistency of
ERM principle, 161

super-Gaussian, 320

supervised learning, 85, 117, 173

Support Vector Clustering, 251

Support Vector Machines, 196, 211

Support Vectors, 219, 246

SVC, 251

SVD, 313

SVM, 211

SVM construction, 220

SVM for classification, 216

SVM for Regression, 229

Index 493

Sylvester’s criterion, 465
symmetric loss function, 99
symmetric matrix, 103
synapses, 174
system

linear, 38
LTI, 39
time invariant, 38

Takens’ method, 311
TDT-2, 360
teacher, 84
television law, 62
temporal redundance, 73
tennis tournament method, 229
tensor product, 469
Test error, 153
test set, 155
the Munsell color space, 63
Theory of Regularization, 226
Thin Plate Spline, 471
third milestone of VC theory, 162
threshold function, 178
threshold of hearing, 17
TIFF, 67
topographic ordering, 139
topological dimension, 308
topological map, 132
Topology Representing Network, 135
topology-preserving map, 132
Torch, 194
Torchvision, 423
Training error, 153
training sample, 86
training set, 86, 155
trellis, 272
triangle inequality, 464
trigram, 362
tristimulus values, 61
Turing-Good counts, 294

Unconstrained Maximum, 224
uncorrelated components, 313
uncorrelatedness, 318
uniform color space, 63
unigram, 362
univariate Gaussian density, 102
univariate normal density, 102
universal approximation property, 186

unsaturated colors, 63
unsupervised learning, 85, 87, 117
unvoiced sounds, 19
user oriented color models, 59
user-oriented color models, 63

validation set, 155
value, 63, 64
Vapnik-Chervonenkis dimension, 156,

163
Vapnik-Chervonenkis Theory, 159
variable, 320
variable length code, 69
variance, 150, 442
variance of a variable, 102
variance term, 152
VC dimension, 156, 162, 163
VC entropy, 161
Vector Quantization, 125
vector space, 479
video, 413

browsing, 416
scenes, 413
segmentation, 413, 416
story, 413

video object layers, 76
video object planes, 76
video objects, 76
video sessions, 76
violet, 53
virtual primaries, 60
visual cortex, 54
Viterbi Algorithm, 274
vitreous humor, 52
vocal folds, 18
vocal tract, 18
vocing mechanism, 18
voiced sounds, 19
VOP, 76
Voronoi Region in Feature Space, 250
Voronoi Set in Feature Space, 250
Voronoi Tessellation, 123
voting strategy, 229

WAV, 33
wavelength, 17
weak hue, 63
weak learner, 150
Weber’s law, 58

494 Index

well-posed problem, 226
whitening, 323
whitening process, 104
Whitening Transformation, 104
window, 40

hamming, 40
length, 41
rectangular, 40

Winner-takes-all, 129, 228
Wisconsin Breast Cancer Database,

146, 334
Word Error Rate, 357
Word Recognition Rate, 357

worst case approach, 162

XOR problem, 183

yellow-green, 53
YIQ, 59, 62
YUV, 59, 62

Zero Crossing Rate, 44
zero-one loss, 153, 160
zero-one loss function, 99
zig-zag scheme, 71
Zipf Law, 290

	cover-image-large.jpg
	front-matter.pdf
	fulltext.pdf
	fulltext_001.pdf
	fulltext_002.pdf
	fulltext_003.pdf
	fulltext_004.pdf
	fulltext_005.pdf
	fulltext_006.pdf
	fulltext_007.pdf
	fulltext_008.pdf
	fulltext_009.pdf
	fulltext_010.pdf
	fulltext_011.pdf
	fulltext_012.pdf
	fulltext_013.pdf
	back-matter.pdf

